ISSN: 1401-5617

The ring of arithmetical functions with unitary convolution: Divisorial and topological properties

Jan Snellman

Research Reports in Mathematics Number 4, 2002

DEPARTMENT OF MATHEMATICS STOCKHOLM UNIVERSITY Electronic versions of this document are available at http://www.matematik.su.se/reports/2002/4

Date of publication: April 19, 2002 2000 Mathematics Subject Classification: Primary 11A25, Secondary 13J05. Keywords: Unitary convolution, Schauder Basis, factorization.

Postal address: Department of Mathematics Stockholm University S-106 91 Stockholm Sweden

Electronic addresses: http://www.matematik.su.se info@matematik.su.se

THE RING OF ARITHMETICAL FUNCTIONS WITH UNITARY CONVOLUTION: DIVISORIAL AND TOPOLOGICAL PROPERTIES.

JAN SNELLMAN

ABSTRACT. We study $(\mathcal{A}, +, \oplus)$, the ring of arithmetical functions with unitary convolution, giving an isomorphism between $(\mathcal{A}, +, \oplus)$ and a generalized power series ring on infinitely many variables, similar to the isomorphism of Cashwell-Everett[4] between the ring $(\mathcal{A}, +, \cdot)$ of arithmetical functions with *Dirichlet convolution* and the power series ring $\mathbb{C}[[x_1, x_2, x_3, \ldots]]$ on countably many variables. We topologize it with respect to a natural norm, and shove that all ideals are quasi-finite. Some elementary results on factorization into atoms are obtained. We prove the existence of an abundance of non-associate regular non-units.

1. INTRODUCTION

The ring of arithmetical functions with Dirichlet convolution, which we'll denote by $(\mathcal{A}, +, \cdot)$, is the set of all functions $\mathbb{N}^+ \to \mathbb{C}$, where \mathbb{N}^+ denotes the positive integers. It is given the structure of a commutative \mathbb{C} -algebra by component-wise addition and multiplication by scalars, and by the Dirichlet convolution

$$f \cdot g(k) = \sum_{r|k} f(r)g(k/r).$$
(1)

Then, the multiplicative unit is the function e_1 with $e_1(1) = 1$ and $e_1(k) = 0$ for k > 1, and the additive unit is the zero function **0**.

Cashwell-Everett [4] showed that $(\mathcal{A}, +, \cdot)$ is a UFD using the isomorphism

$$(\mathcal{A}, +, \cdot) \simeq \mathbb{C}[[x_1, x_2, x_3, \dots]], \tag{2}$$

where each x_i corresponds to the function which is 1 on the *i*'th prime number, and 0 otherwise.

Schwab and Silberberg [9] topologised $(\mathcal{A}, +, \cdot)$ by means of the norm

$$|f| = \frac{1}{\min\{k | f(k) \neq 0\}}$$
(3)

They noted that this norm is an ultra-metric, and that $((\mathcal{A}, +, \cdot), |\cdot|)$ is a valued ring, i.e. that

- (1) $|\mathbf{0}| = 0$ and |f| > 0 for $f \neq \mathbf{0}$,
- (2) $|f g| \le \max\{|f|, |g|\},\$
- $(3) \quad |\tilde{f}g| = |f||g|.$

Date: April 19, 2002.

¹⁹⁹¹ Mathematics Subject Classification. 11A25, 13J05.

Key words and phrases. Unitary convolution, Schauder Basis, factorization.

JAN SNELLMAN

They showed that $(\mathcal{A}, |\cdot|)$ is complete, and that each ideal is *quasi-finite*, which means that there exists a sequence $(e_k)_{k=1}^{\infty}$, with $|e_k| \to 0$, such that every element in the ideal can be written as a convergent sum $\sum_{k=1} c_k e_k$, with $c_k \in \mathcal{A}$.

In this article, we treat instead $(\mathcal{A}, +, \oplus)$, the ring of all arithmetical functions with unitary convolution. This ring has been studied by several authors, such as Vaidyanathaswamy [11], Cohen [5], and Yocom [13].

We topologise \mathcal{A} in the same way as Schwab and Silberberg [9], so that $(\mathcal{A}, +, \oplus)$ becomes a normed ring (but, in contrast to $(\mathcal{A}, +, \cdot)$, not a valued ring). We show that all ideals in $(\mathcal{A}, +, \oplus)$ are quasi-finite.

We show that $(\mathcal{A}, +, \oplus)$ is isomorphic to a monomial quotient of a power series ring on countably many variables. It is présimplifiable and atomic, and there is a bound on the lengths of factorizations of a given element. We give a sufficient condition for nilpotency, and prove the existence of plenty of regular non-units.

Finally, we show that the set of arithmetical functions supported on square-free integers is a retract of $(\mathcal{A}, +, \oplus)$.

2. The ring of arithmetical functions with unitary convolution

Let p_i denote the *i*'th prime number, and denote by \mathcal{P} the set of prime numbers. Let \mathcal{PP} denote the set of prime powers. Let $\omega(r)$ denote the number of distinct prime factors of r, with $\omega(1) = 0$.

Definition 2.1. If k, m are positive integers, we define their *unitary product* as

$$k \oplus m = \begin{cases} km & \gcd(k,m) = 1\\ 0 & \text{otherwise} \end{cases}$$
(4)

If $k \oplus m = p$, then we write k || p and say that k is a *unitary divisor* of p.

The so-called *unitary convolution* was introduced by Vaidyanathaswamy [11], and was further studied Eckford Cohen [5].

Definition 2.2. $\mathcal{A} = \{f : \mathbb{N}^+ \to \mathbb{C}\}$, the set of complex-valued functions on the positive integers. We define the *unitary convolution* of $f, g \in \mathcal{A}$ as

$$(f \oplus g)(n) = \sum_{\substack{m \oplus p=n \\ m,n \ge 1}} f(m)g(n) = \sum_{d||n} f(d)g(n/d)$$
(5)

and the addition as

$$(f+g)(n) = f(n) + g(n)$$

The ring $(\mathcal{A}, +, \oplus)$ is called the ring of arithmetic functions with unitary convolution.

Definition 2.3. For each positive integer k, we define $e_k \in \mathcal{A}$ by

$$e_k(n) = \begin{cases} 1 & k = n \\ 0 & k \neq n \end{cases}$$
(6)

We also define¹ $\mathbf{0}$ as the zero function, and $\mathbf{1}$ as the function which is constantly 1.

Lemma 2.4. 0 is the additive unit of \mathcal{A} , and e_1 is the multiplicative unit. We have that

$$(e_{k_1} \oplus e_{k_2} \oplus \dots \oplus e_{k_r})(n) = \begin{cases} 1 & n = k_1 k_2 \dots k_r \text{ and } \gcd(k_i, k_j) = 1 \text{ for } i \neq j \\ 0 & \text{otherwise} \end{cases}$$
(7)

hence

$$e_{k_1} \oplus e_{k_2} \oplus \dots \oplus e_{k_r} = \begin{cases} e_{k_1 k_2 \dots k_r} & \text{if } \gcd(k_i, k_j) = 1 \text{ for } i \neq j \\ 0 & \text{otherwise} \end{cases}$$
(8)

Proof. The first assertions are trivial. We have [10] that for $f_1, \ldots, f_r \in \mathcal{A}$,

$$(f_1 \oplus \cdots f_r)(n) = \sum_{a_1 \oplus \cdots a_r = n} f_1(a_1) \cdots f_r(a_r)$$
(9)

Since

$$e_{k_1}(a_1)e_{k_2}(a_2)\cdots e_{k_r}(a_r) = 1$$
 iff $\forall i: k_i = a_i$,

(7) follows.

Lemma 2.5. Any e_n can be uniquely expressed as a square-free monomial in $\{e_k | k \in \mathcal{PP}\}$.

Proof. By unique factorization, there is a unique way of writing $n = p_{i_1}^{a_1} \cdots p_{i_r}^{a_r}$, and (8) gives that

$$e_n = e_{p_{i_1}^{a_1} \cdots p_{i_r}^{a_r}} = e_{p_{i_1}^{a_1}} \oplus \cdots e_{p_{i_r}^{a_r}}.$$

Theorem 2.6. $(\mathcal{A}, +, \oplus)$ is a quasi-local, non-noetherian commutative ring having divisors of zero. The units $U(\mathcal{A})$ consists of those f such that $f(1) \neq 0$.

Proof. It is shown in [10] that $(\mathcal{A}, +, \oplus)$ is a commutative ring, having zerodivisors, and that the units consists of those f such that $f(1) \neq 0$. If f(1) = 0 then

$$(f \oplus g)(1) = f(1)g(1) = 0.$$

Hence the non-units form an ideal $\mathfrak{m},$ which is then the unique maximal ideal.

We will show (Lemma 3.10) that \mathfrak{m} contains an ideal (the ideal generated by all e_k , for k > 1) which is not finitely generated, so \mathcal{A} is non-noetherian.

¹In [10], **1** is denoted e_1 , and e_1 denoted e_0 .

JAN SNELLMAN

3. A topology on \mathcal{A}

The results of this section are inspired by [9], were the authors studied the ring of arithmetical functions under Dirichlet convolution. We'll use the notations of [3]. We regard \mathbb{C} as trivially normed.

Definition 3.1. Let $f \in \mathcal{A} \setminus \{0\}$. We define the *support* of f as

$$\operatorname{supp}(f) = \left\{ n \in \mathbb{N}^+ \middle| f(n) \neq 0 \right\}$$

$$(10)$$

We define the $order^2$ of a non-zero element by

$$N(f) = \min \operatorname{supp}(f) \tag{11}$$

We also define the *norm* of f as

$$|f| = N(f)^{-1}$$
(12)

and the *degree* as

$$D(f) = \min \left\{ \omega(k) | k \in \operatorname{supp}(f) \right\}$$
(13)

By definition, the zero element has order infinity, norm 0, and degree -1.

Lemma 3.2. The value semigroup of $(\mathcal{A}, |\cdot|)$ is $|\mathcal{A} \setminus \{\mathbf{0}\}| = \{1/k | k \in \mathbb{N}^+\}$, a discrete subset of \mathbb{R}^+ .

Lemma 3.3. Let $f, g \in A \setminus \{0\}$. Let N(f) = i, N(g) = j, so that $f(i) \neq 0$ but f(k) = 0 for all k < i, and similarly for g. We assume that $i \leq j$. Then, the following hold:

- (i) $N(f-g) \ge \min \{N(f), N(g)\}.$
- (*ii*) N(cf) = N(f) for $c \in \mathbb{C} \setminus \{0\}$.
- (iii) N(f) = 1 iff f is a unit.
- (iv) $N(f \cdot g) = N(f)N(g) \le N(f \oplus g)$, with equality iff (i, j) = 1.
- (v) $N(f \oplus g) \ge \max{\{N(f), N(g)\}}$, with strict inequality iff both f and g are non-units.
- (vi) $D(f+g) \ge \min D(f), D(g).$
- (vii) $D(f \cdot g) = D(f) + D(g)$.
- (viii) D(f) = 0 if and only if f is a unit.
- (ix) Suppose that $f \oplus g \neq \mathbf{0}$. Then

$$D(f \oplus g) \ge D(f) + D(g) \ge \max \{D(f), D(g)\}.$$

with
$$D(f) + D(g) > \max \{D(f), D(g)\}$$
 if f, g are non-units.

Proof. (i), (ii), and (iii) are trivial, and (iv) is proved in [10]. (vi), (vii), and (viii) are proved in [8]. Let m be a monomial in the support of f such that D(m) = D(f), and let n be a monomial in the support of g such that D(n) = D(g). For any a in the support of f and any q in the support of g, such that $a \oplus q \neq 0$, we have that

$$D(a \oplus q) = D(a) + D(q) \ge D(f) + D(g).$$

This proves (ix). (v) is proved similarly.

Corollary 3.4. $|f \oplus g| \leq |f||g| = |f \cdot g|$.

 $^{^{2}}$ In [10] the term *norm* is used.

Proposition 3.5. $|\cdot|$ is an ultrametric function on \mathcal{A} , making $(\mathcal{A}, +, \oplus)$ a normed ring, as well as a faithfully normed, b-separable complete vector space over \mathbb{C} .

Proof. $((\mathcal{A}, +, \cdot), |\cdot|)$ is a valuated ring, and a faithfully normed complete vector space over \mathbb{C} [9]. It is also separable with respect to bounded maps [3, Corollary 2.2.3]. So $(\mathcal{A}, +)$ is a normed group, hence Corollary 3.4 shows that $(\mathcal{A}, +, \oplus)$ is a normed ring.

Note that, unlike $((\mathcal{A}, +, \cdot), |\cdot|)$, the normed ring $((\mathcal{A}, +, \oplus), |\cdot|)$ is not a valued ring, since

$$|e_2 \oplus e_2| = |\mathbf{0}| = 0 < |e_2|^2 = 1/4.$$

In fact, we have that

Lemma 3.6. If f is a unit, then $1 = |f^n| = |f|^n$ for all positive integers n. If n is a non-unit, then $|f^n| < |f|^n$ for all n > 1.

Proof. The first assertion is trivial, so suppose that f is a non-unit. From Corollary 3.4 we have that $|f^n| \leq |f|^n$. If |f| = 1/k, k > 1, i.e. $f(k) \neq 0$ but f(j) = 0 for j < k, then $f^2(k^2) = 0$ since gcd(k,k) = k > 1. It follows that $|f^2| > |f|^2$, from which the result follows.

Recall that in a normed ring, a non-zero element f is called

- topologically nilpotent if $f^n \to 0$,
- power-multiplicative if $|f^n| = |f|^n$ for all n,
- multiplicative if |fg| = |f||g| for all g in the ring.

Theorem 3.7. Let $f \in ((\mathcal{A}, +, \oplus), |\cdot|), f \neq 0$. Then the following are equivalent:

- (1) f is topologically nilpotent,
- (2) f is not power-multiplicative,
- (3) f is not multiplicative³ in the normed ring $(\mathcal{A}, +, \oplus), |\cdot|),$
- (4) f is a non-unit,
- (5) |f| < 1.

Proof. Using [3, 1.2.2, Prop. 2], this follows from the previous Lemma, and the fact that for a unit f,

$$1 = \left| f^{-1} \right| = \left| f \right|^{-1}.$$

3.1. A Schauder basis for $(\mathcal{A}, |\cdot|)$.

Definition 3.8. Let \mathcal{A}' denote the subset of \mathcal{A} consisting of functions with finite support. We define a pairing

$$\mathcal{A} \times \mathcal{A}' \to \mathbb{C}$$

$$\langle f, g \rangle = \sum_{k=1}^{\infty} f(k)g(k)$$
(14)

³This is not the same concept as multiplicativity for arithmetical functions, i.e. that f(nm) = f(n)f(m) whenever (n,m) = 1. However, since the latter kind of elements satisfy f(1) = 1, they are units, and hence multiplicative in the normed-ring sense.

Theorem 3.9. The set $\{e_k | k \in \mathbb{N}^+\}$ is an ordered orthogonal Schauder base in the normed vector space $(\mathcal{A}, |\cdot|)$. In other words, if $f \in \mathcal{A}$ then

$$f = \sum_{k=1}^{\infty} c_k e_k, \qquad c_k \in \mathbb{C}$$
(15)

where

(i) $|e_k| \to 0$,

(ii) the infinite sum (15) converges w.r.t. the ultrametric topology,

(iii) the coefficients c_k are uniquely determined by the fact that

$$\langle f, e_k \rangle = f(k) = c_k \tag{16}$$

(iv)

$$\max_{k \in \mathbb{N}^+} \left\{ |c_k| |e_k| \right\} = \left| \sum_{k=1}^{\infty} c_k e_k \right|$$
(17)

The set $\{e_p | p \in \mathcal{PP}\}\$ generates a dense subalgebra of $((\mathcal{A}, +, \oplus), |\cdot|)$.

Proof. It is proved in [9] that this set is a Schauder base in the topological vector space $(\mathcal{A}, |\cdot|)$. It also follows from [9] that the coefficients c_k in (3.9) are given by $c_k = f(k)$.

It remains to prove orthogonality. With the above notation,

$$|f| = \left|\sum_{k=1}^{\infty} c_k e_k\right| = 1/j,$$

where j is the smallest k such that $c_k \neq 0$. Recalling that \mathbb{C} is trivially normed, we have that

$$|c_k||e_k| = \begin{cases} |e_k| = 1/k & \text{if } c_k \neq 0\\ 0 & \text{if } c_k = 0 \end{cases},$$

so $\max_{k \in \mathbb{N}^+} \{ |c_k| | e_k | \} = 1/j$, with j as above, so (17) holds.

By Lemma 2.5 any e_k can be written as a square-free monomial in the elements of $\{e_p | p \in \mathcal{PP}\}$. The set $\{e_k | k \in \mathbb{N}^+\}$ is dense in \mathcal{A} , so $\{e_p | p \in \mathcal{PP}\}$ generates a dense subalgebra.

Let $J \subset \mathfrak{m}$ denote the ideal generated by all $e_k, k > 1$.

Lemma 3.10. J is not finitely generated.

Proof. If J is finitely generated, then there is an N such that

$$J = (e_2, \ldots, e_N).$$

Let L be a prime number, L > N. Since $e_L \in J$, we have that

$$e_L = \sum_{k=2}^N f_k \oplus e_k, \qquad f_k \in \mathcal{A}.$$

We write $f_k = \sum_{i=1}^{\infty} c_{ki} e_i$, so that

$$e_L = \sum_{k=2}^{N} e_k \oplus \sum_{i=1}^{\infty} c_{ik} e_i = \sum_{k=2}^{N} \sum_{i=1}^{\infty} c_{ik} e_i \oplus e_k = \sum_{k=2}^{N} \sum_{\gcd(i,k)=1}^{N} c_{ik} e_{ik}.$$

But this is impossible, because we can not write L = ik with gcd(i, k) = 1and $2 \le i \le N < L$.

Definition 3.11. An ideal $I \subset \mathcal{A}$ is called quasi-finite if there exists a sequence $(g_k)_{k=1}^{\infty}$ in I such that $|g_k| \to 0$ and such that every element $f \in I$ can be written (not necessarily uniquely) as a convergent sum

$$f = \sum_{k=0}^{\infty} a_k \oplus g_k, \qquad a_k \in \mathcal{A}$$
(18)

Lemma 3.12. m is quasi-finite.

Proof. By Theorem 3.9 the set $\{e_k | k > 1\}$ is a quasi-finite generating set for \mathfrak{m} .

Since all ideals are contained in \mathfrak{m} , it follows that any ideal containing $\{e_k | k > 1\}$ is quasi-finite. Furthermore, such an ideal has \mathfrak{m} as its closure. In particular, J is quasi-finite, but not closed.

Theorem 3.13. All (non-zero) ideals in \mathcal{A} are quasi-finite. In fact, given any subspace I if we can find

$$G(I) := (g_k)_{k=1}^{\infty}$$
 (19)

such that for all $f \in I$,

$$\exists c_1, c_2, c_3, \dots \in \mathbb{C}, \qquad f = \sum_{i=1}^{\infty} c_i g_i.$$
(20)

So all subspaces possesses a Schauder basis.

Proof. We construct G(I) in the following way: for each

 $k \in \{ \operatorname{N}(f) | f \in I \setminus \{\mathbf{0}\} \} =: N(I)$

we choose a $g_k \in I$ with $N(g_k) = k$, and with $g_k(k) = 1$. In other words, we make sure that the "leading coefficient" is 1; this can always be achieved since the coefficients lie in a field. For $k \notin N(I)$ we put $g_k = \mathbf{0}$.

To show that this choice of elements satisfy (20), take any $f \in I$, and put $f_0 = f$. Then define recursively, as long as $f_i \neq \mathbf{0}$,

$$n_i := N(f_i)$$
$$\mathbb{C} \ni a_i := f_i(n_i)$$
$$\mathcal{A} \ni f_{i+1} := f_i - a_i g_{n_i}$$

Of course, if $f_i = 0$, then we have expressed f as a linear combination of

$$g_{n_1},\ldots,g_{n_{i-1}},$$

and we are done. Otherwise, note that by induction $f_i \in I$, so $n_i \in N(I)$, hence $g_{n_i} \neq 0$. Thus $N(f_{i+1}) > N(f_i)$, so $|f_{i+1}| < |f_i|$, whence

$$|f_0| > |f_1| > |f_2| > \dots \to 0.$$

But

$$f_{i+1} = f - \sum_{j=1}^{i} a_j g_{n_j},$$

 \mathbf{SO}

$$F_i := \sum_{j=1}^i a_j g_{n_j} \to f,$$

which shows that $\sum_{j=1}^{\infty} a_j g_j = f$.

4. A FUNDAMENTAL ISOMORPHISM

4.1. The monoid of separated monomials. Let

$$Y = \left\{ \left. y_i^{(j)} \right| i, j \in \mathbb{N}^+ \right\}$$
(21)

be an infinite set of variables, in bijective correspondence with the integer lattice points in the first quadrant minus the axes. We call the subset

$$Y_i = \left\{ \left. y_i^{(j)} \right| j \in \mathbb{N}^+ \right\}$$
(22)

the *i*'th column of Y.

Let [Y] denote the free abelian monoid on Y, and let \mathcal{M} be the subset of *separated monomials*, i.e. monomials in which no two occurring variables come from the same column:

$$\mathcal{M} = \left\{ \left. y_{i_1}^{(j_1)} y_{i_2}^{(j_1)} \cdots y_{i_r}^{(j_r)} \right| 1 \le i_i < i_2 < \cdots i_r \right\}$$
(23)

We regard ${\mathcal M}$ as a monoid-with-zero, so that the multiplication is given by

$$m \oplus m' = \begin{cases} mm' & mm' \in \mathcal{M} \\ 0 & \text{otherwise} \end{cases}$$
(24)

Note that the zero is exterior to \mathcal{M} , i.e. $0 \notin \mathcal{M}$. The set $\mathcal{M} \cup \{0\}$ is a (non-cancellative) monoid if we define $m \oplus 0 = 0$ for all $m \in \mathcal{M}$.

Recall that \mathcal{PP} denotes the set of prime powers. It follows from the fundamental theorem of arithmetic that any positive integer n can be uniquely written as a *square-free* product of prime powers. Hence we have that

$$\begin{aligned}
\Phi: Y \to \mathcal{PP} \\
y_i^{(j)} \mapsto p_i^j
\end{aligned} (25)$$

is a bijection which can be extended to a bijection

$$\Phi: \mathcal{M} \to \mathbb{N}^+$$

$$1 \mapsto 1$$

$$y_{i_1}^{(j_1)} \cdots y_{i_r}^{(j_r)} \mapsto p_{i_1}^{j_1} \cdots p_{i_r}^{j_r}$$
(26)

If we regard \mathbb{N}^+ as a monoid-with-zero with the operation \oplus of (4), then (26) is a monoid-with-zero isomorphism.

4.2. The ring \mathcal{A} as a generalized power series ring, and as a quotient of $\mathbb{C}[[Y]]$. Let R be the large power series ring on [Y], i.e. R = C[[Y]] consists of all formal power series $\sum c_{\alpha} y^{\alpha}$, where the sum is over all multisets α on Y.

Let S be the generalized monoid-with-zero ring on \mathcal{M} . By this, we mean that S is the set of all formal power series

$$\sum_{m \in \mathcal{M}} f(m)m \tag{27}$$

with component-wise addition, and with multiplication

$$\left(\sum_{m \in \mathcal{M}} f(m)m\right) \oplus \left(\sum_{m \in \mathcal{M}} g(m)m\right) = \left(\sum_{m \in \mathcal{M}} h(m)m\right)$$
$$h(m) = (f \oplus g)(m) = \sum_{s \oplus t = m} f(s)g(t)$$
(28)

Define

$$\operatorname{supp}(\sum_{m \in [Y]} c_m m) = \{ m \in Y | c_m \neq 0 \}$$

$$(29)$$

$$\operatorname{supp}(\sum_{m \in \mathcal{M}} c_m m) = \{ m \in \mathcal{M} | c_m \neq 0 \}$$
(30)

(31)

Let furthermore

$$\mathfrak{D} = \{ f \in R | \operatorname{supp}(f) \cap \mathcal{M} = \emptyset \}$$
(32)

Theorem 4.1. S and $\frac{R}{\mathfrak{D}}$ and \mathcal{A} are isomorphic as \mathbb{C} -algebras.

Proof. The bijection (26) induces a bijection between S and A which is an isomorphism because of the way multiplication is defined on S. In detail, the isomorphism is defined by

$$S \ni \sum_{m \in \mathcal{M}} c_m m \mapsto f \in \mathcal{A}$$

$$f(\Phi(m)) = c_m$$
(33)

For the second part, consider the epimorphism

$$\phi: R \to S$$

$$\phi\left(\sum_{m \in [Y]} c_m m\right) = \sum_{m \in \mathcal{M}} c_m m$$
Clearly, ker(ϕ) = \mathfrak{D} , hence $S \simeq \frac{R}{\ker(\phi)} = \frac{R}{\mathfrak{D}}$.

Let us exemplify this isomorphism by noting that e_n , where n has the square-free factorization $n = p_1^{a_1} \cdots p_r^{a_r}$, corresponds to the square-free monomial $y_1^{(a_1)} \cdots y_r^{(a_r)}$, and that

$$\mathbf{1} = \sum_{m \in \mathcal{M}} m = \prod_{i=1}^{\infty} \left(1 + \sum_{j=1}^{\infty} y_i^{(j)} \right)$$
(34)

JAN SNELLMAN

What does its inverse μ^* correspond to?

Definition 4.2. For $m \in \mathcal{M}$, we denote by D(m) the number of occurring variables in m (by definition, D(1) = 0 and $D(0) = -\infty$). For

$$S \ni f = \sum_{m \in \mathcal{M}} c_m m$$

we put

$$\mathcal{D}(f) = \min \left\{ \mathcal{D}(m) \middle| c_m \neq 0 \right\}$$
(35)

Using the isomorphism between S and A, we define D(g) for any $g \in A$ by I

$$\mathsf{D}(g) = \min \left\{ \left. \omega(n) \right| f(n) \neq 0 \right\}.$$

It is known (see [10]) that

$$\mu^*(r) = (-1)^{\omega(r)} \tag{36}$$

We then have that μ^* corresponds to

$$\mathbf{1}^{-1} = \frac{1}{\prod_{i=1}^{\infty} \left(1 + \sum_{j=1}^{\infty} y_i^{(j)}\right)} = \prod_{i=1}^{\infty} \frac{1}{1 + \sum_{j=1}^{\infty} y_i^{(j)}} = \sum_{m \in \mathcal{M}} (-1)^{\mathcal{D}(m)} m \quad (37)$$

Recall that $f \in \mathcal{A}$ is a *multiplicative* arithmetic function if f(nm) =f(n)f(m) whenever (n,m) = 1. Regarding f as an element of S we have that f is multiplicative if and only if it can be written as

$$f = \prod_{i=1}^{\infty} \left(1 + \sum_{j=1}^{\infty} c_{i,j} y_i^{(j)} \right)$$
(38)

It is now easy to see that the multiplicative functions form a group under multiplication.

4.3. The continuous endomorphisms. In [9], Schwab and Silberberg characterized all continuous endomorphisms of Γ . We give the corresponding result for \mathcal{A} :

Theorem 4.3. Every continuous endomorphism θ of the \mathbb{C} -algebra $S \simeq \mathcal{A}$ is defined by

$$\theta(y_i^{(j)}) = \gamma_{i,j} \tag{39}$$

where

$$\gamma_{i,j}\gamma_{i,k} = 0 \qquad for \ all \ i,j,k \tag{40}$$

and

$$\gamma_{a_1(n),b_1(n)} \cdots \gamma_{a_r(n),b_r(n)} \to 0 \qquad as \ n = p_{a_1(n)}^{b_1(n)} \cdots p_{a_r(n)}^{b_r(n)} \to \infty$$
(41)

Proof. Recall that $S \simeq \frac{R}{\mathfrak{D}}$, where $R = \mathbb{C}[[Y]]$ and \mathfrak{D} is the closure of the ideal generated by all non-separated quadratic monomials $y_i^{(j)}y_i^{(k)}$. Since the set of square-free monomials in the $y_i^{(j)}$'s form a Schauder base, any continuous C-algebra endomorphism θ of S is determined by its values on the $y_i^{(j)}$'s, and must fulfill (41). Since $y_i^{(j)}y_i^{(k)} = 0$ in S, we must have that

$$\theta(0) = \theta(y_i^{(j)} y_i^{(k)}) = \theta(y_i^{(j)}) \theta(y_i^{(k)}) = \gamma_{i,j} \gamma_{i,k} = 0.$$

5. NILPOTENT ELEMENTS AND ZERO DIVISORS

Definition 5.1. For $m \in \mathbb{N}^+$, define the *prime support* of m as

$$psupp(m) = \{ p \in \mathcal{P} | p | m \}$$

$$(42)$$

and (when m > 1) the leading prime as

$$lp(m) = \min psupp(m) \tag{43}$$

For $n \in \mathbb{N}^+$, put

$$A^{n} = \left\{ k \in \mathbb{N}^{+} \middle| p_{n} \middle| k \text{ but } p_{i} \not| k \text{ for } i < n \right\} = \left\{ k \in \mathbb{N}^{+} \middle| \operatorname{lp}(k) = p_{n} \right\}$$
(44)
Then $\mathbb{N}^{+} \setminus \{1\}$ is a disjoint union

$$\mathbb{N}^+ \setminus \{1\} = \bigsqcup_{i=1}^{\infty} A^i \tag{45}$$

Definition 5.2. Let $f \in \mathcal{A}$ be a non-unit. The *canonical decomposition* of f is the unique way of expressing f as a convergent sum

$$f = \sum_{i=1}^{\infty} f_i, \quad f_i = \sum_{k \in A^i} f(k)e_k \tag{46}$$

The element f is said to be of *polynomial type* if all but finitely many of the f_i 's are zero. In that case, the largest N such that $f_N \neq \mathbf{0}$ is called the *filtration degree* of f.

Lemma 5.3.

$$f_i = \sum_{j=1}^{\infty} e_{p_i^j} \oplus g_{i,j}, \quad r \le i, \quad p_r \mid n \implies g_{i,j}(n) = 0.$$
(47)

For any n there is at most one pair (i, j) such that

$$\left(e_{p_i^j}\oplus g_{i,j}\right)(n)\neq 0.$$

More precisely, if

$$n = p_{i_1}^{j_1} \cdots p_{i_r}^{j_r}, \qquad i_1 < \cdots < i_r,$$

then $\left(e_{p_{i_1}^{j_1}}\oplus g_{i_1,j_1}\right)(n)$ may be non zero.

Definition 5.4. For $k \in \mathbb{N}$, define

$$I_k = \{ f \in \mathcal{A} | f(n) = 0 \text{ for every } n \text{ such that } (n, p_1 p_2 \cdots p_k) = 1 \}$$
(48)

Lemma 5.5. I_k is an ideal in $(\mathcal{A}, +, \oplus)$.

Proof. It is shown in [8] that the I_k 's form an ascending chain of ideals in $(\mathcal{A}, +, \cdot)$. They are also easily seen to be ideals in $(\mathcal{A}, +, \oplus)$: if

$$f \in I_k, g \in \mathcal{A} \text{ and } (n, p_1 p_2 \cdots p_k) = 1$$

then

$$(f\oplus g)(n) = \sum_{d\mid\mid n} f(d)g(n/d) = 0,$$

since $(d, p_1 p_2 \cdots p_k) = 1$ for any unitary divisor of n.

Theorem 5.6. Let $N \in \mathbb{N}^+$, and let $f \in (\mathcal{A}, +, \oplus)$ be a non-unit. Then

 $I_N = \operatorname{ann}(e_{p_1 \cdots p_N})$ $= \{\mathbf{0}\} \cup \{f \in \mathcal{A} | f \text{ is of polynomial type and has filtration degree } N\}$ $= \overline{\mathcal{A} \left\{ e_{p^{a}} \mid a, i \in \mathbb{N}^{+}, i \leq N \right\}}$

where \overline{AW} denotes the topological closure of the ideal generated by the set W.

Proof. If $f \in I_N$ then for all k

$$(f \oplus e_{p_1 \cdots p_N})(k) = \sum_{a \oplus p_1 \cdots p_N = k} f(a)e_{p_1 \cdots p_N}(p_1 \cdots p_N) = \sum_{a \oplus p_1 \cdots p_N = k} f(a) = 0$$
(49)

so $f \in \operatorname{ann}(e_{p_1 \cdots p_N})$. Conversely, if $f \in \operatorname{ann}(e_{p_1 \cdots p_N})$ then $(f \oplus e_{p_1 \cdots p_N})(k) = 0$ for all k, hence if $(n, p_1 \cdots p_N) = 1$ then

$$0 = (f \oplus e_{p_1 \cdots p_N})(np_1 \cdots p_N) = f(n)e_{p_1 \cdots p_N}(p_1 \cdots p_N) = f(n)$$
(50)
ce $f \in I_N$

hence $f \in I_N$.

If $f \in I_N$ then for j > N we get that $f_j = \mathbf{0}$, since

$$f_j(k) = \begin{cases} 0 & \text{if } k \notin A^j \\ f(k) = 0 & \text{if } k \in A^j \end{cases}$$

Hence $f = \sum_{i=1}^{N} f_i$. Conversely, if f can be expressed thusly, then $f(k) = f_{j_1}(k) = 0$ for $k = p_{j_1}^{a_1} \cdots p_{j_r}^{a_r}$ with $N < j_1 < \cdots < j_r$. The last equality follows from Theorem 3.9.

Theorem 5.7. Let $f \in A$ be a non-unit. The following are equivalent:

- (i) f is of polynomial type.
- (*ii*) $f \in \bigcup_{k=0}^{\infty} I_k$,
- (iii) There is a finite subset $Q \subset \mathcal{P}$ such that f(k) = 0 for all k relatively prime to all $p \in Q$.
- (iv) $f \in \bigcup_{N=1}^{\infty} \operatorname{ann}(e_{p_1p_2\cdots p_N}).$
- (v) f is contained in the topological closure of the ideal generated by the set $\{ e_{p_i^a} | a, i \in \mathbb{N}^+, i \leq N \}.$

If f has finite support, then it is of polynomial type. If f is of polynomial type, then it is nilpotent.

Proof. Clearly, a finitely supported f is of polynomial type. The equivalence (i) \iff (ii) \iff (iii) \iff (iv) \iff (v) follows from the previous theorem.

If f is of polynomial type, say of filtration degree N, then

$$f = \sum_{i=1}^{N} f_i \tag{51}$$

and we see that if f^{N+1} is the N+1'st unitary power of f, then f^{N+1} is the linear combination of monomials in the f_i 's, and none of these monomials are square-free. Since $f_i \oplus f_i = \mathbf{0}$ for all *i*, we have that $f^{N+1} = \mathbf{0}$. So *f* is nilpotent.

Lemma 5.8. The elements of polynomial type forms an ideal.

Proof. By the previous theorem, this set can be expressed as

$$\bigcup_{n=1}^{\infty} I_n,$$

which is an ideal since each I_n is.

Question 5.9. Are all [nilpotent elements, zero divisors] of polynomial type? If one could prove that the zero divisors are precisely the elements of polynomial type, then by Lemma 5.8 it would follow that $Z(\mathcal{A})$ is an ideal, and moreover a prime ideal, since the product of two regular elements is regular (in any commutative ring). Then one could conclude [6] that $(\mathcal{A}, +, \oplus)$ has few zero divisors, hence is additively regular, hence is a Marot ring.

Theorem 5.10. $(\mathcal{A}, +, \oplus)$ contains infinitely many non-associate regular non-units.

Proof. Step 1. We first show that there is at least one such element. Let $f \in \mathcal{A}$ denote the arithmetical function

$$f(k) = \begin{cases} 1 & k \in \mathcal{PP} \\ 0 & \text{otherwise} \end{cases}$$

Then f is a non-unit, and using a result by Yocom [13, 8] we have that f is contained in a subring of $(\mathcal{A}, +, \oplus)$ which is a discrete valuation ring isomorphic to $\mathbb{C}[[t]]$, the power series ring in one indeterminate. This ring is a domain, so f is not nilpotent.

We claim that f is in fact regular. To show this, suppose that $g \in \mathcal{A}$, $f \oplus g = \mathbf{0}$. We will show that $g = \mathbf{0}$.

Any positive integer m can be written $m = q_1^{a_1} \cdots q_r^{a_r}$, where the q_i are distinct prime numbers. If r = 0, then m = 1, and g(1) = 0, since

$$0 = (f \oplus g)(2) = f(2)g(1) = g(1).$$

For the case r = 1, we want to show that $g(q^a) = 0$ for all prime numbers q. Choose three different prime powers $q_1^{a_1}$, $q_2^{a_2}$, and $q_3^{a_3}$. Then

$$0 = f \oplus g(q_i^{a_i} q_j^{a_j}) = f(q_i^{a_i})g(q_j^{a_j}) + f(q_j^{a_j})g(q_i^{a_i}) = g(q_j^{a_j}) + g(q_i^{a_i}),$$

when $i \neq j, i, j \in \{1, 2, 3\}$. In matrix notation, these three equations can be written as

$$\begin{bmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} g(q_1^{\alpha_1}) \\ g(q_2^{\alpha_2}) \\ g(q_3^{\alpha_3}) \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

from which we conclude (since the determinant of the coefficient matrix is non-zero) that $0 = g(q_1^{a_1}) = g(q_2^{a_2}) = g(q_3^{a_3})$.

Now for the general case, r > 1. We need to show that that

$$g(q_1^{a_1} \cdots q_r^{a_r}) = 0 \tag{52}$$

whenever $q_1^{a_1}, \ldots, q_r^{a_r}$ are pair-wise relatively prime prime powers.

Choose N pair-wise relatively prime prime powers $q_1^{a_1}, \ldots, q_N^{a_N}$. For each r + 1-subset $q_{s_1}, \ldots, q_{s_{r+1}}$ of this set we get a homogeneous linear equation

$$0 = f \oplus g(q_{s_1} \dots q_{s_{r+1}}) = g(q_{s_2} \dots q_{s_{r+1}}) + g(q_{s_1} q_{s_3} \dots q_{s_{r+1}}) + \dots + g(q_{s_1} \dots g_{s_r}) \quad (53)$$

The matrix of the homogeneous linear equation system formed by all these equations is the incidence matrix of r-subsets (of a set of N elements) into r + 1-subsets. It has full rank [12]. Since it consists of $\binom{N}{r+1}$ equations and $\binom{N}{r}$ variables, we get that for sufficiently large N, the null-space is zero-dimensional, thus the homogeneous system has only the trivial solution. It follows, in particular, that (52) holds.

Thus, g(m) = 0 for all m, so f is a regular element.

Step 2. We construct infinitely many different regular non-units. Consider the element \tilde{f} , with

$$\tilde{f}(k) = \begin{cases} c_k & k \in \mathcal{PP} \\ 0 & \text{otherwise} \end{cases}$$

and where the c_k 's are "sufficiently generic" non-zero complex numbers, then we claim that \tilde{f} , too, is a regular non-unit. With g, m, r as before, we have that, for r = 0,

$$0 = f \oplus g(p^a) == f(p^a)g(1) = c_{p^a}g(1).$$

We demand that $c_{p^a} \neq 0$, then g(1) = 0.

For a general r, we argue as follows: the incidence matrices that occurred before will be replaced with "generic" matrices whose elements are c_k 's or zeroes, and which specialize, when setting all $c_k = 1$, to full-rank matrices. They must therefore have full rank, and the proof goes through.

Step 3. Let g be a unit in \mathcal{A} , and \tilde{f} as above. We claim that if $g \oplus f$ is of the above form, i.e. supported on \mathcal{PP} , then g must be a constant. Hence there are infinitely many non-associate regular non-units of the above form.

To prove the claim, we argue exactly as before, using the fact that $g \oplus f$ is supported on \mathcal{PP} . For $m = q_1^{a_1} \cdots q_r^{a_r}$ as before, the case r = 0 yields nothing:

$$0 = g \oplus f(1) = f(1)g(1) = 0g(1) = 0,$$

neither does the case r = 1:

$$w = g \oplus f(q^a) = f(q^a)g(1),$$

so g(1) may be non-zero. But for r = 2 we get

$$0 = g \oplus \tilde{f}(q_1^{a_1}q_2^{a_2}) = \tilde{f}(q_1^{a_1})g(q_2^{a_2}) + g(q_1^{a_1})\tilde{f}(q_2^{a_2}),$$

and also

$$0 = g \oplus \tilde{f}(q_1^{a_1}q_3^{a_3}) = \tilde{f}(q_1^{a_1})g(q_3^{a_3}) + g(q_1^{a_1})\tilde{f}(q_3^{a_3})$$

$$0 = g \oplus \tilde{f}(q_2^{a_2}q_3^{a_3}) = \tilde{f}(q_2^{a_2})g(q_3^{a_3}) + g(q_1^{a_1})\tilde{f}(q_3^{a_3})$$

which means that

$$\begin{bmatrix} \tilde{f}(q_2^{a_2}) & \tilde{f}(q_1^{a_1}) & 0\\ \tilde{f}(q_3^{a_3}) & 0 & \tilde{f}(q_1^{a_1})\\ 0 & \tilde{f}(q_3^{a_3}) & \tilde{f}(q_2^{a_2}) \end{bmatrix} \begin{bmatrix} g(q_1^{a_1})\\ g(q_2^{a_2})\\ g(q_3^{a_3}) \end{bmatrix} = \begin{bmatrix} 0\\ 0\\ 0 \end{bmatrix}$$

By our assumptions, the coefficient matrix is non-singular, so only the zero solution exists, hence $g(q_1^{a_1}) = 0$.

An analysis similar to what we did before shows that $g(q_1^{a_1} \cdots q_r^{a_r}) = 0$ for r > 1.

With the same method, one can easily show that the characteristic function on \mathcal{P} is regular.

6. Some simple results on factorisation

Cashwell-Everett [4] showed that $(\mathcal{A}, +, \cdot)$ is a UFD. We will briefly treat the factorisation properties of $(\mathcal{A}, +, \oplus)$. Definitions and facts regarding factorisation in commutative rings with zero-divisors from the articles by Anderson and Valdes-Leon [1, 2] will be used.

First, we note that since $(\mathcal{A}, +, \oplus)$ is quasi-local, it is présimplifiable, i.e. $a \neq \mathbf{0}, a = r \oplus a$ implies that r is a unit. It follows that for $a, b \in \mathcal{A}$, the following three conditions are equivalent:

- (1) a, b are associates, i.e. $\mathcal{A} \oplus a = \mathcal{A} \oplus b$.
- (2) a, b are strong associates, i.e. $a = u \oplus b$ for some unit u.
- (3) a, b are very strong associates, i.e. $\mathcal{A} \oplus a = \mathcal{A} \oplus b$ and either $a = b = \mathbf{0}$, or $a \neq \mathbf{0}$ and $a = r \oplus b \implies r \in U(\mathcal{A})$.

We say that $a \in \mathcal{A}$ is *irreducible*, or an *atom*, if $a = b \oplus c$ implies that a is associate with either b or c.

Theorem 6.1. $(\mathcal{A}, +, \oplus)$ is atomic, *i.e.* all non-units can be written as a product of finitely many atoms. In fact, $(\mathcal{A}, +, \oplus)$ is a bounded factorial ring (BFR), *i.e.* there is a bound on the length of all factorisations of an element.

Proof. It follows from Lemma 3.3 that the non-unit f has a factorisation into at most D(f) atoms.

Example 6.2. We have that $e_2 \oplus (e_{2^k} + e_3) = e_6$ for all k, hence e_6 has an infinite number of non-associate irreducible divisors, and infinitely many factorisations into atoms.

Example 6.3. The element $h = e_{30}$ can be factored as $e_2 \oplus e_3 \oplus e_5$, or as $(e_6 + e_{20}) \oplus (e_2 + e_5)$.

These examples show that $(\mathcal{A}, +, \oplus)$ is neither a half-factorial ring, nor a finite factorisation ring, nor a weak finite factorisation ring, nor an atomic idf-ring.

7. The subring of arithmetical functions supported on square-free integers

Let $SQF \subset \mathbb{N}^+$ denote the set of square-free integers, and put

$$\mathfrak{C} = \{ f \in \mathcal{A} | \operatorname{supp}(f) \subset \mathcal{SQF} \}$$
(54)

For any $f \in \mathcal{A}$, denote by $p(f) \in \mathfrak{C}$ the restriction of f to SQF.

Theorem 7.1. $(\mathfrak{C}, +, \oplus)$ is a subring of $(\mathcal{A}, +, \oplus)$, and a closed \mathbb{C} -subalgebra with respect to the norm $|\cdot|$. The map

$$p: \mathcal{A} \to \mathfrak{C}$$
$$f \mapsto p(f) \tag{55}$$

is a continuous \mathbb{C} -algebra epimorphism, and a retraction of the inclusion map $\mathfrak{C} \subset \mathcal{A}$.

Proof. Let $f, g \in \mathfrak{C}$. If $n \in \mathbb{N}^+ \setminus SQ\mathcal{F}$ then (f+g)(n) = f(n) + g(n) = 0, and cf(n) = 0 for all $c \in \mathbb{C}$. Since $n \in \mathbb{N}^+ \setminus SQ\mathcal{F}$, there is at least on prime p such that $p^2 | n$. If m is a unitary divisor of m, then either m or n/m is divisible by p^2 . Thus

$$(f \oplus g)(n) = \sum_{m \mid |n} f(m)g(n/m) = 0.$$

If $f_k \to f$ in \mathcal{A} , and all $f_k \in \mathfrak{C}$, let $n \in \operatorname{supp}(f)$. Then there is an N such that $f(n) = f_k(n)$ for all $k \ge N$. But $\operatorname{supp}(f_k) \subset SQF$, so $n \in SQF$. This shows that \mathfrak{C} is a closed subalgebra of \mathcal{A} .

It is clear that p(f + g) = p(f) + p(g) and that p(cf) = cp(f) for any $c \in \mathbb{C}$. If n is not square-free, we have already showed that

$$0 = (p(f) \oplus p(g))(n) = p((f \oplus g))(n).$$

Suppose therefore that n is square-free. Then so is all its unitary divisors, hence

$$p(f \oplus g)(n) = (f \oplus g)(n) = \sum_{m \mid |n} f(m)g(n/m) = \sum_{m \mid |n} p(f)(m)p(g)(n/m) = (p(f) \oplus p(g))(n).$$

We have that p(f) = f if and only if $f \in \mathfrak{C}$, hence p(p(f)) = p(f), so p is a retraction to the inclusion $i : \mathfrak{C} \to \mathcal{A}$. In other words, $p \circ i = \mathrm{id}_{\mathfrak{C}}$.

Corollary 7.2. The multiplicative inverse of an element in \mathfrak{C} lies in \mathfrak{C} .

Proof. If $f \in \mathfrak{C}$, $f \oplus g = e_1$ then

$$e_1 = p(e_1) = p(f \oplus g) = p(f) \oplus p(g) = f \oplus p(g),$$

hence g = p(g), so $g \in \mathfrak{C}$.

Alternatively, we can reason as follows. If f is a unit in \mathfrak{C} then we can without loss of generality assume that f(1) = 1. By Theorem 3.7, $g = -f + e_1$ is topologically nilpotent, hence by Proposition 1.2.4 of [3] we have that the inverse of $e_1 - g = f$ can be expressed as $\sum_{i=0}^{\infty} g^i$. It is clear that g, and every power of it, is supported on SQF, hence so is f^{-1} .

Corollary 7.3. $(\mathfrak{C}, +, \oplus)$ is semi-local.

Proof. The units consists of all $f \in \mathfrak{C}$ with $f(1) \neq 0$, and the non-units form the unique maximal ideal.

Remark 7.4. More generally, given any subset $Q \subset \mathbb{N}^+$, we get a retract of $(\mathcal{A}, +, \oplus)$ when considering those arithmetical functions that are supported on the integers $n = p_1^{a_1} \cdots p_r^{a_r}$ with $a_i \in Q \cup \{0\}$. This property is unique for the unitary convolution, among all regular convolutions in the sense of Narkiewicz [7].

In particular, the set of arithmetical functions supported on the exponentially odd integers (those n for which all a_i are odd) forms a retract of $(\mathcal{A}, +, \oplus)$. It follows that the inverse of such a function is of the same form.

Let $T = \mathbb{C}[[x_1, x_2, x_3, \dots]]$, the large power series ring on countably many variables, and let J denote the ideal of elements supported on non square-free monomials.

Theorem 7.5. $(\mathfrak{C}, +, \oplus) \simeq T/J$. This algebra can also be described as the generalized power series ring on the monoid-with-zero whose elements are all finite subsets of a fixed countable set X, with multiplication

$$A \times B = \begin{cases} A \cup B & \text{if } A \cap B = \emptyset \\ 0 & \text{otherwise} \end{cases}$$
(56)

Proof. Define η by

$$\eta: T \to \mathcal{A}$$
$$\eta(\sum_{m} c_{m}m) = \sum_{m \text{ square-free}} c_{m}e_{m},$$
(57)

where for a square-free monomial $m = m_{i_1} \cdots m_{i_r}$ with $1 \leq i_1 < \cdots < i_r$ we put $e_m = e_{p_{i_1} \cdots p_{i_r}}$. Then $\eta(T) = \mathfrak{C}$, ker $\eta = J$. It follows that $\mathfrak{C} \simeq T/J$. \Box

References

- D. D. Anderson and Silvia Valdes-Leon. Factorization in commutative rings with zero divisors. *Rocky Mountain J. Math.*, 26(2):439–480, 1996.
- [2] D. D. Anderson and Silvia Valdes-Leon. Factorization in commutative rings with zero divisors. II. In *Factorization in integral domains (Iowa City, IA, 1996)*, pages 197–219. Dekker, New York, 1997.
- [3] S. Bosch, U. Güntzer, and R. Remmert. Non-Archimedean analysis. Springer-Verlag, Berlin, 1984. A systematic approach to rigid analytic geometry.
- [4] E. D. Cashwell and C. J. Everett. The ring of number-theorethic functions. Pacific Journal of Mathematics, 9:975–985, 1959.
- [5] Eckford Cohen. Arithmetical functions associated with the unitary divisors of an integer. *Mathematische Zeitschrift*.
- [6] James A. Huckaba. Commutative rings with zero divisors. Marcel Dekker Inc., New York, 1988.
- [7] W. Narkiewicz. On a class of arithmetical convolutions. Collog. Math., 10:81–94, 1963.
- [8] Emil D. Schwab and Gheorghe Silberberg. A note on some discrete valuation rings of arithmetical functions. Archivum Mathematicum (Brno), 36:103–109, 2000.
- [9] Emil D. Schwab and Gheorghe Silberberg. The valuated ring of the arithmetical functions as a power series ring. Archivum Mathematicum (Brno), 37(1):77–80, 2001.
- [10] R. Sivaramakrishnan. Classical theory of arithmetic functions, volume 126 of Pure and applied mathematics. Marcel Dekker, 1989.
- [11] R. Vaidyanathaswamy. The theory of multiplicative arithmetic functions. Trans. Amer. Math. Soc., 33(2):579–662, 1931.
- [12] Richard M. Wilson. The necessary conditions for t-designs are sufficient for something. Utilitas Mathematica, 4:207–215, 1973.
- [13] K. L. Yocom. Totally multiplicative functions in regular convolution rings. Canad. Math. Bull., 16:119–128, 1973.

Department of Mathematics, Stockholm University, SE-10691 Stockholm, Sweden

E-mail address: jans@matematik.su.se