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THE RING OF ARITHMETICAL FUNCTIONS WITH

UNITARY CONVOLUTION: DIVISORIAL AND

TOPOLOGICAL PROPERTIES.

JAN SNELLMAN

Abstract. We study (A, +,⊕), the ring of arithmetical functions with
unitary convolution, giving an isomorphism between (A, +,⊕) and a
generalized power series ring on infinitely many variables, similar to
the isomorphism of Cashwell-Everett[4] between the ring (A, +, ·) of
arithmetical functions with Dirichlet convolution and the power series
ring

�
[[x1 , x2, x3, . . . ]] on countably many variables. We topologize it

with respect to a natural norm, and shove that all ideals are quasi-finite.
Some elementary results on factorization into atoms are obtained. We
prove the existence of an abundance of non-associate regular non-units.

1. Introduction

The ring of arithmetical functions with Dirichlet convolution, which we’ll
denote by (A,+, ·), is the set of all functions N

+ → C, where N
+ denotes the

positive integers. It is given the structure of a commutative C-algebra by
component-wise addition and multiplication by scalars, and by the Dirichlet
convolution

f · g(k) =
∑

r|k

f(r)g(k/r). (1)

Then, the multiplicative unit is the function e1 with e1(1) = 1 and e1(k) = 0
for k > 1, and the additive unit is the zero function 0.

Cashwell-Everett [4] showed that (A,+, ·) is a UFD using the isomorphism

(A,+, ·) ' C[[x1, x2, x3, . . . ]], (2)

where each xi corresponds to the function which is 1 on the i’th prime
number, and 0 otherwise.

Schwab and Silberberg [9] topologised (A,+, ·) by means of the norm

|f | =
1

min { k f(k) 6= 0 }
(3)

They noted that this norm is an ultra-metric, and that ((A,+, ·), |·|) is a
valued ring, i.e. that

(1) |0| = 0 and |f | > 0 for f 6= 0,
(2) |f − g| ≤ max {|f |, |g|},
(3) |fg| = |f ||g|.
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2 JAN SNELLMAN

They showed that (A, |·|) is complete, and that each ideal is quasi-finite,
which means that there exists a sequence (ek)∞k=1, with |ek| → 0, such that
every element in the ideal can be written as a convergent sum

∑

k=1 ckek,
with ck ∈ A.

In this article, we treat instead (A,+,⊕), the ring of all arithmetical
functions with unitary convolution. This ring has been studied by several
authors, such as Vaidyanathaswamy [11], Cohen [5], and Yocom [13].

We topologise A in the same way as Schwab and Silberberg [9], so that
(A,+,⊕) becomes a normed ring (but, in contrast to (A,+, ·), not a valued
ring). We show that all ideals in (A,+,⊕) are quasi-finite.

We show that (A,+,⊕) is isomorphic to a monomial quotient of a power
series ring on countably many variables. It is présimplifiable and atomic,
and there is a bound on the lengths of factorizations of a given element. We
give a sufficient condition for nilpotency, and prove the existence of plenty
of regular non-units.

Finally, we show that the set of arithmetical functions supported on
square-free integers is a retract of (A,+,⊕).

2. The ring of arithmetical functions with unitary

convolution

Let pi denote the i’th prime number, and denote by P the set of prime
numbers. Let PP denote the set of prime powers. Let ω(r) denote the
number of distinct prime factors of r, with ω(1) = 0.

Definition 2.1. If k,m are positive integers, we define their unitary product
as

k ⊕ m =

{

km gcd(k,m) = 1

0 otherwise
(4)

If k ⊕ m = p, then we write k ||p and say that k is a unitary divisor of p.

The so-called unitary convolution was introduced by Vaidyanathaswamy
[11], and was further studied Eckford Cohen [5].

Definition 2.2. A = {f : N
+ → C}, the set of complex-valued functions on

the positive integers. We define the unitary convolution of f, g ∈ A as

(f ⊕ g)(n) =
∑

m⊕p=n
m,n≥1

f(m)g(n) =
∑

d||n

f(d)g(n/d) (5)

and the addition as

(f + g)(n) = f(n) + g(n)

The ring (A,+,⊕) is called the ring of arithmetic functions with unitary
convolution.

Definition 2.3. For each positive integer k, we define ek ∈ A by

ek(n) =

{

1 k = n

0 k 6= n
(6)
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We also define1 0 as the zero function, and 1 as the function which is con-
stantly 1.

Lemma 2.4. 0 is the additive unit of A, and e1 is the multiplicative unit.
We have that

(ek1
⊕ek2

⊕· · ·⊕ekr
)(n) =

{

1 n = k1k2 · · · kr and gcd(ki, kj) = 1 for i 6= j

0 otherwise

(7)
hence

ek1
⊕ ek2

⊕ · · · ⊕ ekr
=

{

ek1k2···kr
if gcd(ki, kj) = 1 for i 6= j

0 otherwise
(8)

Proof. The first assertions are trivial. We have [10] that for f1, . . . , fr ∈ A,

(f1 ⊕ · · · fr)(n) =
∑

a1⊕···ar=n

f1(a1) · · · fr(ar) (9)

Since

ek1
(a1)ek2

(a2) · · · ekr
)(ar) = 1 iff ∀i : ki = ai,

(7) follows. �

Lemma 2.5. Any en can be uniquely expressed as a square-free monomial
in { ek k ∈ PP }.

Proof. By unique factorization, there is a unique way of writing n = pa1

i1
· · · par

ir
,

and (8) gives that

en = ep
a1
i1

···par
ir

= ep
a1
i1

⊕ · · · ep
ar
ir

.

�

Theorem 2.6. (A,+,⊕) is a quasi-local, non-noetherian commutative ring
having divisors of zero. The units U(A) consists of those f such that f(1) 6=
0.

Proof. It is shown in [10] that (A,+,⊕) is a commutative ring, having zero-
divisors, and that the units consists of those f such that f(1) 6= 0. If
f(1) = 0 then

(f ⊕ g)(1) = f(1)g(1) = 0.

Hence the non-units form an ideal m, which is then the unique maximal
ideal.

We will show (Lemma 3.10) that m contains an ideal (the ideal generated
by all ek, for k > 1) which is not finitely generated, so A is non-noetherian.

�

1In [10], 1 is denoted e, and e1 denoted e0.
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3. A topology on A

The results of this section are inspired by [9], were the authors studied
the ring of arithmetical functions under Dirichlet convolution. We’ll use the
notations of [3]. We regard C as trivially normed.

Definition 3.1. Let f ∈ A \ {0}. We define the support of f as

supp(f) =
{

n ∈ N
+ f(n) 6= 0

}

(10)

We define the order2 of a non-zero element by

N(f) = min supp(f) (11)

We also define the norm of f as

|f | = N(f)−1 (12)

and the degree as

D(f) = min {ω(k) k ∈ supp(f) } (13)

By definition, the zero element has order infinity, norm 0, and degree -1.

Lemma 3.2. The value semigroup of (A, |·|) is |A \ {0}| = { 1/k k ∈ N
+ } ,

a discrete subset of R
+.

Lemma 3.3. Let f, g ∈ A \ {0}. Let N(f) = i, N(g) = j, so that f(i) 6= 0
but f(k) = 0 for all k < i, and similarly for g. We assume that i ≤ j. Then,
the following hold:

(i) N(f − g) ≥ min {N(f),N(g)}.
(ii) N(cf) = N(f) for c ∈ C \ {0}.
(iii) N(f) = 1 iff f is a unit.
(iv) N(f · g) = N(f)N(g) ≤ N(f ⊕ g), with equality iff (i, j) = 1.
(v) N(f ⊕ g) ≥ max {N(f),N(g)}, with strict inequality iff both f and g

are non-units.
(vi) D(f + g) ≥ minD(f), D(g).
(vii) D(f · g) = D(f) + D(g).
(viii) D(f) = 0 if and only if f is a unit.
(ix) Suppose that f ⊕ g 6= 0. Then

D(f ⊕ g) ≥ D(f) + D(g) ≥ max {D(f), D(g)}.

with D(f) + D(g) > max {D(f), D(g)} if f, g are non-units.

Proof. (i), (ii), and (iii) are trivial, and (iv) is proved in [10]. (vi), (vii),
and (viii) are proved in [8]. Let m be a monomial in the support of f such
that D(m) = D(f), and let n be a monomial in the support of g such that
D(n) = D(g). For any a in the support of f and any q in the support of g,
such that a ⊕ q 6= 0, we have that

D(a ⊕ q) = D(a) + D(q) ≥ D(f) + D(g).

This proves (ix). (v) is proved similarly. �

Corollary 3.4. |f ⊕ g| ≤ |f ||g| = |f · g|.

2In [10] the term norm is used.
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Proposition 3.5. |·| is an ultrametric function on A, making (A,+,⊕)
a normed ring, as well as a faithfully normed, b-separable complete vector
space over C.

Proof. ((A,+, ·), |·|) is a valuated ring, and a faithfully normed complete
vector space over C [9]. It is also separable with respect to bounded maps
[3, Corollary 2.2.3]. So (A,+) is a normed group, hence Corollary 3.4 shows
that (A,+,⊕) is a normed ring. �

Note that, unlike ((A,+, ·), |·|), the normed ring ((A,+,⊕), |·|) is not a
valued ring, since

|e2 ⊕ e2| = |0| = 0 < |e2|
2 = 1/4.

In fact, we have that

Lemma 3.6. If f is a unit, then 1 = |fn| = |f |n for all positive integers n.
If n is a non-unit, then |fn| < |f |n for all n > 1.

Proof. The first assertion is trivial, so suppose that f is a non-unit. From
Corollary 3.4 we have that |fn| ≤ |f |n. If |f | = 1/k, k > 1, i.e. f(k) 6= 0
but f(j) = 0 for j < k, then f 2(k2) = 0 since gcd(k, k) = k > 1. It follows

that
∣

∣f2
∣

∣ > |f |2, from which the result follows. �

Recall that in a normed ring, a non-zero element f is called

• topologically nilpotent if fn → 0,
• power-multiplicative if |fn| = |f |n for all n,
• multiplicative if |fg| = |f ||g| for all g in the ring.

Theorem 3.7. Let f ∈ ((A,+,⊕), |·|), f 6= 0. Then the following are
equivalent:

(1) f is topologically nilpotent,
(2) f is not power-multiplicative,
(3) f is not multiplicative3 in the normed ring (A,+,⊕), |·|),
(4) f is a non-unit,
(5) |f | < 1.

Proof. Using [3, 1.2.2, Prop. 2], this follows from the previous Lemma, and
the fact that for a unit f ,

1 =
∣

∣f−1
∣

∣ = |f |−1.

�

3.1. A Schauder basis for (A, |·|).

Definition 3.8. Let A′ denote the subset of A consisting of functions with
finite support. We define a pairing

A×A′ → C

〈f, g〉 =
∞
∑

k=1

f(k)g(k)
(14)

3This is not the same concept as multiplicativity for arithmetical functions, i.e. that
f(nm) = f(n)f(m) whenever (n, m) = 1. However, since the latter kind of elements
satisfy f(1) = 1, they are units, and hence multiplicative in the normed-ring sense.
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Theorem 3.9. The set { ek k ∈ N
+ } is an ordered orthogonal Schauder

base in the normed vector space (A, |·|). In other words, if f ∈ A then

f =
∞
∑

k=1

ckek, ck ∈ C (15)

where

(i) |ek| → 0,
(ii) the infinite sum (15) converges w.r.t. the ultrametric topology,
(iii) the coefficients ck are uniquely determined by the fact that

〈f, ek〉 = f(k) = ck (16)

(iv)

max
k∈ � +

{|ck||ek|} =

∣

∣

∣

∣

∣

∞
∑

k=1

ckek

∣

∣

∣

∣

∣

(17)

The set { ep p ∈ PP } generates a dense subalgebra of ((A,+,⊕), |·|).

Proof. It is proved in [9] that this set is a Schauder base in the topological
vector space (A, |·|). It also follows from [9] that the coefficients ck in (3.9)
are given by ck = f(k).

It remains to prove orthogonality. With the above notation,

|f | =

∣

∣

∣

∣

∣

∞
∑

k=1

ckek

∣

∣

∣

∣

∣

= 1/j,

where j is the smallest k such that ck 6= 0. Recalling that C is trivially
normed, we have that

|ck||ek| =

{

|ek| = 1/k if ck 6= 0

0 if ck = 0
,

so maxk∈ � + {|ck||ek|} = 1/j, with j as above, so (17) holds.
By Lemma 2.5 any ek can be written as a square-free monomial in the ele-

ments of { ep p ∈ PP }. The set { ek k ∈ N
+ } is dense in A, so { ep p ∈ PP }

generates a dense subalgebra. �

Let J ⊂ m denote the ideal generated by all ek, k > 1.

Lemma 3.10. J is not finitely generated.

Proof. If J is finitely generated, then there is an N such that

J = (e2, . . . , eN ) .

Let L be a prime number, L > N . Since eL ∈ J , we have that

eL =
N
∑

k=2

fk ⊕ ek, fk ∈ A.

We write fk =
∑∞

i=1 ckiei, so that

eL =
N
∑

k=2

ek ⊕
∞
∑

i=1

cikei =
N
∑

k=2

∞
∑

i=1

cikei ⊕ ek =
N
∑

k=2

∑

gcd(i,k)=1

cikeik.
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But this is impossible, because we can not write L = ik with gcd(i, k) = 1
and 2 ≤ i ≤ N < L. �

Definition 3.11. An ideal I ⊂ A is called quasi-finite if there exists a
sequence (gk)∞k=1 in I such that |gk| → 0 and such that every element f ∈ I
can be written (not necessarily uniquely) as a convergent sum

f =

∞
∑

k=0

ak ⊕ gk, ak ∈ A (18)

Lemma 3.12. m is quasi-finite.

Proof. By Theorem 3.9 the set { ek k > 1 } is a quasi-finite generating set
for m. �

Since all ideals are contained in m, it follows that any ideal containing
{ ek k > 1 } is quasi-finite. Furthermore, such an ideal has m as its closure.
In particular, J is quasi-finite, but not closed.

Theorem 3.13. All (non-zero) ideals in A are quasi-finite. In fact, given
any subspace I if we can find

G(I) := (gk)∞k=1 (19)

such that for all f ∈ I,

∃c1, c2, c3, · · · ∈ C, f =

∞
∑

i=1

cigi. (20)

So all subspaces possesses a Schauder basis.

Proof. We construct G(I) in the following way: for each

k ∈ {N(f) f ∈ I \ {0} } =: N(I)

we choose a gk ∈ I with N(gk) = k, and with gk(k) = 1. In other words,
we make sure that the “leading coefficient” is 1; this can always be achieved
since the coefficients lie in a field. For k 6∈ N(I) we put gk = 0.

To show that this choice of elements satisfy (20), take any f ∈ I, and put
f0 = f . Then define recursively, as long as fi 6= 0,

ni := N(fi)

C 3 ai := fi(ni)

A 3 fi+1 := fi − aigni

Of course, if fi = 0, then we have expressed f as a linear combination of

gn1
, . . . , gni−1

,

and we are done. Otherwise, note that by induction fi ∈ I, so ni ∈ N(I),
hence gni

6= 0. Thus N(fi+1) > N(fi), so |fi+1| < |fi|, whence

|f0| > |f1| > |f2| > · · · → 0.

But

fi+1 = f −
i
∑

j=1

ajgnj
,
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so

Fi :=
i
∑

j=1

ajgnj
→ f,

which shows that
∑∞

j=1 ajgj = f . �

4. A fundamental isomorphism

4.1. The monoid of separated monomials. Let

Y =
{

y
(j)
i i, j ∈ N

+
}

(21)

be an infinite set of variables, in bijective correspondence with the integer
lattice points in the first quadrant minus the axes. We call the subset

Yi =
{

y
(j)
i j ∈ N

+
}

(22)

the i’th column of Y .
Let [Y ] denote the free abelian monoid on Y , and let M be the subset

of separated monomials, i.e. monomials in which no two occurring variables
come from the same column:

M =
{

y
(j1)
i1

y
(j1)
i2

· · · y
(jr)
ir

1 ≤ ii < i2 < · · · ir
}

(23)

We regard M as a monoid-with-zero, so that the multiplication is given
by

m ⊕ m′ =

{

mm′ mm′ ∈ M

0 otherwise
(24)

Note that the zero is exterior to M, i.e. 0 6∈ M. The set M ∪ {0} is a
(non-cancellative) monoid if we define m ⊕ 0 = 0 for all m ∈ M.

Recall that PP denotes the set of prime powers. It follows from the fun-
damental theorem of arithmetic that any positive integer n can be uniquely
written as a square-free product of prime powers. Hence we have that

Φ : Y → PP

y
(j)
i 7→ pj

i

(25)

is a bijection which can be extended to a bijection

Φ : M → N
+

1 7→ 1

y
(j1)
i1

· · · y
(jr)
ir

7→ pj1
i1
· · · pjr

ir

(26)

If we regard N
+ as a monoid-with-zero with the operation ⊕ of (4), then

(26) is a monoid-with-zero isomorphism.
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4.2. The ring A as a generalized power series ring, and as a quotient

of C[[Y ]]. Let R be the large power series ring on [Y ], i.e. R = C[[Y ]]
consists of all formal power series

∑

c � y
�
, where the sum is over all multi-

sets α on Y .
Let S be the generalized monoid-with-zero ring on M. By this, we mean

that S is the set of all formal power series
∑

m∈M

f(m)m (27)

with component-wise addition, and with multiplication
(

∑

m∈M

f(m)m

)

⊕

(

∑

m∈M

g(m)m

)

=

(

∑

m∈M

h(m)m

)

h(m) = (f ⊕ g)(m) =
∑

s⊕t=m

f(s)g(t)

(28)

Define

supp(
∑

m∈[Y ]

cmm) = {m ∈ Y cm 6= 0 } (29)

supp(
∑

m∈M

cmm) = {m ∈ M cm 6= 0 } (30)

(31)

Let furthermore

D = { f ∈ R supp(f) ∩M = ∅ } (32)

Theorem 4.1. S and R� and A are isomorphic as C-algebras.

Proof. The bijection (26) induces a bijection between S and A which is an
isomorphism because of the way multiplication is defined on S. In detail,
the isomorphism is defined by

S 3
∑

m∈M

cmm 7→ f ∈ A

f(Φ(m)) = cm

(33)

For the second part, consider the epimorphism

φ : R → S

φ





∑

m∈[Y ]

cmm



 =
∑

m∈M

cmm

Clearly, ker(φ) = D, hence S ' R
ker(φ) = R� . �

Let us exemplify this isomorphism by noting that en, where n has the
square-free factorization n = pa1

1 · · · par
r , corresponds to the square-free mono-

mial y
(a1)
1 · · · y

(ar)
r , and that

1 =
∑

m∈M

m =

∞
∏

i=1



1 +

∞
∑

j=1

y
(j)
i



 (34)
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What does its inverse µ∗ correspond to?

Definition 4.2. For m ∈ M, we denote by D(m) the number of occurring
variables in m (by definition, D(1) = 0 and D(0) = −∞). For

S 3 f =
∑

m∈M

cmm

we put
D(f) = min {D(m) cm 6= 0 } (35)

Using the isomorphism between S and A, we define D(g) for any g ∈ A by

D(g) = min {ω(n) f(n) 6= 0 } .

It is known (see [10]) that

µ∗(r) = (−1)ω(r) (36)

We then have that µ∗ corresponds to

1−1 =
1

∏∞
i=1

(

1 +
∑∞

j=1 y
(j)
i

) =
∞
∏

i=1

1

1 +
∑∞

j=1 y
(j)
i

=
∑

m∈M

(−1)D(m)m (37)

Recall that f ∈ A is a multiplicative arithmetic function if f(nm) =
f(n)f(m) whenever (n,m) = 1. Regarding f as an element of S we have
that f is multiplicative if and only if it can be written as

f =

∞
∏

i=1



1 +

∞
∑

j=1

ci,jy
(j)
i



 (38)

It is now easy to see that the multiplicative functions form a group under
multiplication.

4.3. The continuous endomorphisms. In [9], Schwab and Silberberg
characterized all continuous endomorphisms of Γ. We give the corresponding
result for A:

Theorem 4.3. Every continuous endomorphism θ of the C-algebra S ' A
is defined by

θ(y
(j)
i ) = γi,j (39)

where
γi,jγi,k = 0 for all i, j, k (40)

and

γa1(n),b1(n) · · · γar(n),br(n) → 0 as n = p
b1(n)
a1(n) · · · p

br(n)
ar(n) → ∞ (41)

Proof. Recall that S ' R� , where R = C[[Y ]] and D is the closure of the ideal

generated by all non-separated quadratic monomials y
(j)
i y

(k)
i . Since the set

of square-free monomials in the y
(j)
i ’s form a Schauder base, any continuous

C-algebra endomorphism θ of S is determined by its values on the y
(j)
i ’s,

and must fulfill (41). Since y
(j)
i y

(k)
i = 0 in S, we must have that

θ(0) = θ(y
(j)
i y

(k)
i ) = θ(y

(j)
i )θ(y

(k)
i ) = γi,jγi,k = 0.

�
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5. Nilpotent elements and zero divisors

Definition 5.1. For m ∈ N
+, define the prime support of m as

psupp(m) = { p ∈ P p |m } (42)

and (when m > 1) the leading prime as

lp(m) = minpsupp(m) (43)

For n ∈ N
+, put

An =
{

k ∈ N
+ pn |k but pi 6 |k for i < n

}

=
{

k ∈ N
+ lp(k) = pn

}

(44)

Then N
+ \ {1} is a disjoint union

N
+ \ {1} =

∞
⊔

i=1

Ai (45)

Definition 5.2. Let f ∈ A be a non-unit. The canonical decomposition of
f is the unique way of expressing f as a convergent sum

f =

∞
∑

i=1

fi, fi =
∑

k∈Ai

f(k)ek (46)

The element f is said to be of polynomial type if all but finitely many of
the fi’s are zero. In that case, the largest N such that fN 6= 0 is called the
filtration degree of f .

Lemma 5.3.

fi =
∞
∑

j=1

e
p

j
i

⊕ gi,j , r ≤ i, pr |n =⇒ gi,j(n) = 0. (47)

For any n there is at most one pair (i, j) such that
(

e
p

j
i

⊕ gi,j

)

(n) 6= 0.

More precisely, if

n = pj1
i1
· · · pjr

ir
, i1 < · · · < ir,

then

(

e
p

j1
i1

⊕ gi1,j1

)

(n) may be non zero.

Definition 5.4. For k ∈ N, define

Ik = { f ∈ A f(n) = 0 for every n such that (n, p1p2 · · · pk) = 1 } (48)

Lemma 5.5. Ik is an ideal in (A,+,⊕).

Proof. It is shown in [8] that the Ik’s form an ascending chain of ideals in
(A,+, ·). They are also easily seen to be ideals in (A,+,⊕): if

f ∈ Ik, g ∈ A and (n, p1p2 · · · pk) = 1

then

(f ⊕ g)(n) =
∑

d||n

f(d)g(n/d) = 0,

since (d, p1p2 · · · pk) = 1 for any unitary divisor of n. �



12 JAN SNELLMAN

Theorem 5.6. Let N ∈ N
+, and let f ∈ (A,+,⊕) be a non-unit. Then

IN = ann(ep1···pN
)

= {0} ∪ { f ∈ A f is of polynomial type and has filtration degree N }

= A
{

epa
i

a, i ∈ N+, i ≤ N
}

where AW denotes the topological closure of the ideal generated by the set
W .

Proof. If f ∈ IN then for all k

(f ⊕ ep1···pN
)(k) =

∑

a⊕p1···pN=k

f(a)ep1···pN
(p1 · · · pN ) =

∑

a⊕p1···pN=k

f(a) = 0

(49)
so f ∈ ann(ep1···pN

). Conversely, if f ∈ ann(ep1···pN
) then (f⊕ep1···pN

)(k) = 0
for all k, hence if (n, p1 · · · pN ) = 1 then

0 = (f ⊕ ep1···pN
)(np1 · · · pN ) = f(n)ep1···pN

(p1 · · · pN ) = f(n) (50)

hence f ∈ IN .
If f ∈ IN then for j > N we get that fj = 0, since

fj(k) =

{

0 if k 6∈ Aj

f(k) = 0 if k ∈ Aj

Hence f =
∑N

i=1 fi. Conversely, if f can be expressed thusly, then f(k) =
fj1(k) = 0 for k = pa1

j1
· · · par

jr
with N < j1 < · · · < jr.

The last equality follows from Theorem 3.9. �

Theorem 5.7. Let f ∈ A be a non-unit. The following are equivalent:

(i) f is of polynomial type.
(ii) f ∈ ∪∞

k=0Ik,
(iii) There is a finite subset Q ⊂ P such that f(k) = 0 for all k relatively

prime to all p ∈ Q.
(iv) f ∈ ∪∞

N=1ann(ep1p2···pN
).

(v) f is contained in the topological closure of the ideal generated by the
set
{

epa
i

a, i ∈ N
+, i ≤ N

}

.

If f has finite support, then it is of polynomial type. If f is of polynomial
type, then it is nilpotent.

Proof. Clearly, a finitely supported f is of polynomial type. The equivalence
(i) ⇐⇒ (ii) ⇐⇒ (iii) ⇐⇒ (iv) ⇐⇒ (v) follows from the previous
theorem.

If f is of polynomial type, say of filtration degree N , then

f =

N
∑

i=1

fi (51)

and we see that if fN+1 is the N +1’st unitary power of f , then fN+1 is the
linear combination of monomials in the fi’s, and none of these monomials
are square-free. Since fi ⊕ fi = 0 for all i, we have that fN+1 = 0. So f is
nilpotent. �

Lemma 5.8. The elements of polynomial type forms an ideal.
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Proof. By the previous theorem, this set can be expressed as
∞
⋃

n=1

In,

which is an ideal since each In is. �

Question 5.9. Are all [nilpotent elements, zero divisors] of polynomial type?
If one could prove that the zero divisors are precisely the elements of poly-
nomial type, then by Lemma 5.8 it would follow that Z(A) is an ideal, and
moreover a prime ideal, since the product of two regular elements is regular
(in any commutative ring). Then one could conclude [6] that (A,+,⊕) has
few zero divisors, hence is additively regular, hence is a Marot ring.

Theorem 5.10. (A,+,⊕) contains infinitely many non-associate regular
non-units.

Proof. Step 1. We first show that there is at least one such element. Let
f ∈ A denote the arithmetical function

f(k) =

{

1 k ∈ PP

0 otherwise

Then f is a non-unit, and using a result by Yocom [13, 8] we have that
f is contained in a subring of (A,+,⊕) which is a discrete valuation ring
isomorphic to C[[t]], the power series ring in one indeterminate. This ring
is a domain, so f is not nilpotent.

We claim that f is in fact regular. To show this, suppose that g ∈ A,
f ⊕ g = 0. We will show that g = 0.

Any positive integer m can be written m = qa1

1 · · · qar
r , where the qi are

distinct prime numbers. If r = 0, then m = 1, and g(1) = 0, since

0 = (f ⊕ g)(2) = f(2)g(1) = g(1).

For the case r = 1, we want to show that g(qa) = 0 for all prime numbers
q. Choose three different prime powers qa1

1 , qa2

2 , and qa3

3 . Then

0 = f ⊕ g(qai

i q
aj

j ) = f(qai

i )g(q
aj

j ) + f(q
aj

j )g(qai

i ) = g(q
aj

j ) + g(qai

i ),

when i 6= j, i, j ∈ {1, 2, 3}. In matrix notation, these three equations can be
written as





1 1 0
1 0 1
0 1 1









g(qa1

1 )
g(qa2

2 )
g(qa3

3 )



 =





0
0
0





from which we conclude (since the determinant of the coefficient matrix is
non-zero) that 0 = g(qa1

1 ) = g(qa2

2 ) = g(qa3

3 ).
Now for the general case, r > 1. We need to show that that

g(qa1

1 · · · qar
r ) = 0 (52)

whenever qa1

1 , . . . , qar
r are pair-wise relatively prime prime powers.

Choose N pair-wise relatively prime prime powers qa1

1 , . . . , qaN

N . For each
r + 1-subset qs1

, . . . , qsr+1
of this set we get a homogeneous linear equation

0 = f ⊕ g(qs1
. . . qsr+1

) =

g(qs2
· · · qsr+1

) + g(qs1
qs3

· · · qsr+1
) + · · · + g(qs1

· · · gsr) (53)
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The matrix of the homogeneous linear equation system formed by all these
equations is the incidence matrix of r-subsets (of a set of N elements) into

r + 1-subsets. It has full rank [12]. Since it consists of
(

N
r+1

)

equations and
(

N
r

)

variables, we get that for sufficiently large N , the null-space is zero-
dimensional, thus the homogeneous system has only the trivial solution. It
follows, in particular, that (52) holds.

Thus, g(m) = 0 for all m, so f is a regular element.
Step 2. We construct infinitely many different regular non-units. Con-

sider the element f̃ , with

f̃(k) =

{

ck k ∈ PP

0 otherwise

and where the ck’s are “sufficiently generic” non-zero complex numbers, then
we claim that f̃ , too, is a regular non-unit. With g, m, r as before, we have
that, for r = 0,

0 = f ⊕ g(pa) == f(pa)g(1) = cpag(1).

We demand that cpa 6= 0, then g(1) = 0.
For a general r, we argue as follows: the incidence matrices that occurred

before will be replaced with “generic” matrices whose elements are ck’s or
zeroes, and which specialize, when setting all ck = 1, to full-rank matrices.
They must therefore have full rank, and the proof goes through.

Step 3. Let g be a unit in A, and f̃ as above. We claim that if g ⊕ f is
of the above form, i.e. supported on PP , then g must be a constant. Hence
there are infinitely many non-associate regular non-units of the above form.

To prove the claim, we argue exactly as before, using the fact that g ⊕ f̃
is supported on PP . For m = qa1

1 · · · qar
r as before, the case r = 0 yields

nothing:

0 = g ⊕ f̃(1) = f̃(1)g(1) = 0g(1) = 0,

neither does the case r = 1:

w = g ⊕ f̃(qa) = f̃(qa)g(1),

so g(1) may be non-zero. But for r = 2 we get

0 = g ⊕ f̃(qa1

1 qa2

2 ) = f̃(qa1

1 )g(qa2

2 ) + g(qa1

1 )f̃(qa2

2 ),

and also

0 = g ⊕ f̃(qa1

1 qa3

3 ) = f̃(qa1

1 )g(qa3

3 ) + g(qa1

1 )f̃(qa3

3 )

0 = g ⊕ f̃(qa2

2 qa3

3 ) = f̃(qa2

2 )g(qa3

3 ) + g(qa1

1 )f̃(qa3

3 )

which means that




f̃(qa2

2 ) f̃(qa1

1 ) 0

f̃(qa3

3 ) 0 f̃(qa1

1 )

0 f̃(qa3

3 ) f̃(qa2

2 )









g(qa1

1 )
g(qa2

2 )
g(qa3

3 )



 =





0
0
0





By our assumptions, the coefficient matrix is non-singular, so only the zero
solution exists, hence g(qa1

1 ) = 0.
An analysis similar to what we did before shows that g(qa1

1 · · · qar
r ) = 0

for r > 1. �
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With the same method, one can easily show that the characteristic func-
tion on P is regular.

6. Some simple results on factorisation

Cashwell-Everett [4] showed that (A,+, ·) is a UFD. We will briefly treat
the factorisation properties of (A,+,⊕). Definitions and facts regarding
factorisation in commutative rings with zero-divisors from the articles by
Anderson and Valdes-Leon [1, 2] will be used.

First, we note that since (A,+,⊕) is quasi-local, it is présimplifiable, i.e.
a 6= 0, a = r ⊕ a implies that r is a unit. It follows that for a, b ∈ A, the
following three conditions are equivalent:

(1) a, b are associates, i.e. A⊕ a = A⊕ b.
(2) a, b are strong associates, i.e. a = u ⊕ b for some unit u.
(3) a, b are very strong associates, i.e. A⊕a = A⊕b and either a = b = 0,

or a 6= 0 and a = r ⊕ b =⇒ r ∈ U(A).

We say that a ∈ A is irreducible, or an atom, if a = b ⊕ c implies that a is
associate with either b or c.

Theorem 6.1. (A,+,⊕) is atomic, i.e. all non-units can be written as a
product of finitely many atoms. In fact, (A,+,⊕) is a bounded factorial
ring (BFR), i.e. there is a bound on the length of all factorisations of an
element.

Proof. It follows from Lemma 3.3 that the non-unit f has a factorisation
into at most D(f) atoms. �

Example 6.2. We have that e2 ⊕ (e2k + e3) = e6 for all k, hence e6 has
an infinite number of non-associate irreducible divisors, and infinitely many
factorisations into atoms.

Example 6.3. The element h = e30 can be factored as e2 ⊕ e3 ⊕ e5, or as
(e6 + e20) ⊕ (e2 + e5).

These examples show that (A,+,⊕) is neither a half-factorial ring, nor a
finite factorisation ring, nor a weak finite factorisation ring, nor an atomic
idf-ring.

7. The subring of arithmetical functions supported on

square-free integers

Let SQF ⊂ N
+ denote the set of square-free integers, and put

C = { f ∈ A supp(f) ⊂ SQF } (54)

For any f ∈ A, denote by p(f) ∈ C the restriction of f to SQF .

Theorem 7.1. (C,+,⊕) is a subring of (A,+,⊕), and a closed C-subalgebra
with respect to the norm |·|. The map

p : A → C

f 7→ p(f)
(55)

is a continuous C-algebra epimorphism, and a retraction of the inclusion
map C ⊂ A.
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Proof. Let f, g ∈ C. If n ∈ N
+ \ SQF then (f + g)(n) = f(n) + g(n) = 0,

and cf(n) = 0 for all c ∈ C. Since n ∈ N
+ \ SQF , there is at least on prime

p such that p2 |n . If m is a unitary divisor of m, then either m or n/m is
divisible by p2. Thus

(f ⊕ g)(n) =
∑

m||n

f(m)g(n/m) = 0.

If fk → f in A, and all fk ∈ C, let n ∈ supp(f). Then there is an N such
that f(n) = fk(n) for all k ≥ N . But supp(fk) ⊂ SQF , so n ∈ SQF . This
shows that C is a closed subalgebra of A.

It is clear that p(f + g) = p(f) + p(g) and that p(cf) = cp(f) for any
c ∈ C. If n is not square-free, we have already showed that

0 = (p(f) ⊕ p(g))(n) = p((f ⊕ g))(n).

Suppose therefore that n is square-free. Then so is all its unitary divisors,
hence

p(f ⊕ g)(n) = (f ⊕ g)(n) =
∑

m||n

f(m)g(n/m) =

∑

m||n

p(f)(m)p(g)(n/m) = (p(f) ⊕ p(g))(n).

We have that p(f) = f if and only if f ∈ C, hence p(p(f)) = p(f), so p is
a retraction to the inclusion i : C → A. In other words, p ◦ i = id � . �

Corollary 7.2. The multiplicative inverse of an element in C lies in C.

Proof. If f ∈ C, f ⊕ g = e1 then

e1 = p(e1) = p(f ⊕ g) = p(f) ⊕ p(g) = f ⊕ p(g),

hence g = p(g), so g ∈ C.
Alternatively, we can reason as follows. If f is a unit in C then we can

without loss of generality assume that f(1) = 1. By Theorem 3.7, g =
−f + e1 is topologically nilpotent, hence by Proposition 1.2.4 of [3] we have
that the inverse of e1 − g = f can be expressed as

∑∞
i=0 gi. It is clear that

g, and every power of it, is supported on SQF , hence so is f−1. �

Corollary 7.3. (C,+,⊕) is semi-local.

Proof. The units consists of all f ∈ C with f(1) 6= 0, and the non-units form
the unique maximal ideal. �

Remark 7.4. More generally, given any subset Q ⊂ N
+, we get a retract of

(A,+,⊕) when considering those arithmetical functions that are supported
on the integers n = pa1

1 · · · par
r with ai ∈ Q ∪ {0}. This property is unique

for the unitary convolution, among all regular convolutions in the sense of
Narkiewicz [7].

In particular, the set of arithmetical functions supported on the expo-
nentially odd integers (those n for which all ai are odd) forms a retract of
(A,+,⊕). It follows that the inverse of such a function is of the same form.
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Let T = C[[x1, x2, x3, . . . ]], the large power series ring on countably many
variables, and let J denote the ideal of elements supported on non square-
free monomials.

Theorem 7.5. (C,+,⊕) ' T/J . This algebra can also be described as the
generalized power series ring on the monoid-with-zero whose elements are
all finite subsets of a fixed countable set X, with multiplication

A × B =

{

A ∪ B if A ∩ B = ∅

0 otherwise .
(56)

Proof. Define η by

η : T → A

η(
∑

m

cmm) =
∑

m square-free

cmem, (57)

where for a square-free monomial m = mi1 · · ·mir with 1 ≤ i1 < · · · < ir we
put em = epi1

···pir
. Then η(T ) = C, ker η = J . It follows that C ' T/J . �
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