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David Jacquet

February 6, 2004

Introduction

Convexity is an important and fundamental concept and it can be viewed in
many different ways. One example how convexity naturally appears in complex
analysis is that the domain of convergence for a power series is (logarithmi-
cally) convex. There is also the Paley-Wiener theorem which shows a clear
connection between a certain class of entire functions and compact convex sets
in Rn. All convex domains are domains of holomorphy, but the converse is not
true. Instead there exists the weaker concept pseudoconvexity, which can be
shown to be equivalent with being a domain of holomorphy. Some, but not all
theorems which hold for convex domains, remain valid for pseudoconvex ones.
Convexity concepts that are weaker than ordinary convexity but stronger than
pseudoconvexity have been studied, for example by Martineau [8] (lineally con-
vex sets) in his work with the Fantappiè transform, and by Benkhe and Peschl
[2] (Planarconvexität). For a thorough account of the field of convexity, see [3].

The property of convexity requires that the intersection of the set and real lines
should be contractible. An obvious weakening would be to require this only for
complex lines. This property lies in between of convexity and pseudoconvexity
and one calls it C-convexity. In one complex variable this property is not so
interesting, and some theorems about C-convexity apply only in two or more
dimensions. As we will shall discuss further in the paper there are theorems that
work for C-convex domains but not for general pseudoconvex ones. To have a
good working definition of a C-convex function, we need it to bee C2. There
is a possible non-smooth geometric definition which we will mention later, but
it seems hard to use. In the case of convexity there is an obvious non smooth
definition: we just require all chords to lie over the graph. A similar non-smooth
definition for C-convex function which is easy to test, is desirable. There is a
close relation between convex sets and convex functions. We will see that this is
the case also for C-convexity. An important function that can be connected to
a set with nonempty boundary is δ, the boundary distance function. Booth the
properties of δ and − log δ will be important in this paper. Open convex sets are
unions of open strictly convex sets. To get a similar theorem for C-convex sets
is the main aim of this paper. As the proofs involve approximations of C-convex
functions, the results are about rather smooth C-convex sets. We also include
some applications concerning the Kobayashi and Carathéodory metrics.
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Basic Facts

Given a twice continuously differentiable real valued function u and we write
h = e−u. Then the definitions of u being a convex (1), C-convex (3) and
plurisubharmonic (5) function become that for all non zero w ∈ Cn the proper-
ties
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should hold. As we will see further there is a good reason to look at h = e−u.
If ≥ is changed to a > the we put in a “strictly” in front of the property. There
is natural inclusion of these properties for sets: if a set is convex, then it is
C-convex and then it is also pseudoconvex. With functions the situation is not
so simple. If a function is convex or C-convex then it is plurisubharmonic (we
will further on show the connection between pseudoconvex sets and plurisubhar-
monic functions), but there are functions which are convex but not C-convex.
This can be shown by looking at

u(z1, z2) = k(z1z̄1 + z2z̄2)

for rather large values of the constant k. This has to do with the fact that
condition 3 is non linear, which the other conditions on u are. But since 1 and
5 are linear, it is easy to use distribution theory to make definitions even in
the non differentiable case. This is not the case for C-convexity, since there
is no general method of taking the product of two distributions (in our case
ujuk). This makes it hard to define a continuous C-convex function. Using the
forthcoming Propositions 1 and 2 it is easy to realize that there are functions
that are C-convex but not convex. They reduce the problem to find a domain
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with C2-boundary which is C-convex but not convex. For example let t ∈ [0, 1],
then the set

Et = {(z, w) : |w|2 < 1 − |z|2 − t(Re)(z2)2}

is real analytic and C-convex for all t, but convex only for t ∈ [0, 3/4]. This and
more examples of this situation are given in [1].

The following three propositions show the similarities between convexity, C-
convexity and pseudoconvexity.

Proposition 1 Let D = {z : ρ(z) < 0} be a domain in Cn where ρ is a
C2 defining function whose gradient is different from zero on ∂D. Then the
following are equivalent:

i) D is convex.

ii) The Hessian of ρ is positive semidefinite when restricted to real tangent
space at any point on ∂D.

iii) The function u = − log δ2 is convex near the boundary.

Proof. First we do i) ⇐⇒ iii). Assume that D is convex, then at each point
x ∈ ∂D there exist a real tangent plane Tx which does not intersect D. We have

δ(z) ≤ δTx
(z) = |z − Tx|

δ(z) = inf
x∈∂D

δTx
(z).

The boundary function δTx
is affine and linear. The infimum of such functions

is concave. Hence δ is concave. Since log is increasing, log δ is concave, and
therefore − log δ2 = −2 log δ is convex. Now to the converse. Assume that there
exist a non constant convex function f : D → R such that

Dt = {x ∈ D : f(x) ≤ t}

is compact for all t < m = supx∈D f(x). Now take x1, x2, x3 ∈ D and assume
[x1, x2], [x2, x3] ⊂ D. Let X = {x ∈ [x1, x2] : [x, x3] ⊂ D} and let t0 be the
supremum of f on the union of the line segments [x1, x2], [x2, x3]. Note that
t0 is smaller than the supremum of f on D. Indeed, since D is open and f
is convex and non constant, it cannot attain its supremum at any point of D.
Otherwise it would be constant on every line going through that point and since
D is assumed to be connected f would be constant on the whole of D. Now
since D is open, X is open relatively [x1, x2] . But if x ∈ [x1, x2] then

[x, x3] ⊂ D ⇒ [x, x3] ⊂ Dt0

since t0 was chosen to be the supremum of f on [x1, x2], [x2, x3] and f attains
its maximum value on line segments at one of the endpoints. But Dt0 is by
assumption compact whence X is also closed relatively [x1, x2]. Of course x2 ∈
X , so X is not empty which implies X = [x1, x2] and D is convex. Now assume
that D is such that − log δ2 is convex. Then f = − log δ2 + |x|2 is also convex.
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Since its level sets stays away from the boundary, Dt is closed. The |x|2 term
makes Dt bounded.

Now to i) ⇐⇒ ii). Take a x ∈ ∂D, we must show that Tx ∩ D = ∅ precisely if
the Hessian Hρ, defined in equation 7, is non negative along any direction w in
Tx. Since he defining function ρ is defined for values slightly bigger than zero
we can Taylor expand it, which after some calculation yields

ρ(x + w) = Hp(x, w) + Rx(w)

where Rx(w)/|w|2 → 0 when |w| → 0. This shows that the condition on the
Hessian is necessary. Now assume that Hρ ≥ 0. Then it is possible to find (not
so easy) ρn ↘ ρ with Hρn

> 0 which will define a domain Dn. Now Dn will be
convex and increasing and since D is the union of those, it will be convex. �

Proposition 2 Let D = {z : ρ(z) < 0} be a domain in Cn, n > 1 where ρ is a
C2 defining function whose gradient is non zero on ∂D. Then the following are
equivalent:

i) D is C-convex.

ii) The Hessian of ρ is positive semidefinite when restricted to complex tan-
gent space at any point on ∂D.

iii) The function u = − log δ2 is C-convex near the boundary.

Proof. This is Theorem 2.5.16 in [1]. �

Proposition 3 Let D = {z : ρ(z) < 0} be a domain in C
n, n > 1 where ρ is

a C2defining function whose gradient is different from zero on ∂D. Then the
following are equivalent:

i) D is a domain of holomorphy.

ii) The Levi form of ρ is positive semidefinite when restricted to complex
tangent space at any point on ∂D.

iii) The function u = − log δ2 is plurisubharmonic near the boundary.

Proof. These are Theorems 4.1.19, 4.1.27 and corollary 4.2.8 in [3]. �

These propositions show that u = − log δ2 is an important function. To study
the boundary distance function we also look at the properties of δ2 = h = e−u.
The definition of a strictly convex C2 domain, is that the Hessian of any defining
function restricted to the real tangent plane is positive definite as supposed to
positive semidefinite. In analogy with this, we say that a domain is strictly
C-convex if the Hessian

Hρ(z, w) =
∑

ρjk̄(z)wjw̄k − Re
(

∑

ρjk(z)wjwk

)

(7)
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of any defining C2-function ρ is positive definite when restricted to complex
tangent plane at any point z on the boundary. Since this is a geometric require-
ment, it is clearly independent of the choice of ρ. There is an other possible
definition of a C-convex function that could be interesting. Let u : D → R be a
C2-function, where D is a one dimensional complex disc. If h = e−u, then the
Hartogs domain

Hu
D = {(z, z′) ∈ D × C : |z′| < h(z)}

is C-convex if and only if u is C-convex according to our previous definitions.
For a proof see [1]. Therefore one could define a function u : C → R to be
C-convex in a neighborhood z if there exists an ε > 0 such that Hu

D is C-
convex for all discs D centered at z with radius smaller than ε. If u depends of
several variables we require to have this property for all complex lines passing
trough the given point. This would give a definition that is equivalent with the
old one in the C2 case. However it is not easy to test whether a non-smooth
Hartogs domain is C-convex or not. It is also not known whether i) ⇐⇒ ii)
in Proposition 2 stays valid if the C2-condition is removed and the extended
definition of C-convex function is used. Proposition 2 is crucial for this paper.

Results

Here we will find a method of approximating C-convex functions with strictly C-
convex functions. This will allow us to approximate C-convex sets with strictly
C-convex sets. We begin with:

Lemma 4 Let Ω be a bounded set and u : Ω → R is a bounded C2 function.
Then the sequence

{uε : uε = − log
(

e−u − ε(1 + |z|2)
)

, 0 < ε < inf
e−u(z)

1 + |z|2
}

decreases uniformly to u on Ω and is strictly C-convex whenever u is C-convex.

Proof. The inequality involving ε guaranties that that uε is well defined. Since
u is C-convex we put h = e−u, use expression 4 and write

|
∑

hjwj |
2

h
≥

∑

hjk̄wj w̄k +
∣

∣

∣

∑

hjkwjwk

∣

∣

∣
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Now define gε(z) = ε(1 + |z|2) and put hε = h − gε. This leads to

∑

hjk̄wj w̄k −
∑
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jk̄wjw̄k = ε

∑ ∂2
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∂zj∂zk
(1 + 〈z, z̄〉)wjwk = 0
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∑

hjwj |
2

h
=

Re (
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hε
jwj +

∑
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jwj)

2 + Im (
∑

hε
jwj +
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2

hε + gε

≤
Re (

∑

hε
jwj)

2 + Im (
∑

hε
jwj)

2

hε
+

Re (
∑

gε
jwj)

2 + Im (
∑

gε
jwj)

2

gε

=
|
∑

hε
jwj |2

hε
+

|
∑

gε
jwj |2

gε
=

|
∑

hε
jwj |2

hε
+

ε〈z̄, w〉〈z, w̄〉

1 + |z|2

where we in the inequality used that the function f(t0, t1, t2) = (t21 + t22)/t0 is
subadditive in the half plane t0 > 0. Now we get

∣

∣

∑

hε
jwj

∣

∣

2

hε
− ε

(

|w|2 −
〈z̄, w〉〈z, w̄〉

1 + |z|2

)

≥
∑

hε
jk̄wjw̄k +

∣

∣

∣

∑

hε
jkwjwk

∣

∣

∣
.

Using the Cauchy–Schwarz inequality we see that |w|2(1 + |z|2) > 〈z̄, w〉〈z, w̄〉
for all w 6= 0. Therefore uε = − loghε is strictly C-convex. Since Ω is bounded
gε goes uniformly to zero and uε ↘ u uniformly. �

This lemma is essential when we want to prove:

Theorem 5 Let D be a bounded C-convex domain with C2 boundary. Then
there exists a strictly increasing sequence {Dn} of strictly C-convex C∞ domains
whose union is equal to D.

Proof. Take a compact subset K. It will bee enough to find a set with the re-
quired properties that contains K. If K is large we can, according to Proposition
2 and with notations as before, assume that the complement of K is contained
in ND. The set where u = − log δ2 is C-convex. Let ∆ε = δ2 − ε(1 + |z|2) and
uε = − log ∆ε. This function is defined on the set {z : δ(z) > ε(1 + |z|2)}. Let

Dε′

uε = {z : uε < 1/ε′} = {z : δ2 > e−1/ε′ + ε(1 + |z|2)} ⊂ Dε = {z : δ2 > ε}.

Note that u will be bounded on Dε′

uε . By lemma 4 uε is strictly C-convex on
ND ∩ Dε′

uε . It is easy to realize that uε will be strictly C-convex also on the
closure of this set. We will use this function to create the domain. But we want
it to be C∞, so we will convolve it with a symmetric modifier. Therefore take a
non negative φ ∈ C∞

0 (Cn) with total mass one and let vε = uε ∗φ be a function
from Dε′

uε . The convergence of
vε → uε

in C2(Dε
uε)-norm when supp(φ) tends to zero will be uniform. Therefore, for

some φ whose support is small enough, vε will be strictly C-convex on ND∩Dε′

uε
.
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Let Dε′

vε be defined in the obvious way then

K b Dε′

vε b Dε′

uε .

for some good parameters ε and ε′. That K can be made a subset of the other
two is obvious. The other inclusion can be seen from using that outside K, uε

is strictly plurisubharmonic, since it is strictly C-convex. And since vε is the
convolution of a uε with the symmetric function φ, we will have uε < vε outside
K. We conclude that the inclusions above hold for a fix ε, φ and for all ε′ in
some interval. Now we want to apply Proposition 2 and show that the open set
Dε′

vε is strictly C-convex. One way is to show that:

i) it is a domain, i.e. it is connected.

ii) the gradient of the defining function vε is non zero at the boundary.

iii) the Hessian of the defining function vε restricted to the complex tangent
plane is positive definite.

For i) we a priori do not know whether Dε′

vε is connected or not. For the result
it is not even important since we can take the component that contain K. But
we will show that it is connected if K is large. Since the boundary of D is C2

we can use lemma 2.1.29 in [3]. Thus we know that for all points z near the
boundary of D there exists a unique point z′ on ∂D that is the closest one.
Moreover, z lies on the inward pointing normal nz′ at this nearest point. Hence
∂Dε0 and therefore also Dε0 will be connected for all ε0 small enough. This is
because we have a continuous function from ∂D to ∂Dε0 ; namely the function
which sends a point the distance ε0 along the inward pointing normal. Take
z ∈ ∂Dε0 and the z′ ∈ ∂D its nearest boundary point. We claim that

#{ζ : ζ ∈ ∂Dε′

uε , ζ ∈ [z, z′]} = 1.

Indeed, let ζ be such a point. We can then calculate

∂∆ε

∂nz′

(ζ) = 2
√

e−1/ε′ + ε(1 + |ζ|2) −
∂ε(1 + |z|2)

∂nz′

(ζ) > 0.

If Dε0 is large (and we choose K so large that it contain Dε0) there exist a small
a such that

∂uε

∂nz′

(ζ) =
∂ − log ∆ε

∂nz′

(ζ) < a < 0

for all ζ outside Dε0 . But vε is the convolution of the C2 function uε with φ,
and if the support of φ is small, the partial derivative ∂n

z′
vε(ζ) < 0. Since vε is

the defining function we will have

#{ζ : ζ ∈ ∂Dε′

vε , ζ ∈ [z, z′]} = 1

and Dε′

vε is connected. Now to ii). According to Sard’s theorem, the level sets
vε < c will be non singular C∞ for almost all c in the range of vε. So we
can choose ε′ so that the gradient is non zero on the boundary. For iii) take
z ∈ ∂Dε′

vε and w in the complex tangent plane at z. Since vε is strictly C-convex
we can write

∑

vε
jk̄(z) wj w̄k > |

∑

(vε
jk(z) − vε

j(z)vε
k(z)) wjwk | = |

∑

vε
jk(z) wjwk|

and conclude that Dε′

vε is strictly C-convex. �
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Applications

We will now use these facts to generalize some discoveries made by L. Lempert.
It concerns the relationship between the Carathéodory metric and the Kobayashi
metric. Let D ⊂ Cn be a domain, then the Carathéodory metric is defined by

cD(z, w) = sup{δh(F (z), F (w)) : F ∈ Hol(D, U)}

where U denotes the open unit disk in C and δh is the Poincaré hyperbolic
metric in U . We can also define another, similar function

kD(z, w) = inf{δh(ζ, ω) : f ∈ Hol(U, D), f(ζ) = z, f(ω) = w}.

The problem is that kD is not always a metric since it for some D doesn’t
satisfy the triangle inequality. This can be solved by introducing the so called
Kobayashi metric

k′

D(z, w) = inf{kD(z, a1) + kD(a1, a2) + · · · + kD(an, w) : ai ∈ D, n ∈ N}.

Now take f ∈ Hol(U, D) and F ∈ Hol(D, U) and let

cF (z, w) = δk(F (z), F (w))

kf (z, w) = inf{δh(ζ, ω) : f(ζ) = z, f(ω) = w}

But g = F ◦f ∈ Hol(U, U) which means that cF (z, w) = δh(g(ζ), g(ω)). But the
Schwarz lemma [6] says that δh(g(ζ), g(ω)) ≤ δh(ζ, ω) for every g ∈ Hol(U, U).
Therefore we have

cD(z, w) ≤ k′

D(z, w) ≤ kD(z, w)

for all domains D. Now we come to the result from Lempert which says that if
D is a strictly C-convex domain with C∞ boundary, then cD(z, w) = k′

D(z, w) =
kD(z, w). This implies that kD really is a metric. This, that is Theorem 1 in [7],
does not hold for general pseudoconvex lines. To be able to extend this results
we need the following lemma:

Lemma 6 If D1 ⊂ D2 ⊂ · · · ⊂ D are domains with ∪Dn = D, then we have

cDn
↘ cD

kDn
↘ kD.

Proof. Starting with kD . We know that kD ≤ kDn
since kD is an infimum of a

larger set. Therefore take a f ∈ Hol(U, D) which is almost realizes the infimum
(for some choice of z an w). Now for all 0 < r < 1, define fr(ζ) = f(rζ) which
is a holomorphic function whose closure lies in D. Hence there exists an N such
that fr ∈ Hol(U, Dn) for all n ≥ N . By choosing r close enough to one we
conclude that kD must be the limit of kDn

Now to cD. We know that cD ≤ cDn
because cD is a supremum of a smaller

set. Now take a Fn ∈ Hol(Dn, U) which is closer than 1/n to the supremum
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(for some choice of z and w). Now take open compactly contained subset D′

of D, with z, w ∈ D′. We can assume that D′ ⊂ D1. So we have a sequence
of holomorphic functions Fn from D′ to the unit disc, which obviously makes
the sequence uniformly bounded. Therefore we can use Vitali’s theorem and
conclude that there exists a subsequence Fnk

and a holomorphic function, which
is the subsequence’s limit function. Since this was valid for any open compactly
contained subset D′, we can extend the function by analytic continuation to
the whole of D. Then we get a holomorphic function F ∈ Hol(D, U) which
is the limit function of Fnk

. But now we can take 0 < r < 1 and define
Fr(z) = rF (z) ∈ Hol(D, U). By choosing r close enough to one we conclude
that cD must be the limit of cDn

. �

Combining Theorem 5 and lemma 6 we get

Theorem 7 If a domain D is a union of increasing strictly C-convex C∞ do-
mains (for example if log δ2 is C-convex near the C2 boundary), then

cD = k′

D = kD .

In the next section we will introduce a (possibly) bigger class of sets which can
be exhausted by strictly C-convex domains with smooth boundary. And for
which Theorem 7 obviously is true.

If D is strictly C-convex with C∞ boundary, then for all z, w ∈ D, there will be
a so called extremal function f ∈ Hol(U, D), realizing the infimum. One calls
the image f(U) an extremal disc in D. To every two points in D there will be
a unique extremal disc passing trough the points. An extremal mapping f can
be extended into a C∞ mapping f̃ which will be a C∞ embedding of Ū onto
f̃(Ū) with f̃(∂U) ⊂ ∂D. Moreover, any two extremal discs will meet in at most
one point and f will be extremal with respect to any two points in the extremal
disc. These facts are immediate consequences of Theorems 2, 3 and 4 in [7].

We will now show almost this in the weaker case. Therefore let the domain D be
the exhausted by D1 ⊂ D2 ⊂ ... ⊂ D which are smooth and strictly C-convex.
Pick two points z and w which can be assumed to belong to D1. Then for each
n there will be an extremal function fn ∈ Hol(U, Dn). Since the metric δh is
invariant under projective automorphisms of U we can assume that fn(0) = z
and fn(rn) = w where rn is a positive real number. Since fn is injective we
have kn(z, w) = δh(0, rn) (we are writing k for kD and kn for kDn

). Since D
is bounded, we can as in the proof lemma 6, use Vitali’s theorem and conclude
that there is a subsequence fnk

converging to a function f ∈ Hol(U, D̄). To
show that this is an extremal function for z, w ∈ D, we must first show that the
image does not intersect the boundary of D. For this we need

Lemma 8 If Ω1 ⊂ Ω2 ⊂ · · · ⊂ Ω are domains with ∪Ωn = Ω where Ωn is pseu-
doconvex and has C1 boundary, then there exists a negative plurisubharmonic
function Φ : Ω → R such that

Φ(z) → 0

when z → ∂Ω.
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Proof. The key is Proposition 1 in [5] which says that there for each Ωn exists
a negative plurisubharmonic C∞ function Φn which approaches zero when z
approaches the boundary. Define this Φn to be zero outside Ωn. Then there
exists a subsequence Φ1n that converge uniformly on D1. From this subsequence
we can choose a new subsequence Φ2n that converges uniformly on D2 and so
on. Now we look at the diagonal sequence Φnn which converges to a plurisub-
harmonic function Φ on Ω. It is obvious that Φ has the required boundary
properties.�

It is easy to realize that the sets D and Dn fulfill the conditions in the lemma.
Therefore there exists a negative plurisubharmonic function Φ on D̄ which is
zero on the boundary. But then g = Φ ◦ f will be a non positive subharmonic
function, since f is holomorphic. Thus we can use the maximum principle and
conclude that since U is open, g will not attain zero, unless it is constantly
zero. This cannot be the case because g(ζ) < 0 since f(ζ) = z ∈ D. Therefore
we must have f ∈ Hol(U, D). But now we use lemma 6 and conclude that
k(z, w) = δh(0, r) where r is the limit point of {rn}. We have

lim fn(r) = f(r) ⇒ lim fn(rn) = f(r)

since f ′

n → f ′ and |f ′(r)| < ∞. Therefore f is an extremal function and f(U)
can be called an extremal disc.

Now take two points ζ, ω ∈ U with f(ζ) = z and f(ω) = w. We intend to show
that f is maximal with respect to these points. For this we look at the two
sequences

fn(ζ) = zn → z

fn(ω) = wn → w

and calculate

|k(z, w) − kn(zn, wn)| ≤

|k(z, w) − kn(z, w)| + |kn(z, w) − kn(zn, wn)| ≤

|k(z, w) − kn(z, w)| + | ± (kn(z, zn) + kn(z, w) + kn(w, wn) − k(z, w))| ≤

|k(z, w) − kn(z, w)| + |k1(z, zn) + k1(w, wn)| → 0.

But now we have kn(zn, wn) = δh(ζ, ω), but then we also have k(z, w) = δh(ζ, ω)
and are done. Summarizing this we get

Theorem 9 Let D be a domain which is a union of increasing strictly C-convex
C∞ domains (for example if log δ2 is C-convex near the C2 boundary). Then
for all z, w ∈ D there exists an extremal mapping with respect to the Kobayashi
metric. Moreover, this mapping is extremal with respect to any two points in its
extremal disc.

The question about uniqueness is tricky. When D is just any C-convex domain
it is even false. This can be shown by considering D = U × U and look for
extremal mappings with respect to (0, 0) and (p, 0) where p is real and positive.
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Then f(z) = (z, h(z)) will be an extremal mapping for every holomorphic h
with h(U) ⊂ U and h(0) = h(p) = 0. But since U ×U is convex we can exhaust
it with smooth strictly convex sets. These sets will be C-convex which shows
that we cannot hope to have the uniqueness.
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