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Abstract

We extend the double negation interpretation from formulas to
derivations. The resulting interpretation is compositional and respects
the most obvious conversion rules of the Gentzen sequent calculus for
classical predicate logic. It furthermore induces a notion of classical
proof similar to that of intuitionistic logic. The interpretation agrees
with the Kolmogorov interpretation for formulas not containing impli-
cation.

1 Introduction

It is the topic of this paper to extend the double negation interpretation
from formulas to derivations in such a way that the interpretation respects
the structure of classical predicate logic. The plan is to interpret Gentzen’s
sequent calculus for classical predicate logic in terms of the minimal logic
fragment of his calculus of natural deduction for intuitionistic predicate logic,
extended with a sign for falsity in the sense of minimal logic. The presence
of the sign has to do with our interpretation of sequents in terms of tableau
sequents. The choice to interpret Gentzen’s sequent calculus in what essen-
tially amounts to his calculus of natural deduction is mainly that we want
to facilitate comparisons between this and other interpretations, but also to
see how far Gentzen’s calculi will take us.

We hold Gentzen’s sequent calculus to provide a natural formalization
of classical predicate logic and we want the interpretation to reflect the
structure of classical logic. Thus we analyze and factor Gentzen’s sequent
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calculus over a novel calculus of natural deduction with a structure similar to
that of Gentzen’s sequent calculus. This novel calculus is intuitionistic in the
sense that it is built up from introduction and elimination rules that suggest
conversion rules similar to those of intuitionistic calculi. Furthermore, these
conversion rules are normalizing and have the Church-Rosser property. We
introduce the corresponding notion of β-equivalence. It is then, from an
intuitionistic standpoint, natural to say that two classical derivations denote
one and the same proof provided that they are β-equivalent in this sense.

We use the introduction rules of the novel calculus to determine the
meaning of the symbols concerned. From this follows the interpretation
of symbols, and thus formulas, up to equivalence. We then interpret the
inference figures of the novel calculus. This completes the interpretation.

The interpretation turns out to agree with Kolmogorov’s interpreta-
tion [6] for formulas not containing implication. It also respects the con-
version rules for the novel calculus.

2 Calculi

We present three classical calculi and one intuitionistic calculus. The classi-
cal calculi derives from the Gentzen sequent calculus for classical predicate
logic, while the intuitionistic calculus derive from the Gentzen natural de-
duction calculus for intuitionistic predicate logic. We also indicate how to
prove normalization and normal form theorems for the classical calculi.

All four calculi make use of signs for truth and falsity, the latter inter-
preted in the sense of minimal logic. These signs result from expressing the
Gentzen sequent calculus for classical predicate logic in terms of tableau
sequents instead of Gentzen sequents, thus removing multiple conclusions
from the calculus. The signs then persist throughout the interpretation to
the intuitionistic calculus, in which they serve to distinguish the truth of
¬A from the falsity of A.

This section is based on two ideas. First, to use tableau sequents and to
mark signed formulas with variables analogous to the marks placed upon dis-
charged assumptions in natural deduction. This reduces bureaucracy while
preserving the structure needed for the passage to natural deduction; mark-
ing signed formulas with variables makes it possible to distinguish deriva-
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tions such as

x

FA,
β

FA&B
y

FB,
β

FA&B

α

FA&B,
β

FA&B

F&(x,y;α)
z

FC
β

FA&B,
γ

F(A&B)&C

F&(α,z;γ)

and
x

FA,
β

FA&B
y

FB,
β

FA&B

α

FA&B,
β

FA&B

F&(x,y;α)
z

FC
α

FA&B,
γ

F(A&B)&C

F&(β,z;γ)

.

Second, the construction of the third calculus: We want to embed the
tableau calculus in a natural deduction calculus in such a way that the
conversion rules of the latter induce plausible conversion rules on the former
calculus. The reason is that we only have partial knowledge of the conver-
sion rules for the classical sequent calculus; the Gentzen conversion rules are
not confluent and consequently we only trust the most obvious rules. That
normalization according to Gentzen’s Hauptsats fails to be confluent is men-
tioned already in [3]. Nevertheless we want a natural deduction calculus that
reflects these rules. These considerations determine the third calculus.

2.1 Calculus C1

We shall consider the Gentzen [3, pp. 81–85] sequent calculus for classical
predicate logic, also known as LK, but express it in terms of tableau sequents
instead of Gentzen sequents. We call this version C1.

2.1.1 Preliminary matters

We define a tableau sequent as a sequent of marked assumptions, where an
assumption is a signed formula marked by a variable, and consider two se-
quents to be equal provided they are equal up to interchange of assumptions.
Thus we do not need the structural inference figure of interchange. We take
the inductive definitions of formulas and signed formulas for granted and
consider two formulas respectively two signed formulas as equal provided
they are syntactically equal up to a change of bound variables. Thus we
do not need to incorporate change of bound variables into the quantifier
inference figures.
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Formally, we shall consider contexts as extensional sets of assumptions

and take
x
α,Γ to mean {

x
α}∪Γ, where

x
α is an assumption and Γ is a context.

Thus we do not need the structural inference figure of contraction. We
write tableau sequents as Γ ` ψ, where Γ is a context, but suppress ` ψ in
the inference rules for tableau sequents, and write them like contexts. The
symbol ψ stands for the empty succedent and derives from the Greek word
ψεṽδoς, meaning falsehood.

We incorporate weakening into the F&-inference figure

x

FA,Γ1

y

FB,Γ2
z

FA&B,Γ

F&(x,y;z)

by Γ1 ∪ Γ2 ⊆ Γ. When Γ1 = Γ and Γ2 = Γ we recover the F&-inference
figure of LK. We similarly incorporate weakening into the other inference
figures. Thus we do not need the structural inference figure of weakening.

2.1.2 C1 inference figures

The C1 inference figures can be found on page 5. These are subject to
restrictions on contexts and variables. First, to make an inference, the
principal assumption of a premiss must not occur in the context of that

premiss, e.g. to make a F&-inference we must have
x

FA/∈ Γ1 and
y

FB/∈ Γ2,

but may have
z

FA&B∈ Γ. Second, we have the usual restrictions on variables;
the individual variable bound by a F∀-inference respectively a T∃-inference
must not occur free in any assumption of the context of the corresponding
premiss.

The way the structural rules are implicit in the inference figures makes
C1 resemble natural deduction. The calculus shares this resemblance with
the two sequent calculi presented in [13].

2.2 Calculus C2

We can express every C1 -derivation as a natural deduction style derivation.
The C1 inference figures then induce a natural deduction style calculus of
classical predicate logic, which we call C2.

2.2.1 C2 inference figures

The C2 inference figures can be found on page 7. They are subject to
the usual restrictions on variables; the individual variable bound by a F∀-

4



u

TA,
x

FA,Γ

axiom(u,x)
u

TA,Γ1

x

FA,Γ2

Γ
cut(u,x)

u

TA,Γ1
w

TA&B,Γ

T&1(u;w)

v

TB,Γ2
w

TA&B,Γ

T&2(v;w)

x

FA,Γ1

y

FB,Γ2
z

FA&B,Γ

F&(x,y;z)

u

TA,Γ1

v

TB,Γ2
w

TA∨B,Γ

T∨(u,v;w)

x

FA,Γ1
z

FA∨B,Γ

F∨1(x;z)

y

FB,Γ2
z

FA∨B,Γ

F∨2(y;z)

x

FA,Γ1

v

TB,Γ2
w

TA⊃B,Γ

T⊃(x,v;w)

u

TA,
y

FB,Γ1
z

FA⊃B,Γ

F⊃(u,y;z)

x

FA,Γ1
w

T∼A,Γ

T∼(x;w)

u

TA,Γ1
z

F∼A,Γ

F∼(u;z)

u

TA(t/x),Γ1
w

T(∀x)A,Γ

T∀(v;w)

y

FA,Γ1
z

F(∀x)A,Γ

F∀(x,y;z)

u

TA,Γ1
w

T(∃x)A,Γ

T∃(x,v;w)

y

FA(t/x),Γ1
z

F(∃x)A,Γ

F∃(y;z)

Table 1: The C1 inference figures.
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inference respectively a T∃-inference must not occur free in any assumption
on which the conclusion depends.

2.2.2 C2 α-equivalence

A C2 -derivation of a tableau sequent Γ ` ψ is a C2 -derivation of ψ from
the assumptions of Γ. We consider two C2 -derivations of one and the same
tableau sequent to be equal provided they are syntactically equal up to a
change of bound variables, including variables which become bound when
assumptions are discharged.

2.2.3 Translating C1 to C2

By induction on the height of a derivation, we can define a translation, f ,
that takes a C1 -derivation of a tableau sequent to a C2 -derivation of the
same tableau sequent. We exemplify the translation by the case

X
x

FA,Γ1

Y
y

FB,Γ2
z

FA&B,Γ

F&(x,y;z)















7→



















z

FA&B

[
x

FA]
f(X)
ψ

[
y

FB]
f(Y )
ψ

ψ
F&(x,y)

.

The remaining cases are treated in an analogous way.

2.2.4 C1 α-equivalence

We consider two C1 -derivations of one and the same tableau sequent to be
equal provided their f -translations are equal. This make the two calculi C1

and C2 isomorphic.
By induction on the height of a derivation, we can define an inverse

translation, f−1
Γ , that takes a C2 -derivation of the tableau sequent Γ ` ψ to

a C1 -derivation of the same sequent. We exemplify the translation by the
case

z

FA&B

[
x

FA]
X
ψ

[
y

FB]
Y
ψ

ψ
F&(x,y)















7→















f−1
ΓA

(X)
x

FA,Γ

f−1
ΓB

(Y )
y

FB,Γ

Γ
F&(x,y;z)

,

where ΓA =
x

FA,Γ, ΓB =
y

FB,Γ, and
z

FA&B∈ Γ. The remaining cases are
treated in an analogous way.
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FA TA
ψ

axiom

[
u

TA]
ψ

[
x

FA]
ψ

ψ
cut(u,x)

TA&B
[

u

TA]
ψ

ψ
T&1(u)

TA&B
[

v

TB]
ψ

ψ
T&2(v)

FA&B
[

x

FA]
ψ

[
y

FB]
ψ

ψ
F&(x,y)

TA∨B
[

u

TA]
ψ

[
v

TB]
ψ

ψ
T∨(u,v)

FA∨B
[

x

FA]
ψ

ψ
F∨1(x)

FA∨B
[

y

FB]
ψ

ψ
F∨2(y)

TA⊃B
[

x

FA]
ψ

[
v

TB]
ψ

ψ
T⊃(x,v)

FA⊃B
[

u

TA], [
y

FB]
ψ

ψ
F⊃(u,y)

T∼A
[

x

FA]
ψ

ψ
T∼(x)

F∼A
[

u

TA]
ψ

ψ
F∼(u)

T(∀x)A
[

v

TA(t/x)]
ψ

ψ
T∀(v)

F(∀x)A
[

y

FA]
ψ

ψ
F∀(x,y)

T(∃x)A
[

v

TA]
ψ

ψ
T∃(x,v)

F(∃x)A
[

y

FA(t/x)]
ψ

ψ
F∃(y)

Table 2: The C2 inference figures.
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To see that the two calculi C1 and C2 are isomorphic, it suffice to
show that f(f−1

Γ (X)) =α X for every C2 -derivations X of Γ ` ψ. That
f−1
Γ (f(X)) =α X for every C1 -derivations X of Γ ` ψ then follows from

the definition of α-equivalence for C1, according to which f−1
Γ (f(X)) =α X

provided that f(f−1
Γ (f(X))) =α f(X). The proof that f(f−1

Γ (X)) =α X for
every C2 -derivations X of Γ ` ψ is by induction on the height of X. We
refrain from presenting this proof here, convinced that the reader can prove
the proposition herself.

2.3 Calculus C3

We shall present a natural deduction style calculus, essentially equivalent
to C2, with conversion rules similar to those of intuitionistic calculi of nat-
ural deduction. We call this calculus C3. It emerges from the following
considerations.

2.3.1 Considerations underlying C3

We want to embed C2 in a natural deduction calculus in such a way that
the conversion rules of the latter induce plausible conversion rules on the
former calculus. To arrive at a natural deduction calculus that induces the
conversion rule

[
w

TA&B]

[
u

TA]
U
ψ

ψ
T&1(u)

[
z

FA&B]

[
x

FA]
X
ψ

[
y

FB]
Y
ψ

ψ
F&(x,y)

ψ
cut(w,z)

conv

[
u

TA]
U
ψ

[
x

FA]
X
ψ

ψ
cut(u,x)

,

we note that, in intuitionistic sequent calculi, cut is nothing but explicit
substitution, and so we replace the cut of the above left hand member with
a substitution and the weak principle of reductio ad absurdum,

[
w

TA&B]

[
u

TA]
U
ψ

ψ
T&1(u)

FA&B
WRAA(w)

[
x

FA]
X
ψ

[
y

FB]
Y
ψ

ψ
F&(x,y)

.

To achieve the above conversion, we want to bring the T&1- and F&-
inference, or rather their premiss derivations, together. We can for example
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divide the F&-inference of the above derivation into an axiom and another
inference,

[
w

TA&B]

[
u

TA]
U
ψ

ψ
T&1(u)

FA&B
WRAA(w)

[
x

FA]
X
ψ

[
y

FB]
Y
ψ

TA&B
(x,y)

ψ
axiom

,

apply β-conversion to arrive at

[
x

FA]
X
ψ

[
y

FB]
Y
ψ

TA&B
(x,y)

[
u

TA]
U
ψ

ψ
T&1(u)

,

and then use a new rule to convert the latter derivation to the above right
hand member. We could also divide the T&-inference into an axiom and
another inference,

[
u

TA]
U
ψ

FA&B
(u)

[
w

TA&B]

ψ
axiom

FA&B
WRAA(w)

[
x

FA]
X
ψ

[
y

FB]
Y
ψ

ψ
F&(x,y)

,

apply η-conversion to arrive at

[
u

TA]
U
ψ

FA&B
(u)

[
x

FA]
X
ψ

[
y

FB]
Y
ψ

ψ
F&(x,y)

,

and then use another new rule to convert the latter derivation to the above
right hand member. We could also divide both inferences.

There are other, but from an intuitionistic standpoint doubtful, ways
to achieve the above conversion. We could for example replace the cut of
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the above left hand side member with a substitution, but use the strong
principle of reductio ad absurdum instead of WRAA,

[
z

FA&B]

[
x

FA]
X
ψ

[
y

FB]
Y
ψ

ψ
F&(x,y)

TA&B
SRAA(z)

[
u

TA]
U
ψ

ψ
T&1(u)

,

and then mimic the previous constructions.
We prefer the construction where the F&-inference is divided into an

axiom and another inference on the ground that the latter inference can be
taken as an introduction rule in Martin-Löf type theory and, moreover, that
the T&1-inference instantiates the corresponding elimination rule. Applying
the construction to the C2 inference figures yields the C3 inference figures.

2.3.2 C3 inference figures

The C3 inference figures can be found on page 11. They are subject to
the usual restrictions on variables; the individual variable bound by a ∀-
introduction respectively a ∃-elimination must not occur free in any as-
sumption on which the conclusion depends.

Note that the C3 elimination rules, except ⊃- and ∼-elimination, are for-
mal instances of the corresponding intuitionistic general elimination rules [16],
with their conclusions specialized to ψ. There is also a close relationship
between the C3 introduction and elimination rules. They relate like intro-
duction and elimination rules of intuitionistic natural deduction, where the
introduction rules determine the meaning of the symbols concerned, and the
elimination rules express the consequences of the former.

2.3.3 C3 α-equivalence

A C3 -derivation of a tableau sequent Γ ` α is a C3 -derivation of α from
the assumptions of Γ. We consider two C3 -derivations of one and the same
tableau sequent to be equal provided they are syntactically equal up to
changes of bound variables in formulas and changes of variables marking
discharged assumptions in derivations.
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[
u

TA]
ψ

FA
WRAA(u)

FA TA
ψ

axiom

[
x

FA]
ψ

[
y

FB]
ψ

TA&B
&I(x,y)

TA&B
[

u

TA]
ψ

ψ
&E1(u)

TA&B
[

v

TB]
ψ

ψ
&E2(v)

[
x

FA]
ψ

TA∨B
∨I1(x)

[
y

FB]
ψ

TA∨B
∨I2(y)

TA∨B
[

u

TA]
ψ

[
v

TB]
ψ

ψ
∨E(u,v)

[
u

TA], [
y

FB]
ψ

TA⊃B
⊃I(u,y)

TA⊃B
[

x

FA]
ψ

[
v

TB]
ψ

ψ
⊃E(x,v)

[
u

TA]
ψ

T∼A
∼I(u)

T∼A
[

u

FA]
ψ

ψ
∼E

[
y

FA]
ψ

T(∀x)A
∀I(x,y)

T(∀x)A
[

v

TA(t/x)]
ψ

ψ
∀E(v)

[
y

FA(t/x)]
ψ

T(∃x)A
∃I(y)

T(∃x)A
[

v

TA]
ψ

ψ
∃E(x,v)

Table 3: The C3 inference figures.
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2.3.4 Law of the excluded middle

Since it is our intension to interpret classical calculi in C3, one may ask
for a derivation of the law of the excluded middle. However, note that the
∨-introduction rules makes disjunction decidable, and so there can be no
C3 -derivation of ` TA∨∼A. This makes our task look impossible, but it
is not, because the Gentzen sequent → A∨∼A corresponds to a tableau

sequent
z

FA∨∼A` ψ, and the latter is derivable in C3, e.g.

z

FA∨∼A

[
y

F∼A]

z

FA∨∼A

[
x

FA] [
u

TA]

ψ
axiom

TA∨∼A
∨I1(x)

ψ
axiom

T∼A
∼I(u)

ψ
axiom

TA∨∼A
∨I2(y)

ψ
axiom

.

We conclude that the law of the excluded middle is derivable in C3, but only
because of our interpretation of the consequence relation of classical logic.

2.3.5 Translating C2 to C3

By induction on the height of a derivation, we can define a translation, g,
that takes a C2 -derivation of a tableau sequent to a C3 -derivation of the
same tableau sequent. We exemplify the translation by the four cases

FA TA
ψ

axiom

}

7→

{

FA TA
ψ

axiom
,

[
u

TA]
U
ψ

[
x

FA]
X
ψ

ψ
cut(u,x)















7→































[
u

TA]
g(U)
ψ

FA
WRAA(u)

g(X)
ψ ,

TA&B

[
u

TA]
U
ψ

ψ
T&1(u)















7→



















TA&B

[
u

TA]
g(U)
ψ

ψ
&E1(u)

,
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and

FA&B

[
x

FA]
X
ψ

[
y

FB]
Y
ψ

ψ
F&(x,y)















7→























FA&B

[
x

FA]
g(X)
ψ

[
y

FB]
g(Y )
ψ

TA&B
&I(x,y)

ψ
axiom

.

The remaining cases are treated in an analogous way.

2.3.6 Conversion rules for C3

The conversion rules for C3 suggest themselves from the C3 introduction
and elimination rules in the same way as do the conversion rules for intu-
itionistic calculi.

F-conversion

[
u

TA]
X
ψ

FA
WRAA(u) U

TA
ψ

axiom
conv

U
TA
X
ψ ,

where no assumption of U may occur discharged in X.

&-conversion

[
x

FA]
X
ψ

[
y

FB]
Y
ψ

TA&B
&I(x,y)

[
u

TA]
U
ψ

ψ
&E1(u)

conv

[
u

TA]
U
ψ

FA
WRAA(u)

X
ψ ,

where no assumption of U , except
u

TA, may occur discharged in X. The
case of the second &-elimination rule is similar.

∨-conversion

[
x

FA]
X
ψ

TA∨B
∨I1(x)

[
u

TA]
U
ψ

[
v

TB]
V
ψ

ψ
∨E(u,v)

conv

[
u

TA]
U
ψ

FA
WRAA(u)

X
ψ ,

13



where no assumption of U , except
u

TA, may occur discharged in X. The
case of the second ∨-introduction rule is similar.

⊃-conversion

[
u

TA], [
y

FB]
UY
ψ

TA⊃B
⊃I(u,y)

[
x

FA]
X
ψ

[
v

TB]
V
ψ

ψ
⊃E(v)

conv

u

[TA],

[
v

TB]
V
ψ

FB
WRAA(v)

UY
ψ

FA
WRAA(u)

X
ψ ,

where no assumption of V , except
v

TB, may occur discharged in either UY

or X, and no assumption of UY , except
u

TA and
y

FB, may occur discharged
in X.

∼-conversion

[
u

TA]
U
ψ

T∼A
∼I(u)

[
x

FA]
X
ψ

ψ
∼E

conv

[
u

TA]
U
ψ

FA
WRAA(u)

X
ψ ,

where no assumption of U , except
u

TA, may occur discharged in X.

∀-conversion

[
y

FA]
Y
ψ

T(∀x)A
∀I(y)

[
v

TA(t/x)]
V
ψ

ψ
∀E(v)

conv

[
v

TA(t/x)]
V
ψ

FA(t/x)
WRAA(v)

Y (t/x)
ψ ,

where no assumption of V , except
v

TA(t/x), may occur discharged in Y .
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∃-conversion

[
y

FA(t/x)]
Y
ψ

T(∃x)A
∃I(y)

[
v

TA]
V
ψ

ψ
∃E(v)

conv

[
v

TA(t/x)]
V (t/x)
ψ

FA(t/x)
WRAA(v)

Y
ψ ,

where no assumption of V , except
v

TA(t/x), may occur discharged in Y .

2.3.7 C3 β-equivalence

We say that two C3 -derivations of one and the same sequent are β-equivalent
provided the equivalence relation, which the C3 conversion rules generate,
relates them.

2.3.8 C2 β-equivalence

We say that two C2 -derivations of one and the same tableau sequent are
β-equivalent provided their g-translations are equivalent.

2.3.9 C1 β-equivalence

We say that two C1 -derivations of one and the same tableau sequent are
β-equivalent provided their f -translations are equivalent.

2.3.10 A notion of classical proof

It is from an intuitionistic standpoint natural to say that two classical deriva-
tions denote one and the same proof provided that they are β-equivalent in
the sense of Sect. 2.3.7–2.3.9. We adopt this notion of classical proof. For a
discussion of the identity problem for proofs, including the identity problem
for classical proofs, see [17, pp. 9–22].

2.4 Normalization and normal form theorems

One can use the notion of computability (or convertibility) invented by
Tait [15] to prove normalization for Gödel’s theory [4] of functionals of fi-
nite type, and carried over to proofs via the Curry-Howard correspondence
by Martin-Löf [7, 8, 10], to prove normalization for the C3 conversion rules.
One can, moreover, prove the Church-Rosser property for the C3 conversion
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rules using the method developed by Church [2] and Rosser for combinatory
logic, and later perfected by Tait and Martin-Löf [9]. For the Martin-Löf
form of the proof of the Church-Rosser property for λ-calculus, see also
Barendregt [1, p. 128] and Hindley, Lercher, and Seldin [5, p. 139]. We
shall not prove normalization and the Church-Rosser property for the C3

conversion rules, but take these theorems for granted, convinced that the
reader can prove them herself. Thus we take for granted that for every
C3 -derivation there exists a unique equivalent normal C3 -derivation.

Since the translation of Sect. 2.3.5 is injective for cut free derivations, we
can conclude that for every C2 -derivation there exists a unique equivalent
cut free C2 -derivation and, moreover, since the translation of Sect. 2.2.3 is
injective for cut free derivations, we can also conclude that for every C1 -
derivation there exists a unique equivalent cut free C1 -derivation. Note that
a cut free derivation obtained by means of Gentzen’s Hauptsatz generally
fails to be unique.

2.5 Calculus NJ

We shall extend the Gentzen [3, pp. 74–81] natural deduction style calculus
of intuitionistic predicate logic, also known as NJ, with signs and ψ, governed
by the weak principle of reductio ad absurdum, the axiom inference figure,
the C3 F-conversion rule, and a propositional constant Ψ such that ψ = TΨ.
However, we keep the name of the original calculus.

The reader may consider NJ a fragment of Martin-Löf type theory with
TA = Proof(A) type (A prop) and FA = (TA)ψ type (A prop), analogous
to the intuitionistic notions of truth and falsity [12]. We shall henceforth
suppress the sign T for NJ -formulas, and just write A for TA. However, we
still write TA for C1 -, C2 -, and C3 -formulas.

2.5.1 NJ inference figures

The NJ inference figures can be found on page 17. They are subject to
the usual restrictions: the individual variable bound by a ∀-introduction
respectively a ∃-elimination must not occur free in any assumption on which
the conclusion depends.

2.5.2 NJ α-equivalence

A NJ -derivation of a tableau sequent Γ ` α is a NJ -derivation of α from
the assumptions of Γ. We consider two NJ -derivations of one and the same
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[
u

A]
ψ

FA
WRAA(u)

FA A
ψ

axiom

A B
A&B

&I

A&B
A

&E1

A&B
B

&E2

A
A∨B

∨I1

B
A∨B

∨I2

A∨B
[
u

A]
C

[
v

B]
C

C
∨E(u,v)

[
u

A]
B

A⊃B
⊃I(u)

A⊃B A
B

⊃E

[
u

A]
⊥
∼A

∼I(u)

∼A A
⊥

∼E

⊥
A

⊥E

A
(∀x)A

∀I(x)
(∀x)A

A(t/x)
∀E

A(t/x)

(∃x)A
∃I (∃x)A

[
v

A]
C

C
∃E(x,v)

Table 4: The NJ inference figures.
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tableau sequent to be equal provided they are syntactically equal up to a
change of bound variables and variables of discharged assumptions.

2.5.3 Conversion rules for NJ

The conversion rules for NJ are those of the original calculus together with
the C3 F-conversion rule.

2.5.4 NJ β-equivalence

We say that two NJ -derivations of one and the same sequent are β-equivalent
provided the equivalence relation, which the NJ conversion rules generate,
relate them. Note that two β-equivalent NJ -derivations denote one and
the same proof in the sense of Martin-Löf type theory, see [11, pp. 11–13]
and [14, pp. 9–12].

3 Interpretation

We present the interpretation and some of its properties. The interpretation
unfolds from the C3 introduction rules: These determine the meaning of
the symbols concerned in the same way as intuitionistic introduction rules
do. From this follows the interpretation of symbols, and thus formulas, up
to equivalence. The interpretation turns out to agree with Kolmogorov’s
interpretation for formulas not containing implication.

The interpretation of inference figures, and thus derivations, follows from
that of symbols; the C3 inference figures are interpreted by compositions
of NJ inference figures. For every C3 conversion rule, the interpretation of
the left member converts to the interpretation of the right member. Conse-
quently, the interpretation respects convertibility.

3.1 Interpreting symbols

The C3 introduction rules can be taken to determine the meaning of the
symbols concerned in the same way as the intuitionistic introduction rules
do, given that we handle the signs first and then the logical symbols. We
shall, accordingly, interpret the signs by their intuitionistic counterparts,
governed by the usual introduction and elimination rules, and the logical
symbols by propositional expressions determined, up to equivalence, by the
corresponding introduction rules. We have chosen to reduce the classical
logical operations to the usual intuitionistic ones, instead of defining them
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directly in Martin-Löf type theory, partly out of convenience, and partly out
of a wish to limit the use of higher order function types. Let S∗ denote the
interpretation of the symbol S. We put

T
∗A = A,

F
∗A = FA,

A&∗B = ¬¬A&¬¬B,
A∨∗B = ¬¬A∨¬¬B,
A⊃∗B = A⊃¬¬B,
∼∗A = ¬A,

(∀∗x)A = (∀x)¬¬A,
(∃∗x)A = (∃x)¬¬A,

where ¬A = A⊃Ψ. That is, we place a double negation at every positive
position relative the logical symbol at hand. We extend the interpretation
to signed formulas by interpreting atomic formulas as themselves.

Note that for tableau sequents of the form
x

FA` ψ, where the formula
contains no implications, the interpretation reduces to the Kolmogorov [6]
interpretation because of the equivalence with tableau sequents of the form

u

T∼A` ψ and thus sequents of the form ` T∼∼A. On the other hand, when a
formula contains an implication the interpretations disagree; for example, in
the case of the formula A⊃B we get the sequent ` ¬¬(A⊃¬¬B) while the
Kolmogorov interpretation gets the sequent ` ¬¬(¬¬A⊃¬¬B). Further-
more, the interpretation is compositional in the sense that (C(B/A))∗ =
C∗(B∗/A∗), contrary to the Kolmogorov interpretation.

3.1.1 On propositional constants

We generally consider, for both intuitionistic and classical logic, the true
formula, >, as an empty conjunction of formulas, and likewise, the false
formula, ⊥, as an empty disjunction of formulas. Note that the two cases
A1&

∗...&∗Am = ¬¬A1&...&¬¬Am and A1∨
∗...∨∗Am = ¬¬A1∨...∨¬¬Am

specialize to >∗ = > and ⊥∗ = ⊥ for m = 0, which, moreover, agrees with
interpreting atomic formulas as themselves. Thus we should take the true
and the false formula of classical logic to be equal to their intuitionistic
counterparts.

3.2 Interpreting inference figures

We take the interpretation of Sect. 3.1 seriously and define the signs and
logical symbols of C3 accordingly. We identify the weak principle of re-
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ductio ad absurdum and the axiom inference figure with the corresponding
NJ inference figures, and, moreover, define the C3 logical symbol inference
figures in terms of the NJ inference figures. The latter works essentially be-
cause we have taken the introduction rules to determine the meaning of the
logical symbols concerned and, moreover, because of the close relationship
between the C3 introduction and elimination rules.

3.2.1 Logical symbol inference figures

&∗-introduction

[
x

FA]
X
ψ

[
y

FB]
Y
ψ

TA&∗B
&∗I(x,y)















=







































[
x

¬A] [
u

A]

ψ
⊃E

FA
WRAA(u)

X
ψ

¬¬A
⊃I(x)

[
y

¬B] [
v

B]

ψ
⊃E

FB
WRAA(v)

Y
ψ

¬¬B
⊃I(y)

¬¬A&¬¬B
&I

.

&∗-elimination

TA&∗B

[
u

TA]
U
ψ

ψ
&∗E1(u)















=























¬¬A&¬¬B
¬¬A

&E1

[
u

A]
U
ψ

¬A
⊃I(u)

ψ
⊃E

.

We handle the case of the second &∗-elimination rule analogously.

∨∗-introduction

[
x

FA]
X
ψ

TA∨∗B
∨∗I1(x)















=







































[
x

¬A] [
u

A]

ψ
⊃E

FA
WRAA(u)

X
ψ

¬¬A
⊃I(x)

¬¬A∨¬¬B
∨I1

.

We handle the case of the second ∨∗-introduction rule analogously.
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∨∗-elimination

TA∨∗B

[
u

TA]
U
ψ

[
v

TB]
V
ψ

ψ
∨∗E(u,v)















=































¬¬A∨¬¬B

[
x

¬¬A]

[
u

A]
U
ψ

¬A
⊃Iu

ψ
⊃E

[
y

¬¬B]

[
v

B]
V
ψ

¬B
⊃I(v)

ψ
⊃E

ψ
∨E(x,y)

.

⊃∗-introduction

[
u

TA], [
y

FB]
UY
ψ

TA⊃∗B
⊃∗I(u,y)















=







































[
u

A],

[
y

¬B] [
v

B]

ψ
⊃E

FB
WRAA(v)

UY
ψ

¬¬B
⊃I(y)

A⊃¬¬B
⊃I(u)

.

⊃∗-elimination

TA⊃∗B

[
x

FA]
X
ψ

[
v

TB]
V
ψ

ψ
⊃∗E(x,v)















=











































A⊃¬¬B
u

[A]

¬¬B
⊃E

[
v

B]
V
ψ

¬B
⊃I(v)

ψ
⊃E

FA
WRAA(u)

X
ψ .

∼∗-introduction

[
u

TA]
U
ψ

T∼∗A
∼∗I(u)















=















[
u

A]
U
ψ

¬A
⊃I(u)

.
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∼∗-elimination

T∼∗A

[
x

FA]
X
ψ

ψ
∼∗E















=























¬A [
u

A]

ψ
⊃E

FA
WRAA(u)

X
ψ .

∀∗-introduction

[
y

FA]
Y
ψ

T(∀∗x)A
∀∗I(x,y)















=







































[
y

¬A] [
v

A]

ψ
⊃E

FA
WRAA(v)

Y
ψ

¬¬A
⊃I(y)

(∀x)¬¬A
∀I(x)

.

∀∗-elimination

T(∀∗x)A

[
v

TA(t/x)]
V
ψ

ψ
∀∗E(v)















=























(∀x)¬¬A

¬¬A(t/x)
∀E

[
v

A(t/x)]
V
ψ

¬A(t/x)
⊃I(v)

ψ
⊃E

.

∃∗-introduction

[
y

FA(t/x)]
Y
ψ

T(∃∗x)A
∃∗I(y)















=











































[
y

¬A(t/x)] [
v

A(t/x)]

ψ
⊃E

FA(t/x)
WRAA(v)

Y
ψ

¬¬A(t/x)
⊃I(y)

(∃x)¬¬A
∃I

.

∃∗-elimination

T(∃∗x)A

[
v

TA]
V
ψ

ψ
∃∗E(x,v)















=































(∃x)¬¬A

[
y

¬¬A]

[
v

A]
V
ψ

¬A
⊃I(v)

ψ
⊃E

ψ
∃E(x,y)

.
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3.2.2 On conversion rules

Note that, for every C3 conversion rule, the interpretation of the left member
converts to the interpretation of the right member, e.g., for the first &-
conversion rule, we have

[
x

¬A] [
u

A]

ψ
⊃E

FA
WRAA(u)

X
ψ

¬¬A
⊃I(x)

[
y

¬B] [
v

B]

ψ
⊃E

FB
WRAA(v)

Y
ψ

¬¬B
⊃I(y)

¬¬A&¬¬B
&I

¬¬A
&E1

[
u

A]
U
ψ

¬A
⊃I(u)

ψ
⊃E

conv

[
u

A]
U
ψ

FA
WRAA(u)

X
ψ ,

where no assumption of U , except
u

A, may occur discharged in X. Conse-
quently, the interpretation respects β-equivalence.

3.2.3 On normal derivations

For every C3 introduction, except ∼∗-introductions, its interpretation con-
tains a derivation

[
x

¬A] [
u

A]

ψ
⊃E

FA
WRAA(u)

X
ψ

¬¬A
⊃I(x)

.

Note that X must have the form

FA
X1
A

ψ
axiom

, ...,
FA

Xn

A
ψ

axiom

X0
ψ ,

whence

[
x

¬A] [
u

A]

ψ
⊃E

FA
WRAA(u)

X
ψ

¬¬A
⊃I(x)

conv

[
x

¬A]
X1
A

ψ
⊃E
, ...,

[
x

¬A]
Xn

A

ψ
⊃E

X0
ψ

¬¬A
⊃I(x)
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by means of F-conversion and, moreover, ifX is normal then the right deriva-
tion is normal. Accordingly, normal C3 -derivations are generally not inter-
preted by normal NJ -derivations, but their interpretations can be brought
to normal form by means of F-conversion. The latter corresponds to β-
conversion in type theory, cf. Sect. 2.5.

4 Conclusion

We have extended the double negation interpretation from formulas to deriva-
tions. The resulting interpretation is compositional and respects the most
obvious conversion rules of the Gentzen sequent calculus for classical predi-
cate logic. It furthermore induces a notion of classical proof similar to that
of intuitionistic logic. The interpretation agrees with the Kolmogorov in-
terpretation for formulas not containing implication. The above-mentioned
conversion rules were used to guide the construction of the intermediate
natural deduction calculus and, to a large degree, by that means determine
the interpretation.

The interpretation embeds classical predicate logic in Martin-Löf type
theory. This makes it possible to mix classical and intuitionistic logic in the
same derivation. However, the axiom of choice remains out of reach due to
the interpretation of the consequence relation of classical logic, except for
derivations of the form Γ ` T(∃∗x)A.
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