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1 Introduction

The theory of D-modules in positive characteristics has recently received
attention, in several contexts. There is for example, in commutative alge-
bra, the result by Hunecke-Sharp [11], which says that local cohomology
modules, HI(R), where I ⊂ R is an ideal in a regular ring over a field
of characteristic p, have finite Bass numbers. The proof makes essential,
though implicit, use of the fact that these modules are D-modules. This
result was later generalized by Lyubeznik [13, 14], to on the one hand, a
proof of the finiteness of Bass numbers for local cohomology modules in
characteristic zero, by ordinary characteristic zero D-module theory, and on
the other hand to the nice concept of F-finite modules, of which more below.
Other examples are the applications to the theory of tight closure due to
K.Smith [16], and the proof by K.Smith and van der Berg [17] of the fact
that the ring of differential operators of an invariant ring S(V )G is a simple
ring, in positive characteristics(where G is a linearly reductive group, with
a finite dimensional representation V , and S(V ) the symmetric algebra on
V ). The corresponding result is still unknown in characteristic zero. So
D-modules are very useful objects, even in positive characteristics.

Let X be a smooth variety over a field k of positive characteristic p. and
DX the ring of (Grothendieck) differential operators on X. In this paper we
will define and study a certain nice category of DX-modules, called filtration
holonomic modules. These were introduced (in a stronger version) in [3].
There they were used to prove that local cohomology modules Hi

Z(OX ),
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Z a subvariety of X, have finite decomposition series as DX -modules, and
to study the socle of these modules, inspired by corresponding results in
characteristic zero. By the adjective nice, is meant in particular that they
form a Serre subcategory of the category of all DX -modules. In addition all
modules in it have finite decomposition series, and it includes several classes
of important modules, like the local cohomology modules of the structure
sheaf.

To motivate the concept, consider what happens for an affine smooth va-
riety X = specR over a field k of characteristic zero. The ring of differential
operators on X may be filtered by the degree of a differential operator, and
the associated graded ring is a finitely generated commutative ring. Using
the Hilbert polynomial, this makes it possible and easy to develop a theory
of ”growth” of D-modules. The modules with minimal growth are called
holonomic modules. The growth of them turns out to be precisely equal to
the growth of the D-module R. These modules play an important part in
D-module theory([2, 4]). In positive characteristic p the ring of differential
operators of a smooth variety is however non-Noetherian, and hence the
tools of Noetherian commutative rings are unavailable here. However it is
possible to use the idea of growth in a different way. We will sketch the
idea. Suppose for simplicity that R = k[x1, . . . , xn], where k is a field of
characteristic p. The idea is then to use the well known Morita type charac-
terization of a module M over the ring of differential operators DR. It says
that such modules are precisely those modules for which there is a series of
k[xpr

]-modules M (r) and (compatible) isomorphisms

θr : F ∗rM (r) := k[x]⊗k[xpr ] M (r) ∼= M, r ≥ 0,

where F is the Frobenius map. Let Vr be the vectorspace of monomials
of degree strictly less than pr in each variable. Then k[x] ∼= Vr ⊗k k[xpr

],
and F ∗rM (r) = Vr ⊗k M (r). Then the archetype of a filtration holonomic
module is a module that may be generated by a sequence of finite di-
mensional subspaces Ar ⊂ M (r), i. e. such that M = ∪≥0θr(Vr ⊗ Ar)),
where the dimensions of Ar has a common upper bound. For example, if
M = k[x], then θr : F ∗rM = M is just the ordinary canonical isomorphism
k[x] ⊗k[xpr ] k[xpr

] ∼= k[x], and letting the 1-dimensional vectorspaces Ar be

defined as Ar = k ⊂ k[xpr
] = M (r) we have θr(Vr ⊗ k) = Vr ⊂ k[x], and

M = ∪r≥0Vr. So k[x] is (unsurprisingly) a filtration holonomic module.
However the definition above, given in [3], should be modified. This is be-

cause it seems impossible to so prove that extensions of filtration holonomic
modules in this sense also are filtration holonomic. Instead of demanding
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that the dimensions of the vector spaces Ai in the definition above should
have a common bound, the modification consists of the weaker condition
that a certain weighted dimension t(Ai) associated to each vector subspace
Ai of a DX-module should be finite (Definition 3.2). We redo and develope
several results from [3] , using this more general concept. (A motivating
example for the modified definition is given at the end of section 3.1.)

Our main result is the following, whose first part is immediate from the
local version Theorem 4.2, and whose proof is contained in sections 2-4.

Theorem 1.1. If X is a smooth variety of finite type over a field k of char-
acterisic p, then the category of filtration holonomic modules is closed under
DX -module extensions, submodules and quotient modules. Every filtration
holonomic module has a finite decomposition series.

We also prove that the property is preserved under the usual functors:

Theorem 1.2. If X is a smooth variety of finite type over a field k of
characterisic p, then the category of filtration holonomic modules preserved
by direct and inverse images, and local cohomology.

A different finiteness condition for DX -modules –F -finite modules –has
recently been introduced by Lyubeznik [14], building on the work by Huneke
and Sharp [11]. It has similar properties: e.g. F -finite modules also have
finite decomposition series, as DX -modules, and local cohomology modules
of the structure sheaf are F -finite. We analyze to some extent in this paper
the relation between these two concepts and show in particular that F -
finite modules are filtration holonomic (for a smooth variety of finite type
over a perfect field), but that the converse does not hold, in general. This
difference is mainly due to the fact that built into the concept of a F -finite
module M , is that the module is a so-called F -module, i.e. that as R-
modules F ∗M ∼= M . As was described above this is equivalent (by iteration
and Morita-equivalence) to the fact that M is a DX-module, with the extra
condition that M ∼= M (r), r = 1, 2, . . .. This is rather restrictive, and has for
example the consequence that a DX-module extension of F -finite modules
is not necessarily F -finite. It should however be noted that F -finite modules
may be used in a more general situation, e.g. complete regular rings, while
the concept of filtration holonomic modules is bound to the condition that
the variety is of finite type.

Finally we give several examples of filtration holonomic modules. First,
each étale algebra E over R = k[x1, . . . , xn], considered as a DR-module has
this property. The proof is rather involved, but constructive, meaning that
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it is possible to get bounds on the length of a finite decomposition series
of R. This example was already described in [3], but the proof given there
was deficient(as kindly pointed out by M.Kaneda). Other examples are in
the class of OX -coherent DX -modules. It is trivial to prove that modules
in this class have a finite decomposition series but unlike the situation in
characteristic zero, complicated to prove that they are filtration holonomic,
and in fact we only succeed for modules which correspond to étale sheaves,
though we conjecture it to be true in general. An example is given which
supports this conjecture.

I would like to thank Torsten Ekedahl and Gennady Lyubeznik for sev-
eral discussions on these topics; Masaharu Kaneda for carefully puncturing
several attempts at proofs, in particular the proof of the filtration holo-
nomicity of the étale extensions. Thanks are also due to the referee for very
useful comments.

2 Preliminaries

2.1 The Frobenius morphism

If X is a scheme of positive characteristic p > 0 (as will be assumed in
the whole paper), the absolute Frobenius map FX : X → X is defined as
the identity on the underlying topological space and the p-th power map on
OX . If X → spec k is a scheme over a field k of characteristic p > 0, a
relative or geometric Frobenius map FX/spec k may also be defined, through
the commutative diagram :

X
FX/spec k
→ X(1) → X

↓ ↓

speck
Fspec k
→ spec k

In this diagram the lower horizontal map is just Fspec k, i. e. the p-th power
map on k, the square is a pullback diagram, and the composition of the
upper horizontal maps is FX . Note that if k is perfect then Fspec k is an
isomorphism, and this implies that X ∼= X(1), though not as k-schemes. If
this isomorphism holds we will mostly identify X with X (1). The morphism
FX/speck will usually be denoted by F . By iterating this construction, maps

F r : X → X(r) are obtained.

4



2.2 The sheaf of differential operators D

Let DX denote Grothendieck’s sheaf of k-linear differential operators on the
structure sheafOX ([EGA IV.16.8]). If X = specR we will sometimes denote

this sheaf by DR. Denote by D
(r)
X the subsheaf of those k-linear differential

operators who commute with multiplication by pr-th powers of functions:
δ(fpr

g) = fpr
δ(g), f, g ∈ OU , δ ∈ DU , where U ⊂ X is an open subset.

Alternatively D
(r)
X may be characterized as the OX -subalgebra of DX locally

generated by the differential operators of order strictly less than pr. DX is
not Noetherian in positive characteristics. However, it is clearly the union

DX =
⋃

r≥0

D
(r)
X ,

and each D
(r)
X is Noetherian and has a nice description, given in the next

proposition. A proof may be found in [19, 1.4]. Compare also [5, 12]

Proposition 2.1. Suppose that X is a scheme over k and that the relative
Frobenius F := FX/speck is finite. Then there are isomorphisms

F r
∗D

(r)
X
∼= HomO

X(r)
(F r
∗OX , F r

∗OX).

If X is locally of finite type over k, the condition of the proposition is
clearly satisfied. We will mostly study this case(there are however many
others, like X = speck[[x]], in which the proposition obtains).

2.3 Describing D-modules by Morita equivalence

Since by the previous proposition D
(r)
X is an endomorphism ring, it is by

Morita’s theory easy to describe D
(r)
X -modules, given that F r

∗OX is locally
a projective generator. This condition is true if X is smooth. The following
proposition is wellknown, and has its origin partly in a result of Cartier (see
[12, thm 5.1], and also [5, 7]). We give some indications of the proof, mostly
to be careful with the assumptions on the base field. Since F is affine we
will in the sequel supress F∗, whenever the relevant module structure is clear
from the context.

Proposition 2.2. (cf. [5] and [12, thm 5.1]) Let X be a smooth variety
over the field k of characteristic p > 0, such that the relative Frobenius
F := FX/speck is finite. Then there is a Morita-equivalence between the

categories of OX(r)-modules and D
(r)
X -modules, given by M (r) 7→ F r∗M (r) =
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OX ⊗O
X(r)

M (r). This is the Morita context induced by the D
(r)
X − OX(r)-

bimodule OX . An inverse functor is given by

M 7→ HomO
X(r)

(OX ,OX(r))⊗
D

(r)
X

M

Proof. The preceding proposition is applicable, and hence the OX(r)-module
OX induces a Morita context, giving the functors in the proposition. ([6,
Thm 4.5]) Since both the functors and the natural transformations involved
are locally defined, it suffices to check that they are equivalences when X =
specR is affine. In this case the Morita context induces an equivalence, if
OX is a finitely generated projective generator as an OX(r) -module. The
projectivity follows from [5, Lemma 3.2.]; hence the well-known fact that a
finitely generated projective module is free over a local ring, implies that
OX is locally a finitely generated generator as an OX(r)-module.

The natural map OX(r) → OX , induces a map

D
(r)
X = HomO

X(r)
(OX ,OX )→ HomO

X(r)
(OX(r) ,OX ) ∼= OX ,

where the last map is just evaluation at 1 ∈ OX(r) . The kernel J
(r)
X of this

map is a left ideal in D
(r)
X . (For a description in local coordinates see next

subsection.) The following (wellknown) proposition gives a more practical
form of the Morita-correspondent.

Proposition 2.3. Let X be a smooth variety over the field k of character-
istic p > 0, such that the relative Frobenius F := FX/speck is finite. Given a

D
(r)
X -module M define M (r) ⊂M as M (r) := AnnJ

(r)
X . Then

M (r) ∼= Hom
D

(r)
X

(OX ,M) ∼= HomO
X(r)

(OX ,OX(r))⊗
D

(r)
X

M,

is (canonically isomorphic to) the Morita-correspondent of M , and will be

called the sheaf of horizontal sections (for D
(r)
X .)

Proof. This follows from [6, Theorem 4.5, 3.2 (2) and proposition 3.1.].

It should be emphasized that the preceding two propositions show con-

cretely how to calculate the action of D
(r)
X on M if M (r) ⊂M is known. Since

the inclusion M (r) ⊂ M induces a canonical isomorphism i : OX ⊗O
X(r)

M (r) → M , defined by a ⊗ m 7→ am, the action of D
(r)
X is given by

δ(m) =
∑

δ(fi)mi, if i−1(m) =
∑

fimi.
The inverse system M (r+1) → M (r) ∼= F ∗M (r+1), r > 0, with rather

obvious compatibility conditions, completely describes the DX-module M
as noted in [5, 18, 8]. This description will be used later.
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2.4 Description of DX in an étale neighbourhood

If R is a k-algebra let R(p) := k ⊗k R denote the pullback of the p-th
power map k → k.(Note the possible conflict in this accepted terminology:
R(p) = OX(1) , if X = specR). It is isomorphic to the k−algebra generated
by all pth powers in R. If R is an étale algebra over k[x], then R(p) is an étale
algebra over k⊗ k[x] ∼= k[xp] ⊂ k[x], and R = k[x]R(p) ∼= k[x]⊗k[xp] R

(p)(see
[EGA 0 21.1.7].) Hence

HomR(p)(R,R) ∼= R(p) ⊗k[xp] Homk[xp](k[x], k[x])

∼= (R(p) ⊗k[xp] k[x])⊗k[x] Homk[xp](k[x], k[x]) = R⊗k[x] Homk[xp](k[x], k[x]).

By proposition 2.1, this can be interpreted as saying that

D
(1)
X = R⊗k[x] D

(1)
An ,

if X := specR and An = speck[x]. Taking higher powers of the Frobenius
we obtain

that
DX = R⊗k[x] DAn

(cf.[EGA IV.16.11.2,17.12.4]). This is an algebra isomorphism, if the action
of DAn on R is taken into account (according to Cartier’s lemma, 2.2. this
action is described by the isomorphism R ∼= k[x] ⊗k[xp] R(p)). Hence, if
M is a DX -module, it is also in a natural way a DAn-module. Also it is

easy to check that J
(r)
X
∼= R ⊗k[x] J

(r)
An , under this isomorphism, and that

hence, M (i), is the same whether we consider M as an DX -module or as a
DAn-module.

The ring of differential operators DAn is generated as a k[x]-module by
the differential operators

Di = Πj=n
j=1D

ij
j ,

where i = (i1, . . . , in) is a multi-index in Nn. The differential operator Di
j

acts on k[x] by Di
jx

m
k = δjk

(

m
i

)

xm−i
k . This action is, as seen above, liftable

to an action on the étale cover R. It may be thought of as induced by the
differential operator on Q[x] given by Di

xj
/i! (where Dxj is just ordinary

derivation with respect to the variable xj), and which actually preserves
Z[x], and hence induces a differential operator on Z/pZ[x], which may be
extended to Di

j acting on k[x]. This makes it easy to describe the additional
relations which occur in DAn , see [EGA IV.16.11.2].
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Let ∆
(j)
An denote the k-algebra generated, as a finite-dimensional k-vector

space, by Di for all multi-indices i = (i1, . . . , in) with ik < pj, k = 1, . . . , n.
These algebras consist of differential operators (of order less than or equal to
j) on An, which are invariant under the group action of An by translations
on itself. In fact any differential operator invariant under translations will be

contained in some ∆
(j)
An([9]), so the union of these algebras are precisely the

algebra of all invariant differential operators. Observe that they generate the

whole algebra of differential operators: D
(j)
An = k[x]∆

(j)
An . It is easily seen that

J
(r)
An is the left ideal generated by the differential operators D

ij
j , j = 1, . . . , n

with 0 < ij < pr.
The following simple summary of the above discussion will be our start-

ing point.

Proposition 2.4. Suppose that R is an étale algebra over k[x1, . . . , xn].
Let Vr be the k-vectorsubspace of k[x] generated by all monomials xi1

1 . . . xin
n ,

where ij < pr, for all j = 1, . . . , n. Then any D
(r)
R -module is a D

(r)
An-module

and satisfies M ∼= k[x] ⊗k[xpr ] M (r) = Vr ⊗k M (r). Also Vr is a ∆
(r)
An-

submodule of M , and if m =
∑

vimi ∈ M = Vr ⊗k M (r) and δ ∈ ∆
(r)
An then

δm =
∑

δ(vi)mi.

Proof. This is clear, by proposition 2.2-3, and the above remarks, since Vr

is precisely the k-linear span of a basis of k[x] as a k[xpr
]-module, and since

M = k[x]⊗k[xpr ] M (r), considered as a D
(r)
An-module.

2.5 Assumptions and notational conventions

To summarize we will always assume that X is an integral, separated and
smooth scheme of finite type over a field k of positive characteristic p. Even
though it may perhaps be avoided we will assume that the base-field is
separable so that the p-th power induces an isomorphism k → k. If M is
a module over the k-algebra R, and V ⊂ R and A ⊂ M are two k-vector
subspaces, V A will denote the k-vectorspace {

∑

viai, vi ∈ V, ai ∈ A}.

3 Filtrations on vector subspaces of D-modules

3.1 The idea

Assume that X = An = speck[x1, . . . , xn]. Since X is affine there is no need
to work with sheaves. Let, as in 2.4, Vi be the k-vector subspace of k[x]
generated by all monomials xi1

1 . . . xin
n , where ij < pi, for all j = 1, . . . , n.
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To start the analysis of the growth of a DX -module, note that Cartier’s
lemma, in the form of Proposition 2.4 gives the following way of character-
izing a submodule of a DX -module.

Proposition 3.1. Suppose that M is a DX-module and that the k[x]-
module N ⊂M is a union

N =
⋃

j≥0

VjAj (1)

where Aj ⊂ N
(j), and that furthermore an arbitrary element in N is con-

tained in all except a finite number of the vector spaces VjAj . Then N is a
DX -submodule.

Conversely every DX -module with a countable number of generators, e.
g. a submodule of a finitely generated DX-module M, may be described as a
union (1), for some sequence of finite-dimensional vectorspaces Aj , j ≥ 0.

Proof. Recall that (2.4) D
(j)
X = OX∆

(j)
An . Since N is an OX -module, note

that it suffices to show that N is a ∆
(j)
An−module, for all j > 0. Assume

that δ ∈ ∆
(j)
An . Clearly (see 2.4), Vj0Aj0 is a ∆

(j0)
An -submodule of N and, by

hypothesis, there is to each f ∈ N a j0 ≥ j such that f ∈ Vj0Aj0 . Hence
δ(f) ∈ Vj0Aj0 .

Conversely, every DX-moduleM with a countable number of generators,
has countable dimension as a vector space over k, and so contains finite-
dimensional vectorspaces Bj , j > 0 such that Bj ⊂ Bj+1 and ∪j>0Bj =M.
Then, by Proposition 2.4, there are finite-dimensional vectorspaces Aj ⊂
M(j) such that Bj ⊂ VjAj . Since any element in M is contained in almost
all Bj, this is also true of almost all VjAj.

It should be emphasized thatM(j) is always thought of as a submodule
of the module M, and that the inclusion is not OX-linear but really an
inclusion M(j) ⊂ F∗M.

The idea of the finiteness condition introduced in [3], described in the
introduction, and there called filtration holonomic modules, is then that
minimal “growth” of a module is obtained when the vector space dimension
of the sequence Ai, for a filtration of type (1) for the module, is bounded.
This definition will be modified below, so as to make it easier to handle, but
unfortunately necessitating more technical details.

We will give an example to motivate the increase in technical difficulty.
Recall the description of the idea behind filtration holonomic modules, given
in the introduction. The problem with this definition arises when one tries to
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prove that there is some finiteness condition on an extension of two filtration
holonomic module. We will describe a Dk[x]-module M which is a Dk[x]-
module extension of k[x] with itself. Let M be a free k[x]−module on 2
generators s1, s2, and similarily letM(i), i ≥ 0 be a free k[x(pi)]−module on

2 generators s
(i)
1 , s

(i)
2 . Define

Θi :M(i+1) →M(i)

by Θi(s
(i+1)
1 ) = s

(i)
1 and Θi(s

(i+1)
2 ) = s

(i)
2 +gis

(i)
1 where gi ∈ k[xpi

] is arbitrary.
This is an inclusion, and we may think of all M(i) as contained in M. In

particular s
(i)
1 = s

(0)
1 and

s
(i)
2 = s

(0)
2 + (

i
∑

m=0

gm)s
(0)
1 .

This inverse system gives a Dk[x]-module structure onM. It contains k[x]s
(0)
1

which is isomorphic to k[x], and it projects to k[x]s
(0)
2 , also isomorphic to

k[x]. If all gi = 0 thenM is the direct sum of these two Dk[x]-modules. To
estimate the growth it suffices to note that, in this case, the union of all

Vi(ks
(i)
1 + ks

(i)
2 ) = Vi(ks

(0)
1 + ks

(0)
2 ) equals M. But suppose now that the

degree of Gi :=
∑i

m=0 gm grows very quickly; for example that degGi/pi

goes to infinity. Then the union of Vi(ks
(i)
1 + ks

(i)
2 ) will not equal M, and

it is not difficult to prove that there are no sequence of finite-dimensional
vector spaces Ai ⊂ M

(i) such that the union of all ViAi is M. This means
that M is not filtration holonomic according to the naive definition in the
introduction and [3]. However clearly

Vi(ks
(0)
1 + ks

(0)
2 ) ⊂ Bi := Vi+d(i)(ks

(0)
1 ) + Vi(ks

(0)
2 ),

where d(i) is chosen so that Gi ∈ Vi+d(i). In some sense then, the extension
M still has a “growth” as a Dk[x]-module that is the same as k[x], and is
with respect to this “generated ” by a sequence of two-dimensional vector
spaces. This intuition will be worked out in the rest of the section.

3.2 Vector subspaces of the type ViA

The following lemma on how to handle elementary vector space operations
of vector subspaces of the type ViA where A ⊂ M(i), is an immediate
consequence of the flatness of the Frobenius, see Proposition 2.4.
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Lemma 3.2.1. Suppose that M is a DX-module and that the vector spaces
A and B are contained in M(i). Then the canonical map

Vi ⊗k A→ ViA (2)

is an isomorphism. Also

ViA ∩ ViB = Vi(A ∩B) (3)

and
ViA + ViB = Vi(A + B). (4)

Furthermore if
ViA ⊂ ViB,

then
A ⊂ B.

It follows also, in particular, from (2) and (3), that ViA = ViB implies that
A = B.

The following obvious lemma is also included here for handy reference.
If the vector subspace A ⊂ k[x], denote by A[pr] the image of k ⊗k A →
k⊗kk[x]→ k[x], where the second map is rth iterate of the relative Frobenius

Fx/speck. For example, V
[pr]
1 is the vector subspace of k[x] generated by all

monomials xi, where ij = prkj , and 0 ≤ kj < p, for j = 1, . . . , n. A
calculation of degrees then gives

Lemma 3.2.2. Vk+1 = Vk(V1)
[pk], if k ≥ 0, or more generally

Vj = Vi(Vj−i)
[pi],

if j ≥ i.

3.3 A canonical filtration

In this subsection we will study certain filtrations which are defined for
arbitrary vector subspaces of D-modules, and which will be used to express
the finiteness condition for D-modules given below, in definition 4.0.1.

Suppose that A is an arbitrary vector sub space of M. An immediate
consequence of (4) of Lemma 3.2.1 is that there is, for each i, an unique
maximal vector subspace τ i(A) ⊂ A, containing all vector spaces of the form
ViB, where B ⊂M(i). Furthermore, by the same lemma, τ i(A) = ViΦ

i(A),
where Φi(A) ⊂ M(i) is uniquely determined. By Lemma 3.2.2, τ i+1(A) =
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Vi+1Φ
i+1(A) = ViV

[pi]
1 Φi+1(A) ⊂ τ i(A), since V

[pi]
1 Φi+1(A) ⊂ M(i). Hence

there is a canonical filtration

A = τ0(A) ⊃ τ1(A) ⊃ . . . , (5)

which is finite if A is finite dimensional.
We now want to introduce a measure t(A) of how complicated this fil-

tration is. The desired result is given in Definition 3.2 below. Note that
A ⊃ τ1(A) = V1Φ

1(A), and that, as above, τ i(A) = ViΦ
i(A) ⊃ τ i+1(A) =

Vi+1Φ
i+1(A) = Vi(V1)

[pi]Φi+1(A), by lemma 3.2.2. Hence by lemma 3.2.1,
Φi(A) ⊃ (V1)

[pi]Φi+1(A). Suppose now that τk+1(A) = 0 and define then

t(A) : = |A/τ1(A)|+ |Φ1(A)/(V1)
[p]Φ2(A)|+ . . . (6)

+ |Φk−1(A)/(V1)
[pk−1]Φk(A)| + |Φk(A)|, (7)

where |A| denotes the dimension of the vector space A. Since |Vi| = pin, we
have

|τ i(A)| = |ViΦ
i(A)| = pin|Φi(A)|,

and hence

|Φi(A)| = p−in|τ i(A)|, and |(V1)
[pi]Φi+1(A)| = p−in|τ i+1(A)|

so that

|Φi(A)/(V1)
[pi]Φi+1(A)| = p−in(|τ i(A)| − |τ i+1(A)|) = p−in|τ i(A)/τ i+1(A)|.

Thus t(A) may also be described as

t(A) =
∑

i≥0

p−in|τ i(A)/τ i+1(A)| =

= |A| −
∑

i>0

p(i−1)n(1− p−n)|τ i(A)|,

since τk+1(A) = 0.
This type of measure actually makes some sense for any filtration F . of

A, which is contained in the τ -filtration.

Definition and Lemma 3.2. Let A = F 0 ⊃ F 1 ⊃ . . . ⊃ F k+1 = 0 be a
filtration of the finite-dimensional vector space A, such that Fi ⊂ τ i(A).
Define

tF (A) :=
∑

i≥0

p−ni|F i/F i+1|.

12



Then also
tF (A) = |F 0| −

∑

i≥1

p−n(i−1)(1− p−n)|F i|. (8)

If F . ⊂ G., are two such filtrations, then tF (A) ≥ tG(A), with equality if
and only if the two filtrations coincide. Furthermore, if F . has the property
that F i = ViΦ

i(F ), for some vectorspace Φi(F ) ∈M (i), then

tF (A) = |A/F 1(A)|+ |Φ(1)/(V1)
pΦ(2)|+ . . . + |Φ(k−1)/(V1)

pk−1
Φ(k)|+ |Φ(k)|.

Proof. The equality of the three expressions for tF (A) is clear by the argu-
ment preceding the lemma, while the inequality is immediate from the alter-
nate expression (7) of tF (A), noting that |F0| = |G0| = |A| and |Fi| ≤ |Gi|,
since Fi ⊂ Gi by assumption.

Hence t(A) may also be characterized as the minimal value of tF (A), for
all filtrations F . ⊂ τ .(A).
M(i) is a D

X(pi)-module where X(pi) = speck[xpi
]. Since k[xpi

] ∼= k[x],

we may do the preceding for A ⊂ M(i), and obtain a canonical filtration
etc, denoted by τ j

i (A) = (Vj)
[pi]Φj

i (A), where Φj
i (A) ⊂ M(i+j), and corre-

sponding to this a measure ti(A). Note then the following property of t(A),
which follows from Lemma 3.2.2.

Lemma 3.3.1. If A ⊂ M(i), then Viτ
j
i (A) = τ i+j(ViA), if j ≥ 0, and

τk(ViA) = 0, if k < i, hence t(ViA) = ti(A).

There is also another characterization of t(A), which gives the reason
why we are interested in it . It says that t(A) is a measure on the mini-
mal dimension of a vector space needed to “generate” in the special sense
described in i) below.

Proposition 3.3. For a finite-dimensional vector subspace A of M and
an integer K the following statements are equivalent:

i) There are vector subspaces Bi ⊂M
(i), i ≥ 0 such that

A =
∑

i≥0

ViBi and
∑

i≥0

|Bi| ≤ K.

ii) t(A) ≤ K.

Proof. Assume condition (i), and define a filtration

F i := Σj≥iVjBj , i ≥ 0.

13



Then clearly
F i = Vi(Σj≥i(Vj−i)

[pj ]Bj) ⊂ τ i(A),

and so by the preceding lemma tF (A) ≥ t(A). But, letting Φi(F ) :=
Σj≥i(Vj−i)

[pj ]Bj so that F i = ViΦ
i(F ), we have

F i/F i+1 = (ViΦ
i(F ))/(Vi(V1)

[pi]Φi+1(F )) ∼= Vi⊗ (
∑

j≥i

V
[pi]
j−i Bj/

∑

j≥i+1

V
[pi]
j−i Bj)

∼= Vi ⊗ (Bi/(Bi ∩ (
∑

j≥i+1

V
[pi]
j−i Bj)))

and hence |Φi(F )/(V1)
[pi]Φi+1(F )| ≤ |Bi|, and so t(A) ≤ tF (A) ≤ Σi|Bi| ≤

K.
Conversely, assume that τk+1(A) = 0 and choose by descending recur-

sion, for each i such that 0 ≤ i ≤ k, starting with Bk := Φk(A), a vector
subspace Bi of Φi(A) which is mapped isomorphically by the quotient map
onto Φi(A)/(V1)

[pi]Φi+1(A), Then, by induction on the length k of the fil-
tration, A =

∑

i≥0 ViBi and by definition K ≥ t(A) =
∑

i≥0 |Bi|.

3.4 The behaviour of the canonical filtration with respect to

submodules and quotient modules

The measure t(A) defined above does not behave well with respect to vector
subspaces. For example t(V1) = 1, but t(B) = |B| for any proper vector
subspace B ⊂ V1. However, the situation is better when intersecting with a
DX -submodule.

Proposition 3.4. Suppose that A ⊂M is a finite-dimensional vector sub-
space of the DX -moduleM, and that N ⊂M is a DX-submodule. Then the
filtration τ of the preceding section satisfies

N ∩ τ i(A) = τ i
N (A ∩N ),

and
tN (A ∩N ) ≤ t(A)

(By τN is meant the canonical filtration with respect to vector subspaces of
N .) Equality holds in the last inequality if and only if A ∩N = A.

Proof. Since the subspace τ i
N (A∩N ) = ViΦ

i
N (A∩N ), where Φi

N (A∩N ) ⊂
N (i) ⊂ M(i), it is by definition contained in τ i(A). To prove the opposite
inclusion, note that N = ViN

(i) and hence by Lemma 3.2.1.,

N ∩ τ i(A) = ViN
(i) ∩ ViΦ

i(A) = Vi(N
(i) ∩ Φi(A)) ⊂ τ i

N (A ∩N ).

14



This proves the first part of the lemma. (Note that it follows from the proof
that Φi

N (A ∩N ) = N ∩ Φi(A) = N (i) ∩ Φi(A).)
Denote the graded module associated to the τ -filtration by grτ . Then

the preceding result implies that grτ (A ∩N) ⊂ grτ (A), and hence

p−ni|(τ i
N (A ∩N)/τ i+1

N (A ∩N)| ≤ p−ni|τ i(A)/τ i+1(A)|,

and then summing over i ≥ 0 gives that t(A ∩N ) ≤ t(A). Equality clearly
implies that grτ (A ∩ N) = grτ (A) and this, by a general result on graded
modules associated to finite filtrations, implies that A ∩N = A.

Quotient modules are slightly worse.

Proposition 3.5. Suppose that A ⊂M is a finite-dimensional vector sub-
space of the DX -moduleM, and that N ⊂M is a DX-submodule. Then the
filtration τ above satisfies

τ i(A) +N ⊂ τ i
M/N (A +N ), (9)

and
tM/N (A +N ) ≤ t(A) (10)

with equality implying (but not being implied by) A ∩N = 0.

There is not equality in (8) in general. An example: k has characteristic
2, A = ke⊕k(xe+f) is a vector subspace of the moduleM := k[x]e⊕k[x]f ,
which is generated by the two horizontal sections e, f , andN := k[x]f . Then
V1 = k ⊕ kx and τ 1(A) = 0, so that τ1(A) +N = N but τ 1

M/N (A +N ) =
A +N .

Proof. The inclusion (1) is clear, since

τ i(A) +N = ViΦ
i(A) +N = Vi(Φ

i(A) +N ),

and
Φi(A) +N ⊂ (M/N )(i).

(By the Morita-eqiuvalence (M/N )(i) =M(i)/N (i) Then using Lemma 3.3.1
on the filtration F i := τ i(A)+N ofM/N gives that tF (A+N ) ≥ tM/N (A+
N ). But the obvious map θ : grτ (A)→→ grF (A+N ) is surjective and hence

t(A) =
∑

i≥0

p−ni|gri
τ (A)| ≥

∑

i≥0

p−ni|gri
F (A +N )| = tF (A +N ).

(By definition 3.3.1.) This gives the inequality. The argument also shows
that equality holds in (9), if and only if both the condition that θ is an
isomorphism and the condition that tF (A+N ) = tM/N (A+N ) are fulfilled.
However, the first of this conditions holds if and only if A ∩N = 0.
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There is an exact sequence of graded modules

0→ gr(A ∩N )→ gr(A)→ grF (A +N )→ 0

associated to the filtration τ .
N = τ .(A) ∩N of A∩N , the filtration τ .(A) of

A and the filtration F . = τ .(A) +N of A +N . Note that, by Proposition
3.4, τ .

N = τ .(A) ∩N . The sequence is exact in each degree, so that

|τ i
N /τ i+1

N |+ |F
i/F i+1| = |τ i/τ i+1|

Multiply this by p−in, and add for all i ≥ 0. Then by the definition of t,
(Definition 3.3.1) it is clear that

t(A) = tN (A ∩N ) + tF (A +N ).

This together with the inequality tF (A+N ) ≥ tM/N (A+N ) (Lemma 3.3.1),
proves the following corollary.

Corollary 3.5.1.

t(A) ≥ tN (A ∩N ) + tM/N (A +N ).

4 Filtration holonomic modules in the affine case

4.1 Definition

Definition 4.0.1. Let X = An = speck[x]. A DX -module M is called
filtration holonomic if there is a sequence Ai, i = 0, 1 . . . of finite-dimensional
vector subspaces of M such that each element in M is contained in all but
a finite number of Ai, and there is an integer K such that t(Ai) ≤ K for all
i ≥ 0.

Note that in particular ∪i≥0Ai =M.
The following proposition gives some equivalent characterizations of this

concept.They are rather similar. In particular, it is technically convenient
not to demand in the definition that Ai ⊂ Ai+1. However, it is shown in
the proposition that it is always possible for a filtration holonomic module
to find a sequence which satisfies this stricter condition.

Proposition 4.1. Let X = An = speck[x]. For a DX-module M the
following conditions are equivalent.

i)M is filtration holonomic.
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ii)There exist vector subspaces Ai = ViBi, i ≥ 0, where Bi ⊂M
(i), such

that Ai ⊂ Ai+1 and ∪i≥0Ai =M. Furthermore, for this sequence, there is
an integer K, such that t(Ai) ≤ K.

iii)There exist vector subspaces Bij ⊂M
(j), i ≤ j, j = 1, 2..., and an in-

teger K, such that for all i ≥ 0, Σj|Bij | ≤ K, and such that Ai =
∑

j VjBij ⊂
Ai+1 =

∑

j VjAi+1j and ∪iAi = ∪i,jVjBij =M.

Sequences Ai, i ≥ 0 of the types used in the definition or the proposition
will be called generating sequences, and the minimal value possible of the
integer K will be called the multiplicity e(M) of the module. (Theorem 4.3
motivates the use of this last term.)

Proof. The equivalence between ii) and iii) is immediate. Assume iii) and

define Bi :=
∑

j V
[pi]
j−i Bij ⊂ M

(i). Then t(ViBi) = ti(Bi) ≤ Σj |Bij| by
Lemma 3.3.1 and Proposition 3.3. Thus the sequence Bi satisfies all the
conditions in ii). The converse implication follows from applying Proposition
3.3. in the converse direction.

To continue, clearly ii) trivially implies i). It thus remains to prove
that i) implies ii). Assume then the existence of Ai and K as in the def-
inition of a filtration holonomic module. We claim that, for a fixed j, the
sequence τ j(Ak), k ≥ 0, also constitutes a generating sequence. Given
an element m ∈ M there is a finite-dimensional vector space Φ ⊂ M(j),
such that m ∈ VjΦ (by Proposition 2.4), and since each element of a
fixed basis of VjΦ is contained in almost all the Ai, VjΦ ⊂ Ak for all k
large enough, and hence also, for these k, m ∈ τ j(Ak). This shows that
each element in M is contained in almost all τj(Ak), k ≥ 0. Also, for
a finite-dimensional vector space A, τk(τ j(A)) = τmax{j,k}(A) and hence
t(A) =

∑

k≥0 p−kn|τk(A)/τk+1(A)| ≥
∑

k≥j p−kn|τk(A)/τk+1(A)| = t(τ i(A)
(Definition 3.2) and in particular, for all k ≥ 0, we have t(τj(Ak)) ≤ K.
Thus the claim is proved. Note that since any element in M is contained
in almost all the vector spaces of a generating sequence, it is clear that any
finite-dimensional vector subspace of M is also contained in almost all el-
ements of the generating sequence. This applies then in particular to the
sequence τ j(Ak), k ≥ 0, for any fixed j ≥ 0. Now consider the double
sequence τ j(Ak), k, j ≥ 0. Each of these vector spaces has t ≤ K. Choose
recursively a diagonal subsequence Ci = ViBi, i ≥ 0, where Bi ⊂ M

(i) in
the following way. First set C0 := A0. If Ci = ViBi, where Bi ⊂ M

(i)

has been chosen for i ≤ i0, then consider the sequence τ i0+1(Ak), k ≥ 0,
and choose as Ci0+1 any one of these spaces which contains both Ci0 and
Ai0+1 (This is possible by the preceding argument). Each vector space in
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the sequence τ i0+1(Ak), k ≥ 0 is of the form Vi0+1B, for some vector space
B ⊂ M(i0+1), by Lemma 3.2.1. Hence Ci = ViBi, i ≥ 0, where Bi ⊂ M

(i).
From the fact Ai ⊂ Ci for all i ≥ 0, we see that the union of Ci is M. Also
we just saw that t(Ci) ≤ K,for all i ≥ 0, and Ci ⊂ Ci+1, by construction
and hence Bi, satisfies all the properties of ii).

Examples are given in section 5.

4.2 Fundamental properties in the case X = An

Theorem 4.2. Submodules,quotient and extensions of filtration holonomic
modules are filtration holonomic, and every filtration holonomic module has
a finite decomposition series. The number of simple quotients in a decom-
position series is bounded by e(M).

Proof. Let M be a filtration holonomic DX-module, with Ai, i ≥ 0 as
a generating sequence with t(Ai) ≤ K, for all i ≥ 0 as in the definition.
Suppose first that N is a submodule ofM. Then an immediate consequence
of tN (Ai∩N ) ≤ t(Ai) (Proposition 3.4) is that Ai∩N , i ≥ 0 is a generating
sequence of N ; the other requirement, that every element in N is contained
in all except a finite number of these subspaces is obvious since this was true
inM. Hence N is a filtration holonomic module. A similar argument using
Proposition 3.5 gives the assertion on quotient modules.

We next prove that M has a finite decomposition series. Assume that
there are K + 1 DX -submodules

NK+1 ⊂ . . . ⊂ Ni+1 ⊂ Ni ⊂ . . . ⊂ N1 =M.

Let t(Aj ∩ Ni) denote the measure of Aj ∩ Ni as a subspace of Ni. Then
for each fixed j, by Proposition 3.4, K ≥ t(Aj ∩ N1) ≥ t(Aj ∩ N2) ≥ . . .,
and hence, for each j, there are (at least) two consecutive indices ij , ij +1 ∈
{1, . . . ,K + 1} such that t(Aj ∩ Nij ) = t(Aj ∩ Nij+1). Hence by the same
proposition Aj ∩ Nij = Aj ∩ Nij+1. Now vary j. Since there are only a
finite number of possible pairs, some pair of indices i, i + 1 will occur for an
infinite number of different j. So the equality Aj ∩Ni0 = Aj ∩Ni0+1 is true
for an infinite set J of indices j. But ∪j∈JAj =M and hence

Ni0 = ∪j∈JAj ∩Ni0 = ∪j∈JAj ∩Ni0+1 = Ni0+1.

Thus, any chain of DX -submodules of M contains at most e(M) different
modules.

18



Next consider an extension

N ↪→M→→ K

of filtration holonomic DX-modules. Let Ai = ViΦi, i = 0, 1, 2... where Φi ⊂
N (i), be a generating sequence of N with t(Ai) ≤ e(N ), as in Proposition
4.1 ii). Let also the sequence Bi =

∑

j VjΨij , i = 0, 1, 2..., where Ψij ⊂

M(j), i ≤ j, j = 1, 2..., be a generating sequence of the type in Proposition
4.1 iii), such that for all i ≥ 0, t(Bi) ≤ Σj|Ψij | ≤ e(K). Note that, as
before, each finite-dimensional vector space in N is contained in all except
a finite number of Ai, and similarily for the other generating sequence.
There is induced a canonical short exact sequence N (i) → M(i) → K(i)

(Proposition 2.3) and this makes it possible to lift each Ψij to a vector
subspace Ψ̃ij ⊂ M

(j), such that |Ψ̃ij| = |Ψij |. Define B̃i =
∑

j VjΨ̃ij . By

construction, t(B̃i) ≤ t(Bi) ≤ e(K). We have by assumption that Bi ⊂ Bi+1.
Hence B̃i ⊂ B̃i+1 +N and there is some ji+1 such that B̃i ⊂ B̃i+1 + Aji+1 .
Since ji+1 may be taken to be any large enough integer,we might clearly
inductively assume that also Aji ⊂ Aji+1 and ji < ji+1, so that finally

Ci := B̃i + Aji ⊂ Ci+1 := B̃i+1 + Aji+1 .

Hence ∪i≥0Ci is a vector space that contains N = ∪i≥0Aji and projects onto
K = ∪i≥0Bi, and it has hence to beM. Furthermore t(Cik) ≤ e(N )+ e(K),
by the Lemma below and hence we have constructed a generating sequence
for the extensionM. Note that this implies that e(M) ≤ e(N ) + e(K).

Lemma 4.2.1. Let A and B be finite-dimensional vector subspaces of M.
Then

t(A + B) ≤ t(A) + t(B).

Proof. Consider the filtration of A + B defined by F i := τ i(A) + τ i(B).
Clearly, F i ⊂ τ i(A + B), and hence, by Lemma 3.2,

tF (A + B) ≥ t(A + B) (11)

However, there is, for arbitrary finite-dimensional vector spaces

A ⊃ A1, B ⊃ B1,

contained in a common vector space, an inequality

|(A + B)/(A1 + B1)| ≤ |A/A1|+ |B/B1|,

19



(Divide all vector spaces by A1∩B1; this reduces to the case that |A1+B1| =
|A1| + |B1|, and the inequality is trivial.) Hence, |F i/F i+1| = |(τ i(A) +
τ i(B))/(τ i+1(A) + τ i+1(B))| ≤ |τ i(A)/τ i+1(A)| + |τ i(B)/τ i+1(B)|, and so,
by considering the definition, tF (A + B) ≤ t(A) + t(B). By (1) the proof of
the lemma is finished.

Theorem 4.3. If N ↪→ M →→ K = M/N is a short exact sequence of
filtration holonomic DX-modules, then e(M) = e(N ) + e(K).

Proof. The inequality e(M) ≤ e(N ) + e(K) was proven as part of the proof
of Theorem 4.2. It thus remains to check the reverse inequality e(M) ≥
e(N ) + e(K). However, if Ai, i ≥ 0, is a generating sequence for M with
t(Ai) ≤ e(M), i ≥ 0, it was proved in the proof of the first part of Theorem
4.2, that Ai ∩N , i ≥ 0 and Ai +N , i ≥ 0, are generating sequences for N
and K, respectively. We now need the following simple observation. Suppose
that Ai, i ≥ 0, is a generating sequence for a filtration holonomic module
M. Then K = lim inf i→∞ t(Ai) exists, and, by considering the subsequence
Aik , k ≥ 0, containing all Ai such that t(Ai) = K, which clearly is another
generating sequence ofM, we find that

lim inf
i→∞

t(Ai) ≥ e(M).

Returning to the proof, it is clear that Corollary 3.5.1. implies that

e(M) = lim inf
i→∞

t(Ai) ≥ lim inf
i→∞

tN (Ai ∩N ) + lim inf
i→∞

tM/N (Ai +N ).

However the observation just made, shows that

lim inf
i→∞

tN (Ai ∩N ) + lim inf
i→∞

tM/N (Ai +N ) ≥ e(N ) + e(K),

and hence the proof of the theorem is finished.

It follows from the fact that a filtration holonomic module has a finite
decomposition series that such a module is finitely generated. Indeed, it is
in fact, cyclic. This is clear by Staffords theorem [2, Theorem 8.18] which
says that if A is a simple ring, which has infinite length as a left module
over itself, then an A-module with finite decomposition series is cyclic. That
DX is simple is proved in e.g.[9], and the statement of infinite length is an
excercise.(It follows also immediately from [loc.cit. 1.3.5.].) Another result
that is proven precisely as in characteristic zero is that a simple module
has, considered as a module over the structure ring k[x], just one associated
prime. (A proof is given in [2, 3.15-17]; if M is a D-module and q ∈ k[x]
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is a prime ideal, just consider the subspace consisting of elements which are
annihilated by some power of q. It is a D-module, and from this the proof
is immediate). We have thus the following proposition.

Proposition 4.4. A filtration holonomic module is cyclic. A simple D-
module has, considered as a module over the structure ring k[x], just one
associated prime.

5 Examples

5.1 Localisations k[x]f and local cohomology

First consider k[x] = k[x1, . . . , xn] itself, and take Ai := Vi. Then, clearly,
∪iAi = k[x] and t(Ai) = 1. Hence k[x] is a filtration holonomic DX-module,
and, since e(k[x]) = 1 it follows that it is simple. (This, by the way, gives
an alternate proof of this simple fact.)

Next, form the localisation, k[x]1+x1 , and take Ai := Vi(k +kxpi

1 )(1/(1+

xpi

1 )). Then Ai contains all rational functions

p(x)/(1 + xpi

1 ), where degxj p(x) < pi, if 2 ≤ j ≤ n, and degx1p(x) <
2pi. However any rational function p(x)/(1 + x1)

r is contained in Ai for
pi > max{degx1(p(x)), r} large enough, since p(x)/(1 + x1)

r = p(x)(1 +
x1)

pi−r/(1 + x1)
pi

, if pi ≥ r, and

degx1(p(x)(1 + x1)
pi−r) = degx1(p(x)) + pi − r < 2pi,

if pi > degx1(p(x)). Hence k[x]1+x1 is a filtration holonomic DX-module, and
the mutiplicity is less than 2, since t(Ai) = 2. It is not simple (it contains
k[x]), so the multiplicity has to be exactly two.

Then generalize this example to a localization k[x]f , by taking Ai =

ViMi/fpi
, where Mi =

∑

α kxpiα is the vector space generated by all mono-
mials xpiα, with the multi-index α satisfying αj ≤ degxj f . The vector space

dimension of Mi/fpi
is precisely t(Ai) = Πjdegxj f , and a calculation of

degrees similar to the one made above, gives that, every rational function
p/f r = pf pi−r/fpi

is contained in Ai, for i large enough. Namely, Ai clearly
contains all q/fpi

for which degxj (q) < pi(degxj (f) + 1) and

degxj (pfpi−r) ≤ degxj (p) + (pi − r)degxj (f) < pi(degxj (f) + 1),

if pi > max{r, degxj (p)}. Note that the estimate of the multiplicity, gives an
estimate of the number of simple modules in a decomposition series. It is also
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interesting to note that the generating series Ai = ViΦi (as in Proposition

4.1 ii)) has the property that Φi = Φ
[pi]
1 . This is not always the case.

Note in addition that, since local cohomology modules are subquotients
of localizations of the type k[x]f , it is a consequence of Theorem 4.2 that
this type of modules are further examples of filtration holonomic. This
result was the motivation for the present work. Even though this result will
be contained in the results in later sections, we state it here for clearness,
since these later results have much messier proofs, which tend to obscure
the simple idea. It was first proved in [3].

Proposition 5.1. A localization k[x]f is filtration holonomic as a DX -

module, with e(k[x]f ) ≤ Πjdegxjf . All local cohomology modules Hj
I (k[x]),

where I ∈ k[x] is an ideal are filtration holonomic modules.

5.2 Étale algebras over a localisation k[x]f

Suppose that R is an étale ring extension of some localisation k[x]f :=
k[x1, . . . , xl]f . Then by section 2.4 R is a DX -module, with X = speck[x].
We now want to show that R is in fact an filtration holonomic DX-module.
This is a generalization of the previous section, and the proof is similar, but
rather more complicated. First we show that R may be assumed to have a
special form.

5.2.1 Reduction to a special case

Suppose that ∪i∈IUi is an arbitrary finite covering of specR. Then R is a
submodule of ⊕i∈IRUi , and to conclude that R is fh (we will use this as
shorthand for “filtration holonomic intermittently from now on), it suffices,
by Theorem 4.2, to prove that each RUi is fh. Now we may use the fact that
locally each étale morphism is standard (e.g.[15, Theorem I.3.14] to find a
cover Ui, i ∈ I such that each RUi is a standard étale algebra over some
k[x]fi

, fi ∈ k[x], and hence it is enough to prove that R of the following
form are fh:

(a) R := (k[x]f [Y ]/P )h, h ∈ k[x][Y ], is an extension of k[x]f , f ∈ k[x],

and P ∈ k[x]f [Y ] is monic and furthermore the derivative P ′ (with respect
to Y ) is a unit in R. (This is precisely the definition of standard étale
extension of k[x].)

Denote the map k[x]f [Y ]toR by θ. We may use that the characteristic
is positive to assume, in addition(after possibly further localizing), that the
following condition is also satisfied:
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(b) θ(k[x]f [Y ]) ⊂ R is a free k[x]f -module with a basis T1 = 1, . . . , Tm =

Y m, such that also for all i > 0 T pi

1 , . . . , T pi

m form a basis of θ(k[x]f [Y ]) ⊂ R.

This follows, for example, from the following argument. That P is monic
in a) implies the first part of b). Clearly θ(k[x]f [Y p]) ⊂ θ(k[x]f [Y ]) ⊂ R
are both finitely generated k[x]f -modules. They actually must have the
same rank or k(x)[Y ]/(P ) = k(x)[Y p]/((P ) ∩ k(x)[Y p]), as follows from
e. g. surjectivity of the relative Frobenius for an étale extension([15,
VI.Lemma 13.2] ). A direct argument for this is also easy to give: Let
k(x) be the algebraic closure of k(x). Then k(x)[Y ]/(P ) is also an étale
k(x)-algebra ([15, Proposition 3.3c]) and this is equivalent to the fact that
P = Πi=m

i=1 (Y − αi) has no multiple roots αi ∈ k(x) ([15, Prop.3.1, ex.3.4]).
Hence k(x)[Y ]/(P ) is isomorphic as an algebra to k(x)

m
and the opera-

tion of taking p-th powers is surjective since it is surjective on k(x). Thus
k(x)[Y ]/(P ) is generated as a k(x)-algebra by Y p and it follows immediately
that also k(x)[Y ]/(P ) is generated as a k(x)-algebra by Y p. This means that
θ(k[x]f [Y p]) ⊂ θ(k[x]f [Y ]) ⊂ R have the same rank and there is then an el-
ement f1 ∈ k[x] such that the two finitely generated modules coincide, after
inverting f1. Since k[x] is a domain and R is flat over k[x], we have that
R ⊂ Rf1 (also as DX -modules ) and again by Theorem 4.2, it suffices to
prove that Rf1 is fh. Hence we may assume that θ(k[x]f [Y p]) = θ(k[x]f [Y ])
and this implies that condition b) holds for i = 1. However it then also
holds for all i ≥ 0: If Y = Q(Y p) ∈ R where Q is a polynomial with coeffi-
cients in k[x]f then, by raising this to p-th powers, Y p = Q1(Y

p2
) where Q1

has coefficients in k[x]f and hence Y = Q(Q1(Y
p2

)) ∈ θ(k[x]f [Y p2
]). This

proves that θ(k[x]f [Y p2
]) = θ(k[x]f [Y p]) holds, implying the case i = 2 in

b), and the argument may then be repeated to show that we are reduced to
assuming a) and b).

5.2.2 Preliminaries

If a is a positive integer, let Ma be the vector space of all polynomials in
k[x] which have degree less than or equal to a in each variable x1, . . . , xl.
Use DEG(f) to denote the least integer a such that f ∈Ma. The following
lemma, which will be used throughout the example, should be obvious upon
inspection.

Lemma 5.2.1. If a and b are two positive integers then

MaMb = Ma+b
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and also
Mpj−1(Ma)

[pj ] = M(a−1)pj−1 ⊃Mpja.

Using that Mpj−1 is the vector space previously called Vj, this says in par-
ticular

Vs(Vk)
[ps] = Vs+k.

5.2.3 First estimates of degrees.

Denote by T the vector space generated by the basis T1, . . . , Tm. There are
nonnegative integers a and r such that

TT ⊂Maf
−rT, (12)

and hence by induction,

T n ⊂M(n−1)af
−(n−1)rT

and finally
T [pj ] ⊂ T pj

⊂M(pj−1)af
−(pj−1)rT. (13)

I want to invert this formula, while keeping track of the degrees. Let

T p
i =

m
∑

k=1

gikf
−(p−1)rTk, i = 1, . . . ,m,

where then gik ⊂ M(p−1)a. Let the determinant of the matrix G = (gik) be
g ∈Mm(p−1)a. It is non-zero by assumption b), in fact it must be invertible

in k[x]f . Let G[pj ] denote the matrix which has elements gpj

ik , and if U, V are
two bases of k[x]f [Y ], denote the base change matrix by B(U, V ), so that
B(T [p], T ) = f−(p−1)rG (by abuse of notation letting T also mean the basis
{Ti, i = 1, . . . ,m} etc.). By Cramers formula,

B(T, T (p)) = g−1f (p−1)rH,

for some matrix H = (hij) with hij ∈M(m−1)(p−1)a. Now

B(T, T [pj]) = B(T, T [p]) · . . . · B(T [pj−1], T [pj ]),

and B(T [pj−1], T [pj]) = B(T, T [p])[p
j−1], so that

B(T, T [pj]) = g−(pj−1+...+1)f r(pj−1)H(j),
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where H(j) = HH [p] . . . H [pj−1] is a matrix with entries in M(m−1)(pj−1)a.

Hence the matrix f r(pj−1)H(j) has its elements in Mpja1
, where a1 is the

least integer such that a1 ≥ rDEG(f) + (m − 1)a so that pja1 ≥ (pj −
1)r(DEG(f)) + (m− 1)(pj − 1)a. The important thing to note here is that
obviously a1 is independent of j.

In terms of bases this means that there is a positive integer a2 such that,
for all j ≥ 1,

T ⊂ g−pj
Mpja2

T [pj], (14)

since, if a2 = DEG(g) + a1,

T ⊂ g−(pj−1+...+1)Mpja1
T [pj ] ⊂ g−pj

gpj−(pj−1+...+1)Mpja1
T [pj] (15)

⊂ g−pj
Mpja2

T [pj ]. (16)

5.2.4 More degree calculations

In a similar way we present h−n: There is a description of

h =
m

∑

k=1

qkf
−tTk,

where qk ∈Mb and b and t are positive integers. Hence

hn =
m

∑

k=1

qk(n)f−(nt+(n−1)r)Tk,

for some elements qk(n) ∈M(n−1)a+nb (Using (11) in the previous subsection,
in which r and a are defined.) Assume now that n ≤ pj. Then

h−n = h−pj
hpj−n = h−pj

(
m

∑

k=1

qk(p
j − n)f−((pj−n)t+(pj−n−1)r)Tk)

= h−pj
f−pj(t+r)(

m
∑

k=1

qk(p
j − n)fnt+(n+1)rTk),

and hence
h−n ∈ (f t+rh)−pj

Mpja3
T, (17)

if a3 := a + b + t(DEG(f)) + 2r(DEG(f)) is chosen to ensure the following
inequality
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DEG (qk(p
j − n)fnt+(n+1)r

≤ (DEG(qk(p
j − n))) + (pjt + (pj + 1)r)(DEG(f))

≤ (pj − 1)a + pjb + (pjt + (pj + 1)r)(DEG(f))

≤ pj(a + b + t(DEG(f)) + 2r(DEG(f))) = pja3.

In a similar way there is some positive integer a6, for example a6 :=
DEG(f) such that if j ≥ 1 and pj ≥ k

f−k = f−pj
fpj−k ∈ f−pj

Mpja6
. (18)

Finally I need to present TT in this way: By the assumption made in
the first calculations ((11) in the preceding subsection),

TT ⊂ f−rMaT ⊂ f−pj
fpj−rMaT ⊂ f−pj

Mpja4
T, (19)

where pj is supposed to be so large that it is bigger than the fix integers
r and a and a4 = (DEG(f)) + 1 is such that pja4 ≥ pj(DEG(f)) + a ≥
(DEG(fpj−r)) + a.

5.2.5 Combining the calculations to prove the result

Now consider the general element of R as an element of Mch
−nf−kT (c, k

and n are positive integers).
Using (12)-(17), the following is obtained:

Mch
−nf−kT ⊂Mc(f

−pj
Mpja6

)((f t+rh)−pj
Mpja3

T )T

⊂ (hf t+r+1)−pj
Mpj(a3+a6+1)(f

−pj
Mpja4

T )

⊂ (hf t+r+2)−pj
Mp(a3+a6+a4+1)g

−pj
Mpja2

T [pj ]

= (ghf−b1)−pj
Mpja5

T [pj ],

under the hypothesis that pj ≥ max{n, k, a, r, c}, and where a5 = a2 + a3 +
a4 + a6 + 1 (the +1 comes from Mpj ⊃ Mc) and b1 = t + r + 2. Both a5

and b1 are independent of j. Consider the sequence of vectorspaces (with
bounded dimension)

Φj := (ghf−b1)−pj
(Ma5)

(pj)T [pj ].
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Note that Φj = Φ
[pj]
1 I finally claim that Aj = VjΦj form a generating se-

quence for R: R is the union of the vectorspaces Mch
−nf−kT for all different

positive integers c, k and n. Now assume that pj ≥ max{n, k, a, r, c}. Then
by Lemma 5.2.1, in the preliminaries of this example, Mpj−1(Ma5)

[pj ] ⊃
Mpja5

and so

Mpj−1Φj ⊃ (ghf−b1)−pj
Mpja5

T (pj) ⊃Mch
−nf−kT. (20)

Thus every element of R is contained in almost all of the vector spaces
Aj := Mpj−1Φj. Hence it is clear that they form a generating sequence, and
this ends the proof. Note that it is possible to estimate t(Aj) = |Φ1|. We
state this result, as a proposition.

Proposition 5.2. Let X := speck[x]. An étale k[x]f -algebra R is filtration
holonomic as a DX -module. In fact, there is a generating sequence Ai =

ViΦi, such that Φi = Φ
[pi]
1 , and |Φi| ≤ K, for some positive integer K.

Note this proposition was stated in [3], but the proof given there, while
using the same ideas, is deficient, since it assumes that the extension may
be restricted to a too special case. However the theorem stated there is still
true, by the above proof, since a module with a generating sequence such

that Φi = Φ
[pi]
1 will be filtration holonomic in the sense of [3].

We will need the following statement on the growth of a generating
sequence relative to the growth of the sequence W j, for a vector subspace
W ∈ R.

Lemma 5.2.2. Let R be an étale k[x]-algebra which thus, according to the
preceding proposition, is a filtration holonomic DX-module. There is then a
generating sequence Aj = VjΦj , j ≥ 0, with the following property. To any
finite-dimensional vector space W , there is a positive integer r (depending
on W ) such that, for all integers j ≥ 0, W j ⊂ Al(j)+r, where l(j) is the least
integer larger than or equal to logp(j).

Proof. Remember that Vr = Mpr−1. According to 5.2.1 there is f ∈ k[x]
such that R ⊂ Rf = (k[x]f [Y ]/(P ))h and Rf satisfies conditions a) and
b) of that subsection, so that according to (18) above there is a generating
sequence Φ̃j, j ≥ 0 of Rf with Mcf

−kh−nT ⊂Mpj−1Φ̃j , if pj ≥ max{c, k, n}
and j ≥ j0 is large enough. There are clearly some c, k, n such that W ⊂
Mcf

−kh−nT . Let pr be the least p-th power such that pr ≥ max{c, k, n}.
Then W ⊂Mcf

−kh−nT ⊂Mpr−1Φ̃r and

W j ⊂Mjcf
−jkh−jn ⊂Mprpl(j)−1Φ̃r+l(j).
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But note that Φj := Φ̃j ∩ R(j) , is a generating sequence for the DX -
submodule R, according to the proof of Theorem 4.2. Hence intersecting
with R = Vl(j)+rR

l(j)+r gives that W j ⊂ R ∩ Vl(j)+rÃl(j)+r = Vl(j)+rAl(j)+r,
according to Lemma 3.2.1 (3).

5.2.6 Invariance under étale pullback

The following lemma, to be generalized shortly, says that the étale pullback
of a filtration holonomic module is filtration holonomic.

Lemma 5.2.3. Let X := specR → specS → An = speck[x] be étale maps
of affine varieties, and assume that M is filtration holonomic as a DS-
module. Then R⊗SM is filtration holonomic as a DR-module.

Proof. Since R ⊗k[x] M →→ R ⊗S M, we may, in view of Theorem 3.2.1,

assume that S = k[x]. Let Φij ⊂M
(j), j ≥ i ≥ 0, be a generating sequence

for M of the type in Proposition 4.1 iii) , so that ∪i,jVjΦij = M, and
∑

j |Φij| ≤ L, for some fix integer L, and all i ≥ 0. By Proposition 5.2, there
is also a generating sequence Ψj for R = ∪jVjΨj, and an integer K such that

|Ψj | ≤ K, j ≥ 0. Then Θij := V
[pj]
1 Ψj⊗Φij ⊂ R(j)⊗M (j) = (R⊗k[x]M)(j),

satisfies
∑

j |Θij | ≤ KL|V1| and furthermore

∪jVjΘij = ∪j(VjV
[pj]
1 Ψj)⊗ Φij ⊃

∑

j

VjΨj ⊗ VjΦij.

(We have used that VjV
[pj ]
1 ⊃ VjVj , see Lemma 5.2.1.) If now m =

∑

l∈I rl⊗
ml ∈ R ⊗k[x] M , and {rl, l ∈ I} ⊂ VjΨj for j ≥ j0 and {ml, l ∈ Λ} ⊂
∑

j VjΦij for i ≥ i0, then clearly m ∈ VjΨj ⊗ VjΦij if i ≥ max(i0, j0), since
the fact that Aij = 0, if j < i implies that all the VjBj occurring in the sum
will contain {rl, l ∈ I}. Hence every element in R ⊗k[x]M is contained in
almost all the vector spaces

∑

j VjCij , and these vector spaces thus satisfy
the conditions of Proposition 4.1 iii).

6 Filtration holonomicity for smooth varieties

If X is a integral and smooth scheme of finite type over k there is a covering
of X by open affine sets Ui, i = 1, ..., r, with étale maps ui : Ui → An. Such a
map is called a system of local coordinates, and the whole system is called an
atlas. It is natural to globalize the definition of filtration holonomic modules
in the following way.
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Definition 6.0.1. Let X be an integral and smooth scheme of finite type
over k. If there is a covering of X by open affine sets Ui, i = 1, ..., r, and
étale maps ui : Ui → An, such that ui∗N|Ui is a filtration holonomic Dn

A
-

module, then the DX -module N| is called filtration holonomic, in the given
atlas. If this is true in one atlas, it is true in all.

We will now prove the stated independence of the atlas. The following
lemma contains the main ingredient.

Lemma 6.0.4. Assume that u, v : specR → An = speck[x1, . . . , xn] are
étale maps of rings. Suppose that N is a DR-module which, considered as a
DAn-module u∗(N ), using the map u, is filtration holonomic. Then v∗N is
also filtration holonomic.

Proof. The ring homomorphisms, corresponding to the maps u, v in the
lemma, will also be denoted by u, v : k[x1, . . . , xn]→ R. The homomorphism
v will be identified with an inclusion k[x] ⊂ R. Since this inclusion is
étale, R is filtration holonomic as a DAn-module by Proposition 5.2. Let
As = VsΦs, s ≥ 0 be a generating sequence for R constructed so as to have
the properties in lemma 5.2.3. We can take W := u(M1) in this lemma and
then obtain that there is a fixed r such that for all s ≥ 0 we have

u(Vs) = u(Mps−1) ⊂ u(Mps−1
1 ) = u(M1)

ps−1 ⊂ As+r = Vs+rΦs+r.

(Note that l(ps − 1) = s.) Let furthermore L = e(R) ≥ |Φs|, s ≥ 0.
Since u∗N is filtration holonomic there exist, according to Prop 4.1, vector
subspaces Bij ⊂ N

(j), 0 ≤ i ≤ j,, and an integer K, such that for all
i ≥ 0,

∑

j≥i |Bij| ≤ K, and
∑

j≥i u(Vj)Bij ⊂
∑

j≥i u(Vj)Bi+1j and such that
∪i,j≥0u(Vj)Bij = u∗N . Define now

Cij := V [pj]
r Φj+rBij .

Since, for all i ≥ 0, N (j) is an R(j)-module, and V
[pj]
r Φj+r ⊂ R(j), it is clear

that Cij ⊂ N
(j). Let

Ci :=
∑

j≥i

V
[pi]
j−i Cij.

Clearly, by definition, t(VjCij) = |Φj+r||Bij | ≤ L|Bij| and hence

t(ViCi) ≤
∑

j≥i

t(VjCij) ≤ KL

is uniformly bounded for all i. Now

VjCij = VjV
[pj ]
r Φj+rBij ⊃ Vj+rΦj+rBij ⊃ u(Vj)Bij
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and this shows that ViCi = ∪j≥iVjCij ⊃ ∪j≥iu(Vj)Bij and so each element
in u∗N is contained in almost all of the vector spaces ViCi. (We have above
repeatedly used the formula Vs(Vb)

[ps] = Vb+s, of Lemma 3.2.2.) Hence ViCi

is a generating sequence and so the lemma is proved.

With the lemma it is easy to prove the independence of the atlas used in
the definition of filtration holonomic . Assume that N is filtration holonomic
in the atlas ui : Ui → An, i ∈ I, and that vj : Vj → An, j ∈ J is another
étale atlas, not necessarily affine nor covering . There is a finite covering of
each Vj ∩Ui by open affine subsets, ∪kW

k
ij = Vj ∩Ui, and with induced étale

affine maps ui, vj : W k
ij → An, i ∈ I, j ∈ J . By Lemma 5.2.3 we know

that ui∗(N | W
k
ij) is filtration holonomic as a Dn

A
-module. Observe, by the

way, that this shows in particular, that taking the second atlas to consist
of just the inclusion of an arbitrary open subset v : V ⊂ X, we see that if
N is a filtration holonomic DX-module then N | V is filtration holonomic .
Returning to the general case, and assuming that the second atlas is affine
and covering, the lemma above shows that then vj∗(N | W k

ij) is filtration
holonomic as a DAn-module, and since

vj∗(N | Vj) ⊂ ⊕k,ivj∗(N | W
k
ij),

the submodule part of Theorem 4.2 gives that vj∗(N | Vj) is a filtration
holonomic DAn-module, and hence N is fh in both atlases, as was to be
shown. In particular the new definition coincides with the old one for X =
An!

In a similar way the following proposition is proved. It contains of course
the earlier results in 5.1 and 5.2.6.

Proposition 6.1. Let u : X → Y be an étale map .
i) If N is a filtration holonomic DX -module then u∗(N ) is a filtration

holonomic DY -module.
ii) If M is a filtration holonomic DY -module then u∗(M) is a filtration

holonomic DX -module.

Proof. For i), note first that, by the observation in the preceding paragraph,
if N is a filtration holonomic DX -module and V ⊂ X is an arbitrary open
subset then N | V is filtration holonomic. Hence i) is local in Y , so we may
assume that Y = An. Let Vj ⊂ X, j ∈ J be a covering of X by affine open
subsets. Clearly, by the lemma above, u∗(N | Vj) is filtration holonomic ,
and hence u∗(N ) ⊂ ⊕ju∗(N | Vj) is holonomic.

For ii), it suffices to note that the statement is local in both X and Y ,
and hence is just a version of Lemma 5.2.6.
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Finally, note that, once given the definition of filtration holonomic for
arbitrary X, Theorem 4.2., on finite decomposition series etc. of filtration
holonomic modules, still remains true, substituting X for An, by a trivial
argument. This is Theorem 1 of the introduction.

7 Functoriality

Haastert [8] has defined inverse and direct images of DX -modules in positive
characteristics, and we will prove in this section that these functors preserve
filtration holonomicity. He has also proven the precise analogue of Kashi-
wara’s theorem on D-modules with support on a closed, smooth subvariety,
and we prove that this correspondence also preserves filtration holonomicity.
Though the theory in [8] is stated for smooth varieties over an algebraically
closed field, it is clear from the definitions (given below), that they work for
an arbitrary field.

7.1 Maps

Suppose then that f : X → Y is a map between two smooth varieties X and
Y . Then f may be factored into a closed immersion Γf : X → X×Y ([EGA
I.5.2.4]), using that the schemes are separated, followed by the projection
X × Y → Y . For a closed immersion of a smooth subvariety in a smooth
variety, there is the following very nice description ([SGA 1:II.4.9-10]).

Lemma 7.1.1. Let X be a smooth k-scheme, with a closed subscheme Y ,
and let x be a point in X. If Y is smooth, then there is an open neighbourhood
x ∈ X1 ⊂ X and an étale morphism

g : X1 → X2 = speck[t1, . . . , tn],

such that the closed subset Y1 = Y ∩ X1 ⊂ X1 is the inverse image by g
of the closed subscheme Y2 = speck[tr+1, . . . , tn], for some suitable r. In
particular the restricted map g : Y1 → Y2, is étale.

7.2 Inverse images

If f : X → Y is a map between two smooth varieties X and Y , the in-
verse image of a DY -module M is, as an OX -module simply f ∗M, i.e.the
ordinary pullback as a quasi-coherent OX -module([8, 2.1]). To explicit the
differential structure, assume that the inverse system belonging to M is
M(r) ⊃ M(r+1), where r ≥ 0. The corresponding inverse system for f ∗M
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is given by f (r)∗M(r), where f (r) : X(r) → Y (r) is the induced map. The
injection f (r+1)∗M(r+1) ←↩ f (r)∗M(r), is the composition

OX(r+1) ⊗O
Y (r+1)

M(r+1) → OX(r) ⊗O
Y (r+1)

M(r) → OX(r) ⊗O
Y (r)
M(r)

where the first map is the tensor product over of the canonical injections
OX(r+1) ⊂ OX(r) , andM(r+1) ⊂M(r), and the second map is the canonical
surjection. Recall also that if s : X → Y is an étale map then the direct
image s∗(M) of the DX-module M considered as a quasi-coherent module
is a DY -module.

Proposition 7.1. Let f : X → Y be a morphism, and M a filtration
holonomic DY -module. Then the inverse image f∗M is filtration holonomic.

Proof. The statement is local in both X and Y , and it is thus enough to
prove the proposition when f is a morphism of affine schemes. According
to 7.1, it may be assumed to be either a closed immersion or a projection.
Assume first that the map f is a closed immersion X → Y and use the
lemma in 6.1, to obtain a diagram

X
f
→ Y

↓ ↓

X1
f1
→ Y1,

where the vertical arrows β : Y → Y1 = speck[t1, . . . , tn] and α : X →
X1 = speck[tr+1, . . . , tn] are étale maps, and I = (t1, . . . , tr) is the ideal
which defines X1 ⊂ Y1. We have, according to the definition, to show that
α∗f

∗(M) is a filtration holonomic DX1 -module. But clearly

α∗f
∗(M) ∼= f∗1 β∗(M) = β∗(M)/Iβ∗(M),

since both the vertical arrows are étale, and it is enough to prove that
this last module is filtration holonomic. But this is almost immediate: By
assumption, β∗(M) is filtration holonomic ; let Ai ⊂ Ai+1, i ≥ 0 be a
generating sequence, so that β∗(M) = ∪i≥0Ai. Then β∗(M)/Iβ∗(M) =
∪i≥0Ai, where Ai := Ai + IM. Also Ai ⊂ Ai+1. Thus, it suffices to check
that, t(Ai) ≤ t(Ai). But if Ai =

∑

j V Y1
j Φij, where V Y1

j is the monomials of

degree less than pi − 1 in the variables t1, . . . , tn, then Ai =
∑

j V X1
j Φij ,

where V X1
j = V X1

i modI, is the monomials of degree less than pi − 1 in the

variables tr+1, . . . , tn, and where Φij ⊂ (β∗(M)/Iβ∗(M))(i). If Φij have
been chosen so that

∑

j |Φij | = t(Ai), it follows from Proposition 4.1. that
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t(Ai) ≤
∑

j |Φij | ≤ t(Ai). We have thus proved that β∗(M)/Iβ∗(M) is
filtration holonomic, and this concludes the proof of the proposition in the
case of an immersion.

The argument in the case of a projection is entirely similar; by suit-
able étale maps it is possible to assume that f is the projection X =
speck[x] ×speck speck[y] → Y = speck[y]. Then f ∗M = k[x] ⊗k M (with
the obvious action of the differential operators). Let V y

j ( V x
j , Vj , ) be the

monomials of degree less than pi − 1 in the y( x, x and y)-variables, re-
spectively. If Ai =

∑

j V y
j Φij, is a generating sequence for M, for which

Ai ⊂ Ai+1 then clearly

f∗M = k[x]⊗kM = k[x]⊗k (∪i≥0Ai) = ∪i≥0V
x
i Ai.

Since
V x

i Ai =
∑

j

V x
i V y

j Φij ⊂ Ãi :=
∑

j

V x
j V y

j Φij =
∑

j

VjΦij

and obviously t(Ãi) ≤
∑

j |Φij | = t(Ai) (by assumption), clearly Ãi, i ≥ 0,
is a generating sequence for f∗M, which thus is filtration holonomic. This
finishes the proof. It may be noted that it follows clearly from the proof
that the multiplicity does not increase.

7.3 Direct images

We will now consider direct images. Given a morphism f : X → Y , there
is a left DX − f−1DY -bimodule DY←X and the direct image

∫

fM of a
DX -module M is defined as f∗(DY←X ⊗DX

M). It is a left exact functor
and the derived functors are just Rif∗(DY←X ⊗DX

M), i ≥ 0. The def-
inition of DY←X involves the canonical bundle ω over X and Y , due to
the fact that one has to make a detour over right DX-modules, and ω is the
archetypical right DX-module. A right DX-module N may be described as a
direct system of OX(r) -modules N (r), r ≥ 0, with OX(r+1) -homomorphisms
N (r) → N (r+1), such that the induced homomorphism

N (r) →HomO
X(r)

(OX ,N (r+1)),

is an isomorphism. The left DX(r) -module structure of OX induces a right
DX(r)-module structure on HomO

X(r)
(OX ,N (r+1)), and this transports by

the isomorphism to a right DX(r)-module structure on N (r). Given a right
DX -module N we have N (r) = N ⊗D

X(r)
OX , and conversely N may be

reconstructed as
N = HomO

X(r)
(OX ,N (r)).
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All this follows by Morita equivalence.
That ωX is a right DX -module, may then be seen through the theory of
local duality for finite and smooth morphisms([10, II.6.4, 8.4]), which gives
isomorphisms

HomO
X(r)

(OX , ωX(r)) ∼= (F (r))!ωX(r)
∼= ωX .

This is a variant of the Cartier operator, and it may locally, for a global
system of local coordinates, X = speck[x1, . . . , xn], be described explicitly
in the following way. The volume form η = ∧dxi, gives an isomorphism
k[x] ∼= ωX , a 7→ aη, and k[xpr

] ∼= ωX(r), a 7→ a(η)p
r
. Define the k[xpr

]-
linear map C : ωX(r) → ωX(s) s > r, by

C(xα(η)p
r
) = δps−r−1,α(η)p

s
),

where Kronecker’s symbol δps−r−1,α = 1, if α = (ps−r−1, ps−r−1, . . . , ps−r−

1), and vanishes otherwise. This map induces as above a right DX
(r)-

structure on ωX . It is actually determined by

(aη)g = (−1)j(ga)η ifg = D(j)
xi

, (21)

and by (aη)g = (ga)η if g ∈ OX , as in characteristic zero. (For all this see
[8, 4-5].)
Now return to the general situation of a morphism f : X → Y and define

DY←X = lim
r→∞

Homf−1(OY
(r))(f

−1(ωY ), ωX).

This is clearly aDY
(r)−f−1(DX

(r))- bimodule. Since, by Morita equivalence,
M∼= OX ⊗O

X(r)
M(r) and ωX(r) = ωX ⊗DX

(r) OX , it is easy to check that

ωX(r) ⊗O
X(r)
M(r) = ωX ⊗DX

(r) M,

and hence
∫

f
M = f∗(DY←X ⊗f−1(DX)M) (22)

∼= lim
r→∞

f∗(Hom
f−1(O

(r)
Y

)
(f−1(ωY ), ωX(r) ⊗O

X(r)
M(r))). (23)

The maps

f∗(Hom
f−1(O

(r)
Y )

(f−1(ωY ), ωX(r) ⊗O
X(r)
M(r)))

→ f∗(Hom
f−1(O

(r+1)
Y )

(f−1(ωY ), ωX(r+1) ⊗O
X(r+1)

M(r+1)))
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between the modules in this direct limit, are induced by

ωX(r) ⊗O
X(r)
M(r) ∼= ωX(r) ⊗O

X(r)
OX(r) ⊗O

X(r+1)
M(r+1)

∼= ωX(r) ⊗O
X(r+1)

M(r+1) C⊗Id
−→ ωX(r+1) ⊗O

X(r+1)
M(r+1)

Here C is the Cartier operator, defined above.
DY←X is a flat right DX -module, so

∫

f is left exact and has hence higher
direct images

∫ i

f
M = Rif∗(DY←X ⊗f−1(DX)M).

It should also be noted that in the case of an étale affine morphism, it follows
from f ∗(ωY ) = ωX , that the direct image

∫

f
M = f∗(DY←X ⊗DX

M) = f∗M

is just the direct image ofM as an OX -module.
We can now prove the following

Proposition 7.2. Let f : X → Y be a morphism, andM a fh DX-module.
Then the direct images

∫ i
fM, i ≥ 0, are filtration holonomic.

Proof. The proposition is local in Y , and it may thus be assumed that Y
is affine. Since X may be covered by a finite number U1, . . . , Us of affine
open subsets we may use Čech cohomology to calculate Rif∗. In particular
Rif∗(DY←X ⊗DX

M) is a subquotient of
∏i=s

i=1 f∗((DY←X |Ui) ⊗DUi
M|Ui),

and hence by Theorem 4.2. it is enough to consider the case when X = Ui

also is affine. Since f may be factored into a closed immersion followed by
a projection, it is enough to prove the proposition for these two types of
morphisms. Assume first that f is as is described by the diagram in the
proof of proposition 7.1. (This is clearly possible by shrinking each Ui, in
the Čech complex above, if necessary.) Then by definition

∫

fM is filtration
holonomic iff

∫

β

∫

fM =
∫

f

∫

αM is filtration holonomic. Since
∫

αM = α∗M
is filtration holonomic ifM is, it clearly is enough to consider a special type
of smooth subvariety, of the form

f : X ∼= speck[x1, . . . , xn]→ Y1
∼= speck[x1, . . . , xn+m] = X × Z,

where Z2 = speck[xn+1, . . . , xn+m] i.e. f is the inclusion of the linear smooth
subvariety, defined by the equations xi = 0, i = n + 1, . . . ,m + n.
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Suppose first, slightly more generally, that f = f1×f2 : X×X2 → X×Y2.
Then it is easy to deduce from the description above that

∫

f =
∫

f1
×

∫

f2
.

In our case
∫

fM = Id∗M⊗k

∫

f2
(k), where f2 is the inclusion of a point

X2 = speck in Y2. By definition

∫

f2

k = lim
r→∞

Homf−1
1 (O

Y
(r)
2

)(f
−1
1 (ωY2),OX2).

Since ωY2 = k[ypr
]Vrη (remember that V y

r are the monomials of degree
less than pr − 1 in each variable), Homf−1

1 (O
Y

(r)
2

)(f
−1
1 (ωY2),OX2) = (V y

r η)∗.

Consider the element φr ∈ (V y
r η)∗ : φr(y

α) = δps−1,α (where α is a multi-
index, and δ as in the discussion of Cartier’s operator). Then if v ∈ V y

r ,

(D
(j)
yi φr)(vη) = (−1)jφr(D

(j)
yi vη) = 0, so φr ∈

∫

f2
k is a horizontal section

for D
Y

(r)
2

. Clearly also (V y
r η)∗ = V y

r φr, and hence these vector spaces are a

generating sequence of (f1)∗(k). If Ai ∪j V x
j Φij, is a generating sequence for

M, as in Proposition 4.1. iii), then (f1)∗(k) ×M = ∪ijV
y
j φrV

x
j Φij shows

that the direct image is filtration holonomic, with a generating sequence
Ãi = ∪jV

y
j φrV

x
j Φij. Note also that the argument gives that e(

∫

fM) ≤
e(M). This proves the proposition in the case of a smooth subvariety.

Suppose next that

f : X × Y ∼= speck[x1, . . . , xn, y1, . . . , ym]→ X ∼= speck[x1, . . . , xn]

corresponds to the natural projection x×y 7→ x.Then f may be decomposed
f = IdX × f1, where f1 is the projection to speck and

DX←X×Y = lim
r→∞

Hom(IdX×f1)−1(OX
(r))((IdX × f1)

−1(ωX), ωX ⊗k ωY ) =

= lim
r→∞

(Homk(k, ωY )⊗k Hom
O

(r)
X

(ωX , ωX) = lim
r→∞

ωY ⊗k D
(r)
X = ωY ⊗k DX .

Then

f∗M = lim
r→∞

((ωY ⊗k D
(r)
X )⊗

D
(r)
Y
⊗D

(r)
X

M) = lim
r→∞

((ωY ⊗D(r)
Y

M).

But ωY ⊗D
Y (r)
M =M/IrM, where Ir = ⊕kD

(j)
yi , the sum taken for 1 =

1 . . . m, 1 ≤ j < pr) since, as is easily seen ωY = DY (r)/IrDY (r) (This follows
from the trivial identity OY = DY (r)/DY (r)Ir, in view of the description (1)
of the right DY (r)-module structure of ωY given above). Now the proposition
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is easy to prove : Suppose that M = ∪V x
i V y

i Φi, is a generating sequence,
showing that M is filtration holonomic.(Here we have decomposed Vi =
V x

i V y
i , into x-variables and y-variables.)
Clearly V y

i /IrV y
i is one-dimensional over k, generated by the class of yp−1

(multiindex), and hence V x
i V y

i Φi = V x
i yp−1Φi ⊂ M/IrM. Since yp−1Φi ⊂

(M/I+M)(i), this implies that the direct image is fh, and that e(
∫

fM) ≤
e(M).

7.4 Kashiwara’s equivalence

Suppose that X → Y is the immersion of a smooth subvariety. Kashiwara’s
theorem gives an equivalence between the category of DX -modules and the
category of DY -modules with support on f(X). It is proved in characteristic
p in [8] (it is easily checked that the proof works without the hypothesis of
algebraically closed ground field, since the crucial point is smoothness in the
form of Lemma 7.1.1). The equivalence preserves the filtration holonomic
property:

Proposition 7.3. Let f : X → Y be the immersion of a smooth subvariety.
Define the functor f+ :, which takes DY -modules to DX-modules, by

f+(M) := f−1(HomOY
(f∗(OX),M)).

Then f+ : and
∫

fM gives an equivalence between the category of DX -
modules and the category of DY -modules with support on f(X)([8]). The
equivalence preserves the property of being fh.

Proof. By the previous section it is enough to consider the functor f+. In
terms of the description of D-modules as inverse systems

f+(M)(r) := f (−1)(HomO
Y (r)

(f∗(O
(r)
X ),M(r))).

The functor f+ and the statement of the proposition is local in Y , and so
it may be assumed that there is a pullback diagram of affine schemes as in
Lemma 7.1.1. Now

f+
1 (β∗M) = HomOY1

(f1∗OX1 , β∗M) = α∗HomOY
(f∗OX ,M) = (α∗f

+M),

since α and β are affine and the ideal of X in Y is generated by the ideal
of X1 in Y . Hence we are reduced to the case of f1 and the filtration
holonomic module β∗M. Let I = (t1, . . . , tr) be the ideal which defines
f1(X) as a closed subset of Y . Then f+

1 β∗M = (I : β∗M). Denote the
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monomials of multi-degree less than pi − 1 in each variable t1, . . . , tr, by
Vi(I), and denote the monomials of multi-degree less than pi − 1 in each
variable tr+1, . . . , tn, by Vi(X). Then Vi = Vi(X)Vi(I). Note that (I :

k[t]⊗
k[tpi ]

M(i)) = a(i)Vi(X)(I :M(r)), where a(i) = Πr
j=1t

pi−1
j .

Suppose that A. is a generating sequence for N := β∗M, such that
Ai ⊂ Ai+1, ∪Ai = N and tN (Ai) ≤ e, for some fixed e. Then, by the lemma
below, (I : Ai) ⊂ (I : Ai+1),∪(I : Ai) = (I : N ), and t(I:N ((I : A)) ≤
e(N ). So (I : Ai) is a generating sequence, and also e(I : N ) ≤ e(N ).

It remains to provethe following lemma.

Lemma 7.4.1. Asssume that N is a DY -module, and that A is a finite-
dimensional vector subspace of N . Then t(I:N )(I : A) ≤ tN (A).

Proof. First if B ⊂ A ⊂ N are two finite-dimensional vector spaces con-
tained in a DY -module, then (I : A)/(I : B) maps injectively to A/B,
since (I : A) ∩B = (I : B). Hence |(I : A)/(I : B)| ≤ |A/B|.

Let then F . be any filtration of A ⊂ N such that F i ⊂ τ i
N (A), as in

Proposition 3.2. Then I claim that Gi := (I : F i) ⊂ τ i
(I:N )(I : A). This is

clear since F i = Vi(Y )Φ(i) implies that (I : F i) = Vi(X)a(i)(I[pi] : Φ(i)) ,
and a(i)(I [pi] : Φ(i)) ⊂ ((I : N ))(i) = a(i)(I [pi] : N (i)).

Hence it follows from the definition of tF in 3.2, and the first paragraph
of the proof that tG(I : A) =

∑

p−ni|Gi/Gi+1| ≤ tF (A) =
∑

p−ni|F i/F i+1|.
Since tG((I : A)) ≥ t(I:N )(I : A) (by 3.2.), it follows, by choosing F . so that
tF (A) = tN (A), that tM(A) ≥ tI:M(I : A).

8 F-modules.

Remember that k is a perfect field. Then the p-th power is an isomor-
phism of fields and hence induces an isomorphism of Z-schemes X (1) ∼= X.
This is not,in general, an isomorphism of k-schemes. Hence the following
(wellknown) definition is reasonable.

Definition 8.0.1. Let k be a perfect field. The DX-module M is called an
F -module if M∼=M(1).

This thus means precisely that the modules in the inverse system be-
longing to the DX -module M are the same. From the description of the
functors, in terms of inverse systems, in the preceding section, most of the
following proposition is immediate.
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Proposition 8.1. Fmodules are preserved by direct and inverse images,
as well as by Kashiwara’s functor (defined in 7.4).

Proof. Suppose that f : X → Y is a morphism. We only need to check the
direct image, so let M be an F-module and use ωY = HomO

Y (1)
(OY , ωY (1))

and the definition
∫

f
M : = lim

r→∞
Hom

f−1(O
(r)
Y

)
(f−1(HomO

Y (1)
(OY , ωY (1))), ωX(r) ⊗O

X(r)
M(r))

∼= OX ⊗O
Y (1)

lim
1≤r→∞

Hom
f−1(O

(r)
Y

)
(f−1(ωY (1)), ωX(r) ⊗O

X(r)
M(r)).

(The last isomorphism is an elementary calculation). Hence clearly the
direct image of an F-module is an F-module, and the proof of the proposition
is finished.

8.1 A submodule of an F-module is an F-module

Lemma 8.1.1. Any simple subquotient N of a filtration holonomic F-module
is a filtration holonomic F-module, possibly for a higher power of the Frobe-
nius, i.e there is some i ≥ 1 such that N = N (i).

Proof. Assume that θ : F ∗M∼=M and denote the composite isomorphism
θ ◦ F ∗θ : F ∗2M ∼= F ∗M ∼= M by θ2 and so on. The precise result will
be that to each simple subquotient L there is some θi which induces an
isomorphism F ∗iL ∼= L. Let socM be the D-module socle of M. It is
a semi-simple module and the same is true of θ(F ∗socM) ⊂ M, since by
Cartiers lemma F ∗S is simple iff S is. Hence θ(F ∗socM) ⊂ socM, and
since these two modules have the same rank , it follows that they coincide.
(If N ∼= ⊕Lni

i where Li, i = 1, . . . , r are distinct simple modules, the rank
of N is n1 + . . . + nr). Thus socM and, as a consequence, M/socM are
F-modules as well as filtration holonomic modules. By induction on the
rank it then suffices to assume thatM is semi-simple. Another application
of Cartier’s lemma, gives that F∗ takes distinct simple modules to distinct
simple modules and hence permutes the isotypic components Lni

i of M.
Since the number of these are finite there is a j such that F ∗jLi

∼= Li.

8.2 Examples of modules that are coherent OX-modules and

filtration holonomic, but not F -modules.

In this section we will consider the DA1-modulesMα, which correspond to
the differential equation (xD)y − αy = 0 with the solution y = xα .
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These modules turn out to be defined for all α ∈ Zpthat are coherent
as k[x]-modules, but only in very special cases F-modules. They will be the
They are however always filtration holonomic.

Let α = (α0, α1, ...) be a sequence of elements in the prime field Z/pZ,
and think of them as defining the element α = α0 + α1p + α2p

2 + ... in the
p-adic completion of Z. Using this element, define the cyclic DA1-module
Mα by taking DA1 = k[x,D,D(p),D(p2), . . .] and dividing by the relations:
α0 = xD,α1 = xpD(p), .... Call the generator v. This DA1-module has
rank 1 as a k[x]-module, since by localizing at x, we have in it the relation
Dv = α0x

−1v,D(p)v = (α1)x
−pv, etc. This also shows that (Mα)x =Mα if

α is not a natural number, since then there are αj 6= 0, for arbitrarily large j,

and hence x−pj
v will be contained inMα. Now consider the ”solution set”

of Mα in k[x], HomD
A1 (Mα, k[x]). Since Mα is a quotient of DA1 , clearly

HomD
A1 (Mα, k[x]) ⊂ HomD

A1 (DA1 , k[x]) = k[x], and in fact the solution
set is a) at most 1-dimensional and b) represents functions f ∈ k[x] solving
the set of equations α1f = xDf etc. Let us construct such functions. There
is a change of variables involved, to y = x−1. First of all if α is a real number

then there is a formal Taylor series expansion (1+y)α =
∑

i≥0

(

α
i

)

yi. For α a

p-adic integer the right hand side still has meaning, considered as an element
in the completion Zp[[y]], if the binomial coefficients involved are defined by
(

α
i

)

= α(α−1) . . . (αi +1)/i!. These binomial coefficients lie a priori in Qp,

but it is not difficult to show that they will actually be contained in Zp. By
reduction to Z/pZ we get elements xα := (1+y)α in Z/pZ[[y]]. Now they will
plausibly satisfy all properties that depends only on the binomial coefficients,

and in particular they satisfy D(i)xα = Di/i!(xα) =

(

α
i

)

xα−i (Using that

d/dx = d/dy). One has

(

α
p

i)

= αi ∈ k by a standard identity [9, 5.1

Identity]. Hence the element xα satisfies xDxα = α0, xpD(p)xα = α1 , . . .
Now using k[x] ⊂ k[[y]] we get

HomD
A1 (Mα, k[x]) ⊂ HomD

A1 (Mα, k[[y]])

since we know that this last submodule is a 1-dimensional vector space (over
k), it must be = kxα. If there is a horisontal section ofMα then the module
HomD(Mα, k[x]) is also 1-dimensional. Hence there are horizontal sections
of Mα iff xα is in k[x] iff α ∈ N.

An isomorphismMα

η
∼=Mβ occurs precisely when α = β+n. Proof: local-

ize to (Mα)x
η
∼=(Mβ)x considered as k[x]x-modules. Then η(v) = r(x)v, r ∈
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k[x]x, which, by considering the solution set,implies that r(x)xβ = xα, or
r(x) = xn, n ∈ Z and α = β + n. The converse is clear.

When is Mα an F r-module? Clearly F ∗Mα =Mprα, so if this is true
then prα = α+n, for some n ∈ Z. This implies that α = n/pr−1 ∈ Q∩Zp.
Conversely, if α ∈ Q∩Zp, then α = n/pr − 1 for some r ≥ 1, andMα is an
F r-module. This means that Mα is rarely an F r-module.
Mα is however always filtration holonomic, as may be seen in the fol-

lowing way. There is an isomorphism k[[y]] ⊗k[x] Mα
∼= k[[y]], 1 ⊗ v 7→

xα. A horizontal section in k[[y]] ⊗k[x] Mα is x−α ⊗ v. Let (−α)j =
α̃0 + α̃1p + . . . + α̃j−1p

j−1 ∈ Z, be the j-th truncation of the p-adic ex-

pansion of −α. Then sj = x(−α)j ⊗ v =
∑

pj>i≥0

(

α
i

)

yi ⊗ v ⊂ Mα is a

D
(j)
A1-horizontal section. Assume that α is not a natural integer (the other

case is trivial). Then pj − (−α)j , j = 1, 2, . . . considered as a p-adic se-
quence will converge to α, and hence as a sequence of natural numbers
limj→∞ pj − (−α)j = ∞. Similarily, as a sequence of natural numbers,

limj→∞(−α)j = ∞. Now consider Aj = Vjsj/xpj
= Vjx

−pj+(−α)j . Clearly
xnv ∈ Aj if (−α)j − 1 ≥ n ≥ −pj + (−α)j , and since (Mα)x =Mα

∼= k[x]x,
this implies that Mα) = ∪jAj. Note that the multiplicity is 1, and hence
the module is simple, as a DX-module, though not finitely generated as a
k[x]-module. However it is, of course, finitely generated as a k[x]x-module,
so these examples give some evidence towards the conjecture that all OX -
coherent DX-module are filtration holonomic , especially in conjunction with
the proposition in the next subsection.

8.3 OX-coherent DX-modules M that are F -modules are fil-

tration holonomic

The following gives an alternative description of the F -module property for
OX -coherent DX -modules; it seems to be wellknown, and is not difficult to
prove.

Proposition 8.2. An OX -coherent DX-module M is an F r-module iff
there is an étale covering f : Y → X such that, as DY -modules, f∗M ∼=
⊕OY , a finite direct sum.

Proof. Suppose that the pullback to an étale covering is a finite direct sum
of the structure sheaf, f ∗M ∼= ⊕OY . Then M ↪→ f∗f

∗M ∼= ⊕f∗OY , and
f∗OY is an F-module, since, for example, trivially F ∗OY = OY (see 5.2.1),
and direct images preserve F-modules. Hence the proposition follows from
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Lemma 8.1.1. Conversely, it is proved in [1, 2.17] that an OX -coherent DX -
moduleM is locally generated by its vector space of horizontal sections E,
over a completion R̃x⊗R at any point x ∈ X. Hence in particular M is
locally free. Assume that X = specR and that M = R ⊗k E is an F r-
module, with an isomorphism, Θ : F r∗M→M and let e1, . . . , en be a basis
of E, and fi =

∑

j fijej be a basis of the horizontal sections F of R̃x⊗RM.
Θei =

∑

j gijej It is clear that Θ(F ) ⊂ F , and since F and Θ(F ) have the
same dimension as k-vector spaces, it is clear that each element in F is a
k-linear combination of the elements Θ(fi) =

∑

j fpr

ij Θ(ej) =
∑

jk fpr

ij gjkek.

If fj =
∑

i αjiΘ(fi), then fjk =
∑

il αjif
pr

il glk. Now consider the extension

S = R[Tij]/(Tjk −
∑

il

αjiT
pr

il glk).

This is, after possibly further localization of R, an étale extension, by the
Jacobian criterion ([15][ex.3.4]). There is a map S → R̃x, defined by Tij 7→
fij, and the image S is an unramified extension of R, and hence, after
possibly further localization of R, an étale extension of R. Hence S⊗RM⊂
R̃x ⊗RM, and there are in S ⊗RM the horisontal sections fi =

∑

j Tijej .

Hence S ⊗RM∼= ⊕S, as was to be shown. Thus we have constructed étale
morphisms ix : Xx = specS → X such that i∗xM = ⊕OXx By doing this at
all x ∈ X, and using the quasi-compactness of X to get an étale covering
Y =

∐

Xx → X.

Corollary 8.2.1. An OX-coherent F r-module M is filtration holonomic.

Proof. This follows from Proposition 5.2, and Theorem 4.2.

9 Comparison with F-finite modules

In this section the class of filtration holonomic modules is related with the
class of F-finite modules, introduced recently by G.Lyubeznik [14]. We will
prove that an F-finite module is filtration holonomic .

First we will give the definition of F-finiteness. Suppose there is a finitely
generated OX -module N and a homomorphism θ : N → F∗N . Here we have
identified OX with OX(1) This homomorphism induces a direct system:

N → F∗N
θ
→F 2

∗N
F∗θ
→F 3

∗N
F 2
∗
θ
→ . . . .

The direct limit M of this system is an OX-module and F-finite modules
are precisely OX -modules that can be constructed in this way, starting with
N and θ.
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Since the module automatically satisfies . . . F2∗M ∼= F ∗M ∼= M it is
automatically a DX -module (recall that this is equivalent to the condition
that there are modules M(r) such that . . . F 2∗M(2) ∼= F ∗M(1) ∼= M, see
section 1), in fact it is an F -module (see section 8).

For ease of notation we assume that X = specR is affine. The definition
of F-finite modules works for any noetherian ring R, not necessarily of finite
type, but we here consider only this case.

Proposition 9.1. Every F-finite F-module is filtration holonomic .

Proof. There should be a direct proof of this; the following suffices anyhow,
but it uses most of the theory. Assume that the F-finite module M is
simple – this is allowable since these modules have a finite decomposition-
series by [14, Theorem 3.2], and in view of theorem 4.2. A simple module
has a unique associated prime ideal P (loc.cit). There is f ∈ R such that
(R/P )f is non-zero regular, and hence smooth over k since k is perfect (SGA
1 II prop.5.4). By simplicity M ⊂ Mf , and it suffices to prove that Mf

is filtration holonomic (Theorem 4.2). But then we may use Kashiwaras
theorem, in two different forms, to pull back the module to an F -module on
(R/P )f . The pullback is filtration holonomic iff ifMf is filtration holonomic
by proposition 7.2 and 7.3, and it is F-finite by [14, Proposition 3.1]. This
means that it suffices to study the case P = 0. However, there is then
f1 ∈ R such thatM⊂Mf1 andMf1 is finitely generated as an Rf1-module
(by definition), and also an F - module. These modules have however been
proved to be filtration holonomic in section 8.

We will now give a partial converse. We first give a definition. If the
R-module E is an F -module, there is an R(p)-linear map v : E → E which
is given by v(m) = α(1 ⊗m). We will formulate a condition on generating
system which means that they are invariant with respect to this Frobenius
map. If the generating system ViAi, with

ViAi ⊂ Vi+1Ai+1, t(Ai) ≤ K (24)

(where K is an positive integer) and Ai ⊂ viE = E i ⊂ E , satisfies the
property that

v(Ai) = Ai+1, i ≥ 1, (25)

it will be called an F-invariant generating system. By substituting F q in the
above definition,instead of F , we get of course F q-invariant systems. Note
that then we assume that the generating system has the form ViqAiq, where
Aiq ⊂ E

iq. Modules with such generating systems are F-finite:
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Proposition 9.2. Let the R-module E be an F q-module α(F q)∗E ∼= E,which
is filtration holonomic with an Fq-invariant generating system. Then E is
F q-finite.

Proof. We will prove this for q = 1. Assume that E is a filtration holonomic
F-module with an isomorphism α : F ∗E ∼= E , satisfying the condition on
the generating system ViAi above. Denote the isomorphisms (F ∗)rE ∼= E by
α(r). There are, by (20) above, natural inclusions M := RA1 ⊂ RA2 ⊂ . . . E ,
and E is clearly the direct limit of this direct system or more mundanely
expressed E = ∪i≥1RAi. Clearly M is finitely generated; the number of
generators is less tham K. We have to check that this direct system is
formed in the way used for F-finite modules. The isomorphism α : F ∗E ∼= E
induces an isomorphism t1 : F ∗M = F ∗RA1

∼= Rv(A1) = RA2(by (21)),
and hence the inclusion i1 : RA1 ⊂ RA2, induces a map θ1 : M → F ∗M . It
is easy to see that more generally α(r) : (F ∗)rEcongE induces tr : (F ∗)rM =
F r∗RA1

∼= Rvr(A1) = RAr+1, and hence the inclusion ir : RAr ⊂ RAr+1,
gives maps θr : (F ∗)rM → (F ∗)r+1M . It remains only to note that θr =
(F ∗)rθ, and that hence E is the F-finite module belonging to M and θ.

9.1 Some examples of filtration holonomic modules that are

not F -modules.

We will close with some examples of DX -modules that illustrates further
that the concept of filtration holonomic modules is independent of the F-
module property F ∗M∼=M. There were another in 8.2.(Though note that
geometrical examples like local cohomology modules and their subquotients
are F r-modules, for some r).

The module will be constructed as a direct limitM of modules Ai, i ≥ 0,
each isomorphic to k[x], and k[x]-module maps θi : Ai → Ai+1 – which are
just multiplication by θi(1) ∈ k[x]. The direct limit is thus an F-finite
module if θi(1)p = θi+1(1) but not necessarily otherwise. M becomes a
Dk[x]-module, if one uses the usualDk[x]-module structure on Ai to define the

action of D
(i)
k[x] in the following way. Let x ∈M and f ∈ D

(i)
k[x]; there is then

some j ≥ i such that x ∈ Aj and we define fx using the D
(i)
k[x]-module action

on Aj . A condition making this definition well-defined is that θi(1) ∈ k[xpi
].

There is no need of other conditions relating the θi(1). Assume that M
has been defined in this manner. Considered as a Dk[x]-module M will be
isomorphic to a submodule of the field of rational functions k(x), namely
the module consisting of all rational functions p/q where q is a product of a
finite number of θi(1), each ocurring with multiplicity at most 1. Thus it will
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not be possible to localise by f ∈M to a finitely generated module if there
are an infinite number of different prime divisors of the θi(1). We take, for
simplicity, θi(1) = (x− ai)

pi
, where ai, i = 0, 1, . . . are all different elements

of the ground field k (assuming that k is infinite). In this case M is not an
F -module, since F ∗M, is isomorphic to the submodule of k(x), consisting
of all rational functions p/q where q is a product of a finite number of θi(1),
each ocurring with multiplicity at most p. Any isomorphism ηF ∗M ∼=M,
will be multiplication by a rational function, and there can clearly be no
such isomorphism under the assumption on the θi(1).

However the module is always filtration holonomic, if say degree θi(1) =
pi. This is proved by the following argument. Let si be the generator of Ai.
Then si = θ−1

i−1(1)si−1, and a generating sequence may be taken to be Viksi.
This vector space contains Vi−1ksi−1, since pi − pi−1 ≥ pi−1. Hence these
spaces form a generating sequence, and clearly, by definition, e(M) = 1, so
M is a simple module, by the way.
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