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1 Introduction

Much of mathematics evolves from trying to solve different kinds of equations:
polynomial equations, differential equations and other kinds of equations. A
differential equation is just a polynomial equation in the variables Dnx, n ∈ N
over some ring R of functions. A partial differential equation is p = 0, where
p ∈ R[∂αx], α ∈ Nm, x = (x1, ..., xm).
One can also consider equations in the variables τn(x) where τ is an operator,
injective ring endomorphism, in which case the equations are called difference
equations. Such endomorphisms extend to the field of quotients and that field
can be embedded in a bigger field, the inversive closure, where the endomor-
phism is surjective, an automorphism, see [11].
The structures where one studies these equations, difference fields, can be con-
sidered as fields on which Z acts by automorphism. The model theory of such
structures have been thoroughly investigated in [24] and [8].

This thesis will describe structures suitable for studying equations in the vari-
ables gx, for g in a group G : Fields with a group action.

Generally when studying equations one is interested to know if a certain struc-
ture has solutions to as many equations it could possibly have or if one can
find new solutions in an extension. Another question one would ask is if it is
possible to say in an understandable way exactly which equations and systems
of equations, that can have solutions.
In model theory we usually answer these questions by the concepts of exis-
tentially closed structures and model companion (the first order theory of the
existentially closed structures if the class of such structures is elementary) re-
spectively. Both concepts go back to Robinson and were inspired by the theory
of algebraically closed fields, often called ACF.
ACF is the model companion of the theory of fields (and of the theory of integral
domains) and it is a suitable place to work with polynomial equations. Robin-
son also showed that there is a model companion to the theory of differential
fields called DCF, differentially closed fields.
Around 1990 a model companion for the theory of difference fields was found
(by several people working together, most notably Angus Macintyre, see [24]
and [8]). In recent years a model companion for the structures suitable for
studying partial differential equations was found independently by Yaffe, [33],
and McGrail, [23].
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In what follows we will develop these themes for the theory of fields with a
group action.
If G is a group, then the fields which G acts on, the structures we will be inter-
ested in, will be called G-fields, see definitions below.
The model theoretic properties of these theories will depend on the group. We
begin by developing some basic field theoretic and model theoretic properties in
section three and four. Being existentially closed has some strong implications
on the structure of the fields, for instance on their Galois theory. We prove that
the class of existentially closed structures has quantifier elimination in a suit-
ably extended language and that the existential part of the class of existentially
closed structures is decidable.
When it comes to model companions the situation is thus:
We first introduce a first order theory, TG, that properly contains the theory of
G-fields and such that every existentially closed G-field is a TG-model.
It follows from a result of Hrushovski that if Z×Z 6 G, then there is no model
companion, the class of existentially closed structures is not an elementary class.
We prove here that if G is free, finite or if it satisfies a technical condition that
will be explained later, there is a model companion. In the last case we do it for
a slightly altered theory, the theory of G-fields that contain all the p-th roots
of unity, for every prime p. The question about existence of model companions
for other groups we leave open here, but will return to it some other time.

Acknowledgment
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2 Preliminaries

Let G be a group. When we say that G acts on a field K we mean that there is
a group homomorphism ρ : G→ AutK, the group of automorphisms on K, and
we write ρ(g); a 7→ ga. We immediately drop ρ from our notation, so it becomes
g; a 7→ ga, and sometimes, to emphasize the multiplicative nature of the action
we will write g; a 7→ ag. A G-action is faithful if ρ is a monomorphism.
If A is a subset of field then GA = {ga : g ∈ G, a ∈ A}
Some group notation: other groups than G will be called H or some other
upper case letter, and if A and B are two groups, then A 6 B means that A is
a subgroup of B, and if we are in the context of profinite groups it will mean
that it is a closed subgroup. The identity element of G or any other group will
be denoted 1.
A field on which G acts will be called a G-field. For technical reasons we do not
assume that the action is faithful, so any field can be a G-field for any group
G, but if we say that K is a G-field, it means that K comes with a specified G-
action. However the G-action on an existentially closed G-field will be faithful
automatically. If the action of G on a field K is not faithful, there will be an
h ∈ G such that K |= ∀x(hx = x), but we can always add a new transcendental
t and define a new action on an extension of K(t) such that h moves t. For
instance: let C = K(tg : g ∈ G) and define gi(tgj

) = tgigj
and the action on K

is the same as before, then C is an extension of K and ∃x(hx 6= x) is true in C,
but not in K.
LRing = {+, ·,−; 0, 1} is the language of rings. Let LG = LRing ∪ {gL : g ∈ G},
where the gL are new function symbols.
The theory of G-fields, TG will be the theory of fields together with the sentences
expressing that gL are field automorphisms and the relations of G,

∀x(gL(hLx) = (gh)Lx))

If the group G is finitely presented, see for instance [27], we can use another
language, Lσ, that has the same expressive power but is more practical when
working with finiteness conditions like if something is first order definable.
Let G = 〈σ,R〉, where σ = (σ1, ..., σn) is a tuple of generators for G and R is
a set of words in σ ∪ σ−1, called relations. This shall be interpreted as follows:
If Fσ is the free group on σ and R̄ is the normal closure in Fσ of the group
generated by the elements in R, then G = Fσ/R̄, see [27].
Let Lσ = LRing ∪ σLσ

−1
L , where σLσ

−1
L is an 2n-tuple of new function symbols

(intended for the generators of G and their inverses). The theory of G-fields,
TG will be the theory of fields together with the sentences expressing that σiL
are field automorphisms and a set RL of equational relations interpreting the
relations R of G. If w ∈ R, then RL shall contain ∀x(w(x) = x).
We will use both languages without mentioning when we switch between them.
The subscript L on σL, gL and RL will henceforth be dropped; we use the same
name for these objects both in the context of group theory and in the context
of logic.
We will also use the tuple σ̄ = (1, σ1, ..., σn) at times.
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The basic model theoretic concepts that we will discuss can be found in [15],
but here are some of them for ease of reference:
If L is a language then L∃ means the set of all existential formulae in L. If A is
any set (for instance a G-field) then L(A) will denote the language we get from
L by adding new constants for all elements of A. We will use the same name
for those constants as for the elements.
A model M of a theory T is existentially closed (short: e.c.) if for any super-
model N(⊇M) and any sentence φ ∈ L(M)∃ N |= φ implies that M |= φ
The model companion of a theory T is the first order theory of the e.c. models
of T if the class of e.c. models is elementary.
A structure A is an amalgamation base if whenever A ⊆ B and A ⊆ C, B and
C can be jointly embedded in a bigger model D.
A theory, or a class of structures, is decidable if both the set of true sentences
and its compliment are recursively enumerable.
A type p is a consistent (usually complete) set of formulae. S(A) denotes the
set of all complete types with parameters from A. S(A) ⊆ P(L(A))
A theory T has quantifier elimination if for every substructure A of a T -model,
T ∪ diagA is a complete theory, where diagX denotes the set of true, quantifier
free sentences in L(X).
This is equivalent to if A is substructure of both B and C, then there is a
T -model D such that B � D and C ⊆ D, and also equivalent to that every
formula is equivalent to a quantifier free formula. See theorem 13.1 of [29]

Later, definition 7, we will introduce a big existentially closed G-field C̄ with
nice properties and work inside it.
Lower case letters from the end of the alphabet x, y, xi, .. will be tuples of vari-
ables, lower case letters from the beginning of the alphabet a, b, ai, .. will be tu-
ples of elements from a field (later on from C̄), A,B,Ai, .. will be small (<

∣

∣C̄
∣

∣)
subsets of G-fields (later ⊆ C̄), and k,K, F,M, .. will be G-fields (models of TG,
later small sub-models of C̄) if not explicitly mentioned to be something else.
We will usually use the same letter to denote the model and the underlying set
even though we sometimes define different models on the same set, and hope
this will not cause confusion. We will also use the same notation for the multi-
plicative identity of the field and the identity element of the group (namely 1).

� denotes an epimorphism and � a monomorphism of groups, fields or what-
ever.
If M is a field and H ⊆ AutM, then MH = {x ∈ M : hx = x, h ∈ H}, fixed
field of H in M .
If k is a field, then k̄ denotes the algebraic closure of k (as a field). And if A
and B are two fields, with A 6 B algebraic, then the Galois group of B/A is
Gal(B/A) = AutAB, the group of field automorphisms of B fixing A point-wise.
And the absolute Galois group of of a field F is G(F ) = Gal(F̄/F).

We will need to introduce some terminology and basic facts about G-equations.
A G-equation over a G-field K is polynomial equation in the variables gxi where
g is in G.
f = 0 where f ∈ K[gxi : g ∈ G, 1 6 i 6 m] = K[Gx], where x = (x1, ..., xm)
And K[Gx] is a G-ring by:
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hf = Σhai(hḡix)
i

if
f = Σai(ḡix)

i

where i ∈ N<ω, ḡix = gi1x1 · ... · gimxm, gij ∈ G, h ∈ G
and hḡix = hgi1x1 · ... · hgimxm.
For f ∈ K[x], f = Σaix

i and τ ∈ AutK, a field-automorphism, let τf =
Στ(ai)x

i, so f(b) = 0 if and only if τf(τ(b)) = 0.

If I ⊂ K[x] is an ideal let Iτ = {τf : f ∈ I} and if V ⊂ Am is a variety
and IV = {f ∈ K[x] : p ∈ V ⇒ f(p) = 0}, then V τ = {p ∈ Am : f ∈ IV ⇒
τf(p) = 0}.

A quantifier-free formula is just a boolean combination of G-equations, but for
many purposes one needs only consider a certain kind of those.
K[σ̄x] is the sub-ring (not a G-ring) of K[Gx] consisting of polynomials in the
variables (x, σ1(x), ..., σn(x)) = σ̄x.

Proposition 1. For every quantifier-free formula φ there is a formula φ̄ =
∧

i fi = 0, a finite conjunction of G-equations, where fi ∈ K[σ̄x] and for every
model M of TG, M |= ∃xφ if and only if M |= ∃yφ̄. (φ̄ usually have more free
variables than φ, |x| ≤ |y|.)

Proof: We may assume that φ is in conjunctive normal form, a finite con-
junction of finite disjunctions of G-equations and G-inequations. For every
inequation, f(x) 6= 0, replace it by yf(x) − 1 = 0, so we have a conjunction
of disjunctions of G-equations, but every disjunction of equations is equivalent
to a single equation (f = 0 ∨ g = 0 ⇔ fg = 0), so we have a conjunction of
G-equations.
Now let f = 0 be one of them, f ∈ K[Gx]:
Let f = Σiai(gix)

i, i ∈ Nm, gi = (gi1, ..., gim) and gij = τij1 · ... · τijl, where
τijk is either a generator, an inverse of a generator or 1. We assume that the
presentations has been chosen so that they are as short as possible.
Now assume that the maximal length of a presentation gij = τij1 · ... · τijl, such
that gijx is a variable in f , is l.
Then for every gij that is not a generator or 1, change gijx to τij1yj if τij1 is a
generator and to yj if τij1 is an inverse of a generator and add the new equation
yj − τij2 · ... · τijlxj = 0 or τij1yj − τij2 · ... · τijlxj = 0 in the respective cases.
In the resulting conjunction f1 every gij that occurs in a variable has a pre-
sentation shorter than l. Repeat this procedure until every gij that occurs in a
variable is either a generator or 1. That will happen after less than l repetitions.
Let f l = f̄ and let φ̄ be

∧

f̄ when φ is
∧

f = 0.
Then φ̄ is a conjunction of equations from K[σ̄xy] and there is a x ∈ M such
that M |= φ if and only if there is a xy ∈M such that M |= φ̄ �

In that way every q.f.-formula in Lσ(K) is equivalent to a finitely generated
ideal in K[σ̄x].
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3 Field theoretic properties of e.c. G-fields

We will need some facts about profinite groups and pseudo-algebraically closed
fields. Such facts can be found in [32] and/or [13], but we mention a few that
will be vital in the sequel.
Profinite groups are inverse limits of finite groups, or equivalently compact,
Hausdorff groups that have a basis for the neighborhoods of 1 consisting of
normal subgroups. Galois groups are profinite and every profinite group occurs
as a Galois group for some field extension.
An inverse limit of finite p-groups will be called a pro-p-group.

Definition 1. If A is a
group, then the profinite completion Â of A is the inverse limit of all finite

quotients of A.
Â = lim←−A/N

where N runs through all normal subgroups of finite index.

We will call the set of all such finite quotients Im(A). If B ∈ Im(A), then
there is an epimorphism from A to B.

A variety X over a field k is absolutely irreducible if k̄IX is prime, that is
if X is also irreducible as a variety over k̄.

Definition 2. A field A is pseudo algebraically closed, abbreviated PAC, if every
absolutely irreducible variety over A has an A-rational point.

Definition 3. A profinite group G is projective if for every profinite A,B with
α : A � B and β : G→ B there is a γ : G→ A such that

G
γ

��~~
~~

~~
~

β

��
A α

// // B

commutes.

Equivalently a profinite group is projective if all its p-Sylow subgroups are
free pro-p-groups, for every prime p, or if its cohomological dimension is 6 1
(Corollary 11.2.3 of [32]).
Contrary to the case of abstract groups, there are projective profinite groups
that are not free.
Galois groups of PAC-fields are projective and every projective profinite group
occurs as a Galois group of a PAC-field. Actually Ax, [1], proved that the Galois
groups of PAC-fields has cohomological dimension 6 1.
If B is a projective profinite group and α : A � B, then there is a closed sub-
group C 6 A such that α � C is a bijection. To see this, let β be the identity in
the above definition.

Define a partial order on the class of epimorphisms in the category of profinite
groups by α 6 β if they have the same codomain and there is an epimorphism
γ such that αγ = β.
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Definition 4. A universal Frattini cover (also known as a projective cover) of
group A,

φ̃ : Ã � A

is a smallest epimorphism from a projective profinite group to A.

Other characterizations equivalent to the one above is:
(i) φ̃ is the biggest epimorphism to A with kernel in the Frattini subgroup Φ(Ã),
which is the intersection of all maximal open subgroups of Ã.
(ii) φ̃ is an epimorphism to A with kernel in the Frattini subgroup Φ(Ã) and
the domain of φ̃ is projective.
By common abuse of notation we will refer to both φ̃ and Ã of the above
definition separately as “the” universal Frattini cover. It is unique up to home-
omorphism.

Now we are ready to examine the existentially closed G-fields.

From now and to the end of this section let K be an existentially closed G-
field and F = KG, the fixed field of G in K.

Theorem 1. K and F are perfect.

Proof: Let p = charK.
First let a ∈ K ∩ F p

−∞

. Then ap
m

∈ F for some m ∈ N. If for any g ∈ G,
ga = b, then ap

m

= g(ap
m

) = (ga)p
m

= bp
m

, so 0 = ap
m

− bp
m

= (a − b)p
m

.
Hence a = b and therefore a ∈ F .
Now let cp ∈ K. Let σ = {σi : i ∈ I} be a, possibly infinite, set of generators
for G, and % : Fσ → G a presentation. Extend the automorphisms σ to K̄ any
way you like; find σ̇i ∈ AutK̄ with σ̇i � K = σi. Close K(c) under the action of
the σ̇i and call the closure A. Let τi = σ̇i � A and H = 〈τi : i ∈ I〉. There is an
epimorphism % : H → G, the restriction map. Now let a be any element in A
and w any element in ker % and assume that wa = b. ap ∈ K so

ap = wap = bp ⇒ 0 = ap − bp = (a− b)p ⇒ a = b

So w = 1 and therefore % is an isomorphism and since K is e.c. A = K. �

Theorem 2. F is pseudo algebraically closed.

Proof: Let V be an absolutely irreducible variety over F . Define an action
of G on K

⊗

F F (V ), where F (V ) is the function field, by g 7→ g ⊗ 1. This
action extends uniquely to the field of fractions K(V ), which is a G-field that
extends K. Because there is a K(V )-rational point, x ∈ F [x]/I(V ), there has
to be a point in V(K). And since x is fixed by the G-action in K(V ) there has
to be one in F . So F is PAC. �

Theorem 3. K is pseudo algebraically closed.

Proof: Let V be an absolutely irreducible variety over K. Then if g ∈ G,
V g is also over K. V g = V (gI(V )) = {p : gf(p) = 0, f ∈ I(V )} and gf ∈ K[x].
In a large (saturated) algebraically closed field extending K, choose ag for every
g ∈ G such that ag is a generic point of V g over K(ah : h ∈ G, h 6= g). Set
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M = K(ag : g ∈ G), and define a G-action on M by g(ah) = aghfor every
g, h ∈ G. That makes M a G-field, and V (M) 6= ∅ (a1 is there) and K is e.c.
so V (K) 6= ∅, so K is PAC. �

A profinite group is small if it has, for every positive ineger n, only finitely
many normal subgroups of index n.
A PAC-field is bounded if it has only finitely many separable extensions of each
finite degree.
So a PAC-field is bounded if and only if it’s Galois group is small.

From now on assume that G is finitely presented and G = 〈σ,R〉.

Theorem 4. Gal(F̄ ∩K/F) is the profinite completion of G

Proof: K∩F̄ /F is a normal and separable extension. Let A = Gal(K∩Fs/F)
and let H be finite quotient of G.
π : G � H and |H | = m < ω
Embed H into Sm, ε : H � Sm. Let f(x) =

∏

i(x − ti) and N = F (t1, ..., tm)
and M = N [x]/(f). The length of x is one here.
Let H act on N by h(ti) = tε(h)i, and let F ′ = NH . Then the coefficients for f
are in F ′ because they are symmetric polynomials in the ti’s, and the splitting
field of f over F ′, M = F ′[x]/(f) has a Galois group isomorphic to H .
Let K ′ be the fraction field of K

⊗

F̃∩KM and let G act on K ′ by g ⊗ πg, so
that K ′ is a G-field extending K.
Set φ = ∃y0, ..., ym, x (p(y, x) = 0

∧

i,k σi(yk) = yk
∧

i “σi(x) = πσi(x)
′′), where

p(s(t), x) = f(x) and s(t) are the appropriate symmetric polynomials in t and
the last conjuncts are an abbreviation for that the relations of H are respected
on x.
Then K ′ |= ∃xφ(x) and K is e.c. so φ is satisfied in K, but then F has a
Galois extension with Galois group isomorphic to H inside K. Therefore H is
a quotient of A and H was arbitrary, so:

Im(G) = Im(Ĝ) ⊆ Im(G)

And Im(A) ⊆ Im(Ĝ) trivially.
Ĝ is small since G is finitely generated, and two small profinite groups are
homeomorphic if and only if they have the same finite quotients. �

Theorem 5. The absolute Galois group of F is the universal Frattini cover of
the profinite completion of G.

φ̃ : G̃ � Ĝ

and G(F ) = G̃

Proof: Let α be the restriction map

α : G(F ) � Ĝ(= Gal(K ∩ Fs/F)); g 7→ g � K ∩ Fs

Now G(F ) projective by theorem two and the universal Frattini cover φ̃ : G̃ � Ĝ
is the smallest projective cover of Ĝ, so there is an epimorphism γ1 with φ̃γ1 = α
And since G̃ is projective there is a subgroup G 6 G(F ) such that γ1 � G is a
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homeomorphism.
Let γ2 = (γ1 � G)−1 and ι : G � G(F ) the embedding. Then

G(F )

γ1
wwwwppppppppppppp

α
����

G̃

ι◦γ2

77ppppppppppppp

φ̃

// // Ĝ

commutes. So there is a split exact sequence:

kerγ1
// // G(F )

γ2◦γ1
// // G

ιrr

Therefore G(F ) = kerγ1 o G, the semi-direct product, see for instance [27].

Then
F = F̄G(F ) = F̄ kerγ1 ∩ F̄ G

so F̄ kerγ1 is linearly disjoint from F̄ G over F , and F̄ = F̄ kerγ1 F̄ G , because G(F )
is the semi-direct product of kerγ1 and G.
Since K ∩ F s ⊂ F̄ kerγ1 ,because kerγ1 6 kerα and α is restriction to K ∩ F s.
K is linearly disjoint from F̄ G over F, so we can define an action of G on
KF̄ G = K

⊗

F F̄
G by g 7→ g⊗ 1, but KF̄ G is algebraic over K and K is e.c. so

KF̄ G = K, which implies that F̄ G = F and therefore

F̄ 1 = F̄ = F̄ GF̄ kerγ1 = F̄ G
⊗

F

F̄ kerγ1 = F
⊗

F

F̄ kerγ1 = F̄ kerγ1

hence kerγ1 = 1, so γ1 is a homeomorphism. �

Theorem 6. The Galois group of K is homeomorphic to the kernel of the
universal Frattini cover of the profinite completion of G
ker φ̃ � G̃ � Ĝ,
G(K) ∼= ker φ̃

Proof: From theorem 4 we know that Gal(Fs ∩ K/F) ∼= Ĝ, the profinite
completion of Ĝ and from theorem 5 we know that G(F ) ∼= G̃, the universal
Frattini cover of Ĝ.
By elementary Galois theory G(F s ∩K) ∼= ker φ̃.
For any Galois extension A/B we have

G(A) � G(B) � Gal(A/B)

where the epimorphism is the restriction map.

Now K is regular over F s ∩ K (see theorem 1) and therefore the restriction
map res : G(K)→ G(Fs ∩K) is an epimorphism.
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G(F s∩K) ∼= ker φ̃ is projective since it is a Galois group of the PAC-field F̄ ∩K.

K̄

K

G(K)
xxxxxxxxx

F s

GGGGGGGGG

F̄ ∩K

FFFFFFFFF ker φ̃

wwwwwwwww

F

Ĝ

So there is a subgroup H 6 G(K) homeomorphic to ker φ̃, res � H : H→̃ ker φ̃.
Let M = K̄H .

Ks G(K)

����

M

H

H
bb

bbEEEEEEEE

K

G(K)/H

ker φ̃

<<zzzzzzzz

σi ∈ AutFK, ,R 3 w = σp1

i1
....σpk

ik
, pj = 1,−1

Assume M 6= K. Then there is a w ∈ R such that for every σ̇ ∈ AutFM, such
that σ̇ � K = σ

σ̇p1i1 ...σ̇
pk

ik
= ẇ 6= 1

But then ẇ ∈ Gal(M/K) ∼= G(K)/H, because ẇ � K = 1.
One of the possible extensions of w to AutFK̃ has to be in H since w ∈ Gal(Fs∩
K) and res � H is a homeomorphism. Say ẅ ∈ H . From elementary Galois
theory we know that there is an exact sequence:

H
α // G(K)

β // G(M/K)

So β ◦ α(ẅ) = 1 - A contradiction. So therefore M = K. �

ker φ̃ is pro-nilpotent, its p-Sylow subgroups are free pro-p groups and ker φ̃ =
∏

p Sp, where Sp is free pro-p and with index relatively prime to p.
So F is a bounded, perfect PAC-field and K is a perfect PAC-field that is fairly
well behaved, has an understandable Galois group.
K is bounded if and only if ker φ̃ is small.
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4 The category of e.c.-structures

Let EG be the category of existentially closed G-fields with embeddings as mor-
phisms, as in [25]. EG is a full subcategory of FG of G-fields and embeddings.
The category FG of G-fields is a subcategory (not full) of the category of fields
and embeddings. We will be working in all those categories; to prove that some-
thing is true in an e.c. G-field K one has to find a G-field extending K where it
is true, and for that we sometimes have to go to a pure field extending K and
define a new G-action on it compatible with the action on K.
The category EG will be the subject of this section and it will be important in
the rest of this text.

When studying EG we are primarily interested in existential formulae and we
will need some more notation.
A ≡1 B means that A and B satisfies the same existential sentences.
A 41 B means that A 6 B and if a ∈ A and φ is any existential formula, then
B |= φ(a) implies A |= φ(a).
An existential type p over a set A is a consistent set of existential formulae in
L(A). etpM(a/A) = {φ ∈ L(A)∃ : M |= φ(a)} is the existential type of a over A
in M . An existential type p is maximal if for any existential type q ( over the
same set) p ⊆ q ⇒ p = q. For instance, if M is e.c. and a ∈M then etpM(a) is
maximal.

Definition 5. Let C be a G-field, then C is κ-existentially universal (κ-e.u.)
if the following equivalent conditions holds.
(i)For every subset A of C, |A| < κ and every existential type p over A, if p is
realized in an extension of C, then p is realized in C.
(ii)For every subset A of C, |A| < κ and every existential type p over A, if every
finite subset of p is realized in C, then p is realized in C.
(iii) For every N,M ∈ EG, if M ⊂ C, M ↪→ N and |N | < κ, then N ↪→ C.

Facts: For every K ∈ EG, |K| < κ, there is a κ-existentially universal C,
|C| = κ, such that K ⊂ C. See [26].
Any κ-existentially universal G-field is existentially closed, and it has the follow-
ing special homogeneity property (equivalent to the defining properties): If A
and B are small (cardinality < κ) subsets of a κ-e.u. G-field C and if f : A→ B
is any bijection such that etpC(a) ⊆ etpC(f(a)) for every tuple a ∈ A, then f
extends to an automorphism of C. See [25].
A structure A that is |A|-e.u. will be called existentially universal, e.u.

A field extension K/k is regular if it is separable and k is relatively algebraically
closed in K.
If the extension A/B is regular, we also say that A is regular over B.

Proposition 2. If A,B ∈ EG and A ⊆ B, then A and B have the same
existential theory and B is regular over A.

Proof: A 41 B �

If X is a set in the intersection of Y and Z, a X-morphism from Y to Z is
a morphism that fixes X pointwise.
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Theorem 7. Let D be κ-e.u. G-field A ⊆ D, K regular over A, |K| < κ and
K |= TG, then there is an A-embedding of K into D.

Proof: Find an A-isomorphic copy K ′ of K,linearly disjoint from D over A,
in a big algebraically closed field extending K and D. This is possible since K
is regular over A. Now the field of fractions of K ′

⊗

AD is a G-field extending
D, so every existential type over A realized in the field of fractions of K ′

⊗

AD
is realized in D since D is existentially universal. That is especially true for
p = {φ : φ ∈ L(A)∃ and K |= φ}. �

Definition 6. If A is a subset of K ∈ EG, then 〈GA〉 = 〈{g(a) : g ∈ G, a ∈ A}〉,
where 〈B〉 means the smallest field containing the set B. Let clK(A), the closure
of A, be cl(A) = 〈GA〉 ∩K, the relative algebraic closure of 〈GA〉 in K.

cl is a closure operator and it is easily seen that if A = cl(A), then A is a
G-field and any existentially closed G-field extending A is regular over it.

Proposition 3. If A = cl(A), then A is an amalgamation base for TG-models.

Proof: Let B and C be two extensions of A. Since they are both transcen-
dental over A we can find an A-isomorphic copy B′ of B linearly disjoint from C
over A, and the field of quotients of cl(B′)

⊗

A cl(C) will be a common extension
of B′ and C. �

Proposition 4. If K and M are two G-fields with Th(K)∀ ∼= Th(M)∀, then
there is an existentially universal D such that K and M can be jointly embedded
into D.

Proof: If K and M have the same universal theory, their intersections with
the prime field P are isomorphic. Let

K ∩ P = M ∩ P = Q

Let K ′ and M ′ be existentially closed models extending K and M respectively.
Then cl(Q) ⊆ K ′ and cl(Q) ⊆ M ′ and by the previous proposition K ′ and M ′

can be jointly embedded into a model, which in turn embeds into a existentially
universal domain D. �

Definition 7. If K is any field and P is the prime field, then the absolute
numbers of K, abs(K) are the elements in K algebraic over P . abs(K) = K∩ P̄.

Theorem 8. Let E, F ∈ EG, C a closed set (C = clE(C) = clF (C)) and C ⊆
E ∩F , then E and F satisfy the same existential sentences over C (abbreviated
E ≡1,C F ).

Proof: Let D be e.u. G-field containing E. Since D is homogeneous, and E
is regular over C, we can find an E ′ isomorphic to E over C (the isomorphism
fixes C point-wise) and linearly disjoint from F over C. The field of quotients
of E′

⊗

C F is a G-field that contain both E ′ and F . Let M be an e.c. G-field
extending the field of quotients of E ′

⊗

C F , then since E′ and F are e.c. we
have E′, F 41 M . So E′ ≡1,C F . �

Corollary 1. If A and B are two e.c. G-fields and abs(A) ∼= abs(B), then
A ≡1 B.

13



EG is a disjoint union of subcategories EGA, where

Ob(EGA) = {K ∈ EG : abs(K) ∼= A}

for all possible isomorphism-types of the absolute numbers. Of course G(A)
must be smaller or equal to the Galois group of the kernel of the universal Frat-
tini cover of the profinite completion of G and G(AG) must be smaller or equal
to G̃, where the order of Galois groups is given by the epimorphisms. That is if
EGA is a nonempty subcategory of EG, then there are epimorphisms G̃ � G(AG)
and kerφ̃ � G(A).

From now on we assume we are in one of those subcategories and we choose a
cardinal κ bigger then any field we will be interested in ( for instance κ can be
inaccessible).

Definition 8. Let C̄ be a κ-existentially universal G-field, such that every G-
field we consider here is a sub-G-field of C̄.

Definition 9. Let

etp(a/A) = {φ(x) ∈ L(A)∃ : C̄ |= φ(a)}

and let
cl(A) = clC̄(A)

Theorem 9. If A = cl(A) and B is any G-field that extends A, |B| <
∣

∣C̄
∣

∣, then
there are infinitely many linearly disjoint A-isomorphic copies of B in C̄.

Proof: Find infinitely many copies (Bi : i < ω) of B, linearly disjoint over
A, in some saturated algebraically closed field extending C̄. Let K be the field
of quotients of

⊗

ABi and apply proposition 4. �

Proposition 5. etp(a/A) = etp(b/A) if and only if there is an isomorphism
α : cl(Aa)→ cl(Ab) that takes a to b and fixes A point-wise.

We end this section with a definition that will be useful in the following
sections.

Definition 10. Let TG be the first order theory that says that it’s models are
faithful, perfect, PAC G-fields, with the fixed fields PAC and perfect and that
the Galois groups are as in the theorems of section three.

That TG is first order follows from [13].

We know from section 3 that all existentially closedG-fields satisfy TG, Ob(EG) ⊆
ModTG, the class of TG-models, and if the kernel of the universal Frattini cover
of Ĝ is small, then every extension between TG-models are regular, as we shall
see from the next theorem.

Theorem 10. If k |= TG and the kernel of the universal Frattini cover of Ĝ is
small, then there are no G-fields algebraic over k.
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Proof: For any faithful G-field F , Gal(F∩F̄G/FG) = Ĝ. LetM = cl(F∩F̄G),
then Gal(M/MG) = Ĝ and

F̄

M

ker φ̃

F ∩ F̄G

uuuuuuuuu

MG

Ĝ

EEEEEEEE

FG
Ĝ

HHHHHHHHH

zzzzzzzz

So G(M) 6 G(F ∩ F̄G) and G(M) = ker φ̃.
So if ker φ̃ has m normal subgroups of index p, for a prime p, then every faithful
G-field has at least m extensions of degree p.
Let H 6 ker φ̃ be one of those normal subgroups, then the action of Ĝ can not
be extended to a field containing MH .
Let M ′ = {gm : g ∈ G(MG),m ∈ MH} and H ′ = {g ∈ G(MG) : gm = m if
m ∈M ′}.
The fact that the action of Ĝ can not be extended to any field containing MH

is equivalent to that the following sequence does not split:

Gal(M′/M) � Gal(M′/MG) � Gal(M/MG) ∼= Ĝ

Let L = N ∩ N̄G where N is any faithful G-field with Abs(N) � Abs(M) (and
L ⊆ M). Then G(MG) � G(LG) and there is a field L′ with L ⊆ L′ ⊆ L̄ such
that the restriction-map res : H′ → G(L′) is an isomorphism.
But then

Gal(L′/L) � Gal(L′/LG) � Gal(L/LG)

does not split, so the action of Ĝ can not be extended to L′.
So every faithful G-field has m extensions of degree p to which the action of Ĝ
can not be extended.
Assume k |= TG and let k′ 6= k be a minimal algebraic extension of k. Since ker φ̃
is pro-nilpotent has to be cyclic of degree p for some prime p. But since k only
have m those and every faithful G-field has to have at least m such extensions
to which the G-action can not be extended, there are no G-field structure on
any field containing k′.
So there are no G-fields extending k algebraic over k. �
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5 Quantifier elimination and Decidability

In this section assume that G is finitely presented and work in Lσ and let UG
be the category of existentially universal G-fields.
Then for E,F ∈ UG, E ≡ F if Th(E)∀ = Th(F )∀, see [14], and Th(E)∀ =
Th(F )∀ if and only if Abs(E) ∼= Abs(F). From these facts we can deduce decid-
ability and a quantifier elimination in an extended language for UG.

Let F be the set of polynomials f ∈ Z[x], where x is of length one, that are
monic, irreducible over Q, the Galois group of the splitting field for f is a quo-
tient of the universal Frattini cover of Ĝ and the splitting field is generated by
one (any) root of f .

Obviously the equivalence type of the absolute numbers is determined by which
of the polynomials in F that has roots and how the generators of G acts on
those roots.
And in positive characteristics the only possible algebraic extensions of the
prime field ( of degree not divided by the characteristics) are splitting fields of
polynomials of the form xm − 1, if m 6= chark.

To every f ∈ F we associate ri ∈ Q[x], for 0 6 i < deg(f), such that
f(a) = 0 implies that f(ri(a)) = 0 and r0(a), ..., rdeg(f)−1(a) are all the roots of
f , degri < degf and r0 = x.
Let θf,i,j be ∃x(f(x) = 0 ∧ σj(x) = ri(x)), for f ∈ F
and let ψm,i,j be ∃x(xm = 1 ∧ σj(x) = xi), where i | m
and ηp,i,j be ∃x(xp − x = 1 ∧ σjx = x+ i)
Let Θ be the set of boolean combinations of the θf,i,j and let Ψ be the set of
boolean combinations of the ψm,i,j and the ηp,i,j

First we restrict attention to existentially universal G-fields of characteristics
zero. We will use ultraproducts to prove that modulo the class of e.u. G-fields
of characteristics zero, every sentence in Lσ (or in LG) is equalent to a member
of Θ. For the theory of ultraproducts see [5].

Let A and B be e.u.G-fields, charA = charB = 0. We know that A ≡ B if and
only if A∩ Q̄ ∼= B∩ Q̄, and A∩ Q̄ ∼= B∩ Q̄ if and only if A |= θf,i,j ⇔ B |= θf,i,j ,
for all θf,i,j .
Chose a representative Si for each equivalence class of absolute numbers of
objects in UG. Let Mi be the existentially universal closure of Si, and let
M = {Mi : i ∈ I}. Then M contains precisely one e.u. G-field of each equiva-
lence class and |M | 6 2ℵ0 .
For every sentence φ ∈ Lσ let P (φ) = {i ∈ I : Mi |= φ} and let B be the
Boolean algebra generated by the P (θf,i,j).

Proposition 6. Any sentence in Lσ (or in LG) is equivalent to a sentence i Θ
modulo the class of e.u. G-fields of characteristics zero.

Proof: Assume that we have a sentence φ ∈ LG with P (φ) /∈ B. Then from
the general theory we know that we can find two ultra-filters F and H with the
same B-intersection, B ∩ F = B ∩H, but with P (φ) ∈ F and P (φ) /∈ H.
Let F =

∏

Mi/F and H ==
∏

Mi/H. Then F ≡ H since they agree on B,
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but F |= φ and H |= ¬φ - a contradiction. �

For characteristics p > 0 the same is true for Ψ in place of Θ in exactly the
same way.
So for every sentence φ of LG there is a finite set π of primes and a particular
prime p0 such that for every M ∈ UG,

M |= φ↔
∨

p∈π

(p = 0 ∧ ψ) ∨
∧

p<p0

(p 6= 0 ∧ θ)

where ψ ∈ Ψ and θ ∈ Θ.

It should now be clear that:

Theorem 11. UG is decidable.

Proof: To decide a sentence φ we need to check, for a finite number of finite
extensions of the prime field, if there is a K ∈ UG that have (or don’t have)
these extensions with the prescribed G-action. Or more precisely for a finite
number of polynomials q ∈ P [x], where P is the prime field and x is a single
variable, we have to decide if there is a G-field that don’t have a solution to q,
but has some sub-extension of the splitting field for q.
Let Pq be the splitting field for q over P , and let L0, L1 be two intermediate fields
with L0 ⊆ L1. We need to check if there is a G-field K such that K ∩ Pq = L1

and KG ∩ Pq = L0

And that is true if
A = Gal(Pq/F1) ∈ Im(kerφ̃),

B = Gal(Pq/F0) ∈ Im(G̃) and

C = Gal(F1/F0) ∈ Im(Ĝ)
and there are morphisms α, β that makes the following diagram commute.

kerφ̃

����

// // G̃

����

// // Ĝ

����
A // // B // // C

And since the groups and morphisms in top row are known all of this only in-
volves finding finitely many Galois groups from the polynomials defining the
extensions. �

And we also have:

Theorem 12. The existential part of EG is decidable.

Proof: Let M,N ∈ EG. Then M ≡∃ N if and only if Th(M)∀ ∼= Th(N)∀,
see [14], if and only if Abs(M) ∼= Abs(N). So for every existential sentence φ we
have that there is a finite set of primes π and boolean combinations θ and ψ of
sentences in Θ and Ψ respectively, such that in every M ∈ EG,

M |= φ↔
∨

p∈π

(p = 0 ∧ ψ) ∨
∧

p<p0

(p 6= 0 ∧ θ)
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Further more by enriching the language we can obtain quantifier elimination.

Let Ef,g,i be ∃y(f(σ̄xy) = 0 ∧ σi(y) = g(σ̄xy)
where f ∈ Z[v0, ..., vnm+1], lgy = 1, lgx = m and g ∈ Q[v]. Where the total
degree of g is strictly smaller than the total degree of f .

Let LEσ = Lσ ∪ {Ef,g,i : f irreducible}.

Theorem 13. EG has quantifier elimination in the language LEσ .

Proof: First we claim that every LEσ -substructure of an object in EG is
closed in the sense of definition 5. To prove the claim take M ∈ Ob(EG) and
a substructure A ⊆ M . Since A is substructure GA ⊆ A so the only possible
difference between A and clA comes from taking a relative algebraic closure,
clA = Ā ∩M.
So assume b ∈ Ā \A and let fb(x) ∈ A[x] be the minimal polynomial for b,
fb =

∑

aix
i, ai ∈ A.

Let f ′
b =

∑

yix
i and let χ(y) =

∧

g Ef ′

b
gi, where g run through every polynomial

such that fb(g(σ̄ab)) = 0. Then χ(a) is not true in A, since b /∈ A, and it is a
quantifier-free formula so we have:

A |= ¬χ(a)⇒M |= ¬χ(a)⇒ b /∈M ⇒ A = Ā ∩M ⇒ A = clA

which proves the claim.
And from proposition 3 we know that closed sets are amalgamation bases and
that is all we need to obtain quantifier elimination, see section 2. �

So in LEσ every formula is equivalent to a quantifier-free formula modulo EG.

6 Finite Groups

If a finite group G acts on a field K, then K will be a finite Galois extension of
KG, by elementary Galois theory.
We start with an example. Let G = Z/(2), the group with two elements.
Consider C, the complex numbers and σ; z 7→ z̄, complex conjugation. Then
(C, σ) |= TG, but (C, σ) is not existentially closed since CG = R is not PAC.
For instance x2

1 + x2
2 + x2

3 + 1 = 0 does not have an R-rational solution. So let
K be an extension of C existentially closed as a TG-model.
The profinite completion of Z/(2) is Z/(2) and the universal Frattini cover of
Z/(2) is Z2, the 2-adic integers (the inverse limit of Z/(2k)) and the kernel of the
universal Frattini cover is Z2 → Z2; (ai) 7→ (2ai). So Gal(K) ∼= Gal(KG) ∼= Z2.
So K is degree-two-extension of a field with no algebraic extension of odd de-
gree, but K is not algebraically closed.

We know from section three of this thesis that if K is an e.c. G-field, then
K |= TG. But, in fact, the other direction is also true here, so TG is the model
companion of TG. This will be proved in the next theorem.
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Theorem 14. (|G| < ω)
TG is model complete.

Proof: Assume K |= TG and that φ(x) is a quantifier-free formula in L(K)
satisfied in a G-field K ′ extending K
For some a ∈ K ′, K ′ |= φ̄(a), where φ̄ is as defined in proposition 1.
Set F = KG and F ′ = K ′G.
Then there is a finite b ∈ K such that K = F (b) and K ′ = F ′(b), and moreover
b is a basis. Actually any basis for K over F will do.
Let c be the coordinates for a with respect to b, ai =

∑

cijbj , and c =
(c11, ..., ckm), where k = |a| and m = |b|
φ̄ =

∧

r fr = 0 where fr =
∑

ds(σ̄x)
ls and ls ∈ Nnk.

Let V = V (c/K), then V (F ′) 6= ∅ and F ′ is regular over F ,which is PAC, so
there has to be a K-rational point in V . Let e ∈ V (F ) be it. Then

0 = fr(a) =
∑

ds(σ̄a)
ls =

∑

ds(
∏

ki

∑

j

cijσkbj)
ls ⇒

∑

ds(
∏

ki

∑

j

xijσkbj)
ls ∈ I(c/K)⇒

0 =
∑

ds(
∏

ki

∑

j

eijσkbj)
ls = fr(u)

where u = (
∑

c1jbj , ...,
∑

ckjbj) ∈ K.
So there is a solution in K and hence K is e.c. �

We can also prove the following theorem that will be useful later.

Theorem 15. If K is an e.c. G-field and H / G of finite index, then there is
an algebraic extension M of KH such that M is an e.c. G/H-field, and there
is a basis b for KH over KG such that b is also a basis for M over MG/H .

Proof: KH is perfect and PAC. It is a finite separable extension of KG.

G(KH) and G(KG) are projective. Let G̃/H be the universal Frattini cover of
G/H , then

G(KG) // //

∃
����

Ĝ

����
G̃/H // // G/H

because G̃/H is the smallest projective with an epi to G/H . And by Galois
theory this means that KG has an algebraic extension N with Galois group

G̃/H and N ∩KH = KG. N and KH are linearly disjoint over FG, so if b is a
basis forKH/KG, then b is still linearly independent overN . SetM = N(b), the
field extension of N by b, then Gal(M/N) = G/H and M is an e.c. G/H-field,
because MG/H is perfect, PAC and has the right Galois group. �

7 Free Groups

In this section G = Fn, the free group on n generators. The profinite completion
of Fn is F̂n the projective limit of all finite groups on 6 n generators, which is
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a free profinite group, so the universal Frattini cover is the identity. The kernel
is 1, so the models are separably closed and we also know that they are perfect,
so they are algebraically closed. In this section we may assume Therefore that
C̄ is saturated for the theory ACF, which means that C̄ realizes every type in
Lring.
In [13] it is proved that if F is an algebraically closed field, then the set of n-

tuples of automorphisms that (topologically) generates F̂n is dense in (AutF)n.
So examples are abundant.

If Y,Xi are varieties such that Y ⊆ X1 × ... × Xm one says that Y projects
dominantly if for every generic p ∈ Y πi(p) is a generic point of Xi, where πi is
the usual projection. Or equivalently projections of open sets are open.

Definition 11. Let T ?
Fn

be the union of TFn
, ACF and axioms saying that for

all (absolutely irreducible) varieties V,W such that W ⊆ V × V σ1 × ... × V σn

and W projects dominantly, there is a p ∈ V such that (p, σ1(p), ..., σn(p)) ∈ W .

The fact that this is first order follows from the definable multiplicity prop-
erty DMP of algebraically closed fields. The ω-stable theory ACF, algebraically
closed fields, have the DMP, which means that the Morley degree (and rank)
is definable, see [17]. Being absolutely irreducible is the same thing as having
Morley degree one in ACF and projecting dominantly can be expressed just by
using definability of dimension (Morley rank).
T ?
Fn

has elsewhere been called ACFAn

The theorem below is not new; it easily follows from [22] and Hrushovski men-
tions it in [18], but it has not been proved in a published article.

Theorem 16. T ?
Fn

is the model companion of TFn
.

Proof: Let K be an e.c. Fn-field, then we know from section three that K
is algebraically closed.
Now let V and W be as in the axioms for T ?

Fn
, (W ⊆ V σ̄ , projecting domi-

nantly).
Define partial isomorphisms τi in K[x]/I(W ) by τi � K = σi and τiy0 = yi,
where x = (y0, ..., yn) and the length of yj is dimV. These partial isomorphisms
extends to automorphisms of a saturated algebraically closed field extending
K(V ), that make E into an Fn-field. The point y0 ∈ V (E) satisfies σ̄y0 ∈ W (E)
and since K is e.c. and K ⊆ E, it has to be one such point i V (K) to.
For the other direction: Assume that K |= T ?

Fn
and let M be a Fn-field extend-

ing K and M |= ∃xφ(x) for a quantifier-free φ, then M |= ∃yφ̄(y), where φ̄ is as
in proposition 1.
So there is an a ∈M with M |= φ̄(a)
Now let V = V (a) and W = V (σ̄a). Obviously W projects dominantly, so the
axioms of T ?

Fn
gives us a point b ∈ V (K) with σ̄b ∈W (K).

So K |= φ̄(b) and therefore by proposition 1 K |= ∃xφ(x). So K is e.c. �

If K is an e.c. F7-field, then it also is an e.c. F3 by just ignoring four of the
generators. Similarly any e.c. Fn-field is an e.c. G-field for any free G 6 Fn.
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So the above proof is slightly redundant; actually the theorem follows from “
T ?
F2

is the model companion of TF2”, since F2 contain free subgroups on any
number of generators. Also we can see that the fixed field of any element of
Fn has a Galois group isomorphic to Ẑ and the fixed field of m elements that
generate a free group has a Galois group homeomorphic to F̂m.

8 The dihedral group

In this section we study a special case to see what the previous results can tell
us about the structure of the e.c. models.
The infinite dihedral group D∞ = 〈σ1, σ2; σ

2
1 , σ

2
2〉 can also be presented as

D∞ = 〈x, y; xyx−1y, y2〉. That the two present the same group can be seen by
the identifications x = σ1σ2 and y = σ1.
D∞

∼= Z o Z/(2), the semi-direct product, where Z/(2) acts on Z in the only
possible way n 7→ −n, see [27].
An example:
Let k be an algebraically closed field and let {ai, bj : i, j ∈ Z} be new constants
(algebraically independent transcendentals).
Set E = k(ai, bj : i, j ∈ Z), the field extension, and let D∞ act on E by fixing
k and:
σ1; ai 7→ bi, bi 7→ ai
σ2; ai 7→ bi+1, bi 7→ ai−1

This is a faithful action.
Consider the polynomial g = x2 − ai + bi. If g(d) = 0, then

(σ1d)
2 = σ1(d

2) = σ1(ai − bi) = bi − ai = −d2,

so σ1d = di, where i is a zero of x2 + 1, and since i ∈ k we have:

σ2
1(d) = σ1(i)σ1(d) = i2d = −d 6= d

So there are no D∞-field extending E that contain d. Actually there are a lot
of polynomials over E that do not have solutions as we shall see below.

The profinite completion of D∞ is Ẑ o Z/(2) = (
∏

Zp) o Z/(2), and for p 6= 2
there is a unique p-Sylow subgroup, namely Zp, but a 2-Sylow subgroup is
Z2 o Z/(2) which is topologically a two generator group.
We know from the theory of profinite groups that the 2-Sylow subgroup of D̃∞,
the universal Frattini cover of D̂∞, has to be F2(2), the free pro-2-group on two
generators, see [32].

To understand what the kernel of the Frattini cover is we study:

π : F2 � D∞

kerπ is the normal closure of the subgroup generated by the preimages of σ2
1

and σ2
2 in F2. If a and b are the generators of F2, then

kerπ = 〈ca2c−1, cb2c−1; c ∈ F2〉 ∼= Fω

the free group on countably many generators,
and taking pro-2-completion is in this context an exact functor from the category
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of abstract groups to the category of pro-2-groups. We have:

Fω // //

��

F2
// //

��

D∞

��
Fω(2) // // F2(2) // // Z2 o Z/(2)

So any existentially closed D∞-field has the Galois group Fω(2).

If K is an e.c. D∞-field, let a ∈ K satisfy a 6= σ1a 6= σ2a 6= a and let
ai = (σ1σ2)

ia, for i ∈ Z. For j = 1, 2 let bij = ai−
ai−σjai

2 , then bij ∈ K \K〈σj〉,

but b2ij ∈ K
〈σj〉. The polynomials pmij = x2m

− bij have no solutions i K. The
Galois groups of the extensions corresponding to those polynomials (infinitely
many for each m) are the cyclic 2-groups. And all extensions of K are built up
from those.

9 Z× Z and uncompaniable theories

The group we shall study in this section is the commutative group on two gen-
erators Z× Z = 〈σ1, σ2 : σ1σ2σ

−1
1 σ−1

2 〉 and we start with two examples:

1. Let R =
∏

F̄p, the product of the algebraic closures of Fp for all primes p.
And let U be an ultra filter in P(P), the power-set of the primes, then the ultra
product K = R/U is an algebraically closed field of characteristic 0. Define

σi =
∏

(x 7→ xp
kip

), for i = 1, 2 in such a way that {p ∈ P : (k1p, k2p) = 1, kip 6=
1} ∈ U , where (a, b) = 1 means that a and b are relatively prime, for facts on
ultra products see [5]. This is a faithful Z× Z-action on K

2. Let k be algebraically closed and K = k(x1, x2) and define σi(xi) = xi + 1
and σixj = xj ,if i 6= j, for i, j = 1, 2, then K |= TZ×Z.

Let K be as in any of the two examples above, then K is also a model of
TF2 , so K embeds into an existentially closed model for TZ×Z and a model M
for T ?

F2
. Can we find an existentially closed model for TZ×Z inside M?

For instance if N |= T ?
F2

, is the restriction of σ1 and σ2 to the fixed field, C, of

the commutator subgroup of F2 existentially closed for TZ×Z? (C = N [F2,F2]) It
is obviously a model of TZ×Z, and every existential formula that has a solution
in an extension of C also has one in N . Let us postpone the answer to that
question for a moment and study the structure of the e.c. models of TZ×Z.

Let N = {H : H / Z× Z, [Z× Z : H ] < ω} = {nZ×mZ : n,m ∈ Z+}.

So the profinite completion of Z× Z is:

Ẑ× Z = lim←−(Z×Z)/(nZ×mZ) = lim←−Z/nZ×Z/mZ = lim←−Z/nZ×lim←−Z/mZ = Ẑ×Ẑ

And Ẑ ∼=
∏

p Zp, so Ẑ × Ẑ ∼=
∏

p Zp ×
∏

q Zq ∼=
∏

(Zp × Zp). So the p-Sylow

subgroup is Zp × Zp, but we know that the p-Sylow subgroup of G̃ is F2(p);
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G̃ =
∏

p F2(p).

The universal Frattini cover is φ̃ : G̃ � Ĝ; φ̃ =
∏

p ψp, where ψp : F2(p) �

Zp × Zp and kerφ̃ =
∏

p kerψp.

kerψp
∼= [F2(p),F2(p)] ∼= Fω(p)

the free pro-p-group on countably many generators.

So the Galois group of any e.c. Z × Z-field is
∏

p Fω(p), which is not small,
so the e.c.-models of TZ×Z are unbounded and therefore not simple.
In [25] Pillay shows that if T is a stable theory, then the category of e.c.-
structures of Tσ, the theory of T -models with an automorphism, is simple. The
present example (Z × Z-fields) shows that his result can not be strengthen to
simple instead of stable, because EZ×Z is equivalent to the category of e.c.-
structures for ACFAσ .
The comments on simplicity depends on a section omitted from this thesis, and
may be ignored by anyone not interested in simplicity theory.

And now let us get back to the question above:

N

C

~~~~~~~

@@
@@

@@
@

F

F = N 〈σ1,σ2〉

The fixed field of Z × Z, in C above, CZ×Z = NF2 = F , and Gal(F) ∼= F̂2,
but the Galois group of the fixed field of every existentially closed Z×Z-field is
∏

p Fω(p))(6∼= F̂2), so C is not e.c.

Hrushovski has proved (unpublished), in a different context that TZ×Z doesn’t
have a model companion. We will present a version of his argument here, be-
cause we will need it later and it is not available in writing anywhere. The next
theorem is entirely due to Hrushovski, except that any possible errors are of the
present writers doing.

Theorem 17. (Hrushovski) TZ×Z does not have a model companion.

Proof: Z × Z = 〈γ, τ ; γτγ−1τ−1〉 Let K |= TZ×Z be existentially closed and
γ(ζ) = τ(ζ) = ζ2 for a primitive third root ζ of 1. There are such models in
EZ×Z.
Let φ(x, y, z) be

γ(x) = x+ z ∧ τ(x) = x+ z ∧ x = y3 ∧ τ(y) = ζγ(y)
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Now assume there are a, b, c ∈ K such that K |= φ(a, b, c) and
∑n−1
k=0 γ(c) = 0,

then γn(a) = a, so γn(b) has to be ζib for some i and therefore

γnτ(b) = γnζγ(γ(b)) = γn(ζ)γ(ζib) = γn(ζ)γ(ζi)γ(b)

and
τγn(b) = τ(ζi)τ(b) = γ(ζi)ζγ(b)

⇒ γn(ζ) = ζ, so n is even.

Consider the partial type p(z) = {¬∃xyφ(x, y, z),
∑n−1

k=0 γ(z) 6= 0;n ∈ ω}.
p is finitely realized in K, so it is realized in an elementary extension K ′ by
compactness. But then K ′ is not existentially closed because it doesn’t have
solution for φ(x, y, c) where c is the realization of p. Therefore the class of e.c.-
structures is not elementary. �

The same counterexample works whenever we have a group G with a subgroup
isomorphic to Z × Z, and there is also a version of this example on an elliptic
curve, that is independent of the group action on the absolute numbers.

10 G-algebraic closedness

Much of the ideas in this section comes from Torsten Ekedahl, but the exact
fomulations and every possible error are due to the author. A G-field K is G-
algebraically closed, GAC, if there is no G-field K ′ ⊃ K algebraic over K. It is
easy to see that a G-field is GAC if and only if it is closed in the sense of section
four, and every e.c. G-field is GAC.
As we saw earlier, theorem 10, TG-models are GAC if the kernel of the universal
Frattini cover is small.
And if A and B are two G-fields with A 6 B, and A is G-algebraically closed,
then B is regular over A.
We will now introduce a new class of G-fields on which GAC is a first order
property for a larger class of groups.

Definition 12. Let T µG be the first order theory for G-fields that contain every
p-th root of unity for every prime p.

T µG = TG ∪
⋃

p

∃x(1 6= x ∧ xp = 1)

A model of T µG will be called a µ-closed G-field.

The µ occurs because the group of p-th roots of unity is often called µp.
The category of µ-closed G-fields is a full sub-category of the category of G-
fields. Let EµG be the category of e.c. µ-closed G-fields. Everything proved
about EG in section four transfers immediately to EµG. In fact for the disjoint
sub-categories EµGA = EGA, where A is the absolute numbers of a certain e.c.
µ-closed G-field.
To see that EµG 6= EG consider the following example:

Let G = Z/(2) and ζ = ei
2
5π + ei

8
5π and define an action on Q(ζ) by ζ 7→

ei
4
5π + ei

6
5π.

This action can not be extended to any field containing Q(µ5), so any e.c. Z/(2)-
field k extending Q(ζ) will not be µ-closed.
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But if G is free, then EµG = EG.

We will now start to define a fist order sub-category of the category of µ-closed
G-fields that will contain all e.c. µ-closed G-fields and we will further refine it
in the next section to get some more results on model companions.

Let R = Z[G], the group-ring, and Kp, for a prime p, be the set of all ideal
I in R such that pR ⊆ I .
Define for every prime p 6= char(k) and every I ∈ Kp, Sp,I to be the axiom:
For every ideal J ⊆ R with J/I ∼= µp, if we have

I // //

φ

��

J

χ

��
1 // µp // k∗

(−)p

// k∗p // 1

and there are no G-homomorphism ψ : J → k∗ that commutes with the above
diagram, then there is an element a ∈ k such that φ(i) = ai, for every i ∈ I .

χ always exists, actually there is the restriction of the map (1 7→ φ(p)) from R
to k∗p that would fit in χ’s place.
If p = char(k) then Sp,I is similar but with the morphism x 7→ xp − x instead
of x 7→ xp.

Theorem 18. If R is notherian, then Sp,I is a first order sentence.

Proof: If R is noetherian, then all ideals are finitely presented and there can
only be finitely many J with I ⊆ J ⊆ R and J/I ∼= µp.

Let Rm
(aij) // Rk

ri // I be a presentation of I .

Then the existence of φ is equivalent to

∃x
∧

i

(xi 6= 1 ∧
∧

j

x
aij

i = 1) = Sφ

for 1 6 i 6 k and 1 6 j 6 m Similarly for χ, then called SJχ .
Let J be generated by the same generators as I plus one extra called rk+1.
Then the claim that there does not exist a ψ : J → k∗ that commutes with the
diagram can be expressed like

¬∃xk+1(xk+1 6= 1 ∧
∧

j

x
b(k+1)j

k+1 = 1 ∧ xpk+1 = χ(rk+1)) = NJ
ψ

where the bij is from the presentation of J and bij = aij if i 6 k and j 6 m.
Then Sp,I can be written Sφ ∧

∧

J S
J
χ ∧N

J
ψ . �

Let S be the scheme of axioms
⋃

Sp,I for every prime p and every I ∈ Kp.

Definition 13. Let the theory TµG = T µG ∪ TG ∪ S

So the TµG-models are µ-closed, perfect, PAC G-fields that have the Galois

group ker φ̃ and the fixed fields have G̃ for a Galois group.

25



We will prove that for certain groups G all TµG-models are G-algebraically closed
and that Ob(EµG) ⊆ Mod(TµG), but we start with a technical lemma.

Definition 14. If A is Z[G]-module let IA be the injective hull of A. We say
that a group G has the property T if for every p-primary Z[G]-module M , the
socle of IM/M is finite, for every prime p.

For instance abelian groups has property T.

To prove the following lemma we need the fact that short exact sequences of
modules give rise to long exact sequences in Ext-groups and that the elements
of Ext1(A,B) corresponds to equivalence classes of extensions of A by B (0 is
the split extension). That can be found in any book in homological algebra or
in [4].

Lemma 1. If G has the property T and if

I // //

φ

��

J

χ

��
1 // µp // k∗

(−)p

// k∗p // 1

and for every ideal N with I ( N ⊆ J there are no G-homomorphism N → k∗

that commutes with the above diagram, then there is a µp � J/I.

Proof: Let M be the fibre product k∗ ×k∗p J , then

I // //

��

J

M //

��

J

��
1 // µp // k∗

(−)p

// k∗p // 1

and there is a non-split extension: µp � M � J (= a non-zero element of
Ext1(J, µp)), which by the long exact Ext-sequence

...→ Ext1(J/I, µp)→ Ext1(J, µp)→ Ext1(I, µp)→ ...

comes from a nonzero element in Ext1(J/I, µp), since the image of it in Ext1(I, µp)
is 0, a split extension of I by µp (by the lifting φ).
So we have a non-split extension:

µp � A � J/I

Call it ∗. And since we are searching for submodules we may assume that J/I
is as small as possible. Let J = I + aR, for some a ∈ R. Then J/I ∼= R/K, for
an ideal K; let η : R→ J/I ; 1 7→ a, then K = ker η.
By

...→ Hom(K, µp)→ Ext1(R/K, µp)→ Ext1(R, µp) = 0
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any non-split extension of R/K(∼= J/I) comes from a non-zero homomorphism
α : K → µp, and if it is non-zero it has to be an epimorphism since µp is simple.
So µp ∼= K/L, where L = kerα.
Actually we can see that A ∼= R/L and the above non-split extension,∗, is
equivalent to

K/L � R/L � R/K

Claim: K/L is essential in R/L
Proof of claim: Assume there is a 0 6= B ⊆ R/L such that K/L ∩ B = 0, then
we have a split extension

µp ∼= K/L � B ⊕K/L � B

and this extension comes from K/L � R/L � R/K, because there is a B �

R/K, the kernel the of composition B � R/L � R/K is K/L ∩ B = 0. The
assumptions in the theorem implies that for any C, with 0 6= C ⊆ J/I , ∗ is not
in the kernel of Ext1(J/I, µp)→ Ext1(C, µp), but

0 // µp //

∼

��

A //

∼

��

J/I //

∼

��

0

0 // K/L // R/L // R/K // 0

0 // K/L // B
⊕

K/L //

OO

B //

OO

0

0

OO

0

OO

B � J/I and the bottom-line is split, so ∗ 7→ 0 in Ext1(J/I, µp)→ Ext1(B, µp),
a contradiction!
So K/L is essential in R/L.

Let E be the injective hull of K/L. Then

K/L // //
��

��

R/L
{{

{{ww
ww

ww
ww

w

E

because of injectivity and essentiality. So we have

K/L

∼

��

// // R/L
��

��

// // R/K
��

��
µp // // E // // E/µp

But the socle of E/µp is essential in E/µp, so R/K ∩ soc(E/µp) 6= 0.
Now G has property T, so soc(E/µp) = µm

P , for some m ∈ N.
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So therefore there must be a µp � R/K ∼= J/I . �

We are now ready to prove:

Theorem 19. If G has property T and k |= TµG, then k is GAC.

Proof: Assume k is not G-algebraically closed and k |= T µG ∪ TG and we
proceed to prove that k 6|= S.
Let L(6= k) be a minimal G-field, algebraic over k. Since G(k) is pro-nilpotent L
must be a Kummer-extension, actually L = k(aG) for some a ∈ k̄ with ap ∈ k,
for some prime p.
Let I = {r ∈ R : ar ∈ k}, then pR ⊆ I 6= R.
Let J ⊆ R be an ideal such that I ⊆ J and J/I ∼= µp.
Assume that there a ψ : J → k∗ that commutes with

I // //

φ

��

J

χ

��
1 // µp // k∗

(−)p

// k∗p // 1

and let k∗ 3 b = ψ(j) for a j ∈ J \ I .
Then bp = ψ(j)p = ψ(jp) = ψ(pj) = ψ(p)j = apj , so b = ζaj , where ζp = 1, but
aj /∈ k, since j /∈ I so b /∈ k.
Therefore φ does not extend to J and since a /∈ k, SI is not true in k. �

Theorem 20. If k |= T µG ∪ TG and k is G-algebraically closed, then k |= S.

Proof: Assume S is not true in k and k |= T µG ∪ TG, and let I be maximal
with k |= ¬SI .
For every J with J/I ∼= µp we have

I // //

φ

��

J

χ

��
1 // µp // k∗

(−)p

// k∗p // 1

and φ can not be extended to J .
Let M be any ideal with I ⊆ M ⊆ R, then by the lemma either φ extends to
M or there is a µp � M/I .
So assume that M/I doesn’t contain a copy of µp, then φ extends to M .
Let N be an ideal such that N/M ∼= µp, then N = M + rR, for some r ∈ R.
Let J = I + rR, with the same r,then J/I � N/M ∼= µp and if J/I = 0 then
r ∈ I , but then N/M = 0, and since µp is simple the inclusion has to be an
isomorphism, J/I ∼= µp. So φ can not be extended to r, which implies that SM
is false, and by the maximality of I we must have M = I .
So φ can not be extended to any ideal K with I ( K ⊆ R.
Let L = k[xR]/(φ(i)− xi, i ∈ I)
By definition L is a G-algebra.
Now any ideal in k[xR] is generated by elements on the form a − xr, for some
a ∈ k and r ∈ R(= Z[G]). If A = (φ(i) − xi, i ∈ I) is not maximal, then there
is a B with A ( B ( R.
Let b − xs ∈ B \ A, then φ could be extended to I + sR by φ(s) = b, a
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contradiction.
So A is a maximal ideal and therefore L is a field algebraic over k (actually a
Kummer extension since pR ⊆ I). �

Corollary 2. Ob(EµG) ⊆Mod(TµG)

11 Model companions

In this section we prove one last theorem on the existence of model companions.
Let G be a group that has property T and has a normal subgroup of finite
index isomorphic to Z. Let G = 〈τσ;R〉 where τ is a single generator such that
〈τ〉 ∼= Z.
Let VG be the scheme of axioms expressing that for every absolutely irreducible
variety over kG/Z = {a ∈ k : σia = a}, If Y ⊆ X × Xτ projects dominantly,
then there is a point p ∈ X(kG/Z) such that pτp ∈ Y .
Let T ?G = TµG ∪ VG
That VG is first order follows from the facts that dimension and being absolutely
prime is first order definable, and that is shown in [12].

Theorem 21. If G is a group that has property T and has a normal subgroup
of finite index isomorphic to Z, then T ?G is the model companion of T µG.

Proof: We know that if k is an e.c. µ-closed G-field, then it satisfies TµG.
So let Y and X be varieties over kG/Z with Y ⊆ X ∪Xτ dominantly. Extend
the action of G to k(Y ) by τxi = xdimX+i, σjxi = xi. τ may no longer be
an automorphism, so go to the inversive closure M of k(Y ). Then M |= T µG
and there is a point p ∈ X(M) with (p, τp) ∈ Y . If I(Y ) = (f1, ...fr) and
φ =

∧

i fi(x) = 0∧ τxi = xdimX+i, then ∃xφ is a first order existential sentence
true in M , but k is e.c. so ∃xφ is true in k as well. That gives us a point
q ∈ X(k) with (qτq) ∈ Y . So k |= T ?G.
Now assume k |= T ?G and there is a G-field K(⊇ k) with K |= ∃xφ̄(x), where φ̄
is as in proposition 1.
Let a ∈ K be an element that realizes φ̄, K |= φ̄(a)
Since k is perfect and GAC, K is regular over k. Therefore there is a finite basis
b ∈ k such that k = kG/Z(b) and K = KG/Z(b)
Let c be the coordinates of a, that is a = (a1, ..., as), ai =

∑

cijbj and c =
(c11, c12, ...csr).
Let X = V (c) and Y = V (cτc). Then Y ⊆ X∪Xτ projects dominantly so there
is a point p ∈ X(kG/Z) with (pτp ∈)Y , but then the element e = (e1, ..., es),
where ei =

∑

pijbj, satisfies φ̄, k |= φ̄(e), just as in theorem 15 , and therefore
k is existentially closed. �
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