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A SEMILINEAR SCHRÖDINGER EQUATION IN THE

PRESENCE OF A MAGNETIC FIELD

GIANNI ARIOLI AND ANDRZEJ SZULKIN

Abstract. We consider the semilinear stationary Schrödinger equation in a
magnetic field (−i∇+A)2u +V (x)u = g(x, |u|)u in

�
N , where V is the scalar

(or electric) potential and A is the vector (or magnetic) potential. We study
the existence of nontrivial solutions both in the critical and in the subcritical
case (respectively g(x, |u|) = |u|2

∗
−2 and |g(x, |u|)| ≤ c(1 + |u|p−2), where

2 < p < 2∗). The results are obtained by variational methods. For g critical
we use constrained minimization and for subcritical g we employ a minimax-
type argument. In the latter case we also study the existence of infinitely many
geometrically distinct solutions.

1. Introduction

In this paper we study the existence of solutions u 6= 0 of the semilinear Schrö-
dinger equation

(−i∇ +A)
2
u+ V (x)u = g(x, |u|)u, x ∈ RN ,(1.1)

where u : RN → C and N ≥ 2. Here V : RN → R is the scalar (or electric)
potential and A = (A1, . . . , AN ) : RN → RN is the vector (or magnetic) potential.
Let B := curlA. For N = 3 this is the usual curl operator and for general N ,
B = (Bjk), 1 ≤ j, k ≤ N , where Bjk := ∂jAk − ∂kAj . One can also consider A as
a 1-form:

A =

N
∑

j=1

Ajdx
j ;

then B = dA, i.e.

B =
∑

j<k

Bjkdx
j ∧ dxk,

where Bjk are as above. B represents the external magnetic field whose source is A.
Suppose A ∈ L2

loc(R
N ,RN), V ∈ L1

loc(R
N ) and let V be bounded below. Denote

∇Au = (∇ + iA)u,

let

H1
A(RN ) :=

{

u ∈ L2(RN ) : ∇Au ∈ L2(RN )
}

and, for N ≥ 3,

D1,2
A (RN ) :=

{

u ∈ L2∗

(RN ) : ∇Au ∈ L2(RN )
}

,

G.A. was supported by MURST project “Metodi variazionali ed Equazioni Differenziali Non
Lineari”.

A.S. was supported in part by the Swedish Research Council.

1



2 GIANNI ARIOLI AND ANDRZEJ SZULKIN

where 2∗ := 2N
N−2 is the critical Sobolev exponent. Both H1

A(RN ) and D1,2
A (RN )

are Hilbert spaces with inner product respectively

∫

RN

∇Au · ∇Av + uv

and
∫

RN

∇Au · ∇Av

(the bar denotes complex conjugation). By Section 2 of [EL] and Theorem 7.22

of [LL], C∞
0 (RN ) is dense in H1

A(RN ) and D1,2
A (RN ) (in [EL] D1,2

A (RN ) has in fact
been defined as the closure of C∞

0 (RN ) with respect to the norm corresponding to
the inner product above).

Let |g(x, |u|)| ≤ c(1 + |u|2
∗−2) and F (x, |u|) :=

∫ |u|

0
g(x, s)s ds; consider the

functional

J(u) :=
1

2

∫

RN

|∇Au|
2 + V |u|2 −

∫

RN

F (x, |u|).

Suppose u ∈ H1
A(RN ). By the diamagnetic inequality [LL, Theorem 7.21] (see also

the next section), |u| ∈ H1(RN ) and therefore u ∈ Lp(RN ) for any p ∈ [2, 2∗] (for
any p ∈ [2,+∞) if N = 2). It follows that whenever V ∈ Lβ(RN ), where β ≥ N/2
(β > 1 if N = 2), then J ∈ C1(H1

A(RN ),R) and critical points of J are weak
solutions of (1.1). We note for further reference that J(eiϑu) = J(u) for any ϑ ∈ R,
hence J is S1−invariant.

Suppose now A, Ã ∈ Lα
loc(R

N ,RN ) for some α ∈ [1,+∞) and curlA = B =

curl Ã (in the sense of distributions). Then Ã− A = ∇ϕ for some ϕ ∈ W 1,α
loc (RN ),

see [L, Lemma 1.1]. It is easy to see that if ũ = e−iϕu, then ∇Ãũ = e−iϕ∇Au and
hence

∫

RN

|∇Ãũ|
2

=

∫

RN

|∇Au|
2
.

It follows that if u ∈ H1
A(RN ), then ũ ∈ H1

Ã
(RN ) and if u satisfies (1.1), then so

does ũ with A replaced by Ã. The above properties are called the gauge invariance
and the transformation u 7→ ũ the change of gauge. These properties are consistent
with the fact that the magnetic field B and not the particular choice of the vector
potential A should be essential. Note that there is a trivial change of gauge u 7→
ũ = e−iϑu, where ϑ is a constant. Then Ã = A and in fact this property gives
rise to the S1−invariance of J mentioned above. While there is a vast literature
concerning the Schrödinger equation (1.1) with A = 0, to the best of our knowledge
there are only a few papers dealing with the magnetic case [EL, P, ST]. Also in
[CS, K] the magnetic case has been considered, but from a very different point of
view (semiclassical limits and related concentration phenomena).

Denote −∆A := (−i∇ + A)2. Since V is bounded below, so is the spectrum
σ(−∆A +V ) in L2(RN ). Suppose F ≥ 0. If 0 /∈ σ(−∆A +V ), then either σ(−∆A +
V ) ⊂ (0,+∞) and the functional has a mountain pass geometry, or σ(−∆A + V )∩
(−∞, 0) 6= ∅ and then J has a geometry of linking type.
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Now we proceed to formulate our main results. First we consider a minimization
problem in RN , N ≥ 3. Let

S̄ := inf
u∈D1,2

A
(RN )\{0}

∫

RN |∇Au|2 + V |u|2

||u||22∗

,(1.2)

where here and in what follows ||·||p denotes the usual Lp-norm in RN .

Theorem 1.1. If V ≥ 0, V ∈ L
N/2
loc (RN ) and A ∈ LN

loc(R
N ,RN), then the infimum

in (1.2) is attained if and only if V ≡ 0 and B = curlA ≡ 0.

The above result is a slight generalization of Theorem 3.7 in [EL], but our proof is

considerably simpler. Note that since V ∈ L
N/2
loc (RN ) only, then

∫

RN V |u|2 need not

be finite for all u ∈ D1,2
A (RN ). However, it is finite for u ∈ C∞

0 (RN ) and therefore
the minimization problem (1.2) makes sense. Note also that if S̄ is attained at

some u ∈ D1,2
A (RN ), then u is a solution of (1.1) with g(x, |u|) = S̄|u|2

∗−2; hence

v = S̄1/(2∗−2)u solves (1.1) with g(x, |u|) = |u|2
∗−2.

Theorem 1.2. Suppose N ≥ 4, V ∈ L1
loc(R

N ), V − := max{−V, 0} ∈ LN/2(RN ),
A ∈ L2

loc(R
N ,RN ) and σ(−∆A + V ) ⊂ (0,+∞), where σ(·) denotes the spectrum

in L2(RN ). If there exists x̄ ∈ RN such that V (x) ≤ −c < 0 in a neighborhood
of x̄ and A is continuous at x̄, then the infimum of (1.2) is attained for some
u ∈ H1

A(RN ) \ {0}.

Since σ(−∆A +V ) ⊂ (0,+∞), it follows that if S̄ is attained, then it is positive.
Indeed, S̄ ≥ 0 and if S̄ = 0 is attained at some u 6= 0, then u is an eigenvalue of
−∆A + V which is impossible.

For the next theorem we introduce the following assumptions:

A1: V ∈ L∞(RN ), g ∈ C(RN × R+,R) and A ∈ L2
loc(R

N ,RN ).
A2: V , g and B = curlA are 1−periodic in xj , 1 ≤ j ≤ N .
A3: g(x, 0) = 0.
A4: There are constants C > 0 and p ∈ (2, 2∗) (p > 2 if N = 2) such that

|g(x, |u|)| ≤ C(1 + |u|p−2) for all x, u.
A5: There is a constant µ > 2 such that 0 < µF (x, |u|) ≤ g(x, |u|)|u|2 whenever
u 6= 0.

Note that in view of the definition of F , (A5) is the usual superlinearity condition.
Since Bjk = ∂jAk − ∂kAj in the sense of distributions, the periodicity of B should
be interpreted as B(·) − B(· + ej) being the zero distribution for any element ej

of the standard basis in RN . It is also clear that according to (A3), (1.1) has the
trivial solution u = 0.

Theorem 1.3. If 0 /∈ σ(−∆A + V ) and conditions (A1)-(A5) are satisfied, then
equation (1.1) has a nontrivial solution u ∈ H1

A(RN ).

A corresponding result is well-known for the Schrödinger equation with A = 0
(see e.g. [KS, W] and the references there).

Finally we shall exploit the S1−invariance of J in order to show the existence of
infinitely many solutions of (1.1). For this purpose we introduce one more assump-
tion:

A6: There are constants C̄, ε0 > 0 such that

|g(x, |u+ v|)(u+ v) − g(x, |u|)u| ≤ C̄|v|(1 + |u|p−1)
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whenever |v| ≤ ε0, where p is as in (A4).

Theorem 1.4. If 0 /∈ σ(−∆A + V ) and conditions (A1)-(A6) are satisfied, then
equation (1.1) has infinitely many geometrically distinct solutions.

By geometrically distinct we mean such u, v that v 6= eiϑu for any ϑ ∈ R and
Tzv 6= u for any z ∈ ZN , where Tz is a certain operator corresponding to the
translation by elements of ZN in the nonmagnetic case. A more precise definition
will be given in Section 4.

The above result should be compared to the one contained in [BD, KS], where
A was equal to 0.

The paper is organized as follows. In Section 2 we prove some auxiliary results,
Section 3 deals with the minimization problem (1.2) and Theorems 1.1 and 1.2, the
proof of Theorem 1.3 is given in Section 4, and in Section 5 we prove Theorem 1.4.
In the appendix we sketch a proof of Lemma 3.1, which is the magnetic version of
a concentration-compactness result.

Acknowledgement. This research was begun while the first author was visiting
the Department of Mathematics of Stockholm University, whose kind hospitality is
acknowledged. The second author would like to thank Ari Laptev for bringing the
magnetic Schrödinger problem to his attention.

2. Preliminary lemmas

The following well-known diamagnetic inequality is proved in [LL]:

Theorem 2.1. If u ∈ H1
A(RN ) (resp. u ∈ D1,2

A (RN )), then |u| ∈ H1(RN ) (resp.
|u| ∈ D1,2(RN )) and

∣

∣∇ |u| (x)
∣

∣ ≤ |∇u(x) + iA(x)u(x)| for a.e. x ∈ RN .

Proof. We outline the argument. See [LL] for more details. Since A is real-valued,

∣

∣∇ |u| (x)
∣

∣ =

∣

∣

∣

∣

Re

(

∇u
ū

|u|

)∣

∣

∣

∣

=

∣

∣

∣

∣

Re

(

(∇u+ iAu)
ū

|u|

)∣

∣

∣

∣

≤ |∇u+ iAu|.(2.1)

Remark 2.2. The spaces H1
A(RN ) and H1(RN ) are incomparable; more precisely,

in general H1
A(RN ) * H1(RN ) and H1(RN ) * H1

A(RN ). On the other hand, when
restricted to a bounded set they are equivalent, as stated in the following lemma
(which will not be used later).

Lemma 2.3. Suppose A ∈ Lα
loc(R

N ,RN ), where α = N if N ≥ 3 and α > 2
if N = 2. If Ω is an open bounded subset of RN with regular boundary, then
u ∈ H1

A(Ω) if and only if u ∈ H1(Ω). Moreover, there exist c1, c2 > 0 only depending
on Ω such that c1 ||u||H1(Ω) ≤ ||u||H1

A(Ω) ≤ c2 ||u||H1(Ω) for all u ∈ H1(Ω).

A regular boundary means here that the Sobolev embedding H1(Ω) ↪→ L2∗

(Ω) is
continuous (a sufficient condition for regularity is that ∂Ω is Lipschitz continuous).

Proof. We consider the case N ≥ 3 and leave the other one to the reader. By the
Hölder inequality and the embedding H1(Ω) ↪→ L2∗

(Ω) we have
∫

Ω

|Au|2 ≤ ||A||2LN (Ω) ||u||
2
L2∗(Ω) ≤ c ||A||2LN (Ω) ||u||

2
H1(Ω) ,
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hence
∫

Ω

|∇Au|
2 + |u|2 ≤

∫

Ω

2(|∇u|2 + |Au|2) + |u|2 ≤ c̃

∫

Ω

|∇u|2 + |u|2.

To prove the other inequality (i.e. c1 ||u||H1(Ω) ≤ ||u||H1
A

(Ω)), note that
∫

Ω

|∇Au|
2 + |u|2 ≥

∫

Ω

∣

∣|∇u| − |Au|
∣

∣

2
+ |u|2

=

∫

Ω

|∇u|2 − 2|Au||∇u| + |A|2|u|2 + |u|2.

It remains to show that
∫

Ω

|∇u|2 − 2|Au||∇u|+ |A|2|u|2 + |u|2 ≥ ε

∫

Ω

|∇u|2 + |u|2

for some positive ε. Arguing indirectly, we find un with ‖un‖H1(Ω) = 1 such that
∫

Ω

|∇un|
2 − 2|Aun||∇un| + |A|2|un|

2 + |un|
2 <

1

n
.

Passing to a subsequence, un ⇀ u inH1(Ω) and sinceA ∈ LN (Ω),
∫

Ω |Aun| |∇un| →
∫

Ω |Au| |∇u|. Hence
∫

Ω

∣

∣|∇u| − |Au|
∣

∣

2
+ |u|2 =

∫

Ω

|∇u|2 − 2|Au||∇u| + |A|2|u|2 + |u|2 ≤ 0.

If u 6= 0, this is a contradiction, and if u = 0, then the inequality above is strict
because un 6→ 0 in H1(Ω), a contradiction again.

The following result is a special case of Proposition 2.2 in [EL] (see also Re-
mark 2.4 there):

Proposition 2.4. If A ∈ W 1,∞
loc (RN ,RN ) and either ∂jAk − ∂kAj ≥ c a.e. in RN

or ∂jAk − ∂kAj ≤ −c a.e. in RN for some j, k ∈ {1, . . . , N} and c > 0, then

c‖u‖2
2 ≤ ‖(∂j + iAj)u‖

2
2 + ‖(∂k + iAk)u‖2

2 ≤ ‖∇Au‖
2
2

for all u ∈ H1
A(RN ).

In Theorem 1.2 we require that σ(−∆A + V ) ⊂ (0,+∞). According to Lemma
2.5 below, either of the following assumptions suffices.

P1: A ∈ LN
loc(R

N ), V ∈ L1
loc(R

N ), where N ≥ 3, and there exists a bounded set
Ω ⊂ RN and two constants c1, c2 > 0 such that

V (x) ≥ c1 for all x /∈ Ω(2.2)

and

inf
x∈Ω

V (x) = −c2 > −Sµ(Ω)−2/N ,(2.3)

S being the Sobolev constant for the embedding D1,2(RN ) ↪→ L2∗

(RN ).

P2: A ∈ W 1,∞
loc (RN ,RN ), V ∈ L1

loc(R
N ) and there exists a constant c3 > 0

such that infx∈RN V (x) > −c3 and either ∂jAk − ∂kAj ≥ c3 a.e. in RN or
∂jAk − ∂kAj ≤ −c3 a.e. in RN for some j, k ∈ {1, . . . , N}.



6 GIANNI ARIOLI AND ANDRZEJ SZULKIN

Lemma 2.5. If P1 or P2 above holds, then there exists ε > 0 such that
∫

RN

|∇Au|
2 + V |u|2 ≥ ε‖u‖2

H1
A

(RN )

for all u ∈ H1
A(RN ) and therefore σ(−∆A + V ) ⊂ (0,+∞).

Proof. P1. Note that if V |u|2 /∈ L1(RN ), then
∫

RN V |u|2 = +∞, so the first

conclusion is trivially satisfied. We may therefore assume V |u|2 ∈ L1(RN ).
By the Hölder inequality,

∫

Ω

|u|2 ≤ µ(Ω)2/N‖u‖2
2∗ ,

and by the Sobolev and the diamagnetic inequalities,

S‖u‖2
2∗ ≤

∫

RN

∣

∣∇ |u|
∣

∣

2
≤

∫

RN

|∇Au|
2,

therefore
∫

Ω

|u|2 ≤ S−1µ(Ω)2/N

∫

RN

|∇Au|
2.(2.4)

By (2.3) and (2.4) we have
∫

Ω

V |u|2 ≥ −c2

∫

Ω

|u|2 ≥ −c2S
−1µ(Ω)2/N

∫

RN

|∇Au|
2.(2.5)

Suppose now that the first conclusion does not hold. Then we can find a sequence
{un} such that ‖un‖H1

A
(RN ) = 1 and

∫

RN |∇Aun|2 + V |un|2 → 0. Let c̃ := 1 −

c2S
−1µ(Ω)2/N , then c̃ > 0 according to (2.3), and by (2.2) and (2.5),

c̃

∫

RN

|∇Aun|
2 + c1

∫

Ωc

|un|
2 ≤

∫

RN

|∇Aun|
2 +

∫

Ω

V |un|
2 +

∫

Ωc

V |un|
2 → 0.

Hence ‖un‖L2(Ωc) → 0 and ‖∇Aun‖2 → 0. Since it follows from (2.4) that also

‖un‖L2(Ω) → 0, the sequence {un} tends to 0 in H1
A(RN ) which is a contradiction.

P2. Choose ε > 0 such that infx∈RN V (x) ≥ −c3 +ε(1+ c3). By Proposition 2.4,
‖∇Au‖2

2 ≥ c3‖u‖2
2, hence

∫

RN

(1 − ε)|∇Au|
2 + (V − ε)|u|2 ≥ 0

and the conclusion follows.

It is clear that the assumptions P1 and P2 are not necessary for σ(−∆A +V ) to
be contained in (0,+∞). However, they illustrate how A and V can be chosen in
order to satisfy the hypotheses of Theorem 1.2. Note also that the first conclusion
of the lemma shows the quadratic form associated with −∆A+V is positive definite
in H1

A(RN ) which is more than we need.

We shall make repeated use of the following fact:

Lemma 2.6. Let A ∈ L2
loc(R

N ,RN ) and suppose un ⇀ u in D1,2
A (RN ). Then, up

to a subsequence, un → u a.e. in RN and un → u in Lq
loc(R

N ) for any q ∈ [2, 2∗).
The same conclusion holds if un ⇀ u in H1

A(RN ).
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Proof. By the diamagnetic inequality the injection D1,2
A (RN ) ↪→ L2∗

(RN ) is con-

tinuous, hence un ⇀ u in L2∗

(RN ). Moreover, |un − u| is bounded in D1,2(RN ).
So passing to a subsequence, un → u a.e. and |un − u|⇀ 0 in D1,2(RN ). It follows
from the Rellich-Kondrachov theorem that un → u in Lq

loc(R
N ). The second part

of the lemma is proved similarly.

3. The critical case

Proof of Theorem 1.1. Necessary condition. We first prove that S̄ is the Sobolev
constant. Indeed, by the Sobolev and the diamagnetic inequalities we have

S ≤

∫

RN

∣

∣∇|u|
∣

∣

2
+ V |u|2

||u||22∗

≤

∫

RN |∇Au|2 + V |u|2

||u||22∗

,

therefore S ≤ S̄. Let

Uε(x) = (N(N − 2))
N−2

4

(

ε

ε2 + |x|2

)

N−2

2

(3.1)

and uε(x) = ψ(x)Uε(x), where ψ ∈ C∞
0 (RN , [0, 1]), ψ = 1 on B(0, 1/2) and ψ = 0

off B(0, 1) (B(a, r) is the open ball of radius r centered at a). Then

‖∇(ψUε)‖
2
2 ≡ ‖∇uε‖

2
2 = SN/2 +O(εN−2) and ‖uε‖

2∗

2∗ = SN/2 +O(εN )(3.2)

(see e.g. [W], p. 35). Since uε is bounded in L2∗

(RN ) and uε → 0 a.e., uε ⇀ 0
in L2∗

(RN ) as ε → 0. Therefore
∫

RN V |uε|2 = 〈V, |uε|2〉 → 0 as ε → 0, where the

duality product is taken with respect to LN/2(RN ) and L2∗/2(RN ). By the same
argument,

∫

RN

|Auε|
2 = 〈|A|2, |uε|

2〉 → 0 as ε→ 0.

Let δ > 0. Choosing ε small enough we have
∫

RN |∇Auε|2 + V |uε|2

‖uε‖2
2∗

=

∫

RN |∇uε|2 + |Auε|2 + V |uε|2

‖uε‖2
2∗

≤ S + δ

(recall that uε is a real function), therefore S̄ ≤ S. Now assume that u is a minimizer
normalized by ‖u‖2∗ = 1. Then

S =

∫

RN

|∇Au|
2 + V |u|2 ≥

∫

RN

|∇Au|
2 ≥

∫

RN

∣

∣∇|u|
∣

∣

2
≥ S

and it follows that |u(x)| = Uε(x−a)/‖Uε‖2∗ for some a ∈ RN (that the minimizer
for ‖∇u‖2

2/‖u‖
2
2∗ is unique up to translation and dilation can be seen e.g. from

the proof of Theorem 1.42 in [W]). In particular, |u| > 0 for all x and therefore
V ≡ 0. Moreover, the inequality of Theorem 2.1 must be an equality a.e. So
by (2.1), the imaginary part of (∇u + iAu)ū must be zero which is equivalent to
A = −Im (∇u/u). An easy computation shows that curl (∇u/u) = 0.

Sufficient condition. Assume that V ≡ 0 and curlA = 0. Then A = ∇ϕ for

some ϕ ∈ W 1,N
loc (RN ) according to [L] and it is easy to verify that u = Uεe

−iϕ is a
minimizer for (1.2) for any ε > 0.

In order to study the compactness of minimizing sequences we adapt the concen-
tration-compactness technique of [W] (see Lemma 1.40 there) as follows:
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Lemma 3.1. Suppose N ≥ 3 and A ∈ L2
loc(R

N ,RN ). Let {un} ⊂ D1,2
A (RN ) be a

sequence such that

(i) un ⇀ u in D1,2
A (RN )

(ii) |∇A(un − u)|2 ⇀ µ in M(RN) (M(RN ) denotes the space of finite measures)

(iii) |un − u|2
∗

⇀ ν in M(RN )
(iv) un → u a.e. in RN .

Define µ∞ := lim
R→∞

lim sup
n→∞

∫

|x|≥R
|∇Aun|

2 and ν∞ := lim
R→∞

lim sup
n→∞

∫

|x|≥R
|un|

2∗

.

Then

(1) ||ν||2/2∗

≤ S−1 ||µ||

(2) ν
2/2∗

∞ ≤ S−1µ∞

(3) lim sup ||∇Aun||
2
2 = ||∇Au||

2
2 + ||µ|| + µ∞

(4) lim sup ||un||
2∗

2∗ = ||u||2
∗

2∗ + ||ν|| + ν∞.

Moreover, if u = 0 and ||ν||2/2∗

= S−1 ||µ||, then µ and ν are concentrated at a
single point.

The proof follows closely [W] once the results in Section 2 are taken into account.
A sketch of it is given in the Appendix.

Proof of Theorem 1.2. With no restriction assume that x̄ = 0. Let ϑ(x) :=
−
∑

Aj(0)xj . Then (A + ∇ϑ)(0) = 0 and by continuity |(A + ∇ϑ)(x)|2 ≤ c′ < c
for all |x| < δ. Possibly choosing a smaller δ we have V (x) ≤ −c for all |x| < δ.
Let Uε be as in (3.1) and let vε(x) := ψ(x)Uε(x)e

iϑ(x), where ψ ∈ C∞
0 (RN , [0, 1]),

ψ(x) = 1 in B(0, δ/2) and ψ(x) = 0 when |x| ≥ δ. Using (3.2) we obtain
∫

RN

|∇Avε|
2 + V |vε|

2 ≤

∫

RN

|∇(ψUε)|
2

+ ψ2U2
ε |∇ϑ+A|2 − cψ2U2

ε

≤ S
N
2 + (c′ − c)

∫

B(0,δ/2)

U2
ε +O(εN−2)

and ‖vε‖2
2∗ = S(N−2)/2 +O(εN ). It is a standard result that for small ε > 0

∫

B(0,δ/2)

U2
ε ≥

{

Cε2| log ε| if N = 4
Cε2 if N ≥ 5,

where C > 0 (cf. e.g. [W], p. 35), hence

S̄ = inf
u∈D1

A
(RN )\{0}

∫

RN |∇Au|2 + V |u|2

||u||22∗

< S.(3.3)

Let {un} be a minimizing sequence normalized by ||un||2∗ = 1. Then, taking

a subsequence if necessary, un ⇀ u in L2∗

(RN ). Since V − ∈ LN/2(RN ), we have
limn→∞

∫

RN V −|un|2 =
∫

RN V −|u|2, so by Fatou’s lemma,

lim
n→∞

∫

RN

V |un|
2 ≥

∫

RN

V |u|2(3.4)

after passing to a subsequence. Therefore {un} is bounded in D1,2
A (RN ) and we

may assume passing to a subsequence once more that (i)–(iv) of Lemma 3.1 are
satisfied (cf. Lemma 2.6 and [W], Lemma 1.39).

We complete the proof by showing that ‖u‖2∗ = 1. We have

lim
n→∞

∫

RN

|∇Aun|
2 + V |un|

2 = S̄ = S̄ lim
n→∞

||un||
2
2∗ ,
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hence by (3) and (4) of Lemma 3.1,

||∇Au||
2
2 + ||µ|| + µ∞ + lim

n→∞

∫

RN

V |un|
2 = S̄(||u||2

∗

2∗ + ||ν|| + ν∞)2/2∗

.

Therefore, using (3.4),

||∇Au||
2
2 + ||µ|| + µ∞ +

∫

RN

V |u|2 ≤ S̄(||u||2
∗

2∗ + ||ν|| + ν∞)2/2∗

≤ S̄(||u||22∗ + ||ν||2/2∗

+ ν2/2∗

∞ ).

This and (1), (2) of Lemma 3.1 imply

||∇Au||
2
2 + ||µ|| + µ∞ +

∫

RN

V |u|2 ≤ S̄||u||22∗ +
S̄

S
||µ|| +

S̄

S
µ∞.

Moreover, it follows from (3.3) that

||∇Au||
2
2 +

∫

RN

V |u|2 ≥ S̄‖u‖2
2∗,

hence ‖µ‖ + µ∞ ≤ S̄
S (‖µ‖ + µ∞), and since S̄ < S, ‖µ‖ = µ∞ = ‖ν‖ = ν∞ = 0.

Consequently, ||u||2∗ = 1 and u is a minimizer. Since σ(−∆A + V ) ⊂ (0,+∞),
∫

RN

|∇Au|
2 + V |u|2 ≥ ε‖u‖2

2

for some ε > 0, so u ∈ H1
A(RN ).

4. Proof of Theorem 1.3

Suppose A and B satisfy the asssumptions A1 and A2. Then, for all z ∈ ZN ,
curlA(x+ z) − curlA(x) = B(x+ z) −B(x) = 0; hence

A(x+ z) −A(x) = ∇ϕz(x)(4.1)

for some ϕz ∈ H1
loc(R

N ). In general A is not periodic, therefore the operator
∇A is not translation invariant. However, in view of (4.1) we define a different
“translation” T : H1

A(RN )×ZN → H1
A(RN ) by setting (Tzu)(x) := u(x+ z)eiϕz(x).

Note that in general Tz1+z2
6= Tz2

Tz1
, hence T is not a group action of ZN . That

the operator T is well-defined is a consequence of the following

Lemma 4.1. Let u ∈ H1
A(RN ), z ∈ ZN and v := Tzu. Then v ∈ H1

A(RN ),
∫

RN |∇Av|2 =
∫

RN |∇Au|2 and ||v||H1
A(RN ) = ||u||H1

A(RN ). In particular, for each

z ∈ ZN the operator Tz is an isometry.

Proof. Using (4.1), we have

∇Av(x) = ∇
(

u(x+ z)eiϕz(x)
)

+ iA(x)u(x + z)eiϕz(x)

= (∇u(x+ z) + iA(x + z)u(x+ z)) eiϕz(x),

therefore
∫

RN |∇Av|2 =
∫

RN |∇Au|2. Furthermore,
∫

RN |v(x)|2 =
∫

RN |u(x + z)|2 =
∫

RN |u(x)|2; hence the conclusion.

Let

J(u) =
1

2

∫

RN

|∇Au|
2 + V |u|2 −

∫

RN

F (x, |u|).(4.2)
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Although T is not a group action, we shall still say that J is invariant and J ′

equivariant with respect to the action of ZN if J(Tzu) = J(u) and J ′(Tzu) =
TzJ

′(u) for all z ∈ ZN .

Lemma 4.2. J is invariant and J ′ is equivariant with respect to the action of ZN .

Proof. The invariance of J follows from Lemma 4.1 and the periodicity of V and
F . By this invariance,

〈J ′(u), v〉 = 〈J ′(Tzu), Tzv〉 = 〈T−1
z J ′(Tzu), v〉.

Hence T−1
z J ′(Tzu) = J ′(u) and J ′(Tzu) = TzJ

′(u).

Proof of Theorem 1.3. Let E := H1
A(RN ). Since 0 /∈ σ(−∆A + V ), we can decom-

pose E into the direct sum of two subspaces E+ and E− invariant with respect to
−∆A + V and such that the quadratic form

∫

RN |∇Au|
2 + V |u|2 is positive (resp.

negative) definite on E+ (resp. E−) (cf. [St], Section 8). Here we have used the
fact that V is bounded and therefore the graph norm of | −∆A + V + λ|1/2, where
λ ≥ infRN V , is equivalent to the H1

A(RN )-norm. Since the quadratic form above is
Tz-invariant, then the subspaces E± are also Tz-invariant. We have dimE+ = +∞
and dimE− = 0 if σ(−∆A + V ) ⊂ (0,+∞), dimE− = +∞ otherwise (the dimen-
sion must be infinite because TzE

− ⊂ E− for all z ∈ ZN ). We may introduce a
more convenient equivalent norm in E in such a way that

∫

RN

|∇Au|
2 + V |u|2 = ‖u+‖2 − ‖u−‖2,

where u± ∈ E± (if σ(−∆A + V ) ⊂ (0,+∞), then E− = {0} and u− = 0).
If σ(−∆A + V ) ⊂ (0,+∞), it is a standard procedure to check that the func-

tional J has a mountain pass geometry and that it admits a bounded Palais-Smale
sequence {un} at some positive level c (a (PS)c-sequence for short). If instead
σ(−∆A +V )∩ (−∞, 0) 6= ∅, then the functional has an infinite dimensional linking
geometry as described in [KS]. More precisely, Lemmas 1.3 and 1.4 of [KS] apply
here and they show that

d := inf{J(u) : u ∈ ∂B(0, ρ) ∩E+} > 0(4.3)

if ρ > 0 is small enough and J(u) ≤ 0 on ∂M , where M := {u = u− + sz0 :
u− ∈ E−, s ≥ 0, ‖u‖ ≤ R}, z0 is a fixed element of E+ ∩ ∂B(0, 1) and R > ρ is
sufficiently large. Hence by Theorem 3.4 of [KS], J admits a (PS)c-sequence {un}
for some c ≥ d > 0. Moreover, {un} is bounded by the argument of Lemma 1.5 in
[KS]. The invariance of the functional with respect to Tz makes the Palais-Smale
condition fail, nonetheless we can apply the concentration-compactness technique.
By Lemma 1.7 in [KS], either un → 0 in E (up to a subsequence) which is impossible
because J(un) → c > 0, or there exists a sequence {zn} in ZN and r, η > 0 such
that

∫

B(zn,r) |un(x)|2 ≥ η. Let vn := Tzn
un. By Lemma 4.2, {vn} is also a (PS)c-

sequence, so (up to a subsequence again) vn ⇀ v in E and vn → v in L2
loc(R

N ) (by
Lemma 2.6). Hence J ′(vn) ⇀ J ′(v) and v is a critical point of J ; moreover, v 6= 0
because

∫

B(0,r)

|vn(x)|2 =

∫

B(zn,r)

|un(x)|2 ≥ η.
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5. Proof of Theorem 1.4

Let J be as in (4.2) and let E, E+ and E− be as in the proof of Theorem 1.3.
It is clear that J is invariant with respect to the representation S of S1 = R/2πZ
given by Sϑu = eiϑu and we have already seen that J is invariant with respect to

the (non-group) representation T of ZN . Note that SϑTz = TzSϑ and ES1

:= {u ∈
E : Sϑu = u} = {0} (in fact S1 acts freely on E \{0}). Let OS1×ZN (u) := {SϑTzu :
ϑ ∈ S1, z ∈ ZN}. Two solutions u, v of (1.1) are called geometrically distinct if
they belong to different orbits, i.e. if OS1×ZN (u) 6= OS1×ZN (v).

Our argument is a straightforward adaptation of that in [AS], therefore we only
summarize the main steps and concentrate on pointing out the differences.

Suppose that (1.1) has only finitely many geometrically distinct solutions. De-
note the set of critical points of J by KJ . Since J(u) > 0 if u ∈ KJ \ {0} (cf.
e.g. (4.1) in [KS]) and J |E− ≤ 0, KJ ∩ E− = {0}. Let C be a set consisting of
arbitrarily chosen representatives of the orbits OS1×ZN (u), u ∈ KJ \ {0} and let
K := OS1(C) = {Sϑu : ϑ ∈ S1, u ∈ C}. Clearly, K is a compact set,

KJ \ {0} = OZN (K)(5.1)

and if F := PE+(K), then

Tz1
F ∩ Tz2

F = ∅ whenever z1, z2 ∈ ZN , z1 6= z2(5.2)

(PE+ is the orthogonal projection on E+; these conditions correspond to (9) and
(10) in [AS]). Clearly, J is even, K = −K and F = −F (in the language of
[AS], J is invariant with respect to the representation R of Z2 = {−1, 1} given by
R−1u = −u; moreover, EZ2 = {0} and R ⊂ S). From now on we consider J as an
even functional and disregard the S1-invariance. Let

Uδ := E− ⊕
⋃

z∈ZN

{u+ ∈ E+ : d(u+, TzF) < δ},

where d(u,A) denotes the distance from u to the set A and let H be the class of
mappings f : E → E such that f is a homeomorphism, f(−u) = −f(u) for all u
and f(Jc) ⊂ Jc for all c ≥ −1 (as usual, Jc := {u ∈ E : J(u) ≤ c}). Taking a
smaller ρ in (4.3) if necessary we may assume that

inf
u∈KJ\{0}

J(u) > d.(5.3)

Lemma 5.1. Suppose J satisfies (5.1), (5.2) and c ≥ d, where d is as in (4.3),
and (5.3) is satisfied. For each δ > 0 small enough there exists ε0 > 0 such that
whenever 0 < ε < ε0, then there is a mapping f ∈ H with f(J c+ε \ Uδ) ⊂ Jc−ε.

This is a variant of the deformation lemma which will be needed in the mini-
max procedure below. The argument is the same as in Lemma 5.3 in [AS]. The
proof requires two auxiliary results corresponding to Lemmas 5.1 and 5.2 there (the
translation by the elements of Z in [AS] should be replaced by the operators Tz,
z ∈ ZN ). An important role in obtaining a result which corresponds to Lemma 5.1
in [AS] is played by the fact that whenever |zn| → ∞, then Tzn

u ⇀ 0 for each
fixed u, and by the following lemma describing the behavior of the Palais-Smale
sequences:

Lemma 5.2. Suppose J satisfies the hypotheses of Theorem 1.4 and let {un} be a
(PS)c-sequence. Then, up to a subsequence, either un → 0 (and c = 0) or c ≥ d
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and there exist ū1, . . . , ūl ∈ KJ \ {0} and sequences {zj
n} ⊂ ZN (1 ≤ j ≤ l) such

that
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

un −
l
∑

j=1

Tzj
n
ūj

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

→ 0,
∣

∣

∣

∣zj
n − zk

n

∣

∣

∣

∣→ ∞ as n→ ∞ and j 6= k

and

l
∑

j=1

J(ūj) = c.

This lemma is an adaptation to our case of a well-known result which may be
found e.g. in [CR, KS] (see also [AS]). The proof follows that of Proposition 4.2
in [KS] with one exception. We do not know whether v(x) → 0 as |x| → ∞ if
v ∈ KJ \ {0}. However, v ∈ Lq(RN ) for any q ≥ 2. Indeed, we have

−∆Av + v = (1 − V (x))v + g(x, |v|)v ∈ L2∗

(RN ) + L2∗/(p−1)(RN )(5.4)

(we assume N ≥ 3, the case N = 2 being simpler). Hence, according to Corollary
B.13.3 in [S], v ∈ Lq̃1 whenever

1

2∗
−

1

q̃1
<

2

N
and

1

q0
−

1

q̃1
<

2

N

(here q0 := 2∗

p−1 ). Since 2 < p < 2∗, it is easy to see that we can choose q̃1 > 2∗.

Then the right-hand side of (5.4) is in Lq̃1(RN ) + Lq1(RN ), where q1 := q̃1

p−1 .

Bootstraping we obtain v ∈ Lq(RN ) for any q > 2∗, and hence for any q ≥ 2.
Now if v ∈ KJ \{0}, then for each q ∈ (2,+∞) and ε > 0 we can find a bounded

domain Ω such that ||v||H1
A(RN\Ω) ≤ ε,

∫

RN\Ω F (x, |v|) ≤ ε, ||v||L2(RN\Ω) ≤ ε and

||v||Lq(RN\Ω) ≤ ε. Since q < +∞, we need to modify the estimate (4.20) in [KS].

More precisely, we must show that
∫

RN\Ω

∣

∣g(x, |w + v|)(w + v) − g(x, |w|)w
∣

∣ |ϕ| ≤ c0ε,(5.5)

where c0 is independent of w and ϕ as long as ‖w‖ is uniformly bounded by some
constant c̃ and ‖ϕ‖ ≤ 1. Let ω := {x ∈ RN : |v(x)| > ε0}, where ε0 is taken
from (A6). Since v ∈ Lq(RN ), µ(ω) < ∞. We may assume Ω = B(0, R) and it is
clear that µ(ω \ Ω) → 0 as R → ∞. Using (A6), the Hölder, the Sobolev and the
diamagnetic inequalities and choosing q such that p

2∗
+ 1

q = 1, we obtain
∫

RN\(Ω∪ω)

∣

∣g(x, |w + v|)(w + v) − g(x, |w|)w
∣

∣ |ϕ| ≤ C̄

∫

RN\(Ω∪ω)

(1 + |w|p−1)|v| |ϕ|

≤ C̄(‖v‖L2(RN\Ω)‖ϕ‖2 + ‖w‖p−1
2∗ ‖v‖Lq(RN\Ω)‖ϕ‖2∗) ≤ c1ε.

Moreover, by (A4) there exists C1 such that if ω1 := ω \ Ω, then
∫

ω1

∣

∣g(x, |w + v|)(w + v) − g(x, |w|)w
∣

∣ |ϕ| ≤ C1

∫

ω1

(|v| + |w| + |v|p−1 + |w|p−1)|ϕ|

≤ C1µ(ω1)
2/N (‖v‖2∗ + ‖w‖2∗)‖ϕ‖2∗ + C1µ(ω1)

1/q(‖v‖p−1
2∗ + ‖w‖p−1

2∗ )‖ϕ‖2∗ .

Since µ(ω1) → 0 as R → ∞, R may be chosen so that the right-hand side above is
less than ε. Hence (5.5) holds with c0 = c1 + 1.
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Having our Lemma 5.2, the arguments of Lemmas 5.1 and 5.2 in [AS] go through
unchanged as does the argument of Lemma 5.3 there. This concludes the brief
summary of the proof of Lemma 5.1.

Let ρ > 0 in (4.3) be chosen in such a way that (5.3) holds and J |B̄(0,ρ) > −1.

For A closed and symmetric (i.e. A = −A) we define

γ∗(A) = min
f∈H

γ(f(A) ∩ ∂B(0, ρ) ∩ E+),

where γ is Krasnoselskii’s genus (γ∗ is a variant of Benci’s pseudoindex [B]). Let

dk := inf
γ∗(A)≥k

sup
u∈A

J(u).

Since J |∂B(0,ρ)∩E+ ≥ d, dk ≥ d. Moreover, for each δ > 0 we have

J(u) ≤
1

2

∣

∣

∣

∣u+
∣

∣

∣

∣

2
−

1

2

∣

∣

∣

∣u−
∣

∣

∣

∣

2
− c(δ) ||u||µLµ(RN ) + δ ||u||2L2(RN )

(cf. (1.7) in [KS]), hence J(u) → −∞ as ||u|| → ∞, u ∈ E+
k ⊕E−, where E+

k ⊂ E+

and dimE+
k = k. Therefore there exist sets of arbitrarily large pseudoindex (cf.

[AS], Lemma 4.6 or [KS], Lemma 4.8) and dk is defined for all k ≥ 1. Since
d0 := supUδ

J <∞, it follows from Lemma 5.1 that dk ≤ d0 for all k; consequently,

dk ↗ d̄ ≤ d0. As γ(S1) = 2, it is easy to see that γ(F) = 2 and γ(Ūδ) = 2 provided
δ is small enough. Using Lemma 5.1 once more we obtain

k ≤ γ∗(Jdk+ε) ≤ γ∗(Jdk+ε \ Uδ) + γ(Ūδ) ≤ γ∗(Jdk−ε) + 2.

Therefore γ∗(Jdk−ε) ≥ k − 2, so dk − ε ≥ dk−2 and d̄ − ε ≥ d̄, a contradiction.
Hence there is no compact set K satisfying (5.1) and (5.2). This completes the
proof. More details may be found in the proof of Theorem 6.1 in [AS].

Appendix

The proof of Lemma 3.1 in the case A ≡ 0 can be found in Willem’s book [W].
In the following we highlight the main points in the proof with nontrivial magnetic
potential.

Assume first that u = 0, then for all h ∈ C∞
0 (RN ,R),

∫

RN

|∇A(hun)|2 =

∫

RN

|h∇Aun + un∇h|
2 =

∫

RN

|h∇Aun|
2 + |un∇h|

2 + 2 Re

∫

RN

hūn∇Aun · ∇h→

∫

RN

|h|2 dµ

because un → 0 in L2
loc(R

N ) according to Lemma 2.6. Moreover, by the Sobolev
and the diamagnetic inequalities,

(
∫

RN

|hun|
2∗

)2/2∗

≤ S−1

∫

RN

|∇A(hun)|2,

therefore
(
∫

RN

|h|2
∗

dν

)2/2∗

≤ S−1

(
∫

RN

|h|2 dµ

)

and (1) of Lemma 3.1 follows.
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Let ψR ∈ C∞(RN , [0, 1]) be such that ψR(x) = 1 if |x| ≥ R + 1 and ψR(x) = 0
if |x| ≤ R. Then

(
∫

RN

|ψRun|
2∗

)2/2∗

≤ S−1

∫

RN

|∇A (ψRun)|2

and since un → 0 in L2
loc(R

N ), ∇ψR has compact support and

∇A(ψRun) = ψR∇Aun + un∇ψR,

we have

lim sup
n→∞

(
∫

RN

|ψRun|
2∗

)2/2∗

≤ S−1 lim sup
n→∞

∫

RN

|∇Aun|
2
ψ2

R.(A.1)

Following [W] we obtain

µ∞ = lim
R→∞

lim sup
n→∞

∫

RN

|∇Aun|
2
ψ2

R, ν∞ = lim
R→∞

lim sup
n→∞

∫

RN

|un|
2∗

ψ2∗

R

and (2) of Lemma 3.1 follows from (A.1).

The proof that if ||ν||2/2∗

= S−1 ||µ||, then µ and ν are concentrated at a single
point is exactly the same as in [W].

We consider now the case when u 6= 0. Let vn := un − u. Then vn ⇀ 0 in
D1,2(RN ), so (1) is satisfied also if u 6= 0 because, as we already have shown, the
corresponding inequality holds for {vn}. Furthermore,

lim sup
n→∞

∫

|x|≥R

|∇Avn|
2

= lim sup
n→∞

∫

|x|≥R

|∇Aun|
2 −

∫

|x|≥R

|∇Au|
2
,

therefore

µ∞ = lim
R→∞

lim sup
n→∞

∫

|x|≥R

|∇Avn|
2
,

and using the Brézis-Lieb lemma as in [W],

ν∞ = lim
R→∞

lim sup
n→∞

∫

|x|≥R

|vn|
2∗

.

So also (2) follows from the corresponding inequality for {vn}.
Let ψR be as above and set h = 1 − ψR. Then we have

∫

RN

|∇Aun|
2 h =

∫

RN

|∇A(vn + u)|2 h

=

∫

RN

|∇Avn|
2
h+ |∇Au|

2
h+ 2Re

∫

RN

h∇Avn · ∇Au

→

∫

RN

h dµ+

∫

RN

|∇Au|
2
h.

Using the Brézis-Lieb lemma as in [W] again we also have
∫

RN

|un|
2∗

h→

∫

RN

h dν +

∫

RN

|u|2
∗

h.
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It follows that

lim sup
n→∞

∫

RN

|∇Aun|
2

= lim sup
n→∞

(
∫

RN

ψR |∇Aun|
2

+

∫

RN

(1 − ψR) |∇Aun|
2

)

= lim sup
n→∞

(
∫

RN

ψR |∇Aun|
2

)

+

∫

RN

(1 − ψR)dµ+

∫

RN

(1 − ψR) |∇Au|
2

and when R → ∞ we get, by Lebesgue’s dominated convergence theorem,

lim sup
n→∞

∫

RN

|∇Aun|
2

= µ∞ +

∫

RN

dµ+

∫

RN

|∇Au|
2

= µ∞ + ||µ|| + ||∇Au||
2
2 .

This proves (3). The proof of (4) is similar.
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