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Integral representation formulas

associated with toric varieties

Alexey Shchuplev

Abstract

A finite family {Zν} of planes in
�

d is called atomic if the top non triv-

ial homology group Hk

� �
d \ �

ν
Zν , ��� is generated by a single element.

One shows that families of coordinate planes giving rise to the concept

of a toric variety are atomic. For this class of atomic families, the thesis

presents a construction of a cycle γ and of a differential form η that gen-

erate the indicated homology group and the dual de Rham cohomology

group, respectively. New integral formulas of the Bochner-Ono type with

kernels η for holomorphic functions in special bounded domains of
�

d are

obtained.
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1. Introduction

Integral representations and multidimensional residues are among the most
important tools in several complex variables. Many significant results of theo-
retical and practical importance have been proved by means of them.

The Cauchy formula for product domains was first obtained in the pioneering
work by Poincaré (1887). This has given rise to the theory of multidimensional
resudues in its classical shape as the integration of closed differential forms
over cycles. This formula has allowed to prove basic properties of holomorphic
functions in several dimensions, such as the series expansion and the uniqueness
of analytic continuation. Later, using the Cauchy formula, Hartogs in 1906
was able to prove that there exist certain domains in Cd, d > 1 such that any
holomorphic function on these domains admits an analytic continuation to some
larger domain.

There are also other general integral representations that have played a sig-
nificant role in the development of complex analysis. The Bochner-Martinelli
formula (1938) has allowed to prove Hartogs’ theorem about removal of com-
pact singularities of holomorphic functions and its generalizations. By using the
more complicated Bergman-Weil formula the multidimensional Runge theorem
on polynomial approximation of holomorphic functions as well as solutions to
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the Poincaré and Cousin problems have been obtained. The works of Leray
and Lelong have brought new ideas into multidimensional residue theory and
stimulated the investigation of residue currents.

1.1. The Bochner-Martinelli and Cauchy formulas

There is a good number of various formulas for integral representation of
holomorphic functions apart from the ones mentioned above. The Bochner-
Martinelli and the Cauchy formulas are standard among them, and many others
have been deduced from them.

Let us take a close look at them. At the first glance these formulas look
quite different. Indeed, provided a function f is holomorphic in the closure of a
bounded domain D in Cd with piece-wise smooth boundary ∂D, the Bochner-
Martinelli formula is

f(z) =
(d − 1)!

(2πi)d

∫

∂D

f(ζ)ηBM (ζ − z),

where the form ηBM in the standard multi-index notation

|ζ − z|2 = |ζ1 − z1|2 + · · · + |ζd − zd|2,
dζ = dζ1 ∧ · · · ∧ dζd, and dζ[k] denoting the same product as dζ but with the
k-th differential omitted is

ηBM (ζ − z) =

∑d
k=1(−1)k−1(ζ̄k − z̄k) dζ̄[k] ∧ dζ

|ζ − z|2d
,

and represents values f(z) at every point z of D. The Cauchy formula looks
simpler

f(z) =
1

(2πi)d

∫

Γ

f(ζ)ηC(ζ − z), where

ηC(ζ − z) =
dζ1

ζ1 − z1
∧ · · · ∧ dζd

ζd − zd

but applies only if the domain in question is a polydisc D = {z ∈ C
d : |ζ1−z1| <

r1, . . . , |ζd − zd| < rd}. The integration set in this case is the distinguished
boundary of the polydisc Γ = {z ∈ Cd : |ζ1−z1| = r1, . . . , |ζd−zd| = rd}. What
do these formulas have in common that makes them very powerful and how one
can clarify the connection between them?

To answer this question, August Tsikh [15] proposed to consider the singular-
ities of kernels ηBM and ηC from a new angle. In our examples, the singularity
of the Cauchy kernel centered at the origin consists of all coordinate hyperplanes
ZC =

⋃d
k=1{z ∈ C

d : zk = 0}, while the singular set of the Bochner-Martinelli
kernel (also centered at the origin) is a single point ZBM = {0}. These two
set possess one common property, which we shall mark out, namely, they are
unions of linear subspaces of Cd. But we can say more than this, namely, the
complements of ZC and ZBM are homotopy equivalent to oriented compact real
manifolds with the top non-trivial homology groups being generated by a single
element:

C
d \ ZC ' S1 × · · · × S1

︸ ︷︷ ︸
d times

and Hk(Cd \ ZC , Z) =

{
Z if k = d,

0 if k > d;

C
d \ ZBM ' S2d−1 and Hk(Cd \ZBM , Z) =

{
Z if k = 2d − 1,

0 if k > 2d − 1.

(1)
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We shall consider this as a key property providing the link between the
Cauchy and the Bochner-Martinelli kernels, and a whole family of integral ker-
nels that we obtain in the present work. Let us give a definition

Definition 1.1 ([15]). A finite family {Zν}ν∈N of linear subspaces of Cd is
said to be atomic if the top non trivial homology group Hk

(
Cd \⋃ν Zν , Z

)
is

generated by a single element, in other words, such {Zν}ν∈N that there exists
an integer k0 ∈ N such that

Hk

(
C

d \
⋃

ν

Zν , Z

)
=

{
Z if k = k0,

0 if k > k0.

A generator η of the dual de Rham cohomology class Hk0

(
Cd \⋃

ν
Zν

)
is then

said to be a kernel for the atomic family {Zν}ν∈N .

Given an atomic family Z in Cd, the problem is to construct a C∞ differential
form on C

d with Z as its singular set and then to show that this form is a kernel
and produces some integral representation of holomorphic functions in Cd.

1.2. Outline of the thesis

This thesis presents a partial solution to the stated problem. More precisely,
we give the construction of kernels for a special but rather wide class of atomic
families and prove integral reresentation formulas for holomorphic functions in
special bounded domains of Cd.

Let us note that not every family of coordinate subspaces is atomic. For
example, the set of three lines

{z1 = z2 = 0} ∪ {z2 = z3 = 0} ∪ {z1 = z3 = 0}

in C3 is not atomic (see [16]). This raises the question of which families of
linear subspaces of Cd are atomic. The answer to this general question is still
unknown. There is however a class of such families that are known to be atomic.
They appear in the theory of toric varieties.

In the Section 2 we give the definition of toric varieties according to [6] and
basic facts of toric geometry that will be used in the text. The construction
due to D. Cox is the most suitable for solving the problem because it represents
the varieties as quotient spaces of an affine space minus a family of coordinate
planes under the action of a group:

X = (Cd \ Z)/G.

Provided that certain combinatorial conditions are fulfilled, the exceptional set
Z is atomic.

Given an atomic family Z coming from the representation of a toric variety,
to get a hint how to construct a kernel we turn to the basic example of the
Bochner-Martinelli kernel.

Example 1.1.

It is well-known that the differential form

dz1 ∧ dz̄1 ∧ · · · ∧ dzn ∧ dz̄n

(1 + |z1|2 + · · · + |zn|2)n+1
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coincides up to a constant factor with the volume form on the projective space
Pn written in local coordinates (it is called the Fubini-Study volume form). One
can easily verify that the form

dz1 ∧ dz̄1 ∧ · · · ∧ dzn ∧ dz̄n

(1 + |z1|2 + · · · + |zn|2)n+1
∧ dzn+1

zn+1

after the change of coordinates

z1 =
ζ1

ζn+1
, . . . , zn =

ζn

ζn+1
, zn+1 =

1

ζn+1

turns into (−1)1+···+nηBM . Notice now that this change of coordinates gives
the transition functions between two charts of Pn+1 such that Pn turns to the
hyperplane at infinite of Pn+1. So there is a clear geometric description of the
situation. The affine space Cn+1 is compactified to Pn+1 by gluing Pn at infinity,
and the Bochner-Martinelli kernel on Cn+1 is the same form (up to the sign) as
the volume form on the hyperplane at infinity multiplied by the Cauchy kernel.

We follow this example in our construction. Thanks to Theorem 4 proved
in [16] one can embedd an n-dimensional toric variety X = (Cd \ Z)/G into a

certain d-dimensional toric variety X̃ as the ‘skeleton at infinity’. This theorem
is the direct analogue of the decomposition Pn+1 = Cn+1 t Pn and in Section
3 we show how to make a kernel η in C

d with singularity along Z using the
volume form ω on the‘skeleton at infinity’ X . More precisely, the following
theorem holds.

Theorem 5. The differential (d, n)-form

η = (−1)nω([ζ]) ∧ dζn+1

ζn+1
∧ · · · ∧ dζd

ζd

in Cd is a kernel for the atomic family Z.

Here the volume form ω is written in the homogeneous coordinates of X . We
call this kernel associated with the toric variety X .

Having obtained a kernel, we prove the formula of integral representation of
holomorphic functions in special bounded domains of Cd.

Theorem 6. Let f be holomorphic in the closure of a polyhedron Uρ defined by
the system of r = d − n inequalities aj1|ζ1|2 + · · · + ajd|ζd|2 < ρj , j = 1, . . . , r
with all aji non-negative and ρ ∈ K ⊂ Rr

+, and γ be the distinguished boundary
of Uρ defined by equalities instead of inequalities in the system. Then for every
point z of a certain polyhedron D ⊂ Uρ

f(z) =
1

(2i)dπrVol(XΣ)

∫

γ

f(ζ)η(ζ − z).

The integral represent the values of the function in the subdomain D ⊂ Uρ,
so we get an integral representation of the Bochner-Ono type [1]. Also, in the
proof a precise description for a canonical generating cycle of the top non-trivial
homology group of Cd \ Z is given.

Section 4 presents a class of natural volume forms for projective complete
simplicial toric varieties (Definition 4.1), followed by several examples of integral
kernels associated with them in Section 5. Moreover, we compute the volumes
of varieties with respect to these natural forms in terms of volume of polytopes
∆ in Rn associated with the varieties.
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Proposition 4.1.
Vol(XΣ) = πnVol(∆).

For this particular choice of volume forms we reformulate Theorem 6.

Theorem 6′. Let f be holomorphic in the closure of the domain Uρ and γ be
the domain’s distinguished boundary. Then for every z ∈ D ⊂ Uρ

f(z) =
1

(2πi)dVol(∆)

∫

γ

f(ζ)η(ζ − z).

The preliminary results of the thesis have been published in [17] and [18].

I would like to thank my supervisors August Tsikh and Mikael Passare for
the inspiration and many fruitful discussions.

2. Toric varieties

Toric varieties are algebraic varieties and they are generalizations of both
affine and projective spaces. Additionally, the class of toric varieties includes
all their products and many other. They are almost as simple to study but
appear to be more convenient in many cases. It seems that the first definition
of a toric variety is due to M. Demazure and says that an n-dimensional toric
variety is a variety on which the action of the algebraic torus Tn = (C \ {0})n

on itself extends to an action on the whole variety. The algebraic torus, called
also the complex torus, acts on itself by the component-wise multiplication. A
toric variety then is a disjoint union of the ‘big’ torus Tn and something, which
is invariant under the extended action.

In the present work we use an equivalent definition of toric variety that is
suitable for our construction. Moreover, the statement that toric varieties are
generalizations of projective spaces becomes clearer.

2.1. The definition and construction

To start with, let us first recall the construction and basic facts of the pro-
jective spaces.

Example 2.2. The projective space.
Usually, the projective space CPn is defined as the set of all lines passing

through the origin in Cn+1. The same definition can be reformulated as follows.
Consider the equivalence relation ∼ on the set of non-zero points Cn+1 \ {0}
defined by

x ∼ y iff y = (λx1, . . . , λxn+1) for λ ∈ C \ {0}.
Then the projective space is the set of all equivalence classes.

Every point x = (x1, . . . , xn+1) 6= 0 determines an element of the projective
space, namely the line passing through the points x and 0. This line is the
equivalence class of all points proportional to x. As only the ratio of coordinates
is then of interest, the equivalence class is commonly denoted by the (n + 1)-
tuple of homogeneous coordinates (x1 : . . . : xn+1). It is useful sometimes to
interprete homogeneous coordinates of a point in Pn as the Cartesian coordinates
of a point in Cn+1 (lying in the corresponding equivalence class).
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Note that a subset of Pn defined by xi 6= 0 is homeomorphic to Cn via

(x1 : . . . : xn+1) 7→
(

x1

xi
, . . . ,

xi−1

xi
,

xi+1

xi
, . . . ,

xn+1

xi

)
. (2)

Therefore the projective space Pn has a canonical covering U by (n + 1) open
sets Ui = {xi 6= 0}. Introducing local coordinates in every Ui according to (2),
we endow the projective space with the structure of complex manifold. Indeed,
the transition functions between the chart Ui with local coordinates u and the
chart Uj (i < j) with local coordinates v

u1 =
v1

vi
, . . . , ui−1 =

vi−1

vi
, ui =

vi+1

vi
, . . . , uj−1 =

1

vi
, uj =

vj

vi
, . . . , ud =

vn

vi

are analytic in Ui ∩Uj . But what is more important is that they are monomial.
It is this feature that allows to use algebraic methods while studying analytic
properties of projective spaces and vice versa. The class of toric varieties is
a generalization of projective spaces preserving the monomiality of transition
functions (see [7]).

There are several approaches to the notion of a toric variety and several
definitions ([9, 12, 6]). They give different constructions but all of them based
on the fact that all analytic or algebraic properties of toric varieties, thanks
to the monomiality of the transition functions, can be expressed in a purely
combinatorial way. The combinatorial object associated with a toric variety is
a so-called fan. We start with definitions.

A subset σ of R
n is called a strongly convex rational polyhedral cone if there

exists a finite number of elements v1, . . . , vs in the lattice Zn ⊂ Rn (integral
generators) such that σ is generated by them, i.e.

σ = {a1v1 + · · · + asvs : ai ∈ R, ai ≥ 0},

and σ does not contain any line. We say that a subset τ of σ given by some ai

being equal to zero is a proper face of σ and write τ < σ. Faces of a cone are cones
also. The dimension of a cone σ is, by definition, the dimension of a minimal
subspace of Rn containing σ. A cone σ is called simplicial if its generators can
be chosen to be linearly independent. An n-dimensional simplicial cone is said
to be primitive if its n generators form a basis of the lattice Zn.

Definition 2.1. A (n-dimensional) fan in Rn is a non-empty collection Σ of
strongly convex rational polyhedral cones in Rn satisfying the following condi-
tions:

1. Every face of any σ in Σ is contained in Σ.

2. For any σ, σ′ in Σ, the intersection σ ∩ σ′ is a face of both σ and σ′.

The set |Σ| =
⋃

σ∈Σ

is called the support of Σ.

A fan is also called a rational polyhedral decomposition. The dimension of a
fan is the maximal dimension of its cones. An n-dimensional fan is simplicial
(primitive) if all its n-dimensional cones are simplicial (primitive). In the case
|Σ| = Rn, the fan in RN is called complete.
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Figure 1: Examples of fans.

Example 2.3. Examples of fans in R2 and R3.

The first fan on Fig. 1 in R2 consists of one zero-dimensional cone, three

one-dimensional cones and one two-dimensional generated by σ
(1)
2 and σ

(1)
3 . It

is obviously not complete. The second fan consisting only of the origin can be
seen as a fan of any dimension and the corresponding variety depends on this
choice. The third fan comprises of two contiguous three-dimensional cones and
all their faces.

For any given n-dimensional fan Σ one can construct an n-dimensional toric
variety XΣ. Let the cones of Σ be generated by d integral generators v1, . . . , vd

(we may think of them as integral vectors). Assign a variable ζi to each generator
vi. For every n-dimensional cone σ ∈ Σ, let ζσ̂ be the monomial

ζσ̂ :=
∏

j∈{1,...,d}
vj /∈σ

ζj

and Z(Σ) ⊂ Cd be the zero set of the ideal generated by such monomials ζσ̂ in
C[ζ1, ..., ζd], i.e.

Z(Σ) = {ζ ∈ C
d : ζσ̂ = 0 for all n-dimensional cones σ in Σ}. (3)

Evidently, the set Z consists of coordinate planes, in general, of different dimen-
sions.

In the case Σ is an n-dimensional complete simplicial fan, there is an equiva-
lent construction of the same set, due to V. Batyrev [3]. A subset of generators
P = {vi1 , . . . , vik

} is called a primitive collection if they do not generate any
cone of Σ but so does every proper subset of them. Then Z(Σ) coincides with
the union of coordinate planes

Z(Σ) =
⋃

P

{ζi1 = · · · = ζik
= 0},

where the union is taken over all primitive collections.
To define a group acting on Cd\Z, one considers a lattice of relations between

generators of one-dimensional cones of Σ. In other words, one considers r = d−n
independent linear relations over Z between v1, . . . , vd:





a11v1 + · · · + a1dvd = 0,

. . . . . . . . . . . . . . . . . . . . . . . .

ar1v1 + · · · + ardvd = 0.

(4)

The group G is then an r-dimensional surface

G = {(λa11

1 . . . λar1

r , . . . , λa1d

1 . . . λard
r ) : λi ∈ T} ⊂ T

d. (5)
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and is therefore isomorphic to Tr. The action of G on Cd \ Z defines an equiv-
alence relation

ξ ∼ ζ iff ∃λ ∈ T
r : ξ = G · ζ = (λa11

1 . . . λar1

r ζ1, . . . , λa1d

1 . . . λard
r ζd). (6)

Then it follows from [6], although many worked in this direction, that for a
simplicial fan Σ the quotient space

XΣ = (Cd \ Z)
/

G, (7)

with Z and G constructed as above, is well-defined. We take this representation
as the definition of simplicial toric variety.

Definition 2.2. Let Σ be a simplicial fan in Rn. Then the simplicial toric
variety XΣ associated to the fan Σ is the quotient space (7).

The d-dimensional torus T
d acts by component-wise multiplication on C

d\Z.
This action descends to an action of

T ' T
d/G ' T

n

on XΣ. The image of the subset Td ⊂ (Cd \ Z) in XΣ is homeomorphic to
Tn. The torus T acts naturally on Tn ⊂ XΣ (‘big’ torus of XΣ) and this
action extends to the action of T on the whole XΣ. The rest XΣ \ Tn is the
image of (Cd \ Z) \ Td, which is invariant under the action of Td. Therefore,
the dimension of XΣ \ Tn is less than n and XΣ \ Tn is T -invariant. So, this
definition is compatible with that given at the beginning.

Example 2.4. The projective space as a toric variety.

-

6

�
�

�
�	

σ
(0)

σ
(1)
1

σ
(1)
2

σ
(1)
3

σ
(2)
12

σ
(2)
23

σ
(2)
31

Figure 2: The fan of the projective plane.

The complete fan on the Fig. 2 is the polyhedral decomposition of R2 into
three two-dimensional simplicial cones, three one-dimensional and one zero-
dimensional, the origin, and it corresponds to the projective plane.

In the general case, the fan corresponding to Pn is formed by n + 1 cones of
the maximal dimension in Rn. Let us describe this fan in detail. Fix first the
basis e1, . . . , en of R

n. Then the one-dimensional generators of the cones are

v1 = e1, . . . , vn = en, vn+1 = −e1 − · · · − en.

There are n + 1 simplicial n-dimensional cones σ0 generated by {v1, . . . , vn}
that coincides with the positive orthant Rn

+ and σi, i = 1, . . . , n with lists of
generators

{v1, . . . , vi−1, vn+1, vi+1, . . . , vn}.
It is easy to see that these cones with all their faces form a complete fan.
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According to (3), the exceptional set Z in the case of the projective space
is the common zero of the monomials ζ1, . . . , ζn+1, which is the origin. The
integral generators are, of course, linearly dependent, but there is only one
identity of the kind (4), namely,

v1 + · · · + vn+1 = 0.

Therefore the group G is the algebrac torus T acting on Cn+1 \ {0} by the
component-wise multiplication, and the representation (7) coincides with the
regular definition of the projective space.

This example shows that ζi assigned to the one-dimensional generators of
the fan are nothing else but homogeneous coordinates, and this term has been
preserved for toric varieties. The meaning of these coordinates is exactly the
same as in the case of projective space, the homogeneous coordinates of a point
of XΣ are the coordinates of a point in Cd from the corresponding equivalence
class. The equivalence classes now are not lines passing the origin but the orbits
of the action of group G that are r-dimensional surfaces in C

d. The exceptional
set becomes something larger than the origin also. To figure out what the lattice
of relations (4) means, let us turn to the projective space again.

Example 2.5. Monomial functions on the projective space.

As far as one has local coordinates in charts of the projective space, one
can define a monomial uα = uα1

1 . . . uαn
n in terms of local coordinates in one of

the charts. This monomial function extends to the whole space and one can
determine how it looks in other charts by means the transition functions. On
the other hand, one can rewrite the monomial in homogeneous coordinates to
get a globally defined function in Cn+1. Of course, one has to use (2) to study
the function in different charts.

But not every globally defined monomial in Cn+1 gives a function on the
projective space, it is subject to the special condition. Indeed, consider a mono-
mial in homogeneous coordinates xα = xα1

1 . . . xαn
n x

αn+1

n+1 . To rewrite it in the
local coordinates of, say, Un+1 we rearrange it and get

xα =

(
x1

xn+1

)α1

. . .

(
xn

xn+1

)αn

x
α1+···+αn+1

n+1 .

It is clear that α1 + · · · + αn+1 must equal zero for this monomial to define a
function on the projective space.

So, the group G acting on Cd \ Z acts naturally on the homogeneous coor-
dinate ring C[ζ1, . . . , ζd] and the relations (4) define homogeneous monomials
(and the Laurent polynomials) that give rise to well-defined functions on the
variety XΣ.

Note that the exceptional set Z involved in the definition is the union of
coordinate planes and most likely is an atomic family. However, one can assert
that only in the case of complete fans.

Theorem 1 ([16]). Let Σ be a complete simplicial fan in Rn. Then Z(Σ) is
an atomic family of coordinate planes.

Roughly speaking, the proof of the assertion follows from the fact that a toric
variety corresponding to a complete fan is compact and homotopy equivalent to
an oriented compact real manifold (compare with (1)).

Furthermore, complete fans have the following property that we use in the
construction.
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Proposition 2.1. Let Σ be a complete fan in Rn with d generators. Then all
coefficients aij in the lattice of relations (4) can be chosen non-negative.

This fact seems to be well-known. Here we give a simple proof.

Proof. Let the coefficient ajk in the identity aj1v1 + · · ·+ajdvd = 0 be negative.
Consider then the vector −vk. For the fan is complete, this vector lies in some
cone generated by the vectors vi1 , . . . , vim

and therefore can be represented as
linear combination of them −vk = bi1vi1 + · · · + bim

vim
with all non-negative

coefficients. The identity we started with is equivalent then to aj1v1 + · · · +
ajdvd + |aij |(vk + bi1vi1 + · · ·+ bim

vim
) = 0 with the coefficient at vk being equal

zero and containing no new negative coefficients. Proceeding in this way we get
all aij being non-negative.

2.2. Projective toric varieties

There are many reasons to consider compact projective simplicial toric va-
rieties, i.e., those that can be embedded into some projective space and the
construction of integral kernels given in the present work involves only them.
The criterion for a toric variety to be projective can, of course, be expressed in
terms of its fan or in terms of the polytope ∆ dual to the fan.

Let Σ be a complete simplicial fan in Rn. A real valued function h : |Σ| → R

on the support of the fan Σ is said to be a Σ-linear strictly convex support
function if

1. for each σ ∈ Σ, there exists mσ ∈ Zn such that h(x) = 〈mσ , x〉 for x ∈ σ;

2. 〈mσ , x〉 = 〈mτ , x〉 whenever x ∈ τ < σ;

3. h(x) + h(y) ≥ h(x + y) for x, y ∈ |Σ|;

4. mσ 6= mσ′ for different n-dimensional cones of Σ.

The convex set

∆ = {m ∈ Z
n : 〈m, x〉 ≥ h(x), ∀x ∈ R

n}

is an n-dimensional (non-empty) polytope with integer vertices {mσ}, for all
n-dimensional cones σ.

Definition 2.3. The convex hull of a finite number of points in Zn is called a
simple integral polytope if it is n-dimensional, and each of its vertex is a point of
the lattice Zn and belongs to exactly n edges. The simple polytope is absolutely
simple if, in addition, minimal integer vectors on n edges meeting at a vertex
generate the lattice Zn.

It turns out that for a fan Σ to possess a dual polytope ∆ is equivalent to
the condition that XΣ can be embedded into the projective space as a closed
subvariety.

Theorem 2 ([8, 7, 12]). An n-dimensional compact simplicial toric variety
XΣ is projective if and only if the simple polytope ∆ dual to Σ is n-dimensional
and mσ 6= mσ′ for different n-dimensional cones of Σ.
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Let A = ∆ ∩ Zn = {α1, . . . , αN}, then the map

f : XΣ → PN−1 z 7→ (zα1 : . . . : zαN ) (8)

is a closed embedding.
Note that starting from a simple polytope ∆ we can construct its normal

fan such that the condition of the theorem is satisfied and the corresponding
complete simplicial toric variety is projective.

Consider the case of smooth compact projective toric varieties in more details
because there is even more information one can recover from the fan. The fan
associated to such a variety is complete and primitive [12, Theorem 1.10] and
the dual integral polytope is, according to Theorem 2, absolutely simple. To
continue, we need some facts from symplectic geometry.

Let M be a smooth complex manifold endowed with a closed nondegenerated

differential form ω ∈
2∧

T
∗M , which makes (M, ω) into a symplectic manifold.

The canonical example is a complex plane C with the form ω = − 1
2idζ ∧ dζ̄ . If

M is equipped with a Hermitian metric H and the associated differential form
ω = −Im(H) is closed then M is called Kähler manifold and ω Kähler form.

Let G be a Lie group acting on (M, ω) by diffeomorphisms g ∈ G : ζ 7→ g · ζ.
A group action is called symplectic if every diffeomorphism g ∈ G preserves the
symplectic form ω. For every ζ ∈ M , define a map

fζ : G → M, fζ(g) = g · ζ

such that the image of G under this mapping G · ζ is a flow or an orbit of the
group actions. Its differential map at the point 1 ∈ G is a linear map

T1fζ : g → TζM

associating a tangent vector T1fζ(X) = Xζ ∈ TζM to every direction X ∈
g. When ζ varies in M , we get a vector field X called the fundamental field
associated with X .

Definition 2.4. A vector field X on a symplectic manifold (M, ω) is called
Hamiltonian if ıXω is exact and locally Hamiltonian if it is closed. One writes
H(M) and Hloc(M) for the spaces of Hamiltonian and locally Hamiltonian vec-
tor fields on M , respectively.

Obviously, there is an exact sequence

0 −−−−→ H(M) −−−−→ Hloc(M) −−−−→ H1(M ; R)

As ω is non-degenerate, every C∞-function f defines a Hamiltonian vector field
Xf via ıXf

= df . If the group action is symplectic, then all fundamental vec-
tor fields are locally Hamiltonian [2, Prop. 3.1.1.]. Combining this with the
sequence, we get the following diagram

C∞(M) g
y

y

0 −−−−→ H(M) −−−−→ Hloc(M) −−−−→ H1(M ; R)

Definition 2.5. A symplectic action of G on M is Hamiltonian if there exists
a linear map (morphism of Lie algebras) µ̃ : g → C∞(M) making the diagram
commute.

11



By duality, there is an associated map µ of dual spaces

µ : (C∞(M))∗ = M −→ g∗ = Hom(g, R)

defined by
µ : ζ 7→ (X 7→ µ̃X (ζ))

called the moment map.

In our case, the setCd \ Z endowed with the form ω = − 1
2i

d∑
j=1

dζj ∧ dζ̄j is

a symplectic manifold. Consider the action of the maximal compact subgroup
GR of the group G defined in (5)

GR = {(λa11

1 . . . λar1

r , . . . , λa1d

1 . . . λard
r ) : λi ∈ S1 ⊂ T}

The action of GR is clearly symplectic. The Lie algebra t of GR is isomor-
phic to R

r as well as its dual. Denoting the columns of coefficients in (4) by
ak = (a1k, . . . , ark), k = 1, . . . , d, we can write down the fundamental field for
every X = (x1, . . . , xr) ∈ Rr.

X = −i

d∑

k=1

〈ak, X〉
(

ζ̄k
∂

∂ζ̄k
− ζk

∂

∂ζk

)

The interior product of X with the symplectic form ω is then

ıXω =
1

2

d∑

k=1

〈ak, X〉
(
ζkdζ̄k + ζ̄kdζk

)
,

which is the full differential with respect to ζ of the function

µ̃X(ζ) =
1

2

d∑

k=1




r∑

j=1

ajkxj |ζk|2

 =

1

2

r∑

j=1

〈aj , |ζ|2〉xj ,

where aj = (aj1, . . . , ajd), j = 1, . . . , r are the rows of the coefficients and
|ζ|2 = (|ζ1|2, . . . , |ζd|2). So, for every ζ ∈ Cd \ Z, the image µ(ζ) is a point
(ρ1, . . . , ρr) in t∗ ' Rr with coordinates






a11|ζ1|2 + · · · + a1d|ζd|2 = ρ1,

. . . . . . . . . . . . . . . . . . . . . . . . . . .

ar1|ζ1|2 + · · · + ard|ζd|2 = ρr.

(9)

For ρ ∈ µ(Cd \ Z) ⊆ t∗, the cycle µ−1(ρ) is a smooth manifold, but the
restriction of the symplectic form ω to µ−1(ρ) will fail to be symplectic as it will
be degenerate. However, it is degenerate only along the orbits of action of GR,
then the restriction of ω descends to the quotient µ−1(ρ)/GR as a symplectic
form. This process is called symplectic reduction. In such a way we get the
representation of Pn as the quotient S2n+1/S1. It turns out that µ−1(ρ)/GR is
another representation of XΣ.

Theorem 3 ([5]). Let Σ be a complete primitive fan in Rn with d integral
generators and ρ ∈ µ(Cd \ Z). Then the map

µ−1(ρ)/GR −→ (Cd \ Z)/G = XΣ

is a diffeomorphism.
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Observe now that t∗ ' H2(XΣ; R) ' Rr [2, Prop. 4.3.2] and the set KΣ =
µ(Cd \Z) ⊂ t∗ is the Kähler cone of XΣ [5], i.e. the cone of cohomology classes
of Kähler form on XΣ, which is not empty [3, Theorem 4.5]. Therefore, we come
to the following conclusion: for every absolutely simple polytope ∆ ⊂ Rn there
is a complete primitive fan Σ in R

n and a strictly convex support function h
such that ∆ is dual to the fan Σ. Then XΣ = (Cd \Z)/G is a smooth compact
projective simplicial toric variety, that means that the Kähler cone KΣ is not
empty and for every ρ ∈ KΣ there is a diffeomorphism µ−1(ρ)/GR → XΣ.

There is a recipe for the description of the Kähler cone of XΣ (see [3]). Let
PI = {vi1 , . . . , vik

} be a primitive collections for the fan Σ. For the fan is
complete, the sum

∑
i∈I vi belongs to some cone of Σ generated by {vj}, j ∈ J ,

so ∑

i∈I

vi =
∑

j∈J

cjvj

with all cj being positive rational numbers. Since the relations (4) are the basis
of all relations between generators, this relation can be rewritten as

∑

i∈I

vi −
∑

j∈J

cjvj = tI1(a11v1 + · · · + a1dvd) + · · · + tIr(ar1v1 + · · · + ardvd) (10)

Then the system lI(ρ) = tI1ρ1 + · · ·+ tIrρr > 0 for all primitive collections of Σ
defines the Kähler cone of XΣ in Rr.

Remark. We have not used other properties of the generators except for the
lattice of relations (4) to obtain relations (10). Therefore they are valid for any
symbols satisfying the lattice of relations, including |ζi|2.
Example 2.6. The case of the projective space.

Example 2.4 showes that the group G acting on Cn+1 \ {0} is the algebraic
torus T, so the dual Lie algebra is just R. The moment map has only one
component

|ζ1|2 + · · · + |ζn+1|2 = ρ.

There is only one primitive collection consisting of all integral generators of the
fan. Their sum is identically zero and is the only relation in the lattice (4).
Therefore, the Kähler cone is defined by ρ > 0.

3. The formula of integral representation

Let ∆ be an n-dimensional absolutely simple integral polytope in Rn. The
dual fan Σ is then simplicial, complete, and primitive. Assume that it is gener-
ated by d integral generators. Then the toric variety XΣ = (Cd \ Z)/G, where
Z is atomic, is smooth, complete and projective. The last property enables us
to define the volume form ω on XΣ, and now we are at the same position as in
Example 1.1.

It turns out that XΣ can be embedded into a larger compact toric variety
X̃Σ almost in the same way as Pd compactifies Cd+1 to Pd+1 and becomes the
infinite hypersurface. The difference of the general toric case is that XΣ does
not compactify Cd but it is, however, the ‘skeleton of infinity’, i.e., the complete
intersection of some of toric hypersurfaces that compactify Cd to X̃Σ. Moreover,
the homogeneous coordinates of XΣ, being coordinates of points on orbits of the
group action, become naturally local coordinates in X̃Σ. This fact is the content
of the main theorem of [16].
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Theorem 4 ([16]). Let Σ be a simplicial complete fan in Rn with d integral
generators and Z(Σ) the corresponding atomic family of coordinate planes in Cd.

There is a d-dimensional simplicial and complete toric variety X̃Σ together with
a proper map π : X̃Σ −→ Cd such that π realizes a blow-up of Z(Σ) ⊂ Cd into a

family of toric hypersurfaces X1, ...,Xd−n of X̃Σ, for which X1∩· · ·∩Xd−n ' XΣ.

Let ζ be the local coordinates of X̃Σ such that the hypersurfaces Xi are
defined by {ζi+n = 0}, i = 1, . . . , d − n. Write the volume form ω in the
homogeneous coordinates of XΣ and consider the differential form

η = (−1)nω(ζ) ∧ dζn+1

ζn+1
∧ · · · ∧ dζd

ζd
(11)

Writing ω(ζ), we mean that the volume form is written in the homogeneous

coordinates of XΣ, but we think of them as local coordinates of X̃Σ. If z = h(ζ)
the local coordinates expressed in homogeneous, then ω(ζ) = h∗(ω(z)). In
particular, this means that ω(ζ) is closed, and consequently so is η.

We state that the following theorem holds.

Theorem 5. The differential (d, n)-form η in Cd is a kernel for the atomic
family Z(Σ).

Proof. According to Theorem 4 we regard XΣ as a complete intersection of
toric hypersurfaces X1, . . . , Xd−n in X̃Σ. The differential form (11) is a well-
defined form in Cd. Furthemore, it is a closed semimeromorphic form with polar
singularity of the first order along each of r = d − n hypersurfaces Xi. This is
the only singularity of the form due to the smoothness of XΣ. This means that
the assumptions of the Leray theorem (see e.g. [1]) are satisfied and it follows
that ∫

γ

η = (2πi)r

∫

XΣ

Resr(η)

The residue-form Resr(η) is precisely the volume form ω on XΣ multiplied by
(−1)n. Assuming that the volume of XΣ is given by

(
i
2

)n ∫
XΣ

ω, we obtain that

the right-hand side equals (2πi)r(2i)nVol(XΣ).
The integration set γ in the left-hand side is the Leray coboundary

of δr(X1 ∩ · · · ∩ Xr) that is a locally-trivial bundle with the base X1 ∩ · · · ∩ Xr

and the fiber homeomorphic to S1 × · · · × S1

︸ ︷︷ ︸
rtimes

. It can be constructed in the fol-

lowing way. For every point ζ ∈ XΣ = X1 ∩ · · · ∩ Xr choose an r-dimensional
surface transversal to XΣ at ζ, and then choose a cycle in it separating the
hypersurfaces Xi. This cycle is necessary homeomorphic to S1 × · · · × S1. One
can choose these cycles to get a real (2n + r)-dimensional smooth cycle γ.

One can even choose the orbits of the action of G on Cd \ Z as those r-
dimensional surfaces, for they satisfy the transversality condition. The real
torus S1 × · · · ×S1 in the orbit of G is homeomorphic to the orbit of the action
of GR on µ−1(ρ) (see Theorem 3). Note that we use the smoothness of XΣ here.

Thus, the cycle γ is homeomorphic to the cycle µ−1(ρ) for any choice of ρ
from the Kähler cone KΣ. Finally, we get

∫

µ−1(ρ)

η = (2i)dπrVol(XΣ).
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Theorem 3 says also that Cd \Z is homotopy equivalent to µ−1(ρ), ρ ∈ KΣ,
so this cycle generates the top non-trivial homology group of Cd \ Z and η is
the dual differential form. Therefore, it is a kernel for the atomic family Z.

Having constructed the kernel η for an atomic family, we can try to prove
that this differential form is a kernel of integral representation that we call
associated with the toric variety XΣ. The first step in this direction is the
following proposition.

Proposition 3.1. Let ρ ∈ KΣ and Uρ be the polyhedron





a11|ζ1|2 + · · · + a1d|ζd|2 < ρ1,

. . . . . . . . . . . . . . . . . . . . . . . . . . .

ar1|ζ1|2 + · · · + ard|ζd|2 < ρr,

with distinguished boundary γ = µ−1(ρ). Then for every function f holomorphic
in Uρ

f(0) =
1

(2i)dπrVol(XΣ)

∫

γ

f(ζ)η(ζ).

Proof. Let f admits a Taylor series expansion
∑
β

aβζβ about the origin that

converges in a polydisc V . The cycle γ is homologous to every cycle µ−1(ρ) if ρ
is taken from the Kähler cone KΣ, and the form f(ζ) η(ζ) is closed. Therefore
the integration set can be replaced by a cycle γ ′ = µ−1(ρ′) b V . The series
converges then absolutely and uniformly on γ ′ and one can integrate it term by
term. Let us show that ∫

γ′

ζβη(ζ) = 0 if β 6= 0.

Notice that the following change of variables






ζ1 7→ ei(a11t1+···+ar1tr)ζ1,

. . . . . . . . . . . . . . . . . . . . .

ζd 7→ ei(a1dt1+···+ardtr)ζd

with all tj being real, preserves the integration set and the kernel as the latter
is homogeneous with respect to this action (see (6)); but the integrand gets
a coefficient ei(a11t1+···+ar1tr)β1+...(a1dt1+···+ardtr)βd). The rank of the matrix
A = (aij) is r, so the image of the linear mapping given by A is Rr. Therefore
for any β 6= 0 one can choose t = (t1, . . . , tr) such that the coefficient is not
equal to 1, so the integral must equal 0.

The statement follows now from Theorem 5.

Recall that the Kähler cone of XΣ defined by the system of linear inequalities
lI(ρ) > 0 (see page 13). For a fixed ρ, define a domain D of Cd by the system

|ζi1 |2 + · · · + |ζik
|2 < tI1ρ1 + · · · + tIrρr (12)

for all primitive collections PI of Σ.
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Proposition 3.2. The domain D is a subdomain of Uρ.

Proof. Note that the rational vectors tI = (tI1, . . . , tIr) are the interior normal
vectors to the faces of the Kähler cone. Therefore they generate the dual cone
b1t

I1 + · · · + bst
Is where bj ∈ Rr, bj ≥ 0. Since the Kähler cone is not empty

and contained in the positive orthant Rr
+, the dual cone is also non-empty and

contains the positive orthant. This means that every basis vector ei of Rr can be
expressed as a linear combination of {tI} with non-negative rational coefficients.
So we can sum the inequalities (12) multiplied by these coefficients to get ρi on
the right side and

ai1|ζ1|2 + · · · + aid|ζd|2 + b1



∑

j∈J1

cj |ζj |2

+ · · · + bs



∑

j∈Js

cj |ζj |2



on the left with the same inequality sign. So, ai1|ζ1|2 + · · · + aid|ζd|2 < ρi and
the proposition is proved.

Now we extend the representation of the function at the origin (Proposition
3.1) to the representation in a domain. The formula we shall obtain is of the
Bochner-Ono type [1] as it represents values of a function in a subdomain of a
domain where f is holomorphic.

Theorem 6. Let f be holomorphic in the closure of a domain Uρ, ρ ∈ KΣ with
distinguished boundary γ. Then for every z ∈ D ⊂ Uρ

f(z) =
1

(2i)dπrVol(XΣ)

∫

γ

f(ζ)η(ζ − z).

Proof. Let ρ be a point from the Kähler cone of XΣ and z ∈ D. Consider the
homotopy Γ(t) of the cycle µ−1(ρ) = γ






a11|ζ1 − tz1|2 + · · · + a1d|ζd − tzd|2 = R1(t, z, ρ),

. . . . . . . . . . . . . . . . . . . . . . . . . . .

ar1|ζ1 − tz1|2 + · · · + ard|ζd − tzd|2 = Rr(t, z, ρ).

Assume that one can choose a smooth curve R(t) = (R1(t, z, ρ), . . . , Rr(t, z, ρ))
in Rr such that for all t ∈ [0, 1] the cycles Γ(t) lie in the domain Uρ and do not
intersect the set Z + z = {ζ ∈ Cd : ζ − z ∈ Z}. By the Stokes theorem

∫

γ

f(ζ) η(ζ − z) =

∫

Γ(1)

f(ζ) η(ζ − z).

The change of variables ζ 7→ ζ + z in the integral gives

∫

γ′

f(ζ + z) η(ζ)

where the cycle γ′ is µ−1(R(1)). Assuming that R(1) ∈ KΣ and applying
Proposition 3.1, we get the statement proved. It is left to show that it is always
possible to choose an appropriate curve R(t) with R(1) ∈ KΣ.

Note first that since all the coefficients aij in (4) are non-negative, the ex-
pression ai1|ζ1 − tz1|2 + · · · + aid|ζd − tzd|2 is the absolut value of the vector
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(√
ai1(ζ1 − tz1), . . . ,

√
aid(ζd − tzd)

)
being seen as a vector in R2d. This vector

is the sum
(
√

ai1ζ, . . . ,
√

aidζd) − t (
√

ai1z1, . . . ,
√

aidzd)

of two vectors in R2d and therefore is the subject to the triangle inequality in
the standard metric of R2d. So,

(
ai1|ζ1 − tz1|2 + · · · + aid|ζd − tzd|2

)1/2 ≥

≥
(
ai1|ζ1|2 + · · · + aid|ζd|2

)1/2 − t
(
ai1|z1|2 + · · · + aid|zd|2

)1/2
.

Denote the image µ(z) by µ. Then the inequality obtained means that

(
ai1|ζ1|2 + · · · + aid|ζd|2

)1/2 ≤
√

Ri(t) + t
√

µi for all ζ ∈ Γ(t).

Therefore, to satisfy the first condition for Γ(t) it is enough to require

0 < Ri(t) ≤ (
√

ρi − t
√

µi)
2. (13)

The singularity set of the form f(ζ) η(ζ − z) is the union

Z + z =
⋃

{ζi1 = zi1 , . . . , ζik
= zik

}

over all primitive collections Ij , j = 1, . . . , s. For all ζ ∈ Γ(t), we have

lI(R(t)) =
∑

i∈I

|ζi − tzi|2 −
∑

j∈J

cj |ζj − tzj |2.

Substituting any point of Z + z into this identity, we get

−
∑

j∈J

cj |ζj − tzj |2 = lI(R(t)) − (1 − t)2
∑

i∈I

|zi|2.

Therefore, the cycle Γ(t) does not intersect the singularity set if the right-hand
side is greater than zero. Since by definition

∑
i∈I |zi|2 < lI(ρ), the second

condition for the cycle is satisfied if

lI(R(t)) ≥ (1 − t)2lI(ρ) (14)

One can show that conditions (13) and (14) define a connected set in
R

r × [0, 1], so it is always possible to choose a smooth curve R(t). But we
can provide the exact construction.

Note that for t = 1 the conditions become

0 < Ri(1) ≤ (
√

ρi −
√

µi)
2, i = 1, . . . , r

lI(R(1)) ≥ 0, for all primitive collections I.

The first series of conditions defines an r-dimensional parallelepiped in Rr
+ with

faces parallel to the coordinate hyperplanes. The second defines the Kähler cone,
which as we know is non-empty. Therefore, their intersection is non-empty and
we can choose a point ε from this intersection. Let us show that the homotopy
given by the curve Ri(t) = ρi(1− t)2 + εit satisfy the conditions (13) and (14).

Indeed, Ri(t) is obviously greater than 0 and

(
√

ρi − t
√

µi)
2 − Ri(t) = t(

√
ρi −

√
µi) (2

√
ρi − t(

√
ρi +

√
µi)) − tεi >

> t(
√

ρi −
√

µi) (2
√

ρi − t(
√

ρi +
√

µi)) − t(
√

ρi −
√

µi) =

= t(1 − t)(
√

ρi −
√

µi)(
√

ρi +
√

µi) ≥ 0,
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because
√

ρi −
√

µi > 0 according to Proposition 3.2. As for the condition (14),
we have

lI(R(t)) = (1 − t)2lI(ρ) + tlI(ε) ≥ (1 − t)2lI(ρ)

for ε ∈ KΣ.
Thus, the curve R(t) defines a necessary homotopy. Moreover, its end

R(1) = ε lies in KΣ, so γ′ = µ−1(ε).

4. The volume form of a toric variety

There is a natural construction for volume forms on projective toric varieties.
Let ∆ be an n-dimensional simple integral polytope ∆ ⊂ Rn. Given ∆, there
is a complete simplicial toric variety XΣ associated to the fan Σ dual to ∆.
The variety XΣ constructed in this way admits a closed embedding into the
projective space (Theorem 2). Let us modify the embedding (8) as follows.

Let P (z) =
∑

α∈∆∩Zn

cαzα be a Laurent polynomial in the torus Tn with all

non-negative coefficients cα such that its Newton polytope NP coincides with
∆. Put elements of ∆ ∩ Zn in an order α1 . . . , αN and define an embedding of
a ’big’ torus f : Tn −→ PN−1 by

(z1, . . . , zn) 7−→ (
√

cα1
zα1 : . . . :

√
cαN

zαN ).

The closure f(Tn) is then the image of XΣ, which can have singularities, but
observe that the f(Tn) ⊂ f(XΣ) is always smooth.

On the projective space PN−1, there is a globally defined Fubini-Study dif-
ferential form associated with the Fubini-Study metric on the projective space.
In the homogeneous coordinates ξ the form can be written down as

ωFS =
i

2|ξ|4

(
N∑

k=1

|ξk |2
N∑

k=1

dξk ∧ dξ̄k −
N∑

k=1

ξ̄kdξk ∧
N∑

k=1

ξkdξ̄k

)
=

= ∂∂̄ log |ξ|2 =
1

2i
ddc|ξ|2;

here d = ∂ + ∂̄ and dc = i(∂̄ − ∂).
The form ωFS is closed (in every chart), what makes (PN−1, ωFS) into a

Kähler manifold. The essential advantage of Kähler geometry is that the Kähler
form measures volumes of all complex subsets of arbitrary dimensions. More
precisely, if A ⊂ PN−1 is a complex subset of pure dimension k then the volume
of A with respect to the measure defined by the Kähler form is given by the
integral

Vol(A) =
1

k!

∫

A

ωk
FS .

We introduce a differential (n, n)-form ω on the torus Tn as the pullback
image of the Fubini-Study volume form ωn

FS :

ω =
1

n!
f∗(ωn

FS) =
1

n!

(
ddc ln P (|z1|2, . . . , |zn|2)

)n
.

The form ω is well-defined since f is a finite covering of f(Tn); it is positive
in the torus Tn ⊂ XΣ as it inherits this property from ωFS , but the form can
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vanish or be not defined in other points of the variety, however that does not
affect the value of the integral

∫

regXΣ

ω =

∫

Tn

ω.

Definition 4.1. We call ω = 1
n!f

∗(ωn
FS) the volume form of a compact simpli-

cial projective toric variety XΣ and define the volume of the variety with respect
to this measure as

Vol(XΣ) =

(
i

2

)n ∫

Tn

ω. (15)

The following simple proposition gives the exact value of the volume.

Proposition 4.1.
Vol(XΣ) = πnVol(∆).

Proof. The obvious change of variables in the integral give the following
(

i

2

)n ∫

Tn

ω =
1

n!

(
i

2

)n ∫

Tn

f∗(ωn
FS) =

1

n!

(
i

2

)n ∫

f(Tn)

ωn
FS .

The formula for the value of the last integral the remarkable fact of projective
geometry as it relates two quantity of different nature, namely, the volume of
an algebraic subset is expressed in terms of degree of the mapping [11].

1

n!

(
i

2

)n ∫

f(Tn)

ωn
FS =

πn

n!
deg(f)

It is left to compute the degree of the embedding f . By definition, it is equal
to the number of intersection points of f(Tn) with a generic plane of codimen-
sion n. Let such a plane be defined as a zero locus of n homogeneous linear
forms lj(ξ), j = 1, . . . , n. Then the degree of f equals the number of solutions

to the system lj(ξ)
∣∣∣f(Tn)

. In general, the number of solutions to the system

of k algebraic equations having only isolated zeros in Pk is given by the Bern-
stein theorem [4] and equal to n! multiplied by the normalized volume of the
Minkowski sum (see [14] for the definition) ∆1 + · · · + ∆k of the Newton poly-
topes ∆i of all equations in the system. In our case, all equations have the same
Newton polytope ∆, so deg(f) = n!Vol(n∆) = n!Vol(∆). Throughout here,
Vol(∆) denote the the volume of ∆ in Rn normalized by the condition that the
standard n-dimensional simplex has the volume 1

n! .

Example 4.7. The volume form of P1 × P1.

The product of two copies of the Riemann spheres is a toric variety and is
associated with the two-dimensional complete fan Σ on Fig. 3(a). Let P be a
polynomial P (z1, z2) = 1 + z1 + z2 + az1z2 where the coefficient a is positive.
Its Newton polytope NP is a unit square in R2 (Fig. 3(b)) and is obviously
dual to the fan Σ. Following the construction, we define a differential form
on T2 ⊂ P1 × P1 as the pull-back of ω2

FS under the mapping f : (z1, z2) 7→
(1 : z1 : z2 :

√
az1z2)

ω =
1

2!
f∗(ω2

FS) =
1 + a|z1|2 + a|z2|2 + a|z1|2|z2|2
(1 + |z1|2 + |z2|2 + a|z1|2|z2|2)3

dz1 ∧ dz̄1 ∧ dz2 ∧ dz̄2
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Figure 3: (a) the fan; (b) the Newton polytope.

The volume of P1 × P1 with respect to this measure is equal to −4π2. Note
that the volume form does not coincide with the product of two volume forms
on copies of P1 (it happens only if a = 1), although it gives the same volume.

In fact, in the polar coordinate system the differential form in (15) can be
easily integrated with respect to angular coordinates. Then the proposition
provides a new proof of the Passare formula, which represents the volume of a
polytope as an integral of a rational form over the positive orthant Rn

+ [13].

For the volume forms constructed we rephrase Theorem 6 as follows.

Theorem 6′. Let f be holomorphic in the closure of the domain Uρ and γ be
the domain’s distinguished boundary. Then for every z ∈ D ⊂ Uρ

f(z) =
1

(2πi)dVol(∆)

∫

γ

f(ζ)η(ζ − z).

5. Examples

Example 5.1. Integral representations associated with projective spaces
Let ∆ be the standard simplex in R

n, which is an absolutely simple polytope.
Its dual fan Σ with (n+1) generators is then the fan of the projective space Pn.
The volume form ω defined on it coincides with the Fubini-Study volume form
ωn

FS , Pn is embedded into Pn+1 and the form η is the Bochner-Martinelli kernel
ηBM in Cn+1(see Example 1.1). The integration cycle is a sphere S2n+1 with
the radius

√
ρ (see Example 2.6). Thus, the following corollary from Theorem

6′ holds:

Let f be holomorphic in the closed ball B2n+2
ρ with radius ρ and S2n+1 =

∂B2n+2
ρ . Then for every z ∈ B2n+2

ρ

f(z) =
n!

(2πi)n+1

∫

S2n−1

f(ζ)ηBM (ζ − z).

Afterwards, using analytic methods one proves this formula for any bounded
domain in Cn+1 with appropriate boundary.

Example 5.2. Integral representations associated with P1 × P1

Let ∆ be a unit square in R2 and P (z) = 1 + z1 + z2 + az1z2 as in example
4.8. The volume form computed there produces an integral kernel

η =
(ζ̄3dζ̄1 − ζ̄1dζ̄3) ∧ (ζ̄2dζ̄4 − ζ̄4dζ̄2)

(|ζ1|2|ζ4|2 + |ζ3|2|ζ4|2 + |ζ2|2|ζ3|2 + a|ζ1|2|ζ2|2)3
dζ1 ∧ dζ2 ∧ dζ3 ∧ dζ4
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with singularity along {z1 = z3 = 0} ∪ {z2 = z4 = 0}.
The domain Uρ in this case is the product of two balls B4

ρ1
× B4

ρ2
in

Cz1, z3
× Cz2, z4

. The Kähler cone coincides with R2
+ so the integral represents

values of a holomorphic function at every point z of Uρ:

f(z) =
1

(2πi)4

∫

∂B4
ρ1

×∂B4
ρ2

f(ζ)η(ζ − z).

Example 5.3. Integral representation associated with the blow-up of P1 ×P1

at the origin
Let P (z) = 1 + z2

1 + z2
2 + z2

1z2 + z1z
2
2 with the Newton polytope depicted on

Fig. 5(a). The dual fan Σ has five integral generators and the corresponding
toric variety is the blow-up of the product P1 × P1 at the origin.
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Figure 4: (a) the Newton polytope; (b) the fan.

Number the integral generators, and when all the calculations are done the
integral kernel is

η =
u(ζ, ζ)E(ζ)

v(ζ, ζ)
∧ dζ

where

u(ζ, ζ) = |ζ1|8|ζ2|4|ζ5|4 + 4|ζ1|6|ζ2|4|ζ3|2|ζ4|2|ζ5|4 + 4|ζ1|6|ζ3|2|ζ4|6|ζ5|8+
+ |ζ1|4|ζ2|8|ζ3|4 + 4|ζ1|4|ζ2|6|ζ3|4|ζ4|2|ζ5|2 + 9|ζ1|4|ζ2|4|ζ3|4|ζ4|4|ζ5|4+

+ 16|ζ1|4|ζ2|2|ζ3|4|ζ4|6|ζ5|6 + 16|ζ1|2|ζ2|4|ζ3|6|ζ4|6|ζ5|4+
+ 16|ζ1|2|ζ2|2|ζ3|6|ζ4|8|ζ5|6 + 4|ζ2|6|ζ3|8|ζ4|6|ζ5|2,

v(ζ, ζ) = ( |ζ3|4|ζ4|6|ζ5|4 + |ζ1|4|ζ4|2|ζ5|4 + |ζ2|4|ζ3|4|ζ4|2+
+ |ζ1|4|ζ2|2|ζ5|2 + |ζ1|2|ζ2|4|ζ3|2 )

3
,

and

E(ζ) = ζ3ζ4ζ5dζ1dζ2 − ζ2ζ3ζ5dζ1dζ4 − ζ2ζ3ζ4dζ1dζ5+

ζ1ζ4ζ5dζ2dζ3 + ζ1ζ3ζ5dζ2dζ4 + ζ1ζ2ζ5dζ3dζ4+

ζ1ζ2ζ4dζ3dζ5 + ζ1ζ2ζ3dζ4dζ5.

The lattice of relations between the integral generators is given by





v1 + v3 = 0,

v2 + v5 = 0,

v1 + v2 + v4 = 0;
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and one can easily check that the primitive collections for Σ are {1, 3}, {1, 4},
{2, 4}, {2, 5}, and {3, 5}. It follows that the domain Uρ is given by the inequal-
ities 





|ζ1|2 + |ζ3|2 < ρ1,

|ζ2|2 + |ζ5|2 < ρ2,

|ζ1|2 + |ζ2|2 + |ζ4|2 < ρ3,

where ρ = (ρ1, ρ2, ρ3) lies in the Kähler cone being given by





ρ1 > 0,

ρ3 − ρ2 > 0,

ρ3 − ρ1 > 0,

ρ2 > 0,

ρ1 + ρ2 − ρ3 > 0.

Therefore the subdomain D consists of all points z that satisfy the system





|z1|2 + |z3|2 < ρ1,

|z1|2 + |z4|2 < ρ3 − ρ2,

|z2|2 + |z4|2 < ρ3 − ρ1,

|z2|2 + |z5|2 < ρ2,

|z3|2 + |z5|2 < ρ1 + ρ2 − ρ3.

Example 5.4. Integral representation associated with a Hirzebruch surface
Let the polynomial P be equal 1+z1+z1z2 +z5

2 . The dual fan to its Newton
polytope corresponds to one of the Hirzebruch surfaces.
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The volume form on this surface is

ω =
|z1|2 + |z1|2|z2|10 + 25|z2|10 + 25|z2|8

(1 + |z1|2 + |z1|2|z2|2 + |z2|10)3
dz1 ∧ dz̄1 ∧ dz2 ∧ dz̄2,

and associated integral kernel is

η = g(ζ, ζ)E(ζ) ∧ dζ

where

g(ζ, ζ) =
|ζ1|2|ζ2|10 + 25|ζ2|10|ζ3|2|ζ4|8 + 25|ζ2|8|ζ3|2|ζ4|10 + |ζ1|2|ζ4|10

(|ζ3|2|ζ4|10 + |ζ1|2|ζ4|2 + |ζ1|2|ζ2|2 + |ζ2|10|ζ3|2)3

and

E(ζ) = ζ3ζ4 dζ1∧dζ2−ζ2ζ3 dζ1∧dζ4+ζ1ζ4 dζ2∧dζ3+4ζ1ζ3 dζ2∧dζ4+ζ1ζ2 dζ3∧dζ4.
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For functions that are holomorphic in

{
|ζ1|2 + |ζ3|2 < ρ1,

4|ζ1|2 + |ζ2|2 + |ζ4|2 < ρ2,

where ρ ∈ {ρ1 > 0, ρ2 − 4ρ1 > 0}, the integral represents values at the points
from D given by {

|ζ1|2 + |ζ3|2 < ρ1,

|ζ2|2 + |ζ4|2 < ρ2 − 4ρ1.

Note that the polygon with the integral generators of the fan as vertices
in the case is not convex, but this is not an obstacle to construct a kernel.
What really matters is the existence of the dual polytope. Similiar formulas of
integral representations have been considered by A.A. Kytmanov [10] but his
construction is different and does not cover this case.
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