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Abstract

We derive a direct inversion formula of convolution-backprojection type for the ex-

ponential Radon transform. Our formula requires only the values of the transform over

an 180◦ range of angles. It is an explicit formula, except that it involves a holomorphic

function for which an explicit expression has not been found. In practice, this function

can be approximated by an easily computed polynomial of rather low degree.

1 Introduction.

Background. Let f be a smooth, compactly supported function in the plane R2 and let µ
be a real number. The set of all oriented lines in the plane can be identified with the product
space S1 × R by associating the pair (θ, s) ∈ S1 × R with the line {x ∈ R2;x · θ = s}. A
parametrization of this line is then given by the mapping t 7→ sθ+ tθ⊥, where θ⊥ is obtained
by rotating θ counterclockwise through a right angle.

The exponential Radon transform of f is defined to be the function Rµf on S1 ×R given by
the integral

Rµf(θ, s) =

∫ ∞

−∞
f(sθ + tθ⊥)eµt dt. (1)

The exponential Radon transform arises in the medical imaging techique known as Single
Photon Emission Computed Tomography or SPECT. The objective is to determine the dis-
tribution of a radioactive substance in an organ, by measuring the intensity of radiation
emanating from the body in various directions. Consider a plane cross section of the organ
being investigated, and suppose that the function f represents the concentration of radioac-
tive material in this plane. Assume a detector sensitive to gamma photons, together with a
collimator, are set up to register photons travelling along some line in this plane, represented
by a pair (θ, s). The signal measured by the detector will then be a measure of the amount
of radioactive substance along that line. Since some of the photons are absorbed before they
reach the detector, radioactivity at a greater distance from the detector will contribute less
to the signal. Assuming that all tissue absorbs photons with the same probability, and ig-
noring the possibility that photons may be scattered, the signal measured by the detector is
proportional to Rµf(θ, s) where the attenuation µ is a material constant of the tissue, related
to the probability that photons will be absorbed.

By using an array of detectors, which are rotated around the body, it is therefore possible to
obtain a sampling of the Radon transform Rµf , from which f must then be reconstructed.
For practical reasons, it is often possible to measure Rµf(θ, s) only for θ on half of the circle
S1.

The problem. Our problem is to find an explicit formula for reconstructing f , given the
values of Rµf (for a known µ) on the set S1

+ × R, where S1
+ = {θ ∈ S1; θ1 ≥ 0} is the right

half of the unit circle. We also assume that we are given a compact set D which is known to
contain the support of f .
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Results on related problems. Several results on similar problems have previously been
obtained. When the values of Rµf are known on all of S1 ×R, the problem is solved by the
famous Tretiak-Metz fromula given in [6]. An iterative algorithm, but not an explicit formula,
for the problem at hand was recently obtained by Noo and Wagner [4]. A generalization of
the Tretiak-Metz formula, which handles non-constant attenuation has been discovered by
Novikov [5], see also [3].

2 Notation and definitions.

The following is a summary of various notations and definitions used in this note.

The exponential Radon transform of a function f , defined by (1) above, is denoted Rµf .
The dual of the Radon transform is an operator R∗

µ mapping distributions on S1 × R to
distributions on R2. It is defined by the relation

〈R∗
µu, f〉 = 〈u,Rµf〉 (2)

where 〈 , 〉 denotes the pairing of distributions and test functions, either on R2 or on S1×R.
If g is a locally integrable (or smooth) function on S1 × R, then R∗

µg is actually a locally
integrable (or smooth) function given by the formula

R∗
µg(x) =

∫

S1

g(θ, x · θ)eµx·θ⊥ dθ (3)

where dθ denotes linear Lebesgue measure on the circle S1.

If u and v are compactly supported smooth functions on S1 × R, we write u ∗s v for the
convolution of u and v in the second variable:

(u ∗s v)(θ, s) =

∫ ∞

−∞
u(θ, t)v(θ, s− t) dt. (4)

This definition is extended by continuity to the case where u is a distribution; u ∗s v is then
also a distribution in general.

For convenience, we will use the notation

chµ(t) =
cosh(µt)

t
. (5)

We will use chµ both as a meromorphic function, and as a distribution on R. In the latter
case, the singularity should be taken as a principal value.

We define a linear mapping U from compactly supported distributions on R to distributions
on S1 ×R as follows. If ρ is a distribution on R and g is a smooth function on S1 × R, we
let

〈U(ρ), g〉 =

∫

S1
+

〈ρ, e−tµθ2g′s(θ, tθ1)〉 dθ. (6)

Here g′s denotes the partial derivative of g with respect to the second variable, and for every
θ, the distribution ρ acts on e−tµθ2g′s(θ, tθ1) as a function of t. We use S1

+ = {θ ∈ S1; θ1 ≥ 0}
to denote the right half of the unit circle. Note that U(ρ) is supported in S1

+ ×R.

Let ψ be a function, holomorphic in all of the complex plane except possibly on the real line.
We define B+ψ and B−ψ to be the boundary values of ψ on the real line from above and
from below:

B±ψ(t) = lim
ε→+0

ψ(t± iε) (7)

provided that the limits exist, and let B∆ψ = B+ψ −B−ψ.
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Finally, if ϕ and ψ are holomorphic outside a compact set in the complex plane, we define
an entire function, which we denote [ϕ, ψ], by the formula

[ϕ, ψ](z) =
1

2πi

∫

|ζ|=R

ϕ(ζ)ψ(z − ζ) dζ. (8)

Here R is a positive number, depending on z, chosen so that the integrand is holomorphic
for |ζ| ≥ R. Note that [ϕ, ψ] depends bilinearly and antisymmetrically on ϕ and ψ.

3 Statement of results.

We begin by making the following simple observation.

Lemma 1. Let f be a compactly supported smooth function on R2 and let u be a distribution
on S1 × R. Then

R∗
−µ(u ∗s Rµf) = (R∗

−µu) ∗ f. (9)

This result is proved in [2, Theorem II 1.3] when µ = 0 and the general case follows along
the same lines.

Corollary 1. If supp f ⊂ D and the restriction of R∗
−µu to the set D−D = {x−y;x, y ∈ D}

equals δ0, the Dirac measure at the origin, then f is the restriction to D of R∗
−µ(u ∗s Rµf).

Hence our problem is solved by a convolution-backprojection type formula if we can find a
distribution u supported in S1

+ × R such that R∗
−µu restricted to D − D equals δ0. The

following result reduces the problem to finding a distribution on the real line.

Theorem 1. Let ρ be a compactly supported distribution on R and let u = U(ρ) where
U(ρ) is defined by (6). Then

R∗
−µu(x) = 2(ρ ∗ chµ)(x1) δ0(x2). (10)

To complete the solution we must find a distribution ρ such that ρ ∗ chµ restricted to a given
compact set equals δ0/2. The next result shows that such ρ exist and the proof indicates
how a solution can be computed.

Theorem 2. Let 0 < r < R, let ψ be holomorphic in Cr [−R,R] and let α = B∆ψ. Suppose
that ψ and α satisfy the following properties:

• ψ(z) is sufficiently well behaved near [−R,R], so that α is an integrable function and
smooth in the open interval (−r, r),

• B+ψ(t) = −B−ψ(t) when −r ≤ t ≤ r,

• ψ(z) is uniformly bounded for large |z|,

• α(0) 6= 0.

Then except possibly for some small set of exceptional µ and ψ, there exists an entire holo-
morphic function h such that

ρ(t) =
h(t)α(t)

t
(11)

satisfies ρ ∗ chµ = δ0/2 in [−r, r]. Here the singularity of ρ is taken as a principal value.

Remarks. 1. The function ψ can be chosen, for example, as ψ(z) = 1/
√
a− z2, with a

branch cut along [−√
a,
√
a] where r2 ≤ a ≤ R2, or as a linear combination of such functions

for different values of a.

2. Numerical experiments suggest that the exceptional cases in Theorem 2 actually never
occur. In any case, they can always be avoided by rescaling ψ slightly.

3. The proof of Theorem 2 indicates how a polynomial approximating h can be computed.
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4 Proofs.

Proof of Theorem 1. We may assume that ρ is a smooth function since the general case
then follows by passing to a limit. Write θ(φ) = (cosφ, sinφ) and notice that u = U(ρ) =
limε→0 uε where

〈uε, g〉 =

∫ π/2−ε

−π/2+ε

∫ ∞

−∞
ρ(t)e−tµ sin φg′s(θ(φ), t cosφ) dt dφ

=

∫ π/2−ε

−π/2+ε

∫ ∞

−∞

1

cosφ
ρ

(
s

cosφ

)
e−sµ tan φg′s(θ(φ), s) ds dφ

= −
∫ π/2−ε

−π/2+ε

∫ ∞

−∞

1

cos2 φ

(
−µ sinφ ρ

(
s

cosφ

)
+ ρ′

(
s

cosφ

))
e−sµ tan φg(θ(φ), s) ds dφ.

(12)

Since the distribution uε is defined by the integrable function appearing in the last integral
above, we may apply the formula (3) to compute R∗

−µuε. This integral may be computed
explicitly by making the change of variables t = tanφ:

R∗
−µuε(x) = −

∫ π/2−ε

−π/2+ε

1

cos2 φ

(
−µ sinφρ

(
x1 cosφ+ x2 sinφ

cosφ

)
+ ρ′

(
x1 cosφ+ x2 sinφ

cosφ

))

e−µ(x1 cos φ+x2 sin φ) tan φe−µ(−x1 sin φ+x2 cos φ) dφ

= −
∫ π/2−ε

−π/2+ε

1

cos2 φ
(−µ sinφρ(x1 + x2 tanφ) + ρ′(x1 + x2 tanφ)) e−µx2/ cos φ dφ

= −
∫ T

−T

(
− µt√

1 + t2
ρ(x1 + x2t) + ρ′(x1 + x2t)

)
e−µx2

√
1+t2 dt

= −
[

1

x2
e−µx2

√
1+t2ρ(x1 + x2t)

]T

t=−T

=
1

x2
e−µx2

√
1+T 2

(ρ(x1 − x2T ) − ρ(x1 + x2T )) .

(13)

Here T = tan(π/2−ε). Since ρ has compact support, this expression converges to 0 uniformly
on compact sets outside the line x2 = 0, when ε → 0. This means that the limit R∗

−µu is
supported on the x1-axis. Moreover, an easy estimate shows that 〈R∗

−µuε, f〉 → 0 when
ε → 0 if f(x1, 0) ≡ 0, so 〈R∗

−µu, f〉 does not depend on derivatives of f in the x2 direction.
To determine R∗

−µu it suffices therefore to compute the limit

lim
ε→+0

∫ ∞

−∞
R∗

−µuε(x) dx2 = lim
T→+∞

∫ ∞

−∞

1

x2
e−µx2

√
1+T 2

(ρ(x1 − x2T ) − ρ(x1 + x2T )) dx2

= lim
T→+∞

∫ ∞

−∞

1

v
e−µv

√
1+T 2/T (ρ(x1 − v) − ρ(x1 + v)) dv

=

∫ ∞

−∞

1

v
e−µv (ρ(x1 − v) − ρ(x1 + v)) dv

= 2

∫

R

cosh(µv)

v
ρ(x1 − v) dv

= 2(ρ ∗ chµ)(x1).

(14)

This proves Theorem 1. �
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Proof of Theorem 2. If h is any entire function, ρ is defined by (11) and 0 < |t| < r, then
it follows from the definition (8) that

(ρ ∗ chµ)(t) = −2πi

[
chµ,

hψ

z

]
(t). (15)

This can be seen by shrinking the contour of integration in the definition of the right hand side
to an infinitessimal neighborhood of the interval [−R,R]. The condition B+ψ(t) = −B−ψ(t)
ensures that the singularities in ρ and chµ are both counted as principal values. Therefore
the condition (ρ ∗ chµ)(t) = 0 for 0 < |t| < r is equivalent to

[
chµ,

hψ

z

]
= 0. (16)

Write h(z) = h0 + zh1(z). Then ρ ∗ chµ has a point mass at the origin of size −π2h0α(0), so
we must take h0 = −1/(2π2α(0)). This works fine since α(0) 6= 0.

Rewrite the condition (16) as

[
1

z
, h1ψ

]
= −

[
chµ,

h0ψ

z

]
−

[
cosh(µz) − 1

z
, h1ψ

]
. (17)

Notice that if ϕ is holomorphic outside a compact set, then [z−1, ϕ] is the unique entire
function such that [z−1, ϕ]−ϕ → 0 at infinity. From this it follows, by using the assumption
that ψ(z) is bounded for large z, that if ϕ1 and ϕ2 are entire functions, then the equality
ϕ1 = [z−1, ϕ2/ψ] implies that [z−1, ϕ1ψ] = ϕ2. Hence (17) will be satisfied if we can find h1

such that

h1 = −
[
1

z
,
1

ψ

[
chµ,

h0ψ

z

]]
−

[
1

z
,
1

ψ

[
cosh(µz) − 1

z
, h1ψ

]]

= F − Φ(h1).

(18)

where F and Φ(h1) are defined by the two expressions on the line above.

Let K be a compact set containing [−R,R] in its interior and let A(K) be the Banach space
of functions continuous in K and holomorphic in the interior of K. Then Φ can be extended
to an operator on all of K, since (cosh(µz) − 1)/z is an entire function, and this operator is
compact by the Ascoli-Arzela theorem. Therefore the equation h1 = F−Φ(h1) has a solution
h1 ∈ A(K) unless −1 is an eigenvalue of Φ. Since F and Φ(h1) are both entire, it follows
that h1 is also.

Now if we let r vary and rescale the function ψ accordingly, then Φ, and hence its spectrum,
depends analytically on r. When r → 0, the norm of Φ converges to 0, so −1 is an eigenvalue
of Φ for at most a discrete set of r, and the theorem is proved. In fact, numerical experiments
seem to suggest that for reasonable choices of ψ, the eigenvalues of Φ are always positive, so
that the exceptional set is empty. �

5 Numerical test.

To test our inversion formula numerically, it is necessary to choose a function ψ and compute
a polynomial approximating the Taylor expansion of h. In the following test we have used

ψ(z) =

∫ R2

r2

w(a)√
a− z2

da (19)

where w(a) = (a− r2)(R2 − a). The reason for using such a function rather than 1/
√
a− z2

is to avoid the singularities at ±√
a. Next we truncate the Laurent series expansion of ψ

to obtain a Laurent polynomial ψ̃ approximating ψ in an annulus. Then we solve a system
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of linear equations to find a polynomial h̃1 of given degree such that the Taylor series of[
chµ, h0ψ̃/z + h̃1ψ̃

]
vanishes to as high degree as possible. Note that since ψ is an even

function, we can assume that h̃1 is odd.

The following reconstruction was made with the values r = 1, R = 1.1 and 10 nonzero terms
in the polynomial h̃1. The test object consists of circular discs, and the Radon transform
was sampled at 200 values of θ equally spaced over S1

+, and 101 values of s equally spaced
between −0.5 and 0.5. The width and height of the image are 1 and the attenuation µ = 3.

Original image

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
−0.5

0

0.5
Reconstruction

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
−0.5

0

0.5

Exact image and reconstruction obtained using the inversion formula.

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5

0

0.5

1

1.5

2

2.5
Cross section along x−axis

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5

0

0.5

1

1.5

2

2.5
Cross section along y−axis

Cross section of exact image (dotted) and reconstruction (solid) along the horizontal (left)
and vertical (right) lines through the center of the image.
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