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THE COUNTERPART FOR HANKEL-SCHUR

MULTIPLIERS OF EBERLEIN’S DECOMPOSITION

Mats Erik Andersson

����������	�
����
The decomposition into almost periodic and weakly null periodic part is

achieved for two natural multiplier algebras. In fact, the subspaces of almost periodic
multipliers turn out to be complemented subspaces in each case. Some applications
are discussed.

Two sequence spaces on N are at the centre of attention in this text. On the one
hand, the multipliers of the Hardy space, written M(H 1), is the Banach algebra
consisting of the sequences b = {bn}

∞
n=0 such that

∀f ∈ H1(T),

∞
∑

n=0

bnf̂(n)zn ∈ H1.

M(H1) is supplied with the natural multiplier norm.
On the other hand, MH denotes the Banach algebra of Hankel-Schur multipli-

ers with norm induced from V2 in the following sense. A sequence b ∈ `∞(N) is
identified with a Hankel matrix Γb through (Γb)ij = b(i + j). Here

b ∈ MH iff Γb ∈ V2; ‖ b ‖MH = ‖Γ2 ‖V2
.

The space V2 = M(B(`2)) of Schur multipliers consists of matrices indexed by
N×N such that the element-wise product of matrices makes M ∈ V2 to a bounded
multiplier on B(`2), the bounded operators on `2(N). The norm is

‖M ‖V2
= sup

{

‖M · A ‖B(`2) / ‖A ‖B(`2) ; A ∈ B(`2), A 6= 0
}

,

and using element-wise addition and multiplication, V2 becomes a Banach algebra.
Bennett [Be] is a good reference.

The subalgebra of V2 consisting of Toeplitz matrices is isometrically isomorphic
to the measure algebra M(T), whereas the subalgebra of Hankel matrices includes
M(T) in a non-isometric manner via

µ ∈ M(T) ↔ µ̂
∣

∣

N
∈ MH ↔ {µ̂(i + j)}∞i,j=0 ∈ V2.

It is known that

(NCL) ‖ b ‖M(H1) ≤ ‖ b ‖MH ≤ ‖ b ‖B(N)
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2 MATS ERIK ANDERSSON

whenever two of the members make sense. Here B(N) is the Fourier-Stieltjes quo-
tient algebra over N induced by M(T).

It is also known that every member of M H is weakly almost periodic as a member
of `∞(N) with left shift, but that M(H1) neither is included in nor includes that
space of weakly almost periodic sequences. The first fact is due to Bennett, while
Bożejko and Lust-Piquard have constructed the necessary counterexamples relating
to M(H1).

The following text is dealing with (weak) almost periodicity and uses

AP = AP(Z)|N, WAP = WAP(Z)|N, and WNAP = WNAP(Z)|N

to denote the special closed subspaces of `∞ consisting of almost periodic, weakly
almost periodic, and weakly null sequences, respectively, derived by restriction.

Recall first that B(Z) can be topologically decomposed as

(1) B(Z) = Md(T)ˆ ⊕ Mc(T)ˆ = Bd(Z) ⊕ Bc(Z),

where the Lebesgue decomposition yields

x ∈ B(Z), x = xd + xc, ‖xd ‖B(Z) ≤ ‖x ‖B(Z) .

Here xd ∈ Md(T) is unique. According to Hewitt–Eberlein’s well known theorem

Bd(Z) = B(Z) ∩ AP(Z) and ‖xd ‖`∞ ≤ ‖x ‖`∞ ,

Bc(Z) = B(Z) ∩ WNAP(Z).

A straightforward case of quotient norms then produces another decomposition
out of the first instance above:

B(N) = Md(T)ˆ
∣

∣

N
⊕ Mc(T)ˆ

∣

∣

N
= Bd(N) ⊕ Bc(N)(2)

x = xd + xc with ‖xd ‖B(N) ≤ ‖x ‖B(N) .

Since N determines mean values in WAP(Z) (Glicksberg, see [W]), each x ∈ AP
extends uniquely to x̃ ∈ AP(Z) and thus Wells [W] gave an extension of (2) to
B(N); cf. also Porada [Po].

B(N) = Bd(N) ⊕ Bc(N), ‖xd ‖`∞ ≤ ‖x ‖`∞ , x = xd + xc,(3)

Bd(N) = B(N) ∩ AP, Bc(N) = B(N) ∩ WNAP.

The motivation behind the present ideas was a result of Lust-Piquard:

Theorem ([LP1] or [LP2]). M(H 1) ∩ AP = Md(T)ˆ
∣

∣

N
.

It follows that

M(H1) ∩ AP = MH ∩ AP = B(N) ∩ AP = Bd(N),

where as introduced above Bd(N) = Md(T)ˆ
∣

∣

N
.

The aim now is to establish decompositions of M H and M(H1) reminiscent of
(1), say. Toward this end Eberlein’s classical theory of ergodicity, [E1], presents
the right means to accomplish this. A preparatory property must first be secured
in order to apply the mentioned framework.
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Proposition 1. The norm closed unit balls of B(N), MH , and M(H1) are closed

in the topology of pointwise convergence in `∞.

Proof. Consider the case of B(N) and a net cα in the unit ball with c(k) = limα cα(k)
for all k ≥ 0. To any positive ε there are measures µα with µ̂α|N = cα and
‖µα ‖M(T) ≤ 1 + ε. By weak-∗ compactness for measures, there is a subnet β with

µβ
∗
→ µ and µ̂(k) = lim

β
µ̂β(k) = c(k), all k ≥ 0.

Thus µ̂ = c in B(N) and by the semicontinuity of the norm

‖ c ‖B(N) ≤ ‖ µ̂ ‖B(Z) = ‖µ ‖M(T) ≤ lim
β

‖µβ ‖
M(T) ≤ 1 + ε.

It follows that the weak limit c belongs to the unit ball of B(N).
Consider next cα ∈ M(H1), ‖ cα ‖M(H1) ≤ 1, and cα → c weakly in `∞. For

each polynomial f(z) =
∑N

0 anzn the multiplier acts by [cf ](z) =
∑N

n=0 c(n)anzn.
Thus

‖ cf ‖H1 =

∫ 2π

0

∣

∣

∣

∣

∣

N
∑

n=0

c(n)aneinθ

∣

∣

∣

∣

∣

dθ

2π
≤ lim

α

‖ cαf ‖H1

≤ lim
α

‖ cα ‖M(H1) ‖ f ‖H1 ≤ ‖ f ‖H1 .

Due to the density of polynomials in H1, it follows that c ∈ M(H1) and additionally
‖ c ‖M(H1) ≤ 1.

Finally, the case of MH ; take cα analogous to the above. For any A ∈ B(`2) and
finitely supported x, y ∈ `2, the Hankel matrix Γc acts according to

〈(Γc · A)x, y〉 =

N
∑

k,l=0

xlc(k + l)aklyk

for some finite N only depending on the support of x and y. Thus

|〈(Γc · A)x, y〉| ≤ lim
α

∣

∣

∣

∑N

k,l=0 xlcα(k + l)aklyk

∣

∣

∣

= lim
α

|〈(Γcα
· A)x, y〉| ≤ lim

α

‖Γcα
‖V2

‖A ‖B(`2) ‖x ‖`2 ‖ y ‖`2 .

From this follow Mc ∈ V2 and ‖Mc ‖V2
≤ 1, which is the actual membership in

the unit ball of MH for the weak limit sequence c. This completes the proof.

Returning to Eberlein’s theory, it is convenient to remind oneself of the essential
notions and definitions, here tailored to the present needs.

Take E = `∞, the shift Tx(n) = x(n + 1), T 0 = id, and G = {T n ; n ≥ 0}.
This is Eberlein’s Example 1! Then G is an abelian, bounded semigroup of norm
one operators on `∞ possessing as almost invariant means the operators Un =
(n + 1)−1

∑n
0 T j. Thus G is ergodic with the natural von Neumann mean

Mx = lim
n→∞

Unx(0) = lim
n→∞

(n + 1)−1
n

∑

j=0

x(j).

The orbit of x ∈ `∞ is the set O(x) consisting of the finite convex combination of
different T nx.
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Definition. (1) x ∈ `∞ is ergodic if {Unx}∞n=0 has a weak accumulation point.
(2) x ∈ `∞ is (weakly) almost periodic if {T nx}∞n=0 is (weakly) relatively com-

pact.

It must be remarked that in all three cases the accumulation point is unique
and T -invariant, thus constant. The corresponding spaces A ⊆ W ⊆ Γ are closed
T -invariant subspaces of `∞. The proof of [E1], Thm 12.1 goes through verbatim
and proves W to be a B∗-algebra. Another important closed subspace of W to
mention is W0 = {x ∈ W ; M|x| = 0}. It is known that

A = AP ⊕ c0 and W = WAP, W0 = WNAP

with equal norms. This direct sum is observed in [dLG2], section 6. The unitary,
irreducible representations of N are in one-to-one correspondence with T via the
character ρα(n) = αn. Save for the restriction to N, these are identical with the
same kind of representations of Z. Thus one concludes Wp = AP, where Wp is the
closure in `∞ of the unitary subspaces in the sense of [dLG1], section 4. Then the
same paper in Theorem 5.7 establishes for the present case a decomposition:

Lemma 2. W = AP ⊕ W0.

Observe in passing that c0 ⊆ A is contained in W0. It is the semicharacters of N,
standing in bijective correspondence to the closed unit disk, that accounts [dLG2]
for the decomposition A = AP ⊕ c0.

A peculiar convolution-like product is necessary for the following development.

Definition. Let x ∈ W and y ∈ WAP(Z). Their quasi-convolution z = x ∗ y is for
t ∈ Z defined by the expression

z(t) = M[x(·)y(t − ·)] = lim
n→∞

(n + 1)−1
n

∑

j=0

x(j)y(t − j).

That the above von Neumann mean exists follows on grounds that y(t − ·)
∣

∣

N
∈ W

for all t ∈ Z, and that W is a B∗-algebra.

Lemma 3. z = x ∗ y is a member of AP(Z).

Proof. (Imitating Eberlein [E1], Thm 15.1.) Let (un) be a sequence in N. Then
z(t+un) = M[x(·+un)y(t−·)]. From x ∈ W follows the existence of a subsequence
(u′

n) as well as x̃ ∈ W such that x(· + u′
n) → x̃ weakly.

Next the Cauchy-Schwarz inequality produces
∣

∣z(t + u′
n) − M[x̃(·)y(t − ·)]

∣

∣

2
=

∣

∣M[{x(· + u′
n) − x̃(·)} y(t − ·)]

∣

∣

2

≤ M[|x̃(·) − x(· + u′
n)|2] M[|y(t − ·)|2]

≤ M[|x̃(·) − x(· + u′
n)|2] ‖ y ‖

2
`∞ .

The last expression tends to zero with increasing n, due to |x̃(·) − x(· + u ′
n)|2 → 0

weakly, so the uniform convergence in t of z(t + u ′
n) → M[x̃(·)y(t− ·)] as n → ∞ is

a consequence. Thus z ∈ AP(Z).

With the quasi-convolution we have the possibility of imitating Eberlein’s “ab-
stract summability theory” as presented in [E2], section two. The original proofs
were there performed on an lca group. However, the quasi-convolution easily allows
the proofs of [E2] to be performed on N instead of Z, almost verbatim.



DECOMPOSITION OF HANKEL-SCHUR MULTIPLIERS 5

Lemma 4. Let x ∈ WAP and let y ∈ AP(Z) be such that y(t) ≥ 0, y(t) = y(−t),

for all t ∈ Z, and My = 1. Then x ∗ y
∣

∣

N
is a member of O(x), the closed hull of

the orbit of x in `∞.

Proof (Essentially [E2], Lemma 1). Recall first that {Un}
∞
0 is an equicontinuous

collection of operators. By almost periodicity {yt = y(·−t)}t∈Z is relatively compact
in `∞, whence the same holds for {xyt = x(·)yt(· − t)}t∈Z. It follows that

(∗) x ∗ y(t) = M[x(·)y(· − t)] = lim
n

Un[xyt]

is uniform in t. Observe however, that the right-hand side of (∗) deals with se-
quences in `∞, whereas the left-hand side of (∗) has to be interpreted for fixed t
as the constant sequence {x ∗ y(t)}∞s=0. By definition of Un the above uniform
convergence expresses the relation

lim
n→∞

sup
s≥0

sup
t∈Z

∣

∣x ∗ y(t) −
∑n

j=0
(n + 1)−1x(j + s)y(j + s − t)

∣

∣ = 0.

This insures to each ε > 0 the existence of ν = ν(ε) such that n ≥ ν implies
simultaneously (take s = t)

sup
t≥0

∣

∣x ∗ y(t) −
∑n

j=0
(n + 1)−1x(j + t)y(j)

∣

∣ < ε

and
∣

∣1 − b−1
n

∣

∣ < ε
/

‖x‖ ‖y‖, bn =
∑n

j=0
(n + 1)−1y(j).

The last property is due to My = 1, granted the exclusion of the trivial case x = 0.

Now the inequality

∣

∣ x ∗ y(t)−
∑n

j=0
(n + 1)−1b−1

n y(j)x(j + t)
∣

∣

≤
∣

∣ x ∗ y(t) −
∑n

j=0
(n + 1)−1y(j)x(j + t)

∣

∣

+
∣

∣1 − b−1
n

∣

∣

∣

∣

∣

∑n

j=0
(n + 1)−1y(j)x(j + t)

∣

∣

∣

< ε +
ε

‖x‖ ‖y‖
· ‖x‖ ‖y‖ = 2ε

holds for all t ≥ 0 and n ≥ ν. Rewrite this as

∥

∥ x ∗ y|N −
∑n

j=0
(n + 1)−1b−1

n y(j)x(· + j)
∥

∥

`∞
< 2ε.

On grounds that
∑n

j=0(n +1)−1b−1
n y(j) = 1, clearly

∑n

j=0(n +1)−1b−1
n y(j)x(·+ j)

becomes a member of O(x). The work above lets us conclude x∗y|N ∈ O(x), which
is exactly the claim.
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A combination of the two lemmata shows

Corollary 5. For x and y as in Lemma 4, the membership x ∗ y|N ∈ AP ∩ O(x)
obtains.

It is clear from the definition of the quasi-convolution that ‖x ∗ y‖ ≤ ‖x‖ ‖y‖ in
`∞(Z). In particular, Vy : W → AP(Z), x 7→ x ∗ y is norm-to-norm-continuous for
each fixed y ∈ WAP(Z).

Consideration of the almost periodic compactification of Z allows by standard
procedures the selection of a bounded approximative unit {yα} in AP(Z) with the
properties yα ≥ 0, yα(t) = yα(−t), and Myα = 1. These are clearly chosen to
fit with Corollary 5. Write for convenience Vα = Vyα

. The mechanisms employed
by Eberlein [E2], Lemma 2, are perfectly applicable to prove the following result,
whose proof will not be repeated.

Lemma 6. The collection of operators defined on W by Tyx = x − Vyx
∣

∣

N
as y

ranges over AP(Z) constitutes a convex abelian semigroup admitting the family of

almost invariant integrals Tα introduced by Tαx = x − Vαx
∣

∣

N
.

Consider next any fixed x ∈ W. Since O(x) is weakly compact, the collection
{x ∗ yα

∣

∣

N
} is relatively weakly compact, so possesses a weak accumulation point

xa ∈ O(x). Then x − x ∗ yα

∣

∣

N
has a weak accumulation point x0 = x − xa. The

ergodic theorem of Eberlein thus implies the norm-convergence (in `∞) and Ty-
invariance expressed in

lim
α

(x − x ∗ yα

∣

∣

N
) = lim

α
Tαx = x0, Vyx0 = x0, all y ∈ AP(Z).

In particular, x0 and xa are unique. The latter property above expresses x0∗y
∣

∣

N
= 0

for all y ∈ AP(Z). Furthermore,

xa = x − lim
α

Tαx = lim
α

x ∗ yα

∣

∣

N
∈ AP

`∞

= AP.

This means that xa = O(x) ∩ AP.
Next, the membership x0 ∈ W0 is claimed. In fact, Lemma 2 admits a decom-

position x0 = x1 + x2, with x̃1 ∈ AP(Z), x1 = x̃1|N, and x2 ∈ W0. However, it is
clear by definition that this property of x2 forces x2 ∗ y = 0 for any y ∈ WAP(Z).
Thus

x1 ∗ y = x0 ∗ y = 0, for all y ∈ AP(Z).

This holds in particular for any character y(t) = eitθ, θ ∈ [0, 2π[, whence Eberlein’s
version [E1], Thm 15.2, of Parseval’s equation uncovers x1 = 0. This is so since the
invariant means of z ∈ AP(Z) and z|N ∈ AP over Z and N, respectively, coincide.
Now the membership x0 = x2 ∈ W0 follows. In condensed form:

Theorem 7. W = AP ⊕ W0, x = xa + x0, ‖xa‖ ≤ ‖x‖, xa ∈ O(x) ∩ AP.

This result is only a refinement of Lemma 2 in the way it nominally gives a
description how to calculate the almost periodic part xa, a procedure whose for

now only relevant property is expressed in the membership xa ∈ O(x) ∩ AP, for
given x ∈ W. It can be applied to the present multiplier spaces as follows.
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Theorem 8. The following direct sum decompositions hold as stated.

B(N) = Bd(N) ⊕ Bc(N) in `∞ and B(N).(4)

MH = Bd(N) ⊕ W0 ∩ MH in `∞ and MH .(5)

M(H1) ∩ W = Bd(N) ⊕ W0 ∩ M(H1) in `∞ and M(H1).(6)

Here the decomposition x = xa + x0 has in each case xa ∈ Bd(N) and ‖xa ‖X ≤
‖x ‖X , where X = `∞, B(N), MH , or M(H1). In fact, Bd(N) is a complemented

subspace in each of B(N), MH , and M(H1) via a norm one projection.

Remark. In the case of `∞-norm, the direct sum is to be interpreted in the algebraic
sense, since no one of the spaces is closed in uniform norm. Observe also that
M(H1) ∩ W is a closed subspace of M(H 1).

Proof. Let X denote any of B(N), MH , or M(H1)∩W. They are all subsets of W.

If x ∈ X , Proposition 1 says O(x) ⊆ X . The previous theorem produces the unique

decomposition x = xa + x0 with ‖xa ‖∞ ≤ ‖x ‖∞, xa ∈ O(x) ∩ AP, so the convex
combinations involved in O(x) then contribute with ‖xa ‖X ≤ ‖x ‖X . The theorem
of Lust-Piquard provides the membership

xa ∈ X ∩ AP = Bd(N) = Md(T)ˆ
∣

∣

N
.

Except for the last sentence of the statement, the proof is complete in the light of
x0 = x − xa ∈ W0 ∩ X and the singular observation W0 ∩ B(N) = Bc(N).

The proof of Theorem 7 shows Lx = limα x ∗ yα

∣

∣

N
to give a well-defined linear

mapping L: W → AP∩O(x). The first part of the present proof adds the fact that
L is of norm one when restricted to B(N), M H , or M(H1) ∩ W, and it then has
values in AP = Bd(N). Should x ∈ AP, then x = Lx + x0 by Theorem 7, where
x0 ∈ W0. But then x0 = x − Lx ∈ AP ∩ W0 = {0}, so x = Lx. This shows that L
is a projection with image AP. The proof is complete.

Remark. The statement (4) was included to stress the similarities with the new
results, in spite of it already having been verified earlier in the text.

Example 9. Consider the Paley multiplier γ(n) = 1 if n = 3k and 0 otherwise.
It is well known that γ is a member of M(H1) as well as MH . For the latter,
Bożejko’s paper [Bo] is suitable. Clearly γ is an idempotent and is a member of
W0. This fact relates to Corollary 11.

It is also long known that γ ∈ B(N), completion in `∞, which is best achieved
using Riesz products; one explicit construction can be found in [DR], Thm. 3.2.
It must be remarked that this procedure generates a sequence an ∈ B(N), such
that ‖ γ − an ‖`∞ → 0, and ‖an ‖B(N) → ∞. In fact, this last property cannot be

avoided of the following reason.
Were there a sequence {bn} in B(N) such that ‖ γ − bn ‖`∞ → 0, with a bound

supn ‖ bn ‖B(N) < ∞, then Proposition 1 would force γ ∈ B(N). However, by

Rudin’s generalisation of F. and M. Riesz’ theorem with lacunary components, it
is already known that γ cannot be a member of B(N).

With the direct sum decompositions of Theorem 7 at hand, it is easy to get more
information than expressed through ‖xa‖ ≤ ‖x‖, simply by following the lead of
Glicksberg and Wik [GW].
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Proposition 10. Let x ∈ B(N), MH , or M(H1)∩WAP. Decompose x = xa +x0

as above. Then xa(N) ⊆ x(N)− meaning that the closure of {x(n) ; n ≥ 0} in C

contains the set {xa(n) ; n ≥ 0}. More generally, xa(n0 + kN) ⊆ x(n0 + kN)− for

each positive integer k and each n0 ≥ 0.

Proof (Inessential variation of [GW].). Fix a positive integer k and take ε > 0 as
well as n0 ∈ N arbitrary. In the light of x0 ∈ W0 and hence also the same property
for any of its compressions n 7→ x0(n0 + kn), it is possible to choose inductively an
increasing sequence of integers {nm}∞m=1 such that

∣

∣x0

(

n0 + k[nm − nj ]
)∣

∣ < ε all j < m.

The component xa can be represented as

xa(t) =

∞
∑

r=1

are
itθr ,

∑

|ar| < ∞,

by Theorem 8. Thus there is an N with
∑∞

r=N+1 |ar| < ε. For the indices 1 ≤ r ≤ N
one passes to a subsequence {n′

m} of {nm} with the added property that

eikn′

m
θr converges as m → ∞ for each 1 ≤ r ≤ N.

Then
∣

∣1 − exp
(

ik[n′
j − n′

m]θr

)∣

∣ → 0 as m, j → ∞. It follows that for m > j
sufficiently large

∣

∣xa(n0) − x
(

n0 + k[n′
m − n′

j ]
)∣

∣ < 4ε,

which contains the claimed property.

Corollary 11. Any idempotent in B(Z), B(N), MH or M(H1) ∩ WAP can be

written as x = a + b1 − b2. Here a = ν̂|N for a measure ν ∈ Md(T) of finite

support in πQ (mod 2π), ν̂ being the characteristic function of a union of arithmetic

progressions. Furthermore, b1 and b2 are idempotents in the same space as x is,

with the added property b1, b2 ∈ W0.

Proof. By proposition 3.10 (or [GW] for x ∈ B(Z)) the idempotent x decomposes
as x = a+b with a ∈ Bd(N), b ∈ W0, and {a(n) ; n ≥ 0} ⊆ {0, 1}. This range forces
a to be periodic and therefore the underlying measure ν with a = ν̂|N must have
finite support in πQ (mod 2π). The identification of the arithmetic progressions is
clear once the periodicity is used to transfer the analysis to a finite cyclic group.

From b = x−a it is obvious that b belongs to the same space as x does, and that
additionally its range {b(n) ; n ≥ 0} is contained in {−1, 0, 1}. Thus b1 = (b+b2)/2
and b2 = (b2−b)/2 are idempotents in whatever space x belongs to and additionally
bj ∈ W0. Clearly b = b1 − b2.

Remark. The proof gives the norm estimates ‖b‖ ≤ 2‖x‖ and ‖bj‖ ≤ ‖x‖
(

1+2‖x‖).
These are weaker than the corresponding results in full proofs of Cohen’s theorem.

Example 12. Let E ⊆ N be a Paley set, i.e., a finite union of lacunary sets, then
χE ∈ W0 and by Paley’s inequality χE ∈ MH ∩ M(H1). Thus χE is a non-trivial
idempotent which is not generated by a measure, the latter since Z+ ∪E is a Riesz
set, which in turn forces B(E) ⊆ c0 for the Fourier-Stieltjes restriction algebra.
Already Hartman [Ha] expressed this observation.
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More generally, write E = {n(k)}∞k=0 and introduce the mapping ρ : `∞ →
MH ⊂ M(H1) ∩ W0, x 7→ yρ by yρ(j) = xn(k) in case j = n(k) and 0 otherwise.
Letting Qρ denote the image of ρ, Bożejko’s theorem [Bo] proves the unit ball of `∞

to have image inside a ball in M H . Clearly ρ : `∞ → Qρ becomes an isomorphism
between two infinite dimensional B∗-algebras. Thus M H and M(H1) ∩ W0 do
contain infinite dimensional B∗-algebras. This must be compared to the next well-
known result and borne in mind when reading Theorem 13 below.

The preceding paragraph includes in particular the fact that the norm of χE∩[0,n]

is uniformly bounded in MH as well as in M(H1) ∩ WAP. This is relevant for
Theorem 15.

Proposition [DR, p. 30]. Let B be a commutative B∗-algebra such that B is al-

gebraically ∗-isomorphic to a subalgebra of the Fourier-Stieltjes algebra M(G)̂ for

some group G. Then B is finite dimensional.

Bearing Example 12 in mind the next result is the best to hope for.

Theorem 13. Let B be a commutative B∗-algebra such that B is algebraically ∗-
isomorphic to a subalgebra of MH or M(H1)∩W0. Then this counterpart of B is

contained in Qa + J , where Qa ⊆ Bd(N) is a finite dimensional, closed subalgebra,

while J ⊆ MH ∩ W0 or J ⊆ M(H1) ∩ W0 is a closed ideal, possibly of infinite

dimension

Proof. Recall first that each x 7→ x(n) gives a regular maximal ideal for each n ≥ 0.
Thus the radicals of MH and M(H1) are trivial and both multiplier spaces are thus
semisimple.

Let T be the indicated algebraic ∗-isomorphism. The semisimplicity insures that
T in each of the two cases is continuous, and it is topological while the sup-norm
derived from B is minimal on the image. Let Q denote the image of B under T ,
which is closed and therefore T : B → Q is a B∗-isomorphism. The norm used on
Q is the one induced by MH or M(H1) according to the case of interest.

Denote next the projection τ : MH → Bd(N) and τ : M(H1) ∩ WAP → Bd(N),
respectively, as provided by Theorem 8. Then τ is of norm one in either case. Put
Qa = τ(Q), so Qa ⊆ Bd(N). The kernel J = ker τ |Q is a self-adjoint, closed ideal,
it being contained in W0. Clearly Q ⊆ Qa + J . Next, Qa turns out to be an
algebra of the obvious reason: xa, ya ∈ Qa provide elements in Q with x = xa +x0,
y = ya + y0. Then

xy = xaya + (xay0 + x0ya + x0y0) ∈ Bd(N) + J,

since J is an ideal and xaya corresponds to the discrete measure µ ∗ ν, given that
xa = µ̂, ya = ν̂ restricted to N.

The composition τ ◦ T : B → Qa is an algebraic ∗-homomorphism. Then the
natural quotient map B/ ker(τ ◦T ) → Qa is an algebraic ∗-isomorphism too. Since
ker(τ ◦ T ) is a closed, self-adjoint ideal of the B∗-algebra B, it is well known that
the quotient becomes a B∗-algebra, see for example [Ri, p. 249]. The result from
[DR] cited above shows Qa and thus the quotient algebra to be finite dimensional.
On grounds that the range of T is contained in Qa + J , the theorem has now been
fully established.
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As a further application of Theorem 8, let us recall Helson’s proof of Steinhaus’
conjecture.

Proposition [He]. Let the symmetric partial Fourier sums of a measure µ ∈ M(T)
be uniformly bounded in L1-norm. Then µ ∈ M0(T), the ideal of all measures having

Fourier coefficients in c0(Z).

The natural condition to try in M H would be supn ‖xχ[0,n]‖ < ∞. In the light
of the last paragraph from Example 12 it is possible to have x 6∈ c0, so the Helson-
Steinhaus statement has to be changed somewhat and clearly suggests to try W0.
For reasons of comparison and completeness, a natural proof for the result in B(N)
is included first. This achieves the same thing as Helson did, but with nominally
weaker assumptions.

Proposition 14. Suppose x ∈ B(N) has supn ‖xχ[0,n]‖B(N) finite. Then x ∈ c0.

Remark. In particular, any measure µ ∈ M(T) = x achieving µ̂|N is by necessity
a continuous measure. Examples by M. Weiss or Y. Katznelson are easily seen to
produce cases where such µ has a non-trivial singular component.

Proof. Consider any increasing integer sequence nk such that x(nk) converges; the
existence of such indices inside any prescribed subsequence is granted by x ∈ `∞. It
suffices for the proof to demonstrate limk→∞ x(nk) = 0. Interpret in the following
text the relation ν ∼ y as ν̂|N = y|N.

Choose a measure µ ∈ M(T) such that µ ∼ x and let A be a finite number
strictly larger than ‖µ‖ and supn ‖xχ[0,n]‖. Passing to a subsequence {n′

k} there
are measures ν, λ, and µk in M(T), all of whose variation norms do not exceed A
and such that

µk ∼ xχ[0,n′

k
], ν = ∗-lim

n→∞
e−in′

k
θ dµk, λ = ∗-lim

n→∞
e−in′

k
θ dµ.

This involving weak-∗ limits in M(T). Helson’s translation lemma [DR, p. 64] now
forces λ to be a singular measure.

On the other hand, each e−in′

k
θ dµk has Fourier spectrum in Z−∪{0} and is hence

absolutely continuous. Thus the same is true of their weak-∗ limit ν. Clearly λ− ν
has Fourier spectrum in Z+ by construction and is therefore absolutely continuous.
The same property is thus present for λ = ν +(λ−ν). Hence λ ∈ Mc(T)∩Ms(T) =
{0}, from which

lim
k→∞

x(nk) = lim
k→∞

µ̂(n′
k) = λ̂(0) = 0

follows. Thus x ∈ c0, the desired conclusion.

Theorem 15. Let x ∈ MH or M(H1)∩WAP be such that supn ‖xχ[0,n]‖ is finite.

Then x ∈ MH ∩ W0 or x ∈ M(H1) ∩ W0, respectively.

Proof. Take for definiteness x ∈ M(H1) ∩ WAP, the other case being mutatis
mutandis identical.

Write x = xa|N + x0 for xa ∈ Bd(Z) and x0 ∈ M(H1) ∩ W0 in accordance
with Theorem 8. By almost periodicity there are integers nk → ∞ such that
limk→∞ xa(· + nk) exists in `∞. This limit is in fact xa itself.
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The membership x ∈ WAP contains the weak relative compactness of {x(·+nk)}.
Thinning to a subsequence allows the weak convergence on N and by passage to a
still further subsequence, the existence of

ρ(m) = lim
k→∞

x(m + nk)

can be granted for all m ∈ Z, which clearly includes ‖ ρ ‖`∞(Z) ≤ ‖x ‖`∞(N).

An argument due to Lust-Piquard [LP2] will yield ρ ∈ B(Z). In fact, consider
any polynomial f . Then

∥

∥

∥

∑

f̂(m)ρ(m)eimθ
∥

∥

∥

L1

= lim
k→∞

∥

∥

∥

∑

f̂(m)x(m + nk)eimθ
∥

∥

∥

L1

= lim
k→∞

∥

∥

∥

∑

f̂(m)x(m + nk)ei(m+n′

k
)θ

∥

∥

∥

L1

≤ sup
k

‖x(· + nk)‖M(H1)

∥

∥

∥

∑

f̂(m)eimθ
∥

∥

∥

L1

≤ ‖x ‖M(H1) ‖ f ‖L1 .

The density of polynomials in L1(T) now implies ρ ∈ M(L1) = B(Z), ‖ ρ ‖B(Z) ≤

‖x ‖M(H1).

Putting A = supk ‖xχ[0,n]‖M(H1) a similar calculation for polynomial f gives
∥

∥

∥

∑

m≤0
f̂(m)ρ(m)eimθ

∥

∥

∥

L1

= lim
k→∞

∥

∥

∥

∑

m≤0
f̂(m)x(m + nk)ei(m+nk)θ

∥

∥

∥

L1

≤ sup
k

‖x(· + nk)χ[0,nk]‖M(H1)

∥

∥

∑

f̂(m)eimθ
∥

∥

L1

≤ A ‖f‖L1,

from which ρχ]−∞,0] ∈ B(Z) follows. Hence also ρχ[1,∞[ = ρ−ρχ]−∞,0] is a member
of B(Z). By the theorem of F. and M. Riesz one concludes that ρχ]−∞,0] and ρχ[1,∞]

are in L1(T)ˆ and thus ρ ∈ L1(T)ˆ ⊆ c0.
Pointwise for m ≥ 0 we have an identity

lim
k→∞

[

ρ(m) − x0(m + nk)
]

= lim
k→∞

xa(m + nk) = xa(m)

and still xa ∈ AP(Z) ∩ M(H1) = Bd(Z). Now all ρ − x0(· + nk) are members of
W0 ∩C ⊆ `∞, where C is a suitable closed ball of M(H 1). This intersection W0 ∩C
is convex and norm-closed in `∞ by Proposition 1, hence also weakly closed in `∞,
so the above identity says

xa = weak-lim
k→∞

[ρ − x0(· + nk)] in `∞,

bearing in mind the uniqueness of weak limits and the existence of the right-hand
side by the choice of nk. Thus one concludes

xa|N ∈ Bd(N) ∩ W0 ∩ M(H1) = {0}

and so
x = x0 ∈ W0 ∩ M(H1),

which is the claimed analogue of Helson–Steinhaus.

Remark. It is clear from Proposition 1 that the membership x ∈ B(N) or M H in
Prop. 14 or Thm. 15, respectively, need not be a priori given. By the same token
x ∈ M(H1) ∩ WAP can be relaxed to x ∈ WAP without loss. Whether this needs
to be presupposed or not is still unclear.
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