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FACTORING THE KAUFMAN–RICKERT INEQUALITY

Mats Erik Andersson

����������	�
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The Kaufman–Rickert inequality relates the radius of the range of a

complex measure to its total variation. This inequality can in a precise sense be

factored through a metric space using m-adic unit disks. Some sharp estimates

governing geometric properties relating to multilinear Fréchet measures appear as

immediate applications.

Consider a (finite) complex measure µ on some measurable space (Ω,A). Its
total variation norm will be denoted ‖µ‖ as usual, and the radius of its range will
be written

‖µ‖(1) = sup
{

|µ(E)| ; E ∈ A
}

.

The Kaufman–Rickert inequality [KR] then says that

‖µ‖ ≤ π‖µ‖(1),

and that this is best possible. Trivially, ‖µ‖(1) ≤ ‖µ‖. In order to anticipate later
development, we have the elementary inequality ‖µR‖ ≤ 2 ‖µR‖(1) for any signed,
finite measure µR.

Motivated by an m-adic unit disk, one considers for integers m ≥ 2 the quantities

‖µ‖(m) = sup
∣

∣

∣

m−1
∑

k=0

wkµ(Ek)
∣

∣

∣
.

Here Ω = ∪m−1
k=0 Ek is an A-measurable partition and each wk is an m-th root of

unity, i.e., wm
k = 1 for all k.

Denoting the convex range and m-range of µ, respectively, as

Q1(µ) = conv
{

µ(E) ; E ∈ A
}

=
{

∫

fdµ ; 0 ≤ f ≤ 1
}

,

Qm(µ) = conv
{m−1
∑

k=0

wkµ(Ek) ; Ω = ∪Ek, wm
k = 1

}

=
{

∫

fdµ ; f ∈ Bm

}

,
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2 MATS ERIK ANDERSSON

with partitions and roots of unity as above, and where Bm is the set of A-measurable
functions with values in the closed convex hull of the m-th roots of unity. It is then
clear that for each m ≥ 1, the convex set Qm(µ) in the complex plane contains the
origin and is of radius ‖µ‖(m).

Using the presentation of Kaijser [K], being more detailed than the arguments
of Kakutani indicated in [KR], we know that

(1) Q1(µ) has perimeter 2 ‖µ‖, whereas
(2) Qm(µ) has perimeter 2m sin(π/m) ‖µ‖ for m ≥ 2.

The perimeter of convex sets being monotone with respect to inclusions, we
record for m ≥ 2 the known inequality

2m sin(π/m) ‖µ‖ ≤ 2π ‖µ‖(m), i.e., ‖µ‖ ≤ π/m
sin π/m ‖µ‖(m).

Here the larger member is the perimeter of a disk that certainly contains Qm(µ).
On the other hand, let us consider the particular measure dν(θ) = eiθ dθ on the

interval [0, 2π[. It is clear that the implied rotation symmetry makes every one
of the sets Qm(ν) a disk centred at the origin. Hence it follows that 2π ‖ν‖(m) =
2m sin(π/m) ‖ν‖, which incidentally shows the just derived inequalities to be best
possible.

Even though the above argument of Kakutani–Kaijser is complete, it is illumi-
nating to give a second demonstration more in the spirit of Kaufman and Rickert’s
original calculation for the circular geometry. The details are stunningly effective.
Let ω = e−2πi/m. Like in [KR] it suffices to study dµ = eiθ d|µ|, and to calculate

‖µ‖(m) = sup
∣

∣

∣

m−1
∑

j=0

ωj µ(Ej)
∣

∣

∣
= sup

∣

∣

∣

m−1
∑

j=0

ωj
∫

Ej
eiθ d|µ|(θ)

∣

∣

∣

≥ sup
λ

∣

∣

∣

m−1
∑

j=0

ωj

∫ λ+ 2j+1

m
π

λ+ 2j−1

m
π

ei(θ−λ) d|µ|(θ)
∣

∣

∣

≥ sup
λ

m−1
∑

j=0

∫ λ+ 2j+1

m
π

λ+ 2j−1

m
π

Re ei(θ−λ−2πj/m) d|µ|(θ)

≥

∫ 2π

0

m−1
∑

j=0

∫ λ+ 2j+1

m
π

λ+ 2j−1

m
π

cos (θ − λ − 2πj/m
)

d|µ|(θ)dλ
2π

=

∫ 2π

0

m−1
∑

j=0

∫ π/m

−π/m

cos x dx
2π d|µ|(θ) = m

π sin m
π ‖µ‖.

The indicated intervals of integration are understood as half-open in a consistent
manner.

Having followed this kind of reasoning to its completion, we have found that
the value cm = (π/m)/ sin(π/m) is the optimal value in the factorization to be
discussed presently.

Question. Can the Kaufman–Rickert inequality be factored in the sense that for
all measures µ,

‖µ‖ ≤ cm ‖µ‖(m) ≤ cm dm ‖µ‖(1),

where cmdm = π? If this holds true, the Kaufman–Rickert inequality is said to be
m-perfectly factorable. Otherwise, the inequality is perturbedly factorable.
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Observe that by necessity (check the measure ν used earlier on) one must have
cmdm ≥ π for complex measures. The crux of the matter lies in the possibility of
performing the renorming ‖ ‖ → ‖ ‖(m) → ‖ ‖(1) without loosing optimality, hence
the idea of factoring. With an eye to applications, it makes sense to study the same
thing with respect to signed measures, where we speak of the constants cR

m and dR
m,

respectively. It is then obvious that cR

mdR

m ≥ 2, and one can speak of real m-perfect
factorability. The main result of this paper is contained in the following definition
and result.

Definition. Denote for m ≥ 2 by cm and dm the values

cm = sup
µ

‖µ‖

‖µ‖(m)
, dm = sup

µ

‖µ‖(m)

‖µ‖(1)
,

where µ ranges over all non-trivial complex measures. In case only signed, finite
measures are involved, the constants are denoted cR

m and dR

m.

Main Theorem. i) The Kaufman–Rickert inequality is real m-perfectly factor-

able for any m, and in fact

{

cR

m = 1

dR

m = 2

}

for even m, whereas

{

cR

m = 1/ cos(π/2m)

dR

m = 2 cos(π/2m)

}

for odd m.

ii) For any even m the Kaufman–Rickert inequality is m-perfectly factorable

and for these even integers m

cm =
π/m

sin(π/m)
and dm = m sin(π/m).

iii) For odd orders m, only perturbed factorability obtains, and in fact

cm =
π/m

sin(π/m)
, whereas dm =

m sinπ/m

cos(π/2m)
.

It has already been pointed out that the above value for cm has been satisfactorily
established. The determination of dm will turn out to be the deepest result in this
paper, but still elementary. Let it in passing be noted that the geometric proof of
Kakutani–Kaijser for the value of cm also shows that the corresponding quotient
‖µ‖/‖µ‖(m) is strictly less than cm as soon as the set {eiθ ; µ(E) = reiθ for some r >
0, E ∈ A} is finite. This is in sharp contrast to the situation for dm as will be seen
later on.

1. The real factorization. The case of real measures can be dealt with in
purely geometric terms. Let until further notice µ = µ+ − µ− be the Hahn-Jordan
decomposition of a signed, finite, non-zero measure on the measurable space (Ω,A).
Fix the integer m ≥ 2 and write ω = e2πi/m.

The measures µ+ and µ− being positive, clearly Qm(µ+) is a regular m-gon
centred at the origin with one corner in µ+(Ω), whereas Qm(−µ−) has one corner
at −µ−(Ω). By the additivity of m-ranges, see [K], Qm(µ) is the 2m-sided polygon
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centred at the origin and spanned by the points described below. The m-radius
follows with no hesitation.

Qm(µ) = conv
{

µ+(ω)ωj − µ−(Ω)ωk ; j, k = 0, . . . ,m − 1
}

‖µ‖(m) = max
k

|µ+(Ω) − µ−(Ω)ωk |.

In case m is an even integer it is immediate to deduce the relations

‖µ‖(m) = µ+(Ω) + µ−(Ω) = ‖µ‖ ≤ 2 sup
E

|µ(E)| = 2‖µ‖(1).

These express exactly what is claimed in the Main theorem, part i) for even m.
Turning to odd m, one first interprets the above computation as

‖µ‖(m) = |µ+(Ω) + eiπ/mµ−(Ω) |,

from which clearly follows

‖µ‖(m)

‖µ‖
≥ inf

0≤θ≤1

∣

∣ θeiπ/2m + (1 − θ)e−iπ/2m
∣

∣ = cos π
2m

.

This gives an upper bound cR
m ≤ 1/ cos(π/2m). On the other hand,

‖µ‖(m)

‖µ‖(1)
≤ sup

0≤θ≤1

|(1 − θ) + θeiπ/m|

max{θ, 1 − θ}
= sup

0≤x≤1
|x + eiπ/m| = 2 cos π

2m ,

which is an upper bound on dR

m. The product of these two bounds being exactly 2,
and since a simple two-point measure has

2 = ‖δ0 − δ1‖ ≤ [cos π/2m]−1 ‖δ0 − δ1‖(m)

≤ 2 cos(π/2m) · [cos π/2m]−1 ‖δ0 − δ1‖(1) = 2,

the above bounds cannot be improved. This completes the proof that in the real-
valued case, the Kaufman–Rickert inequality is real m-perfectly factorable for any
m ≥ 2.

2. A relevant extremal problem. Conceptually it seems to be of benefit to
reformulate the determination of dm as a 2m-dimensional extremal problem, and
thus to avoid the large parameter spaces arising from the use of measures.

For a fixed integer m ≥ 2 consider two classes of vectors, each of whose members
has 2m components, standardized as v = (v0, . . . , v2m−1). To wit,

Vm =
{

v ; {vk}
2m−1
k=0 is permutation of {e2πik/m}2m−1

k=0

}

,

Um =
{

0, 1
}2m

.

Given two vectors z and w, their product is defined to be z ·w =
∑2m−1

k=0 zkwk.



FACTORING THE KAUFMAN–RICKERT INEQUALITY 5

Lemma 1. Let Sm = C
2m \ {0} and denote by βm the quantity

inf
z∈Sm

max
u∈Um

min
v∈Vm

| z · u |

| z · v |
.

Then dm = β−1
m .

For the proof we consider any complex, non-zero measure µ on (Ω,A). There
are then a measurable partition Ω = E0 ∪ · · · ∪ Em−1, as well as an A-measurable
set F , which when writing E = Fk ∪ F ′

k, Fk = Ek ∩ F , enjoy the properties

‖µ‖(1) = |µ(F )| =
∣

∣

∑m−1

k=0
µ(Fk)

∣

∣, ‖µ‖(m) =
∣

∣

∑m−1

k=0
ωkµ(Ek)

∣

∣.

Consider next the vector

w =
(

µ(F0), µ(F ′
0), . . . , µ(Fm−1), µ(F ′

m−1)
)

.

By construction the first equality in the following calculation holds.

‖µ‖(1)

‖µ‖(m)
= max

u∈Um

min
v∈Vm

|w · u |

|w · v |
≥ βm, i.e., ‖µ‖(m) ≤ β−1

m ‖µ‖(1).

Finally, there is to each ε > 0 some y ∈ Sm such that, by definition of the
extremal problem,

max
u∈Um

|y · u | ≤ (βm + ε) max
v∈Vm

|y · v |.

This information suggests a measure on 2m points realized as

ν({k}) = yk, k = 0, . . . , 2m − 1.

The above property of y thus translates into

‖ν‖(1) = max
u∈Um

|y · u | ≤ (βm + ε) max
v∈Vm

|y · v | ≤ (βm + ε) ‖ν‖(m).

Collecting together, we have therefore (upper bound from the first part)

(βm + ε)−1 ≤
‖ν‖(m)

‖ν‖(1)
≤ β−1

m .

Taking very small values for ε, this completes the verification of the lemma.

Corollary 2. For even integers m the bound βm ≤
[

m sin π
m

]−1
obtains, whereas

odd orders m forces the bound βm ≤ cos(π/2m)
[

m sin(π/m)
]−1

.

The proof begins with an elementary fact to keep steadily in mind.
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Observation. Let {an}
N
n=1 consist of non-zero complex numbers. Any set E ⊆

{1, . . . , N} such that |
∑

n∈E an| = maxT |
∑

n∈T an| has the property that for

some λ the equality E = {n ; Re ane−iλ ≥ 0} holds. In fact, this λ is determined

by
∑

n∈E an = reiλ for some r ≥ 0.

Suppose E has the maximal property |
∑

n∈E an| = maxT |
∑

n∈T an| and write
∑

n∈E an = reiλ, r ≥ 0. There can be no m ∈ E with Re ame−iλ < 0, since
otherwise E′ = E \ {m} enjoys

∣

∣

∑

n∈E′ an

∣

∣ = |reiλ − am| = |r − ame−iλ| > r;

contradicting the maximality.
On the other hand, any absence m 6∈ E with Re ame−iλ ≥ 0 implies for E′ =

E ∪ {m} that by maximality

r ≥
∣

∣

∑

n∈E′ an

∣

∣ = |reiλ + am| = |r + Re ame−iλ + i Im ame−iλ|,

whence necessarily ame−iλ = 0, since Re ame−iλ ≥ 0. Thus E is described com-
pletely by {n ; Re ame−iλ ≥ 0} for some λ, and the observation holds true.

For the corollary one considers any y ∈ Vm. Clearly maxv∈Vm
|y · v | = 2m.

Any closed half-plane pivoting at the origin contains for even m = 2n either 2n or
2(n + 1) numbers appearing as components in y. (They are in a geometric sence
consecutive, and in the larger case the opposite numbers cancel in the sum below.)
By the observation above

max
u∈Um

|y · u | = 2
∣

∣1 + · · · + exp
(

2πi
m (m

2 − 1)
)∣

∣ =
2

sin(π/m)
.

Dividing by the observed maximum 2m for v ∈ Vm, gives βm ≤
[

m sin(π/m)]−1

and therefore the claim.
For odd orders m = 2n + 1, the relevant half-plane can contain 2n or 2(n + 1)

elements, and bearing
∑

k yk = 0 in mind the observation yields

max
u∈Um

|y · u | = 2
∣

∣1 + · · · + exp
(

2πi
m

m−3
2

)
∣

∣ =
2 cos(π/2m)

sinπ/m
.

Again dividing by 2m, an upper bound for βm appears, which provides the claimed
bound for general odd m ≥ 3, and therefore finishes the corollary.

Proposition 3. For even orders m the true value is βm =
[

m sin π
m

]−1
, and for

all odd orders βm = cos(π/2m)
m sin(π/m) .

Proof. By the definition of βm, matters boil down to providing

|y · v | ≤ β−1
m max

T⊆Y

∣

∣

∑

x∈T
x
∣

∣

for all y ∈ C
2m and v ∈ Vm. Here Y denotes the multi-set {y0, . . . , y2m−1} derived

from y and which respects possible multiplicity of some element. Write in the sequel
ω = e2πi/m and vk = ωρ(k) using any permutation ρ of {0, . . . , 2m − 1} determined
by v ∈ Vm. The particular choice of ρ does not alter the values ωρ(k).
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Guided by the proof of corollary 2, even orders m = 2n allow the calculation

|y · v |

sin π
m

=

∣

∣

∣

∣

∣

(

n−1
∑

j=0

ωj

)(

2m−1
∑

k=0

ωρ(k)yk

)∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

m−1
∑

l=0

ωl

(

∑

ρ(k)+j≡l (mod m)

yk

)∣

∣

∣

∣

∣

≤

m−1
∑

l=0

∣

∣

∣

∑

{

yk ; ρ(k) + j ≡ l (mod m), 0 ≤ j ≤ m
2 − 1

}

∣

∣

∣

≤ m max
T⊆Y
|T |=m

∣

∣

∑

T
∣

∣

and shows β−1
m ≤ m sin π

m
. Paired with the result of Corollary 2, the determination

of βm for even orders is complete.
Concerning odd m = 2n + 1 one records that, again suggested by the proof of

the corollary,

cos π
2m

sin π
m

|y · v | =

∣

∣

∣

∣

∣

(

n−1
∑

j=0

ωj

)(

2m−1
∑

k=0

ωρ(k)yk

) ∣

∣

∣

∣

∣

≤ m max
T⊆Y

|T |=(m−1)/2

∣

∣

∑

T
∣

∣,

which establishes

|y · v | ≤
m sin π

m

cos π
2m

max
u∈Um

|y · u |

for every y ∈ C
2m, every v ∈ Vm, and odd order m. Taking maximum over all

v ∈ Vm this expresses the required lower bound on βm, so the determination of
said constant follows from the corollary. Thereby the proposition and also the
Main Theorem are completely proved.

3. Applications. The investigation that promoted my discovery of the main
theorem dealt with multi-linear functionals and in particular Fréchet measures.
The reader is urged to consult the commendable monograph by R. Blei [B] in order
to get the right perspective. For clarity, I will restrict attention to the discrete
Fréchet measure spaces Fk(N, . . . , N), to be recalled below, but the reader will find
little difficulty in handling more general situations.

To begin with, the constants cm determined in the Main Theorem appear in [B],
chapter II, where they are only bounded from above with coarser estimates. These
constants are governing interrelations between inequalities of Khintchin, Orlicz, and
Littlewood, respectively. Further into the theory these relate also to the Grothen-
dieck inequality, cf. [B]. The present determination of each cm could potentially
produce additional geometric insight in the said situations. The most important
new information is now c1 = c2 = π/2, as Blei could repeatedly have applied.
In [B], chapter II, c1 and c2 are synonymous. From another viewpoint, c2 = π/2
governs the best quotient between ‖f‖A(R) and ‖f‖∞ when f has Fourier spectrum
contained in the Rademacher system.
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The Fréchet variation of a complex-valued function β on N
k is by definition

‖β‖Fk
= sup

{∥

∥

∥

∑

nj∈Sj

β(n1, . . . , nk) rn1
⊗ · · · ⊗ rnk

∥

∥

∥

∞
;

finite sets Sj ⊂ N, j = 1, . . . , k
}

.

Generalizing in a natural way, the Fréchet variation of order m is introduced as

‖β‖m,Fk
= sup

{
∥

∥

∥

∑

nj∈Sj

β(n1, . . . , nk)χn1
⊗ · · · ⊗ χnk

∥

∥

∥

∞
;

finite sets Sj ⊂ N, j = 1, . . . , k
}

.

Here χ1, χ2, . . . are the coordinate projections on the compact product space

Ωm =
(

Tm

)N
, Tm = {e2πij/m ; j = 0, . . . ,m − 1},

and the norm inside the supremum is the one used on L∞
(

(Ωm)k
)

, derived from
Haar measure. Thus the original Fréchet variation is the case of m = 2, where
now {rn} lists the Rademacher functions. The space Fk = Fk(N, . . . , N) of Fréchet
measures consists of all β with ‖β‖Fk

< ∞. It is standard to find that ‖ ‖Fk

and ‖ ‖m,Fk
are equivalent norms. In addition, ‖α‖m,F1

= ‖α‖(m) in the previous
notation.

A second means of measuring the size of β is needed here. It resembles the
radius of the range of a complex measure and can be called the rectangular width
of β ∈ Fk:

[[β]]Fk
= sup

{ ∣

∣

∣

∑

nj∈Sj

1≤j≤k

β(n1, . . . , nk)
∣

∣

∣
; finite Sj ⊂ N

}

.

One way of interpreting general inequalities similar to Kaufman–Rickert’s original
would be to ask for the existence of finite constants α such that

‖β‖m,Fk
≤ α [[β]]Fk

for all β in Fk. The previous work on determining dm will turn out to answer this
fully.

Definition. Denote the minimal α in the previous inequality by αm,k.

The quickly established - and well-known - fact that α2,k ≤ 4k has been used
in [B], section VI:3, and originally in [B2], to develop a theory of extensions of
Fréchet measures. The purpose being similar to the extension theory for measures
on product algebras to the corresponding product σ-algebras.

Proposition 4. The exact value of αm,k is (dm)k.

Although the exact value α2,k = 2k is of no obvious additional implications to
Blei’s extension theory, it should be displayed for the sake of clarity. For all N ≥ 1,
∥

∥

∥

∥

∥

N
∑

n1,...,nk=1

β(n1, . . . , nk)rn1
⊗ · · · ⊗ rnk

∥

∥

∥

∥

∥

∞

≤ 2k sup
T1,...,Tk

⊆{1,...,N}

∣

∣

∣

∑

nj∈Tj

1≤j≤k

β(n1, . . . , nk)
∣

∣

∣
.

Conceivably some geometric content of the Fréchet variation could be extracted
from the present, improved information.

The proof of the proposition hinges on a multiplicative structure that is implicit
in the Fk-norm and the rectangular width. This is explained in a preparatory result.
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Lemma 5. The quantity αm,k = supβ 6=0
‖β‖m,Fk

[[β]]Fk

enjoys αm,k = (αm,1)
k.

Consider first the special case where β is an elementary tensor β = γ1 ⊗ · · · ⊗ γk,
with each γj : N → C. Clearly

‖γ1 ⊗ · · · ⊗ γk‖m,Fk
= sup

S1,...,Sk

∥

∥

∥

∑

nj∈Sj

γ1(n1) . . . γk(nk)χn1
⊗ · · · ⊗ χnk

∥

∥

∥

∞

= ‖γ1‖m,F1
. . . ‖γk‖m,F1

,

[[γ1 ⊗ · · · ⊗ γk]]Fk
= sup

S1,...,Sk

∣

∣

∣

∑

nj∈Sj

γ1(n1) . . . γk(nk)
∣

∣

∣
= [[γ1]]F1

. . . [[γk]]F1
,

which express

‖γ1 ⊗ · · · ⊗ γk‖m,Fk

[[γ1 ⊗ · · · ⊗ γk]]Fk

=

k
∏

j=1

‖γj‖m,F1

[[γj ]]F1

.

Taking supremum for all γj implies αm,k ≥ (αm,1)
k. To establish the reverse

inequality a shortened form of Blei’s original calculation is strong enough to get an
inductive argument going.

For fixed, finite S1, . . . , Sk ⊂ N there is in the first stage some T1 ⊆ S1 and later
on also Tj ⊆ Sj for j ≥ 2 such that for each (t1, . . . , tk) ∈ (Ωm)k

∣

∣

∣

∑

nj∈Sj , j≥1

β(n1, . . . , nk)χn1
(t1) . . . χnk

(tk)
∣

∣

∣

=
∣

∣

∣

∑

n1∈S1

[

∑

nj∈Sj , j≥2

β(n1, . . . , nk)χn2
(t2) . . . χnk

(tk)
]

χn1
(t1)

∣

∣

∣

≤ αm,1

∣

∣

∣

∑

n1∈T1

[

∑

nj∈Sj, j≥2

β(n1, . . . , nk)χn2
(t2) . . . χnk

(tk)
]
∣

∣

∣

≤ αm,1

∥

∥

∥

∑

nj∈Sj, j≥2

[
∑

n1∈T1
β(n1, . . . , nk)

]

χn2
⊗ · · · ⊗ χnk

∥

∥

∥

∞

≤ αm,1 αm,k−1

∣

∣

∣

∑

nj∈Tj, j≥2

∑

n1∈T1
β(n1, . . . , nk)

∣

∣

∣
.

This calculation clearly says that

‖β‖m,Fk
≤ αm,1 αm,k−1 [[β]]Fk

from which follows

αk,m ≤ αm,1 αm,k−1 ≤ · · · ≤ (αm,1)
k.

Therefore the lemma has been demonstrated.
Since a quick check at the Main Theorem reveals αm,1 = dm, Proposition 4 is an

immediate consequence of the lemma. In retrospect, the methods apply unchanged
when any real-valued β is considered, so one finds also αR

m,k = (dR
m)k in the natural

sense.
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As a remark, let it be recorded that αm,k is an attained maximum. In fact,
bookkeeping in the previous material allows explicit construction of γm,k ∈ Fk,
non-zero precisely on {1, . . . , 2m}k, such that ‖γm,k‖m,Fk

= (dm)k [[γm,k]]Fk
.

The counterpoint to the above analysis will serve as the first factor in a multi-
linear Kaufman–Rickert inequality. The standard, less precise result (cf. Lemma
IV:2 in [B]) serves to identify Fk as isomorphically a dual Banach space. If the
previous application used the knowledge of dm, the final result focuses on cm.

Define a measuring quantity on Fk by

〈〈

β
〉〉

Fk
= sup

{
∣

∣

∣

∑

nj∈Tj

1≤j≤k

β(n1, . . . , nk) z(1)
n1

. . . z(k)
nk

∣

∣

∣
; finite Tj , z

(l)
j ∈ C, |z

(l)
j | ≤ 1

}

.

Observe that on F1 the identity 〈〈α〉〉F1
= ‖α‖`1 holds. In fact, 〈〈 〉〉Fk

is the injective

tensor norm in `1
∨
⊗ . . .

∨
⊗ `1 with k factors. Thus 〈〈 〉〉Fk

is a norm, weaker than
‖ ‖`1(Nk).

Definition. Let γm,k = sup
β 6=0

〈〈

β
〉〉

Fk

‖β‖m,Fk

.

Obviously γm,1 = cm.

Proposition 6. γm,k = (cm)k for all k ≥ 1 and m ≥ 2.

The proof is very similar to the calculation of αm,k. It is clear that for αj : N → C

〈〈

α1 ⊗ · · · ⊗ αk

〉〉

Fk
=
〈〈

α1

〉〉

F1
. . .
〈〈

αk

〉〉

F1
,

whence

γm,k ≥ sup
αj

〈〈

α1 ⊗ · · · ⊗ αk

〉〉

Fk

‖α1 ⊗ · · · ⊗ αk‖m,Fk

= sup
αj

k
∏

j=1

‖αj‖`1

‖αj‖(m)
= (γm,1)

k = (cm)k.

Consider next a fixed β ∈ Fk and take any finite subsets T1, . . . , Tk of natural

numbers as well as complex numbers z
(l)
j of modulus at most one. Then

∣

∣

∣

∑

nj∈Tj

j≥1

β(n1, . . . , nk) z(1)
n1

. . . z(k)
nk

∣

∣

∣

=
∣

∣

∣

∑

n1∈T1

[

∑

nj∈Tk

j≥2

β(n1, . . . , nk) z(2)
n2

. . . z(k)
nk

]

z(1)
n1

∣

∣

∣

≤ γm,1

∥

∥

∥

[

∑

nj∈Tj

j≥2

β(n1, . . . , nk) z(2)
n2

. . . z(k)
nk

]
∥

∥

∥

m,F1

,

where the inner quantity is in F1 as n1 varies. This latter (m,F1)-norm is the
supremum of the following expression as S1 and x1 range through all their values.
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∣

∣

∣

∑

n1∈S1

[

∑

nj∈Tj

j≥2

β(n1, . . . , nk) z(2)
n2

. . . z(k)
nk

]

χn1
(x1)

∣

∣

∣

=
∣

∣

∣

∑

nj∈Tj

j≥2

[

∑

n1∈S1

β(n1, . . . , nk)χn1
(x1)

]

z(2)
n2

. . . z(k)
nk

∣

∣

∣

≤ γm,k−1

∥

∥

∥

[
∑

n1∈S1

β(n1, . . . , nk)χn1
(x1)

]

∥

∥

∥

m,Fk−1

(as n2, . . . , nk changes)

= γm,k−1 sup
Sj, j≥2

∥

∥

∥

∑

nj∈Sj

j≥2

[
∑

n1∈S1

β(n1, . . . , nk)χn1
(x1)

]

χn2
⊗ · · · ⊗ χnk

∥

∥

∥

∞

≤ γm,k−1 ‖β‖m,Fk
.

Taken together these state

∣

∣

∣

∑

nj∈Tj

j≥1

β(n1, . . . , nk) z(1)
n1

. . . z(k)
nk

∣

∣

∣
≤ γm,1 γm,k−1 ‖β‖m,Fk

.

Letting z
(l)
j and Tj range through all possibilities

〈〈

β
〉〉

Fk
≤ γm,1 γm,k−1 ‖β‖m,Fk

,

whence
γm,k ≤ γm,1 γm,k−1 ≤ · · · ≤ (γm,1)

k = (cm)k.

This establishes the claimed result. Looking back, it is clear that the methods
involved also allow the conclusion γR

m,k = (cR
m)k for the real-valued setting.

To round off, Propositions 4 and 6 express a factoring of a multi-linear Kaufman–
Rickert inequality:

[[β]]Fk
≤
〈〈

β
〉〉

Fk
≤

[

π/m

sin(π/m)

]k

‖β‖m,Fk

≤ (cmdm)k [[β]]Fk
=











πk [[β]]Fk
, m even

[

π

cos(π/2m)

]k

[[β]]Fk
, m odd

valid for all β ∈ Fk. All these inequalities are individually best possible, the first
inequality being trivial.

The classical situation for Fréchet variation, i.e., m = 2, deserves to be high-
lighted:

[[β]]Fk
≤
〈〈

β
〉〉

Fk
≤
(

π
2

)k
‖β‖Fk

≤ πk [[β]]Fk
,

where again no inequality can be improved. The special case k = 1 is exactly

‖f‖(1) ≤ ‖f‖`1 ≤ π
2 ‖f‖(2) ≤ π ‖f‖(1), all f ∈ `1(N).
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Explicitly writing the norms involved, one has

sup
T

∣

∣

∑

n∈T

f(n)
∣

∣ ≤ ‖f‖`1 ≤ π
2 sup

εn=±1

∣

∣

∑

n
εnf(n)

∣

∣ ≤ π sup
T

∣

∣

∑

n∈T

f(n)
∣

∣,

which is the original Kaufman–Rickert inequality in factored form. This should
also be recognized as the best possible result for sums of Rademacher functions,
visible in the third member.

References

[B] R. Blei, Analysis in integer and fractional dimension, Cambridge stud. in adv. math. 71,

Cambridge Univ. Press, 2001.
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