
ISSN: 1401-5617

An algorithm to determine the

Hilbert series for graded associative

algebras

Samuel Lundqvist

Research Reports in Mathematics

Number 3, 2005

Department of Mathematics

Stockholm University

Electronic versions of this document are available at
http://www.math.su.se/reports/2005/3

Date of publication: June 9, 2005

Postal address:
Department of Mathematics
Stockholm University
S-106 91 Stockholm
Sweden

Electronic addresses:
http://www.math.su.se/
info@math.su.se

An algorithm to determine the Hilbert series for

graded associative algebras

Samuel Lundqvist

June 9, 2005

Abstract

In this paper we present an algorithm to compute the Hilbert series

for quotients of the free algebra with homogeneous ideals. We also give

a modified version of the algorithm for quotients of the polynomial ring.

The algorithms are implemented in a computer program named “aalg”

and we compare running times with other computer algebra programs.

1 Introduction

We are considering quotients of the free associative algebra k〈X1, . . . , Xn〉 with
homogeneous two sided ideals. Using the presentation

k〈X1, . . . , Xn〉/(XiXj − XjXi)1≤i<j≤n
∼= k[X1, . . . , Xn] (1)

we are also able to study quotients of the polynomial ring. Our goal is to
compute the Hilbert series for these quotients and the main idea is to construct
spanning sets for the homogeneous components in each degree, then reduce them
to a basis using linear algebra. If we introduce orderings on this spanning set in
a suitable manner, we obtain, as a side effect, Gröbner bases for the algebras.
The extensive use of linear algebra make us believe that the algorithms are well
suited for parallel computations.

Based on the algorithms presented in this paper, a (single processor) com-
puter program has been developed. The program is named “aalg” – for associat-
ive algebra. With this program in hand, we present some results both for com-
mutative and non-commutative algebras, and compare the running times with
other computer algebra programs. In general, the program seems to be more
effective in the non-commutative case. But for certain examples in the commu-
tative setting – large monomial ideals and zero-dimensional ideals generated by
forms with a large amount of monomials – the program is comparable with the
standard computer algebra programs, and sometimes even faster.

The ideas in this paper are very much influenced by a method to compute
the Hilbert series for graded Lie algebras, see [12].

1

2 Notation

Let Λ denote k〈X1, . . . , Xn〉, where k〈X1, . . . , Xn〉 is the free associative algebra
over a field k, on generators Xi of degree |Xi| = 1. By a non-commutative graded
algebra we shall mean

Λ/(f1, . . . , fr),

where the fi’s are homogeneous of degree |fi| > 1. We will refer to the fi’s as
the relations and to an fi as a relation.

Similarly, by a commutative graded algebra, we mean

k[X1, . . . , Xn]/(f1, . . . , fr),

where k[X1, . . . , Xn] is the polynomial ring on generators Xi of degree one, and
the fi’s are homogeneous of degree |fi| > 1.

When A is a graded algebra, write

A = ⊕i≥0Ai,

where A0 = k, and Ai is the degree i-part of A. By A≥n we mean ⊕i≥nAi and
A<n is defined by A<n = A/A≥n as a graded algebra.

Define the Hilbert series of A, denoted by Hs(A, z), to be the power series

∑

i≥0

dimk(Ai) · z
i

and let the Hilbert function Hf(A, n) be defined by Hf(A, n) = dimk(An). We
write Hs(z) and Hf(n), omitting A, if it is clear from the context which algebra
we mean.

To simplify notation, we assume that tensor products always will be over k.

Remark 1. The reason for grading over the non-negative integers and assuming
the generators {Xi} to be of degree |Xi| = 1, is simplicity. The theory we present
can easily be extended to multigradings and arbitrary degrees of the generators.

3 The main algorithm

Let A = k〈X1, . . . , Xn〉/I , where the generators Xi are of degree one and I =
(f1, . . . , fr). The aim of the algorithm is to produce a basis, degree by degree,
for the k-vector spaces Ai. We have dimk(Λ0) = dimk(A0) = 1, and since the
fi’s are of degree greater than one, we also have dimk(Λ1) = dimk(A1) = n. Let
1 be a basis for A0 and {x1, . . . , xn} a basis for A1. Identify the elements in Λ1

with those in A1 by Xi 7→ xi.
Now suppose we are given a basis for each degree up to d−1, how do we get

a basis of degree d? As mentioned in the introduction, the problem is solved
by constructing a generating set for the k-space Ad in degree d and then use
linear algebra to reduce the span to a basis. We begin by defining a graded

2

Λ-module A<d ⊕ (A1 ⊗Ad−1), with A1 ⊗Ad−1 as the degree d-part. Let Xi act
on elements of degree < d − 1 by multiplication with the corresponding xi in
A1. For elements a of degree d − 1 we let Xi.a = xi ⊗ a (where . denotes the
module-operation), and on elements of degree d, Λ acts trivially.

Lemma 3.1. Let Nd be the subspace of A1 ⊗Ad−1 generated by the expressions
{fi.a}, for all relations fi, and all homogeneous elements a ∈ A<d with |a| +
|fi| = d. Then

(A1 ⊗ Ad−1)/Nd
∼= Ad

as k-vector spaces.

Proof. First, define a map h of k-vector spaces from A1⊗Ad−1 to Ad by x⊗a 7→
x · a. Since Ad ⊆ A1Ad−1, this map is surjective.

Suppose f ∈ I , with |f | ≤ d. Write f =
∑

c(i1, . . . , i|f |)Xi1 · · ·Xi|f |. Then,
if a ∈ Ad−|f |,

f.a = (
∑

c(i1, . . . , i|f |)Xi1 · · ·Xi|f|
).a =

∑

c(i1, . . . , i|f |)xi1 ⊗ xi2 · · ·xi|f|
· a,

so we get

h(f.a) =
∑

c(i1, . . . , i|f |)xi1 · xi2 · · ·xi|f | · a = f · a = 0.

Thus Nd ⊆ ker(h), so h induces a surjective map of k-vector spaces h : (A1 ⊗
Ad−1)/Nd → Ad. We can also define a surjective map g of k-vector spaces from
Λd to A1 ⊗ Ad−1 by g : Xi1Xi2 · · ·Xin

7→ xi1 ⊗ xi2 · · ·xin
. Since

Id =

d−|f1|
∑

i=0

Λif1Λd−|f1|−i +

d−|f2|
∑

i=0

Λif2Λd−|f2|−i + · · · +

d−|fr|
∑

i=0

ΛifrΛd−|fr|−i,

then if b ∈ Id, b can be written as a sum b1 + · · · + br, where

bj ∈

d−|fj |
∑

i=0

ΛifjΛd−|fj |−i.

Furthermore, each bj can be written as a sum bj0 + bj1, where

bj0 ∈ fjΛd−|fj |

and

bj1 ∈

d−|fj |
∑

i=1

ΛifjΛd−|fj |−1 ⊆ Λ1Id−1,

so we have g(bj1) = 0. On the other hand, g(bj0) ∈ Nd. This shows that g
induces a surjective map g of k-vector spaces from Λd/Id to (A1 ⊗ Ad−1)/Nd.
But Λd/Id = Ad, so the surjectivity of g and h shows that the vector spaces
have the same dimension.

3

Theorem 3.2. There is an algebra structure on

A<d ⊕ (A1 ⊗ Ad−1)/Nd

such that
A<d ⊕ (A1 ⊗ Ad−1)/Nd

∼= A≤d

as graded algebras.

Proof. Extend g to A≤d by letting it be the identity on elements of degree less
than d. Now we can define the multiplication of elements a and b in A<d ⊕
(A1 ⊗ Ad−1)/Nd by g(g−1(a) · g−1(b)), which makes A<d ⊕ (A1 ⊗ Ad−1)/Nd

become a graded algebra. By construction, A<d ⊕ (A1⊗Ad−1)/Nd and A≤d are
isomorphic.

The theorem does not give a canonical way to choose the basis elements.
For practical purposes, we need some method for making this choice. This can
be achieved by the following basic, but somewhat technical construction.

Order the set of elements {xi ⊗ ej} in degree d. The k-vector space Nd

is spanned by {fi.e | e a basis element in Ad−|fi|}, where each fi.e is a linear
combination of elements in {xi ⊗ ej}.

Define in(fi.e) to be the leading term with respect to this order (with
coefficient one), and in(Nd) to be the set of leading terms in Nd. Suppose
in(Nd) = {xi1 ⊗ ej1 , . . . , xim

⊗ ejm
}. Then, mod Nd, we can write

xik
⊗ ejk

=
∑

c(i, j, k)xi ⊗ ej ,

where c(ih, jh, k) = 0 for 1 ≤ h ≤ m. Clearly the n ·dimk(Ad−1)−m congruence
classes {xi ⊗ ej | xi ⊗ ej /∈ in(Nd)} constitute a basis for (A1 ⊗ Ad−1)/Nd.

Assume inductively that the basis in lower degrees has been chosen according
to this method. Then, to every basis element e of degree 1 < |e| < d, there
corresponds – under the isomorphism g, since we assume e ∈ A<d – an unique
element xi(e) ⊗ ê, |ê| = |e| − 1, such that xi(e) ⊗ ê /∈ in(N|e|). If |e| = 1, then e
is an xi(e).

Define the word function w on the set of basis elements by w(e) = Xi(e) if
|e| = 1 and recursively in higher degrees by w(e) = Xi(e) · w(ê) ∈ Λ. Let w̃ be
the extension of w to {xi ⊗ ej} by w̃(xi ⊗ ej) = Xi · w(ej). Extend w and w̃ to
linear combinations in the obvious way.

This enables us to identify basis elements in A≤d with words in Λ and we
can induce orderings from Λ on {xi ⊗ ej} as follows. Let ≺ be any well ordering
on the words in Λ. Then we can let the order between elements xi ⊗ ek and
xj ⊗ el be defined by the order between w̃(xi · ek) and w̃(xj · el) given by ≺.

Lemma 3.3. Let ≺ be any well ordering on the words in Λ that respects the
multiplication. Induce this ordering on the Ni’s as above. Then the set

w̃(in(N≤d))

generates the initial ideal in(I)≤d of I≤d, with respect to ≺.

4

Proof. Let
S1 = {Xi1 · · ·Xid

|Xi1 · · ·Xid
/∈ in(I)d}

and
S2 = {xi ⊗ ej |xi ⊗ ej /∈ in(Nd)}

From the theory of Gröbner bases, we have |S1| = dimk(Ad) and from above
|S2| = dimk(Ad). Since w̃(Nd) ⊆ I , it follows that S1 ⊆ w̃(S2) and hence

S1 = w̃(S2). (2)

Now proceed by induction, with trivial base case. Take Xi1 · · ·Xid
∈ in(I)d.

If Xi2 · · ·Xid
∈ in(I)d−1, then by the induction assumption, Xi1 · · ·Xid

is in
the ideal generated by w̃(in(N<d)). So suppose it is not in in(I)d−1. Then,
by (2), there is an unique basis element e such that w(e) = Xi2 · · ·Xid

. But
xi1 ⊗ e /∈ in(Nd) implies w̃(xi1 ⊗ e) = Xi1 · · ·Xid

/∈ in(I)d, a contradiction, so
we must have xi1 ⊗ e ∈ in(Nd).

Theorem 3.4. ∪i≤dw̃(Ni) is a Gröbner basis for I≤d (with respect to ≺).

Proof. Immediate from the lemma.

Corollary 3.5. Let e be a basis element. Then, for every subword a of w(e),
there exists a basis element e′ with w(e′) = a.

Example 1. Let A = Q〈X1, X2〉/I, where I is the two-sided ideal (X1X2 +
X2

2 , X2X1 − X2
2). We select basis elements using the lexicographical ordering

(with X1 > X2). Let A0 be spanned as a vector space by {1} and A1 by {x1, x2}.
We construct A1 ⊗ A1 and let the two relations act on the module A0 ⊕ A1 ⊕
(A1 ⊗ A1).

(X1X2 + X2
2).1 = X1.x2 + X2.x2 = x1 ⊗ x2 + x2 ⊗ x2,

(X2X1 − X2
2).1 = X2.x1 − X2.x2 = x2 ⊗ x1 − x2 ⊗ x2.

Now x1⊗x2 � x2⊗x2 and x2⊗x1 � x2⊗x2. Thus, a basis for the quotient space
A1 ⊗ A1/N2 is chosen as {x1 ⊗ x1, x2 ⊗ x2}. In A2 we think of the elements
written as x2

1, x
2
2. Applying the word function on N2, a Gröbner basis for I≤2

is {X1X2 + X2
2 , X2X1 − X2

2}.
To compute degree three, we use the basis obtained above for A2 and construct

A1 ⊗ A2, which is spanned by {x1 ⊗ x2
1, x2 ⊗ x2

1, x1 ⊗ x2
2, x2 ⊗ x2

2}. There are
four expressions spanning N3. We get

(X1X2 + X2
2).x1 = X1.(X2.x1) + X2.(X2.x1)

= X1.(x2
2) + X2.(x2

2) = x1 ⊗ x2
2 + x2 ⊗ x2

2

and

(X1X2 + X2
2).x2 = X1.(X2.x2) + X2.(X2.x2)

= X1.(x
2
2) + X2.(x

2
2) = x1 ⊗ x2

2 + x2 ⊗ x2
2.

5

And in a similar manner

(X2X1 − X2
2).x1 = x2 ⊗ x2

1 − x2 ⊗ x2
2,

(X2X1 − X2
2).x2 = −2x2 ⊗ x2

2.

In the lexicographical ordered basis {x1 ⊗ x2
1, x1 ⊗ x2

2, x2 ⊗ x2
1, x2 ⊗ x2

2}, a
matrix defined by the equations above, whose nullspace is N3, looks like









0 1 0 1
0 1 0 1
0 0 1 −1
0 0 0 −2









.

Row reducing this matrix, we see that x1 ⊗ x2
2 = x2 ⊗ x2

1 = x2 ⊗ x2
2 = 0. Thus

in(N3) = {x1 ⊗ x2
2, x2 ⊗ x2

1, x2 ⊗ x2
2} and we choose x3

1 as a basis for A3. A
Gröbner basis for I≤3 is {X1X2 + X2

2 , X2X1 − X2
2 , X1X2

2, X2X
2
1 , X3

2}. Notice
that the Gröbner basis is not reduced. Both X1X

2
2 and X2X

2
1 are redundant.

3.1 Hilbert-driven calculations

If we know a lower bound B of the Hilbert series, that is B(n) ≤ Hf(A, n), for
all n, then we can choose a subset N ′ of Nd and compute the rank r of the
matrix defined by this subset. If r satisfies dimk(A1) · dimk(Ad−1) − r = B(d),
then any element in Nd is a linear combination of elements in N ′, and hence
(A1 ⊗ Ad−1)/N

′ ∼= Ad. If dimk(A1) · dimk(Ad−1) − r > B(d), then we can take
more elements from Nd and recompute the rank, and so on.

3.2 Applications

We use the algorithm to study two different problems.
First application. Let A = C〈X1, . . . , Xn〉/(f1, . . . , fr), with the fi’s

generic of degree 2. If r ≤ n2/4, the Hilbert series of A is

1

1 − nz + rz2
.

For r > n2/4 the series is not known, but conjectured to be equal to

[1

1 − nz + rz2

]

,

where [
∑

aizi] =
∑

bizi, and

bn =

{

an if ai > 0 for all i ≤ n
0 otherwise

Anick proves in [1] that if g1, . . . , gn are any forms and |gi| = |fi|, then the
generic forms minimizes the Hilbert series in the sense that for all degrees d,

Hf(k〈X1, . . . , Xn〉/(g1, . . . , gr), d) ≤ Hf(k〈X1, . . . , Xn〉/(f1, . . . , fr), d). (3)

6

variables # forms of degree 2 time [s]
5 7 22.9
5 ≥ 8 < 0.1
6 10 4892.8
6 11 1.6
6 12 0.1
6 ≥ 13 < 0.1

Table 1: Runtimes over Z2 on an AMD Athlon XP 2500+ (1837.5 MHz), with
3 Gb RAM.

Consider C〈X1, . . . , Xn〉/I , where I is generated by forms f1, . . . , fr with
coefficients in Z. Let p be a prime and let Ip be the ideal generated by the fi’s,
but where the coefficients for these generators are taken modulo p. Then

Hf(C〈X1, . . . , Xn〉/I, d) ≤ Hf(Zp〈X1, . . . , Xn〉/Ip, d). (4)

This can be understood by the following reasoning. The dimension of I in degree
d as a vector space over C is the rank of the matrix with columns indexed by the
words of degree d and with rows a1ijfja2kj , for each fj and all pairs of words
(a1ij , a2kj) with |a1ij |+ |fj |+ |a2kj | = d. But the rank of a matrix is the size m
of its biggest minor different from 0. Clearly the size of the biggest minor in the
matrix where the coefficients are taken modulo p is at most m, which imposes
(4). A similar argument can be applied to (3).

The inequalities (3) and (4) shows that we can prove the conjecture to be
true for fixed n and fixed r if we are able to find any example with the con-
jectured Hilbert series over Zp, for any prime p. With the implementation of
the algorithm, we find the conjecture to be true by constructing examples in Z2

for all r, when n ≤ 6. We use Z2 because the program handles this field very
efficiently. See section 5 for details. As far as we know, the previous known
result was for n ≤ 4. The runtimes are presented in Table 1, and the forms used
for n = 6 and r = 10 were
{X2

1 + X5X4 + X6X4, X
2
2 + X3X1 + X4X5, X2X5 + X5X3 + X5X6,

X2X1 + X2X4 + X6X1, X1X3 + X3X4 + X6X5, X1X5 + X3X6 + X4X6,
X1X6 + X2

3 + X3X5, X1X2 + X2X3 + X2
5 + X2

6 , X2X6 + X3X2 + X4X1 + X2
4 ,

X1X4 + X3X1 + X3X6 + X4X1}.
The second application is the algebra C5, which belongs to a family {Cn}

of algebras with presentations C〈X1, . . . , Xn〉/I , where I is a homogeneous ideal
closed under some differential operators. These algebras occur in a tensor prod-
uct decomposition of algebras from another family {En}, and one has

Hs(En, z) = Hs(Cn−1, z) · · ·Hs(C1, z).

En was first introduced in [5] and the decomposition was proved in [6].
The claim is that each Ci (or Ei) is finite dimensional as a vector space

and it has recently been verified with the computer algebra program Bergman

7

[2] for i ∈ {1, 2, 3, 4}. For i = 5, Bergman suffices to determine the vector
space dimension up to degree 12 using Gröbner basis techniques over Q. With
our program we have pushed the result forward three steps and we are now
considering the Hilbert series for C5 as
1 + 5z + 20z2 + 70z3 + 220z4 + 640z5 + 1751z6 + 4560z7 + 11386z8 + 27425z9 +
64015z10 +145330z11 +321843z12 +696960z13 +1478887z14+3080190z15 + · · ·
It should be noted that we have used characteristic 31991 for these calculations.
We aim to work more on this problem in the future.

4 The commutative case

As mentioned in the introduction,

k〈X1, . . . , Xn〉/(XiXj − XjXi)1≤i<j≤n
∼= k[X1, . . . , Xn].

This enables us to regard the commutators as ordinary relations and use the
algorithm described in the preceding chapter to compute vector bases for poly-
nomial rings divided with homogeneous ideals as well. But to get a fast method
in the commutative setting, we need to make certain simplifications of the al-
gorithm.

First we show that we only need to operate once with each relation.

Theorem 4.1. Let C∗
d be the subspace of A1⊗Ad−1 generated by the expressions

{(XiXj − XjXi).a}, for all 1 ≤ i < j ≤ n and all a ∈ Ad−2. Let N∗
d be the

subspace of A1 ⊗ Ad−1 generated by the expressions {fi.1}, for all relations fi

of degree d. Then
(A1 ⊗ Ad−1)/(C∗

d + N∗
d) ∼= Ad

as k-vector spaces.

Proof. It is enough to show that if f is a relation of degree |f | < d, then f.e = 0,
for all basis elements e ∈ Ad−|f | in the quotient module A<d ⊕ (A1 ⊗Ad−1)/C∗

d .
Write f =

∑

c(i1, . . . , i|f |)Xi1 · · ·Xi|f|
and fix one Xi1 · · ·Xi|f|

. Also write
w(e) = Xw1 · · ·Xwd−|f|

. We make the following calculation in A<d ⊕A1 ⊗Ad−1:

Xi1 · · ·Xi|f|
.e = Xi1 · · ·Xi|f|

.w(e).1

= Xi1 .w(e).Xi2 . . . Xi|f|
.1 = Xi1 .Xw1 . . . Xwd−|f|

.Xi2 . . .Xi|f|
.1.

But in the quotient module A<d ⊕ (A1 ⊗ Ad−1)/C∗
d ,

Xi1 .Xw1 . . . Xwd−|f|
Xi2 . . . Xi|f|

.1 = Xw1 .Xi1 .Xw2 . . .Xwd−|f|
.Xi2 . . . Xi|f|

.1

= Xw1 . . .Xwd−|f|
.Xi1 . . . Xi|f|

.1 = w(e).Xi1 . . .Xi|f|
.1,

which shows that

f.e = w(e).f.1 = w(e).0 = 0

and the theorem follows.

8

In general we have dimk(Ad) � n ·Ad−1, so it would be convenient if we had
another k-vector space V , with a surjection to Ad, such that dimk(V) is closer
to dimk(Ad). We accomplish this by introducing a slightly different module
structure from the one defined in section 3. The drawback is that we have to
fix an ordering on the set of basis elements.

4.1 A smaller span

If a basis has been chosen for A<d using our algorithm and the presentation
(1), then for every basis element e we have that w(e) ∈ Λ, where w is the word
function defined in section 3. Suppose

w(e) = Xα1
1 · · ·Xαn

n (5)

holds in A<d. Let min(e) be the least i such that αi is nonzero, and let
min(xi, e) = min(i, min(e)). By Corollary 3.5, there exists a basis element of

degree |e| − 1 with corresponding word X
αmin(e)−1

min(e) · · ·Xαn
n . Denote this element

by ê.
Pick a basis element xi of degree 1. Then xi ·e =

∑

c(xi, e, j)ej , |ej | = |e|+1.
If

min(xi, e) ≤ min(ej), for all j with c(xi, e, j) non-zero, (6)

and condition (5) holds, then we say that the basis for A<d is good. We will
later prove the existence of good bases.

Form a subspace Vd of A1 ⊗ Ad−1 spanned by the set

Vd = {xi ⊗ e | i ≤ min(e)}.

If A<d has a good basis, it is possible to define a Λ-module structure on A<d⊕Vd,
by

Xi.e =















xi · e if |e| < d − 1
xi ⊗ e if |e| = d − 1 and i ≤min(e)
xmin(e) ⊗ (xi · ê) if |e| = d − 1 and i >min(e)
0 if |e| ≥ d.

(7)

That xmin(e) ⊗ (xi · ê) ∈ Vd when |e| = d−1 and i > min(e) follows from (6).

Remark 2. If the ideal is 0, then dimk(Vd) = dimk(Ad).

Lemma 4.2. Suppose A<d has a good basis. Let Nd be the subspace of Vd

generated by the expressions {fi.1}, for fi of degree d. Let Cd be the subspace
of Vd generated by the commutators {(XiXj − XjXi).a}, |a| = d − 2. Then
Vd/(Cd + Nd) ∼= Ad as k-vector spaces.

Proof. By Theorem 4.1, we have Ad
∼= (A1 ⊗Ad−1)/(C∗

d + N∗
d), The projection

π : A1 ⊗ Ad−1 → Vd/(Cd + Nd), xi ⊗ e 7→ Xi.e is surjective. If s = s1 · ŝ
is a word and e a basis element such that |s| + |e| = d, then in the module
A<d ⊕ (A1 ⊗ Ad−1), s.e = s1 ⊗ ŝe, so π(s.e) = s1.ŝ.e = s.e, where the dots to

9

the right indicates operation in A<d ⊕ Vd. This shows that π(C∗
d) = Cd and

π(N∗
d) = Nd, so π extends to a surjective map

π : (A1 ⊗ Ad−1)/(C∗
d + N∗

d) → Vd/(Cd + Nd).

Ad is generated by A1Ad−1. Let e be a basis element in Ad−1 and xi any
generator such that i > min(e). Then, by the commutativity and (6),

xi · e = xi · xmin(e)ê = xmin(e) · xiê =
∑

c(xi, ê, j)xmin(e) · ej ,

where min(xi, ê) ≤ min(ej). Since min(e) ≤ min(xi, ê), every element in Ad

can be expressed as a linear combination of elements xi · e, where i ≤ min(e).
Hence we also have a natural surjective map h of vector spaces from Vd to Ad.
Suppose f is a relation (e.g. it might be a commutator). Then, in A<d ⊕ Vd,

f.a = (
∑

c(i1, . . . , i|f |)Xi1 · · ·Xi|f|
).a =

∑

c(i1, . . . , i|f |)Xi1 .(xi2 · · ·xi|f|
· a).

Now, every xi2 . . . xi|f|
.a can be written as a linear combination of elements {ej}

of degree d−1. Fix one ej . If i1 ≤ min(ej), then Xi1 .ej = xi1⊗ej 7→ xi1 ·ej , by h.
Otherwise Xi1 .ej = xmin(ej) ⊗xi1 êj 7→ xmin(ej) ·xi1 êj = xi1 ·xmin(ej)êj = xi1 · ej

Thus every f.a maps to f ·a, so h extends to a surjective map h from Vd/(Cd+Nd)
to Ad. The lemma follows from surjectivity of π and h.

Theorem 4.3. A<d ⊕ Vd/(Cd + Nd) is an algebra and isomorphic to A≤d.
Furthermore, a good basis can be chosen for A≤d.

Proof. As in the non-commutative case, A<d⊕Vd/(Cd+Nd) becomes an algebra
if we let multiplication be defined by the corresponding multiplication in A≤d

and then use the isomorphism to go back to A<d ⊕ Vd/(Cd + Nd). This shows
the isomorphism part.

Suppose that the basis for Ad−1 is good. Order the elements in Vd by
the lexicographical ordering and choose basis elements as {xi ⊗ ej | xi ⊗ ej /∈
in(Nd ∪Cd)}, according to section 3. Then, in Vd/(Nd + Cd), every xk ⊗ eh can
be written as a linear combination of elements {xi ⊗ ej} such that xk ⊗ eh �
xi ⊗ ej . By the property of Vd, min(xk, eh) = k, so if we let eij be the element
in Ad corresponding to xi ⊗ ej ∈ Vd/(Cd + Nd), then min(eij) = i. Since
xk ⊗ eh � xi ⊗ ej ⇔ Xkw(eh) � Xiw(ej), and ≺ is lex, it follows that k ≤ i and
hence the basis is good. The second part of theorem hence follows by induction.

Theorem 4.4. ∪i≤d(w(Ci) ∪ w(Ni)) is a Gröbner basis in lex for I≤d.

Proof. Identical to the non-commutative case.

It will be convenient to think of w(e) = Xαi

1 · · ·Xαn
n ∈ Λ as a mono-

mial in the polynomial ring, so we write mon(w(e)) to denote the monomial
Xαi

1 · · ·Xαn
n .

10

Corollary 4.5. Let e be a basis element. Then, for every monomial m such that
m|mon(w(e)), there exists an unique basis element e′ such that mon(w(e′)) = m.

Before we illustrate the algorithm with an example, we give two lemmas that
reduces the calculations.

Lemma 4.6. Let e be a basis element of degree d− 1, and suppose min(e) = i.
Then (XjXi − XiXj).ê = 0 in Vd, for all j ≥ i.

Proof. If j = i, it is clear. Suppose j > i. Then XjXi.ê = Xj .(xi ê) = Xj .e =
xi ⊗ (xj ê) = XiXj .ê.

Lemma 4.7. Let Ci
d be the submodule generated by all expressions {(XiXj −

XjXi).a}, for all j and all a of degree d − 2. Suppose e is a basis element of

degree d−2 and that Xi|mon(w(e)). Then (XkXj − XjXk).e = 0, for all j and
all k in the submodule A<d ⊕ Vd/Ci

d.

Proof. Write w(e) = Xα1
1 · · ·Xαn

n . Let b = Xα1
1 · · ·X

αi−1

i−1 Xαi−1
i X

αi+1

i+1 · · ·Xαn
n .

Then

XkXj .e = XkXj .Xi.b.1 = XkXi.Xj .b.1 = XiXk.Xj .b.1

= XiXj .Xk.b.1 = XjXi.Xk.b.1 = XjXk.Xi.b.1 = XjXk.e.

This gives us the following method to get the span for Cd. Add all expressions
(X1Xi −XiX1).e. Then add all expressions (X2Xi −XiX2).e, for all i > 2 and
all e such that X1 - mon(w(e)). Continue to add (X3Xi −XiX3).e, for all i > 3
and all e such that neither X1 nor X2 divides mon(w(e)), and so on.

Example 2. Suppose I = (X1X2, X2X3 − X2
3) ⊆ Q[X1, X2, X3] and put A =

Q[X1, X2, X3]/I. We let 1 and {x1, x2, x3} span A0 and A1 respectively. Now
V2 is spanned by {x1 ⊗ x1, x1 ⊗ x2, x2 ⊗ x2, x1 ⊗ x3, x2 ⊗ x3, x3 ⊗ x3}. The
relations operating on A0 ⊕ A1 ⊕ V2 gives:

X1X2.1 = X1.x2 = x1 ⊗ x2

(X2X3 − X2
3).1 = X2.x3 − X3.x3 = x2 ⊗ x3 − x3 ⊗ x3.

By Lemma 4.6, the commutators operate as zero. A Gröbner basis in lex for
I≤2 is of course {X1X2, X2X3 − X2

3}.
In V2/N2, x2 ⊗ x3 = x3 ⊗ x3. Since X2X3 � X2

3 , we let A2 be spanned by
{x2

1, x
2
2, x1x3, x

2
3}. In degree three, V3 is spanned by following seven elements:

{x1 ⊗ x2
1, x1 ⊗ x2

2, x2 ⊗ x2
2, x1 ⊗ x1x3, x1 ⊗ x2

3, x2 ⊗ x2
3, x3 ⊗ x2

3}.

There are no fi’s of degree 3, so N3 = 0.
To get C3, we follow the procedure described above. In the first step we add

{(X1X2−X2X1).x1, (X1X3−X3X1).x1, (X1X2−X2X1).x2, (X1X3−X3X1).x2,
(X1X2 −X2X1).x3, (X1X3 −X3X1).x3}. Since x2

1 and x1x3 are basis elements,

11

by lemma 4.6, only the third and the fourth expressions are non-zero, and we
put

(X1X2 − X2X1).x2 = x1 ⊗ x2
2

(X1X3 − X3X1).x2 = x1 ⊗ x2
3

into our spanning set. In step 2, the only expression left is

(X2X3 − X3X2).x3 = x2 ⊗ x2
3 − x3 ⊗ x2

3.

Thus, there are three expressions spanning C3. A a Gröbner basis for I≤3 in lex
is

{X1X2, X2X3 − X2
3 , X1X

2
2 , X1X

2
3 , X2X

2
3 − X3

3}.

As in the non-commutative case, the Gröbner basis is not minimal, since for
instance X1X2|X1X

2
2 . We conclude that A3 is four dimensional as a Q-vector

space and spanned by {x3
1, x

3
2, x

2
1x3, x

3
3}.

Remark 3. The Λ-module structure (7) on A<d ⊕ Vd can be generalized to
situations when A is not commutative. It is enough to have XiXj−s(i, j)XjXi ∈
I, for all i, j, where s : {1 . . . n} × {1 . . . n} 7→ k. If we assume the basis to be
good (which is possible), then we get a Λ-module structure on A<d ⊕ Vd by

Xi.e =















xi · e if |e| < d − 1
xi ⊗ e if |e| = d − 1 and i ≤ min(e)
s(i, min(e))xmin(e) ⊗ (xi · ê) if |e| = d − 1 and i > min(e)
0 if |e| ≥ d.

However, Theorem 4.1 does not hold in general, so we have to stick to a weaker
form of Theorem 4.3; operating with the relations in each degree as in section
3. But when s(i, j) is constant, one easily shows that Theorem 4.1 and also
Theorem 4.3 holds. So for instance, we can use the method to compute quotients
of the exterior algebra.

4.2 Termination of the algorithm

When A is commutative, the algorithm actually gives a closed expression for
the Hilbert series of A in a finite number of steps. To prove this, we use results
obtained by Macaulay and Gotzmann.

If h and i are positive integers, then h can be uniquely written as a sum

h =

(

ni

i

)

+

(

ni−1

i − 1

)

+ · · · +

(

nj

j

)

,

where
ni > ni−1 > · · · > nj ≥ j ≥ 1.

See [13] for an easy proof. This sum above is called the binomial expansion of
h in base i. Define

h<i> =

(

ni + 1

i + 1

)

+

(

ni−1 + 1

i

)

+ · · · +

(

nj + 1

j + 1

)

.

12

The following characterizations of quotients of the polynomial ring is due to
Macaulay. The proof can be found in for instance [14].

Theorem 4.8 (Macaulay). The following are equivalent

(i) There exists a graded commutative algebra A with Hilbert function Hf.

(ii) Hf(0) = 1 and Hf(n + 1) ≤ Hf(n)<n>.

Example 3. There is no A = k[X1, . . . , Xn]/I with dimk(A1) = 3, dimk(A2) =
5, dimk(A3) = 8, since 5 =

(

3
2

)

+
(

2
1

)

, and 5<2> =
(

4
3

)

+
(

3
2

)

= 7 < 8.

Theorem 4.9 (Gotzmann’s persistence theorem). If Hf is the Hilbert function
of k[X1, . . . , Xn]/I, for some homogeneous ideal I, and the maximal degree of
the generators of I is t, then if Hf(n + 1) = Hf(n)<n> for some n ≥ t, then
Hf(m + 1) = Hf(m)<m> for all m ≥ n.

Gotzmann’s original proof can be found in [7]. For a more combinatorial
approach, see [8].

Write 〈Xi, . . . , Xn〉
d for the set of monomials in {Xi, . . . Xn} of degree d. A

Lex-segment set L on {X1, . . . , Xn} of degree d, is the |L| biggest monomials
in 〈X1, . . . , Xn〉

d with respect to the lexicographical ordering. Let Lc be the
complement 〈X1, . . . , Xn〉

d \L.
Suppose Xα1

1 · · ·Xαn
n is the smallest element in L. Then

Lc =
(

Xα1−1
1 〈X2, . . . , Xn〉

d−(α1−1) t Xα1−2
1 〈X2, . . . , Xn〉

d−(α1−2) t · · ·

t〈X2, . . . , Xn〉
d
)

t
(

Xα1
1 Xα2−1

2 〈X3, . . . , Xn〉
d−(α1+α2−1) t · · ·

tXα1
1 〈X3, . . . , Xn〉

d−α1
)

t · · ·

t
(

Xα1
1 · · ·X

αn−2

n−2 X
αn−1−1
n−1 〈Xn〉

d−(α1+···+αn−1−1) t · · ·

tXα1
1 · · ·X

αn−2

n−2 〈Xn〉
d−(α1+···+αn−2)

)

,

where the first parenthesis should be removed if α1 = 0, the second should be
removed if α2 = 0 and so on. This implies that |Lc| is equal to

(

(

n − 1 − 1 + d − α1 + 1

d − α1 + 1

)

+

(

n − 1 − 1 + d − α1 + 2

d − α1 + 2

)

+ · · ·

+

(

n − 1 − 1 + d

d

)

)

+

(

(

n − 2 − 1 + d − α1 − α2 + 1

d − α1 − α2 + 1

)

+ · · ·

+

(

n − 2 − 1 + d − α1

d − α1

)

)

+ · · ·

+

(

(

n − (n − 1) − 1 + d − α1 − · · · − αn−1 + 1

d − α1 − · · · − αn−1 + 1

)

+ · · ·

+

(

n − (n − 1) − 1 + d − α1 − · · · − αn−2

d − α1 − · · · − αn−2

)

)

,

13

where again the i’th parenthesis should be removed if αi = 0.
Thus we get the binomial expansion of |Lc| in base d. Of course, this can be

used as a proof of the existence of a binomial expansion in a given basis.
If L is a lex-segment, let 〈X1, . . . , Xn〉L be the set of all monomials m such

that m = Xi · m
′, for some i and m′ ∈ L

Lemma 4.10. If L ⊆ 〈X1, . . . , Xn〉
d is a lex-segment, then 〈X1, . . . , Xn〉L is a

lex-segment.

Proof. To get a contradiction, assume that m = Xα1
1 · · ·Xαn

n is the minimal
monomial not in 〈X1, . . . , Xn〉L, such that there exists a monomial less than m
in 〈X1, . . . , Xn〉L. Write m = X

αi1

i1
· · ·X

αik

ik
, where all ij ’s are nonzero. If k = 1

and i1 = n, then e.g. m = Xd
n, a contradiction since this is the smallest element

with respect to the lexicographical ordering. Otherwise, note that

m′ = X
αi1

i1
· · ·X

αik−1
−1

ik−1
X

αik
+1

ik

is the biggest monomial less than m. By the minimal assumption, m′ ∈
〈X1, . . . , Xn〉L. But this implies that m′

Xil

∈ L, for some l. Since L is a lex-

segment and m′

Xil

·
Xil

Xik

≥ m′

Xil

, it follows that m′

Xil

·
Xil

Xik

= m′

Xik

∈ L. Hence

m = m′

Xik

· Xik−1
∈ 〈X1, . . . , Xn〉L, a contradiction.

Proposition 4.11. Let L be a lex-segment on {X1, . . . , Xn} in degree d. Let I
be the ideal generated by L, and consider A = k[X1, . . . , Xn]/I, for some field
k. Then dimk(Ad+1) = dimk(Ad)<d>.

Proof. We have dimk(Ad) = Lc. Let Xα1
1 · · ·Xαn

n be the smallest element in
L. Then Xα1

1 · · ·Xαn+1
n is the smallest element in 〈X1, . . . , Xn〉L (which is a

lex-segment by the lemma). It follows that the number of elements smaller than
Xα1

1 · · ·Xαn+1
n is dimk(Ad+1). Note that the expansion of Lc is independent of

αn. Thus, to get the expansion of dimk(Ad+1), we only need to replace d by
d + 1. This proves the proposition.

Theorem 4.12. If A is a graded algebra, then there is a d greater than or equal
to the maximal degree m of the ideal generators {fi}, such that dimk(At+1) =
dimk(At)

<t>, for all t ≥ d.

Proof. For a lex-segment L, let I(L) be the ideal generated by L. Define
codim(L)j = dimk(k[X1, . . . , Xn]/I(L))j . Construct a sequence L1, L2, . . . of
lex-segment sets as follows. Let L1 be a lex-segment set in degree 1 such that
dimk(A1) = codim(L1)1. Suppose Li is such that dimk(Ai) = codim(Li)i. By
Macaulay’s theorem and Proposition 4.11, codim(Li)i+1 −dimk(Ai+1) = d ≥ 0.
L′ = 〈X1, . . . , Xn〉Li is a lex-segment by Lemma 4.10. Let Li+1 be the union of
L′ and the d biggest element in 〈X1, . . . , Xn〉

i+1\L′. Then Li+1 is a lex-segment
and dimk(Ai+1) = codim(Li+1)i+1.

14

This gives us a chain of ideals, I(L1) ⊆ · · · ⊆ I(Lm) ⊆ I(Lm+1) ⊆ · · · and by
the noetherian property, equality must occur in a finite number l of steps. But
equality between I(Ll) and I(Ll+1) is the same as codim(Ll)l+1 = dimk(Al+1).
Thus dimk(Al+1) = dimk(Al)

<l> by Proposition 4.11. The theorem now follows
from the persistence theorem.

Corollary 4.13. The algorithm gives a closed expression for the Hilbert series
in finite time.

Remark 4. The Gotzmann criteria is quite weak in practice. Consider for in-
stance the case when I is one-dimensional. Then the Hilbert function eventually
gets constant. But Hf(i)<i> = Hf(i + 1) is equivalent with

(

ni

i

)

+

(

ni−1

i − 1

)

+ · · · +

(

nj

j

)

=

(

ni + 1

i + 1

)

+

(

ni−1 + 1

i

)

+ · · · +

(

nj + 1

j + 1

)

,

where the left hand side is the binomial expansion of Hf(i). It is easy to see
that equality occurs only if ni = i, ∀i ≥ j. But this implies Hf(i) = i − j + 1. It
follows that the Gotzmann criteria applies only when Hf(i) ≤ i.

So if for Hs(A, z) = 1+4z+14z2+16z3+14z4+9z5+5z6+6z7+6z8+· · · , then
we can apply the Gotzmann criteria in degree 8 (provided the ideal generators
are of lower degrees than 8). But if Hs(A, z) = 1 + 5z + 13z2 + 24z3 + 35z4 +
43z5 + 47z6 + 48z7 + 48z8 + · · · , then the Gotzmann criteria would apply for
the first time in degree 48.

4.3 Runtimes

As mentioned in the introduction, the program has not proved to be quite as
effective in the commutative case. This has much to do with the weakness of the
Gotzmann-criteria. For instance, aalg does not terminate in within five minutes
for simple examples such as homogeneous cyclic 6-roots (which turns out to be
a 2-dimensional ideal). This problem is solved by the standard programs in less
than one second.

But we have found two instances of problems were the program is fast com-
pared to three existing computer algebra systems; Cocoa [3], Macaulay2 [9], and
Singular [10].

First example. We consider in the first case zero-dimensional ideals gener-
ated in degree 2,3 and 4, with dense relations in the sense that they consists of
linear combination selected at random, of in average 50 percent of all monomials
in the specific degree. The runtimes are presented in table 2.

In Cocoa, we used Hilbert and in Macaulay2 hilbertSeries to compute
the Hilbert series. The monomialorder used in both cases were degrevlex. In
Singular we used std to compute a standard-basis in dp-ordering, and hilb to
determine the Hilbert series.

When I is zero-dimensional, theorem 4.4 shows that the algorithm gives a
lexicographical Gröbner basis for I . An algorithm that is known to be fast when
computing a lexicographical Gröbner basis for a zero-dimensional ideal is the

15

vars #2 #3 #4 char aalg coc. mac. sin. s. fglm
10 9 4 2 2 0.9 25.9 7.4 3.8 6.6
10 9 4 2 31991 79.7 91.0 29.2 11.1 17.7
10 3 5 95 2 1.5 * 51.4 36.6 45.0
10 3 5 95 31991 125.1 * 183.4 103.5 136.1
15 30 30 30 2 6.2 169.0 32.3 21.1 25.5
15 30 30 30 31991 131.5 * 98.4 70.0 74.3
15 20 10 30 2 28.6 * * * *

Table 2: Comparison of runtimes for some computer algebra packages on an
AMD Athlon XP 2500+ (1837.5 MHz), with 3 Gb RAM. ∗ indicates that the
time used exceeded the time limit of 300 [s]. Columns two, three and four
indicates the number of forms in degree two, three and four respectively used
to generate the ideal.

fglm-algorithm, see [4]. The idea is to first compute a Gröbner basis in degrevlex,
which gives a vector space over k, and then use this space to determine the
lexicographical Gröbner basis. The fglm-algorithm is implemented in Singular,
and the last column in table 2 shows the time used to compute a Gröbner basis
in lex using this implementation. To invoke the fglm-algorithm, we used lp as
monomialorder and then the command stdfglm.

Table 2 indicates that using our algorithm to compute Hilbert series and
also Gröbner bases in lex is comparable with the standard methods.

The huge difference between the running times for Z2 and Z31991 for aalg is
explained in section 5.

Second example. Let the ideal I(m) ⊂ k[X1, . . . , Xn] be generated by
all monomials XiXj such that i + j 6= 0 (mod m). When m > 2n, I(m) will
consist of all elements of degree 2, and so the Hilbert series for k[X1, . . . , Xn]/I
is simply 1+nz. On the other hand, when m = 1, the series is 1/(1− z)n, since
I(1) = 0.

In Macaulay2 we used monomialIdeal to define the ideal and then hilbert-

Series to compute the Hilbert series. In Singular we use ideal to define the
ideal, and hilb to compute the Hilbert series (without calling std). In Cocoa,
Ideal was used to define the ideal, and Hilbert to compute the Hilbert series.

Table 3 shows that in general, the computational time decreases for aalg
when m is large. For the other programs it is the other way around; the com-
putational time increases with m. For some numbers, for instance n = 100
and m = 2, aalg does not terminate within the time limit (this is also the case
when n = 200), which seems strange since the termination time for m = 3 is
almost only 1 second. This has of course to do with the Gotzmann criteria, for if
dim(I) > 0, then the algorithm terminates only if Hf(A, n + 1) = Hf(A, n)<n>,
for some n, and there is no good rule of thumb for when this equality occurs.

The results shows that our program could be of use also in the case when
a Gröbner basis is already known, but where the Hilbert series is not. But the

16

n m aalg cocoa macaulay2 singular gotzmann dim
100 1 <0.1 <0.1 <0.1 <0.1 2 100
100 2 * 3.8 37.4 2.0 >5 50
100 3 1.1 7.4 73.6 4.2 4 33
100 4 * 9.1 89.1 5.2 >6 25
100 5 0.5 10.3 103.2 6.1 4 20
100 22 1.4 14.3 146.3 8.1 12 5
100 100 0.1 15.2 154.9 9.0 4 1
100 201 <0.1 15.3 158.4 9.3 2 0
200 1 <0.1 0.1 <0.1 <0.1 2 200
200 5 8.2 * * 199.1 4 40
200 22 * * * 268.6 >13 9
200 100 0.9 * * 272.1 4 2
200 401 0.6 * * 283.9 2 0

Table 3: Comparison of runtimes for some computer algebra packages on an
AMD Athlon XP 2500+ (1837.5 MHz), with 3 Gb RAM. * indicates that the
time used exceeded the time limit of 300 [s]. An i in the Gotzmann-column
indicates that Hf(A, n) = Hf(A, n − 1)<n−1> holds for n = i and for no n < i.

uncertainty of the termination time is a problem. Maybe it would be a good
idea to check the Gotzmann-criteria (which is of almost no cost) in the standard
algorithms when computing Hilbert series.

5 Implementation

Aalg is implemented in C++, and is available upon request from the author.
The program lets the user define the field to perform the calculations in. At
present, we only support the finite fields Zp, and there is an upper limit of
p = 31991 (the “Macaulay”-prime).

The most time and memory consuming parts of the algorithms are the row
reduction of the matrices specified by the relations and the possible commuta-
tors. If at most 10% of the entries in a matrix are non-zero, then the matrix is
said to be sparse. When a matrix is sparse, a typical representation of a vector
is as a list of pairs, where the first entry in each pair is the index with respect to
the basis, and the second is the coefficient. In many of the applications we con-
sidered in the development of the algorithms, the number of non-zero elements
were less than 10%. This made us implement the row reduction algorithm using
sparse methods. But now we have understood that the algorithms could be
used also problems which gives dense matrices, and in coming versions we will
support dense representation.

However, for Z2, the current version of the program uses a dense represen-
tation, for when the field consists of only two elements, we can store 32 or
64 coefficients in one computer word, depending on the word size of the com-

17

puter. Since every machine instruction computes one word at a time, this also
increases the speed of the calculations by a factor 32 or 64 compared to ordinary
dense representation. To save time and memory using sparse methods over Z2,
heuristics indicates that one would need to have at most 1% of the elements
non-zero.

The difference in representation explains the behavior of aalg in the first
instance of problems in section 4.3. When the field is Z2, the program shows
good running times, but when the field is Z31991, the program is rather slow.
This is because the matrices occurring in these examples are dense; and as much
as 99% of the entries in the matrices are non-zero. To use sparse methods in
these examples, as we do for Z31991, is very ineffective.

Except for the representation, it is of importance that one chooses a good
algorithm to perform the row reduction. The algorithm implemented in the
program is straight forward Gaussian elimination, and we have reason to believe
that a well chosen algorithm and a well written code would increase the speed of
the program thoroughly. Unfortunately, there is yet no fast package which row-
reduces matrices over finite fields. But there is a package under construction,
see [11], which we hope to be able to use in the future.

References

[1] D. Anick, Non-commutative graded algebras and their Hilbert series, Jour-
nal of Algebra 78 (1982), 120–140.

[2] J. Backelin et al. , Bergman 0.975, a system for computations in com-
mutative and purely non-commutative graded algebra. http://www.math.
su.se/bergman.

[3] CoCoATeam, CoCoA 4.3: a system for doing Computations in Commutative
Algebra. http://cocoa.dima.unige.it.

[4] Faugere, Gianni, Lazard, Mora, Efficient computation of zero dimensional
Gröbner bases by change of ordering. Journal of Symbolic Computation 16
(1993), 329–344.

[5] S. Fomin, A. N. Kirillov, Quadratic algebras, Dunkl elements, and Schubert
calculus, Advances in geometry 172 (1999), 147–182.

[6] S. Fomin, C. Procesi, Fibered quadratic Hopf algebras related to Schubert
calculus, Journal of Algebra 230 (2000), 174–183.

[7] G. Gotzmann, Eine Bedingung für die Flachheit und das Hilbertpolynom
eines graduierten Ringes, Math. Z. 158 (1978), 61–70.

[8] M. Green, Restrictions of linear series to hyperplanes, and some results of
Macaulay and Gotzmann, Lecture Notes in Math. 1389 (1989), 76–86.

18

[9] D. Grayson, M. Stillman, Macaulay2 0.92, a system for research in algebraic
geometry. http://www.math.uiuc.edu/Macaulay2.

[10] G.-M. Greuel, G. Pfister, H. Schönemann. Singular 2.0.4. A Computer Al-
gebra System for Polynomial Computations. Centre for Computer Algebra,
University of Kaiserslautern (2001). http://www.singular.uni-kl.de.

[11] LinBox, a C++ template library for exact, high-performance linear al-
gebra computation with dense, sparse, and structured matrices over
the integers and over finite fields. Development version available at
http://www.linalg.org.

[12] C. Löfwall, J.-E. Roos, A nonnilpotent 1-2-presented graded Hopf algebra
whose Hilbert series converges in the unit circle, Adv. in Math. 130 (1997),
no. 2, 161–200.

[13] L. Robbiano, Introduction to the theory of Hilbert functions, Queen’s Pa-
pers in Pure and Applied Math., vol. 85 (1991) B1–B26.

[14] R. Stanley, Hilbert Functions of Graded Algebras, Adv. in Math. 28 (1978),
57–83.

19

