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On the inverse scattering problem on
branching graphs.

P.Kurasov and F.Stenberg

Abstract. The inverse scattering problem on branching graphs is studied.
The definition of the Schrödinger operator on such graph is discussed. The
operator is defined with real potentials with finite first momentum and
using special boundary conditions connecting values of the functions at the
vertices. It is shown that in general the scattering matrix does not determine
the topology of the graph, the potentials on the edges and the boundary
conditions uniquely.

1. Introduction.

The scattering problem on branching graphs attracted attention of many
scientists [1, 20, 21, 22, 27, 28]. Recent interest in these problems is ex-
plained by possible applications of the constructed models in nanoelectronics,
quantum computing and studies of quantum chaos [9, 10, 19, 34, 39, 44,
?]. The models which can be obtained investigating differential operators on
graphs have both features of ordinary and partial differential operators. Many
of the problems can be solved exactly. To construct such models the method
of point interactions can be used, since any graph can be understood as a col-
lection of edges joined together at point vertices [5, 6]. The main goal of the
current paper is to study the inverse scattering problem on such graph. This
problem can be considered as a generalization of the classical inverse scattering
problem for the Schrödinger operator on the line [2, 3, 17, 23, 24, 38]. His-
torically the first inverse problem for this Schrödinger operator was the inverse
spectral problem solved by I.Gelfand and B.Levitan [26]. The inverse eigen-
value problem on compact graphs was recently studied by R.Carlson [15, 16].
It appears that this problem is much more complicated than the inverse spec-
tral problem for Sturm-Liouville operator on an interval. Therefore one can
expect that the inverse scattering problem on noncompact graphs has several
new features compared with the inverse problem on the line. This problem has
been studied first by N.I.Gerasimenko and B.S.Pavlov [27, 28] and later by
V.Kostrykin and R.Schrader [31, 32, 33]. It has been shown that the inverse
scattering problem can be solved for graphs having special structure. In our
paper we are going to consider mainly examples of graphs that do not have
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such property. Several examples of graphs having the same scattering matrix
are presented. All these examples are simple, but not trivial. In order to sep-
arate trivial examples we had to reconsider the definition of the Schrödinger
operator on such graph.

The first mathematically rigorous definition of the Schrödinger operator
on branching graph was given by N.I.Gerasimenko and B.S.Pavlov [27, 28].
Let Γ be an arbitrary graph, then the Schrödinger operator in L2(Γ) can be
defined using second order formally symmetric differential operators acting
along the edges of the graph and special boundary conditions at the vertices.
All self-adjoint operators appearing in this way can be described using the
extension theory for symmetric operators. It appears that the language of
Lagrangian planes of the corresponding symplectic boundary form makes all
calculations explicit [40, 30]. The idea to use symplectic boundary forms to
describe self-adjoint extensions has been discussed earlier in [41, 42, 6]. This
method is especially effective when applied to ordinary differential operators,
in particular to point interactions [4, 12, 35]. The only difficulty that appears
in this way is how to relate the boundary conditions describing self-adjoint
extensions with the structure of the graph. In some sense the Hilbert space
L2(Γ) does not depend on how the edges of graph are connected. It is the
boundary conditions for the Schrödinger operator that form the graph. This
problem did not attract enough attention in the literature. Therefore Sec-
tion 2 is devoted to mathematically rigorous treatment of this problem. We
start with the definition of the graph , which appears to be more suitable for
our applications. The family of Schrödinger operators on the graph is defined
considering the minimal and maximal operators determined by the differen-
tial expression. Considering all such self-adjoint operators we concentrate our
attention to the question, what type of boundary conditions can be used to
describe the Schrödinger operator on a certain graph, and what conditions are
related to the Schrödinger operator on its cut. To give rigorous treatment of
this problem we had to define different transformations of graphs called edge
cutting, vertex cutting and decoration.

The second part of the paper is devoted to the scattering problem on the
graph. After defining the scattering matrix we discuss four different inverse
scattering problems, namely:

1. Provided that the structure of the graph and the boundary conditions
are known, determine the potentials vj.

2. Determine topological structure of the graph from the scattering data.
3. Provided that the topological structure of the graph and the boundary

conditions at the vertices are known determine the graph from the scattering
matrix for the Laplace operator.
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4. Provided that the graph and all potentials vj are known, determine the
boundary conditions for the Schrödinger operator from its scattering matrix.

In what follow we show different counterexamples to all these inverse prob-
lems. It appears that to solve the inverse problems one has to either to restrict
the set of admissible graphs or to enlarge the set of scattering data. These pos-
sibilities are discussed in the last section, where one conjecture is formulated
as well.

2. Schrödinger operators on graphs.

2.1. Graph. Elementary definitions. Consider arbitrary graph as a
collection of edges (lines, channels) joined in vertices (nodes). Thus we admit
such examples in which more than one line may connect a given pair of points,
and the two endpoints of an edge may coincide. The graphs we are going to
study have a finite number of edges. Some of the edges can be infinite and
tend to infinity. Such edges will be called external. The following geometrical
definition of a graph will be used.

Definition 1. The graph Γ = (E,V) consists of a finite set E of edges and
a finite set V of N vertices. The edge-set E consists of k arbitrary finite (not
degenerated) intervals lj = [a2j−1, a2j ] ⊂ R, j = 1, 2, . . . , k and n arbitrary
half-infinite intervals dj = [a2k+j ,∞) ⊂ R called internal and external edges
respectively. The vertex-set V is determined by an arbitrary partition of the
set {aj}

2k+n
j=1 of end-points into N equivalence classes Ai, i = 1, 2, . . . , N

called vertices.

In the definition each edge is considered as a subset of a individual copy of
R. In what follows only the lengths of the intervals will play important role.

This definition of the graph suitable for our consideration differs slightly
from the standard definition used in discrete mathematics, since:
with every edge we associate an interval on the real line with finite or infinite
length;
two different vertices can be joined by several edges;
some edges are infinite and therefore do not connect two vertices.

The definition of the graph we are going to use is similar to the definition
of the weighted graph. One can assume that with every edge of the graph we
associate some weight - the length of the corresponding interval.

Definition 2. The number of elements in the equivalence class Aj is
called the valency of the vertex point Aj. The valency of any inner point
of the edges is equal to 2. The valency of the points will be denoted by val (x).

Definition 3. Two points on the graph are called equivalent , x1 ∼ x2

if and only if either they are end points and belong to the same equivalence
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class, or they are internal points of a certain edge and coincide

x1 ∼ x2 ⇔

[

∃Am : x1, x2 ∈ Am

x1 = x2.

In what follows the equivalent points will be identified.
On each interval lj(dj) the length of the subinterval connecting any two

points x1 and x2 will be denoted by |x1 − x2|. To define the distance between
two arbitrary points x1 and x2 on the graph consider all paths S connecting
the points. By pass we mean a sequence of intervals sj such that the end point
of each of the intervals in the sequence is equivalent to the starting point of
the following interval. The length of the pass is then given by |S| =

∑

j |sj|.

Definition 4. The length of the shortest pass connecting any two points
on the graph is called the distance between the points

dist(x1, x2) = min
S⊃{x1,x2}

|S|. (1)

The distance between any two equivalent points is zero and vise versa if the
distance between two points is zero then the points are equivalent. Suppose
that two points x1 and x2 belong to the same edge, then the distance between
them is always shorter than or equal to the length of the interval [x1, x2]

|x2 − x1| ≥ dist (x1, x2).

Definition 5. Two graphs Γ and Γ′ are called isomorphic (isometric) if
and only if there exists a one-to-one map I between Γ and Γ′ which preserves
the distance

x1, x2 ∈ Γ ⇒ dist′ (Ix1, Ix2) = dist (x1, x2).

Isomorphism between the two graphs does not preserve the vertex struc-
ture. Consider e.g. decoration defined in the following section. The following
is true

aj ∼ al ⇔ Iaj ∼
′ Ial.

The distance introduced above satisfy all axioms of the metrics and can
be used to define topological structure on graphs. Therefore in what follows
we are going to speak about topologically equivalent graphs. Two isomorphic
graphs are always topologically equivalent. The inverse is false in general.

Theorem 6. Isomorphism between the graphs preserves valency of the
points.

Proof. Consider strictly positive real number

ρ = min
j
{|a2j − a2j−1|, |a

′
2j − a′2j−1|} > 0.
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Then for each point x ∈ Γ with valency val (x) and any real r : 0 < r < ρ/2
there exist exactly val (x) distinct points yl ∈ Γ, l = 1, 2, . . . , val (x) with the
property

dist (x, yl) = r.

Any isomorphism I maps the points yl into val (x) different points on the graph
Γ′ with similar property

dist (Ix, Iyl) = r.

It follows that val (Ix) ≥ val (x). This implies the theorem, since the roles of
the points x and Ix can be exchanged.

The theorem implies that every vertex with valency ≥ 3 is mapped by any
isomorphism to a certain vertex with the same valency. Every vertex with
valency 2 or any inner point of any edge is mapped to a vertex with valency 2
or to an inner point of a certain edge.

2.2. Surgery of graphs. One can obtain new graphs by cutting the
graphs into certain subgraphs. Let us define two procedures called edge cut-
ting and vertex cutting. These procedures play important role in construct-
ing Schrödinger operators on graphs. Consider an arbitrary graph

Γ = (E,V) = ({lj}
k
j=1 ∪ {di}

n
i=1, {Aj}

N
j=1).

Let O be arbitrary internal point belonging to one of the edges, O ∈ lj or
O ∈ di. Consider the case where the point O divides the edge lj into two
disjoined intervals

lj = [a2j−1, a2j] = [a2j−1, o−] ∪ [o+, a2j ],

where o± denote the two points on different shores of the cut. Then the
edge-cut at the point O graph is the new graph Γ′ with the edges

[a1, a2], . . . , [a2j−1,O−], [O+, a2j ], . . . , [a2k−1, a2k]; {di}
n
i=1

and vertices

A1, A2, . . . , AN ,O−,O+,

where O± denote the equivalence classes consisting of the points o− and o+.
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Fig.1 Edge cutting of graphs.
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The edge cutting procedure is illustrated by Fig.1. The edge l1 of the left
graph is cut into two intervals l′1 and l′2.

To define vertex cutting of the graph Γ consider arbitrary decomposition
of any equivalence class Aj into two disjoined subclasses B1 and B2

B1 ∪ B2 = Aj, B1 ∩B2 = ∅.

Then the vertex cut graph (at the vertex Aj) is the graph Γ′ having the
same edges {lj}

k
j=1, {di}

n
i=1 and the following vertices

A1, A2, . . . , Aj−1, B1, B2, Aj+1, . . . , AN .
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Fig.2 Vertex cutting of graphs.

The vertex cutting procedure is illustrated by Fig.2, where the graph with
5 vertices A1, A2, A3, A4, A5 is chopped at the vertex A3. The new graph has
6 vertices A1, A2, B1, B2, A4, A5.

Another one transformation of a graph will be called decoration. Let O
be arbitrary internal point belonging to one of the edges O ∈ lj or O ∈ di.
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Consider the case where the point O divides the edge lj into two intervals

lj = [a2j−1, a2j ] = [a2j−1,O−] ∪ [O+, a2j ],

where O± as before denote the two points on different shores of the cut. Then
the decorated at the point O graph is the new graph Γ′ with the edges

[a1, a2], . . . , [a2j−1,O−], [O+, a2j ], . . . , [a2k−1, a2k]; {di}
n
i=1

and vertices
A1, A2, . . . , AN ,O

where O = {O−,O+} denotes the equivalence class consisting of two points on
the different shores of the cut.

&%
'$t �O

Fig.3 Decoration of graphs.
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It is obvious that the edge cutting can be considered as a combination of
the decoration and vertex cutting.

Lemma 7. The graph and any its decoration are isomorphic.

Proof. The isomorphism between these two graphs can be defined by
the identical transformation mapping in particular the decorated edge lj =
[a2j−1, a2j ] onto the intervals [a2j−1, O−] and [O+, a2j] so that the point O ∈ lj
is mapped to the equivalent points O−, O+. This transformation obviously is
one-to-one and preserves the distance.

The lemma shows that the two isomorphic graphs can have different num-
ber of edges and vertices. In what follows two isomorphic graphs will be
identified.

Let us define the transformation of graphs called cleaning. This transfor-
mation is inverse one to decoration. Let Γ be any graph defined as above with
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the vertex Al having valency 2. Suppose that the bivalent vertex Al joins to-
gether the end points a2j and a2m−1. Then the cleaned graph Γ′ is the graph
having the following edges

{l1, . . . , lj−1, [a2j−1, a2j + a2m − a2m−1], lj+1, . . . , lm−1, lm+1, . . . , lk},
{d1, . . . , dk}.

and the following vertices

A1, A2, . . . , Aj−1, Aj+1, . . . , AN .

The new graph has exactly one vertex and one edge less.
It is easy to see now that the cleaning of the graph and decoration are

inverse transformations. Therefore any graph is isomorphic to the cleaned
graph.

2.3. Hilbert space. To define the self-adjoint operator describing one
particle Hamiltonian on the graph consider the Hilbert space of square inte-
grable functions defined on the graph’s edges

H =

(

⊕
k
∑

j=1

L2[a2j−1, a2j ]

)

⊕

(

⊕
n
∑

i=1

L2[a2k+i,∞)

)

. (2)

The elements from the Hilbert space will be denoted by bold letters and the
following vector notations will be used

F = (f1, f2, . . . , fk, fk+1, . . . fk+n) ∈ H;
fj ∈ L2[a2j−1, a2j ], j = 1, 2, . . . , k;
fi ∈ L2[a2k+i,∞), i = k + 1, k + 2, . . . , k + n.

(3)

The Hilbert spaceH is defined without taking into account the vertex structure
of the graph. The same Hilbert space corresponds to graphs having the same
edges, but different vertices. Even two topologically different graphs can have
the same Hilbert space. The vertex structure of the graph will be used in
the definition of the self-adjoint operator only. In what follows we are going
to identify the Hilbert spaces corresponding to a graph and its decoration, as
well as to a graph and its cutting.

Lemma 8. The isomorphism I : Γ → Γ′ between the graphs Γ and Γ′ estab-
lishes a unitary transformation between the corresponding Hilbert spaces. In
other words, the transformation

U : H(Γ) → H(Γ′)
f 7→ (Uf)(x) = f(I−1x)

(4)

is unitary.
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Proof. The proof follows immediately from the fact that the isomorphism
preserves the distance between the points and therefore for sufficiently small
|x1 − x2| the following holds

|x1 − x2| = |Ix1 − Ix2|
′,

where x1 and x2 are two points on the same edge. Hence the Jacobian of this
transformation is trivial.

2.4. The Hamiltonian. Consider real potentials vj(x) defined on each
edge such that

vj ∈ L1[a2j−1, 2j], j = 1, 2, . . . , k;

∫ ∞

a2k+i

(1 + |x|)|vj(x)|dx <∞, j = k + 1, k + 2, . . . , k + n.
(5)

It will be convenient to introduce the function V ∈ L1(Γ) defined on the graph
as follows

x ∈ lj → V(x) = vj(x);
x ∈ dj → V(x) = vk+j(x).

The function V can be defined arbitrarily at the vertex points, since the ver-
tices have Lebesque measure zero. Then the differential Hamilton operator is
given by

(HF)j = −
d2

dx2
fj + vjfj. (6)

In the case where all potentials vj are equal to zero, the operator H will
be denoted by L and we call it Laplace operator on the graph. Different
self-adjoint operators can be associated with the last differential expression.
The minimal operator Hmin determined by the last differential expression is
symmetric and has the following domain

Dom (Hmin) =

(

⊕
k
∑

j=1

C∞
0 [a2j−1, a2j ]

)

⊕

(

⊕
n
∑

i=1

C∞
0 [a2k+i,∞)

)

.

Every self-adjoint extension of the minimal operator is a certain restriction of
the adjoint (maximal) operator Hmax defined by the same differential expres-
sion on the domain

Dom (Hmin) =

(

⊕
k
∑

j=1

W 2
2 [a2j−1, a2j ]

)

⊕

(

⊕
n
∑

i=1

W 2
2 [a2k+i,∞)

)

.

The functions from this domain are continuous and have continuous first de-
rivative on each edge. The values of the functions at the vertices are not
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well-defined, since the functions on the edges can have different limits as x ap-
proaches the same vertex along different edges. Therefore the functions from
this domain are not necessarily continuous on the whole graph. In order to
define self-adjoint operators corresponding to (6) it is natural to calculate the
boundary form of the maximal operator

〈F,HmaxG〉 − 〈HmaxF,G〉 =

2k+n
∑

j=1

(

f̄(aj)
dg

dn
(aj)−

df̄

dn
(aj)g(aj)

)

, (7)

where d
dn

denotes the normal derivative at the end point of the interval.1 Then
the self-adjoint operators are defined by Lagrangian planes with respect to
the symplectic structure determined by the boundary form. These Lagrangian
planes can be described by different boundary conditions involving the val-
ues of the functions and their normal derivatives at the vertices. Then the
self-adjoint operator determined by such Lagrangian plane coincides with the
restriction of the operator Hmax to the set of functions satisfying the boundary
conditions.2 The set of boundary conditions leading to self-adjoint operators
and the relations between the symplectic structure and von Neumann formulas
have been described in details in [31, 30] following the main ideas of [27, 28].
The same connection have been discussed in [40, 41, 42, 6].

2.5. Boundary conditions and vertex structure. Provided that the
vertex structure of the graph Γ is fixed not all symmetric boundary conditions
should be allowed. The boundary conditions for the graph should respect
the equivalence classes (vertices) of the end points. Namely the boundary
conditions cannot connect the boundary values of the function at the end
points which are not equivalent. Since the number of vertices is finite, each
boundary condition respecting the vertex structure can be decomposed into
the set of N independent boundary conditions at each vertex.

Let us study the set of self-adjoint boundary conditions at a vertex of
degree m, i.e. vertex joining together m edges (see Fig.4).

1The normal derivatives at the vertices are defined as follows

df

dn
(a2j−1) = df

dx
(a2j−1), j = 1, 2, . . . , k; df

dn
(a2j) = − df

dx
(a2j), j = 1, 2, . . . , k;

df
dn

(aj) = df
dx

(aj), j = 2k + 1, 2k + 2, . . . , 2k + n.

2Another more traditional way to define the self-adjoint operator is to study the re-
striction of the differential operator to C∞0 functions and consider its self-adjoint extensions
described by von Neumann formulas [11, 43].
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Fig.4 Star-like graph.

A1

The boundary form of the maximal operator in this case is

〈F,Hm
max

G〉 − 〈Hm
max

F,G〉 =

m
∑

j=1

(

f̄(aj)
dg

dn
(aj)−

df̄

dn
(aj)g(aj)

)

,

where Hm
max

= ⊕
∑m

j=1

(

− d2

dx2 + vj

)

|W 2
2 [aj ,∞).

Lemma 9. (Lemmas 2.2 and 2.3 from [31]) All self-adjoint extensions of
the minimal operator Hm

min
are described by the boundary conditions

C









f(a1)
f(a2)
. . .

f(am)









= D









f ′(a1)
f ′(a2)
. . .

f ′(am)









, (8)

where C,D are m×m matrices having the following properties
1. The matrix (C,D) has rank m.
2. The matrix CD∗ is Hermitian.

Proof. The proof of this lemma can be deduced from Lemmas 2.2 and
2.3 of [31].

It is clear that different matrices can define the same Lagrangian planes,
since the boundary conditions can be multiplied by any invertible matrix.
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Consider now the case of arbitrary finite graph. The self-adjoint boundary
conditions respecting the vertex structure are defined by the set of N
boundary conditions connecting the boundary values of the functions from the
domain of the operator at equivalent end points. In other words with each
vertex Aj we associate two matrices Cj and Dj having the dimension equal to
the valency val (Aj) of the vertex Aj and satisfying the conditions of Lemma 9

Cj









f(ai1)
f(ai2)
. . .

f(ajval(Aj )
)









= Dj









d
dn
f(ai1)

d
dn
f(ai2)
. . .

d
dn
f(ajval(Aj )

)









, {ai1 , ai2 , . . . , ajval(Aj )
} = Aj,

j = 1, 2, . . . , N.
(9)

Again different boundary conditions (matrices Cj, Dj) can determine the same
self-adjoint operator. All boundary conditions leading to the same self-adjoint
operator will be called equivalent.

Let us return back to the discussion of the operator Hm defined on the
star-like graph. Suppose that one of the equivalent boundary conditions (8)
can be written in the form

(

C1 0
0 C2

)

P









f(a1)
f(a2)
. . .

f(am)









=

(

D1 0
0 D2

)

P









f ′(a1)
f ′(a2)
. . .

f ′(am)









,

where C1, D1 and C2, D2 are square matrices of the same rank, and P is a cer-
tain m×m permutation matrix. It is obvious that these boundary conditions
corresponds to the graph cut at the vertex. Really the boundary conditions
can be written as (at lest) two independent sets of linear equations connecting
the boundary values of the functions at the end points belonging to two dif-
ferent subsets of the equivalence class describing the vertex. Such boundary
conditions corresponds to the graph with the vertex chopped into two.

Definition 10. The boundary conditions (9) for the Schrödinger operator
on the graph Γ are called nonseparable if and only if the graph cannot be
cut to another graph Γ′ in such a way that there exist equivalent boundary
conditions which connect only the boundary values at equivalent end points of
Γ′.

In what follows we are going to study nonseparable boundary conditions
only, since separable boundary conditions obviously correspond to a different
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(cut) graph. Here we follow terminology suggested in [36, 6]. The following
boundary conditions are nonseparable and will be called standard 3



















f(ai1) = f(ai2) = . . . = f(aival(Aj)
)

val (Aj)
∑

l=1

f ′(ail) = 0,

{ai1, ai2 , . . . , aival (Aj)
} = Aj, j = 1, 2, . . . , N.

(10)

The functions satisfying these conditions have remarkable property: they are
continuous at each vertex.4 Thus the functions from the domain described by
these boundary conditions are well defined on the graph (even at the vertex
points). Another important property is related to graph’s isomorphism.

Consider the star-like graph with the valency of the unique vertex equal to 2
(see Fig.4, for m = 2). Then the corresponding standard boundary conditions
at the points a1 ∼ a2 are

f(a1) = f(a2),
d

dn
f(a1) = −

d

dn
f(a2),

and one easily see that the Hilbert space

H = L2[a1,∞)⊕ L2[a2,∞)

can be unitarily mapped to the Hilbert space L2(−∞,∞)

U : f 7→ (Uf)(x) =

{

f1(a1 + x), x > 0;
f2(a2 − x), x < 0.

The Schrödinger operator on the graph is mapped to the Schrödinger operator
d2

dx2 +q on the line with the potential q = Uv. The functions from the domain of
the operator are continuous and have continuous first derivative at the origin.
It follows that the domain of the transformed operator is W 2

2 (R). This domain
coincides with the domain of the unperturbed operator on the line. All other
boundary conditions describe operators with certain point interactions at the

3These boundary conditions are described in canonical way by the matrices

C =

















1 −1 0 . . . 0 0
0 1 −1 . . . 0 0
0 0 1 . . . 0 0

. . . . . . . . . . . . . . . . . .
0 0 0 . . . 1 −1
0 0 0 . . . 0 0

















; D =

















0 0 0 . . . 0 0
0 0 0 . . . 0 0
0 0 0 . . . 0 0

. . . . . . . . . . . . . . . . . .
0 0 0 . . . 0 0
1 1 1 . . . 1 1

















4This property is always appreciated by physicists, even if it is not necessary for physical
applications.
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origin. One can say that the vertex can be removed by this transformation
provided that the functions from the domain of the operator satisfy natural
boundary conditions. Any other boundary condition at the vertex lead to the
Schrödinger operator with a certain point interaction at the origin [5, 6]. The
above example shows that the Schrödinger operator on the graph and any its
decoration are unitary equivalent as far as natural boundary conditions are
concerned.

Theorem 11. Two Shrödinger operators defined by standard boundary con-
ditions on two isomorphic graphs with the isomorphism I are unitary equivalent
if the potentials are invariant under the isomorphism

v(Ix) = v(x). (11)

Proof. We have already seen that the isomorphism of two graphs estab-
lishes the unitary map between the corresponding Hilbert spaces (see Lemma

8). Similar reasoning shows that dl

dxl (Uf)(Ix) = dl

dxlf(x) for any sufficiently
smooth function f. Using (11) one can see that the minimal operators are uni-
tary equivalent. Moreover the standard boundary conditions are mapped to
standard boundary conditions. It follows that the Schrödinger operators on
the isomorphic graphs are unitary equivalent.

3. Scattering problem on graphs.

3.1. Definition of the scattering matrix. The n×n scattering matrix
S(k), k2 = E can be defined for all energies E > 0 by looking at the solutions
ψl, 1 ≤ l ≤ n of the Schrödinger equation

(HΨ)j = −
d2

dx2
ψj + vjψj = Eψj (12)

satisfying the boundary conditions and having the following asymptotics

ψl
j(x, E) =

{

sjl(k) exp(ikx), for j 6= l
exp(−ikx) + sll(k) exp(ikx), for j = l.

(13)

It is straightforward to show that solutions to the Schrödinger equation (12)
always have asymptotics (13) (see e.g. [38]). Thus the scattering matrix is well
defined. It is convenient to write the coefficients sjl as unitary n × n matrix
S(E).

The scattering matrix so defined depends on the parametrization of the
external edges. Really consider two isomorphic graphs Γ and Γ′ with the
external edges [aj,∞), j = 1, 2, . . . , n and [a′j,∞), j = 1, 2, . . . , n respectively.
The the scattering matrices for the corresponding Schrödinger operators are
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related by

S′(E) = diag{exp(ik(al − a′l))} S(E) diag{exp(ik(al − a′l))}, (14)

where S and S ′ are the scattering matrices corresponding to the two Schrödinger
operators. Therefore in what follows two such scattering matrices will be called
similar. The corresponding Schrödinger operators are unitary equivalent and
therefore similar scattering matrices should be identified.

The size of the scattering matrix is determined by the number of external
channels in the graph. The scattering matrix depends on the structure of
the graph, on the boundary conditions and on the potentials appearing in the
Schrödinger equation. It is clear that all this information about the graph and
Schrödinger operator can be reconstructed from the scattering data only in
very special situations.

Therefore the four inverse scattering problems stated in Introduction can
be discussed. One of the main goals of the present paper is to provide some
counterexamples to the above mentioned inverse problems.

3.2. Determining potentials. The following theorem was proven by
V.Bargmann back in 1948 [7, 8]:

Theorem 12. (V.Bargmann) The knowledge of the graph, the self-adjoint
boundary conditions at the vertices and the scattering matrix S for the Schrödinger
operator H generally is not enough to determine the real-valued potentials sat-
isfying (5).

Bargmann considered the simplest graph formed by one half-infinite edge.
It was shown that the potential cannot be reconstructed uniquely from the
scattering matrix only in the presence of bound states. It was shown later by
V.A.Marchenko and L.D.Faddeev that in order to ensure the unique solution
of the inverse problem the set of scattering data has to be enlarged in or-
der to include the energies of the bound states and corresponding normalizing
constants [2, 3, 23]. The corresponding problem on the whole real line was
studied by the same authors [24, 38]. The use of their results by J.Green,
C.Gardner, M.Kruskal and R.Miura [25] allows to show that extra parameters
in the solution of the inverse scattering problem are related to soliton solutions
of KdV equation. The inverse scattering problem for the star-like graph with
standard boundary conditions at the vertex was studied by N.Gerasimenko
and B.Pavlov [27, 28]. The results obtained were similar to those for the
inverse problem on the half-line. This inverse problem is similar to the in-
verse problem for matrix Schrödinger equation on the line (see [18, 29] for
comprehensive study of the problem). It was shown that as in scalar case the
Schrödinger operator is determined uniquely by the Weyl-Titchmarsh func-
tion extending results of G.Borg and V.A.Marchenko [13, 14, 37]. Therefore
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the main obstacle in solving the inverse scattering problem is the reconstruc-
tion of the weyl-Titchmarsh function from the scattering data. The scattering
matrix does not always determine the Weyl-Titchmarsh function uniquely.
Nonuniqueness in the solution of this scattering problem leads to interesting
connections with nonlinear partial differential equations. Similar connection
can be found studying Schrödinger operators on graphs.

3.3. Topological structure.

Theorem 13. The knowledge of the scattering matrix S for the Laplace
operator L described by standard boundary conditions at the vertices generally
is not enough to determine the topological structure of the graph uniquely.

Proof. Let us remind that the Laplace operator is uniquely defined by the
graph if one assumes standard boundary conditions at the vertices. Consider
the two graphs presented by Fig.5. Suppose that the following conditions on
the lengths of the edges hold

|l1| = |l2| = |l′1|+ |l′3| = |l′2|+ |l′4|,

|l′1| = |l′2|.
(15)
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Fig.5 Two topologically different graphs
having the same scattering matrix.

(Arabic numbers indicate positions of the points aj and a′j.)

Consider the automorphism J of the graph Γ, which preserves the external
edges d1 and d2 and exchanges the two internal edges l1 and l2. Such automor-
phism exists, since the edges l1 and l2 connect the same vertices and have equal
lengths. Suppose that Ψ is a scattering solution to the equation LΨ = EΨ
on the graph Γ satisfying standard boundary conditions at the vertices. Then
the function Ψ̃(x) = Ψ(Jx) is a solution to the same differential equation and
boundary conditions. Consider then the symmetrized function

Φ =
1

2

(

Ψ + Ψ̃
)

which has just the same as the function Ψ asymptotics at infinity (since the
components ψ3,4 of the functions Ψ and Ψ′ are equal) and satisfies the sym-
metry relation 5

Φ(x) = Φ(Jx).

One can obtain the graph Γ′ from Γ by identifying two points O1 and O2

from l1 and l2 respectively. We suppose that |O1−a1| = |O2−a3| = |l′1| (= |l′2|).

5Considering the antisymmetrized function F = 1

2

(

Ψ− Ψ̃
)

we get either a zero func-

tion, or an eigenfunction for the eigenvalue E.
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Let us denote by T the natural map from Γ onto Γ′ which:
maps the points O1,2 to the vertex A3;
maps the external edges d1,2 onto d′1,2, respectively;
maps the intervals (a1,O1), (O1, a2), (a3,O2), and (O2, a4) onto the intervals
(a′1, a

′
2), (a

′
5, a

′
6), (a

′
3, a4), and (a′7, a

′
8) respectively;

preserves the distance between any two internal points of the intervals d1, d2,
(a1,O1), (O1, a2), (a3,O2), and (O2, a4).

The symmetrized function Φ attains equal values at the points O1 and O2

Φ(O1) = Φ(O2). (16)

Therefore one can define the function Ψ′ on Γ′ by the following equality

Ψ′(x) = Ψ(T−1x).

The function Ψ′ so defined satisfies the differential equation L′Ψ′ = EΨ on
each edge of the graph Γ′. Moreover it satisfies the standard boundary condi-
tions at all vertices of Γ′, since:
the function Ψ satisfies standard boundary conditions at the vertices A1,2,
the function Ψ is continuous at the points O1,2 and has continuous first deriv-
ative, and (16) holds.

Obviously the functions Ψ and Ψ′ have exactly the same asymptotics on
the external edges and therefore define equivalent scattering matrices.

The following figure presents two graphs with the same scattering matrix,
provided the lengths of the edges are chosen properly.
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Fig.6 Planar and nonplanar graphs
having equal scattering matrices.

These examples are interesting, since one of the graphs (graph Γ1) cannot be
realized in R2 whereas the graph Γ2 is planar. To see that the scattering
matrices are equal one can consider the following graph Γ plotted in Fig.7
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The graphs Γ1 and Γ2 can be obtained from the graph Γ3 by cutting it at the
vertex A7.

3.4. Geometrical structure.

Theorem 14. The knowledge of the topological structure of the graph and
of the scattering matrix S for the Laplace operator L described by standard
boundary conditions at the vertices generally is not enough to determine the
graph uniquely (up to isomorphism).

Proof. Consider the graph Γ′ plotted in Fig.5 and used in the proof of
Theorem 13. Since the (equal) lengths of the internal edges l′1 and l′2 can
be chosen arbitrary subject to the inequality |l′j| < |lj|, the same example
shows that one cannot reconstruct the lengths of all edges uniquely from the
scattering matrix, even if the topological structure of the graph is known.

3.5. Boundary conditions. Sometimes it is possible to determine the
boundary conditions at the vertices from the scattering matrix. V.Kostrykin
and R.Shrader considered such inverse scattering problem for the star-like
graph [32] (see Fig.4). It has been shown that the knowledge of the scattering
matrix for one value of the energy is enough to determine the matrix in the
boundary conditions (up to the equivalence described in Section 2.5).

Consider arbitrary graph Γ and the function Θ which is constant on each
edge of the graph and is equal to a certain complex number having absolute
value 1 on every internal edge and is equal to 1 on the external edges:

Θ|lj = eiθj , Θ|dj
= 1.

Suppose that some of the parameters θj are different, then the operator of
multiplication by this function maps any Schrödinger operator H on the graph
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to the Schrödinger operator Θ−1HΘ defined by the same differential expression
and some other boundary conditions at the vertices (since the function Θ is not
continuous at the vertices). The new Schrödinger operator has just the same
scattering matrix. This shows that in general the scattering matrix does not
determine the boundary conditions at the vertices for the Schrödinger operator
on the graph. But the two Schrödinger operators just considered are unitary
equivalent and therefore should be identified as far as physical applications are
concerned.

Theorem 15. The knowledge of the graph, real valued potentials satisfying
(5) and scattering matrix S for the Schrödinger operator H generally is not
enough to determine the Schrödinger operator uniquely (up to unitary equiva-
lence).

Proof. To prove the theorem consider the graph Γ plotted in Fig.8.

&%
'$t t

Fig.8 Graph Γ.

(Arabic numbers indicate positions of the points aj.)

d1 d1
1

35

2

4 6

l1

l2

A1 A2

Suppose that |l1| = |l2|. Consider the family of Laplace operators Lh on this
graph determined by standard boundary conditions at the vertex A1 and the
following boundary conditions at A2







f4(a6) = 1
2
(f1(a2) + f2(a4))

d
dn
f4(a6) = −

(

d
dn
f1(a2) + d

dn
f2(a4)

)

d
dn
f1(a2)−

d
dn
f2(a4) = h (f1(a2)− f2(a4))

(17)

where h ∈ R is arbitrary real parameter. It is easy to see that conditions (17)
determine self-adjoint operator.

We denote by J the automorphism of the graph which preserves the exter-
nal edges and maps l1 onto l2. The boundary conditions (17) as well as the
standard boundary conditions at A1 are invariant under this automorphism.
Therefore the eigenfunctions of the operator Lh can be divided onto two classes:
symmetric and antisymmetric with respect to the automorphism J. The anti-
symmetric functions are obviously equal to zero on the external edges and do
not contribute to the scattering matrix et all. The symmetric eigenfunctions
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determine the scattering matrix for the graph Γ. The third boundary condi-
tion (17) is automatically satisfied for symmetric functions. It follows that the
scattering matrix does not depend on the real parameter h. This parameter
determines the discrete spectrum of antisymmetric eigenfunctions, which can-
not be calculated from the scattering matrix. It is clear that the operators Lh

have different discrete spectra and therefore are not unitary equivalent.

4. Discussion and generalizations.

We have shown that the inverse scattering problem on branching graphs in
general cannot be solved uniquely in contrast to the inverse scattering problem
on the real line. It is clear that examples of different graphs having the same
scattering matrices are not rare. Therefore this phenomenon has to be studied
in details. In fact all examples presented in current article have one common
feature: There exists a nontrivial automorphism J which preserves the external
edges. The boundary conditions at the vertices are invariant with respect to
the isomorphism. In all considered examples the isomorphism was equal to
its inverse J2 = I, where I is the trivial isomorphism. This allows one to
decompose the Hilbert space H into the orthogonal sum of two Hilbert spaces

H = H+ ⊕H−

if functions symmetric and antisymmetric with respect to the automorphism

ψ ∈ H± ⇒ (Jψ) = ±ψ.

In all examples the self-adjoint operator on the graph was reduced by these
subspaces

H = H+ ⊕H−,

where H± are self-adjoint operators in H±. Only one of the two operators
had nontrivial continuous spectrum and therefore determined the scattering
matrix. It is not surprising that no information concerning the other operator
could be obtained from the scattering matrix.

We would like to finish the article by formulating the following
Conjecture. Let the graph Γ is known and has no nontrivial automorphisms
preserving the external edges. Then the potentials and the scattering matrix S
determine the Schrödinger operator uniquely (up to unitary equivalence).
See appendix where the case of such graph is considered. Similar conjectures
can be formulated for the other inverse scattering problems on graphs.

In [36] it was shown that the Laplace operator in an extended space can
have the same scattering matrix as the Schrödinger operator. It shows that
probably Schrödinger operators on graphs with complicated internal structure
can have just the same scattering matrices as Schrödinger operators on simple
graphs.
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Appendix A. The scattering matrix can determine the boundary
conditions.

We have discussed that the boundary conditions for the star-like graph can be
determined by the scattering matrix. This fact is not surprising, since the size of
the scattering matrix just coincides with the size of the matrix appearing in the
boundary conditions. We consider here a little bit more sophisticated example. The
following graph is a generalization of the graph plotted in Fig.8

&%
'$t t

Fig.9 Non-symmetric graph.

(Arabic numbers indicate positions of the points aj .)
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Suppose that |l1| 6= |l2|, then there is no (nontrivial) isomorphism which preserves
the external edges. We are going to show that the boundary conditions at the
vertices can be calculated from the scattering matrix. Consider the isomorphism
P, which maps d1 onto d2 and vise versa and inverts the internal edges. Suppose
that the boundary conditions at the vertices are invariant with respect to the chosen
isomorphism. Almost all such boundary conditions can be written in the form

C





f1(a1)
f2(a3)
f3(a5)



 =





d
dnf1(a1)
d
dnf2(a3)
d
dnf3(a5)



 , C





f1(a2)
f2(a4)
f3(a6)



 =





d
dnf1(a2)
d
dnf2(a4)
d
dnf3(a6)





where C is a certain 3 × 3 Hermitian matrix to be determined. It is obvious that
one cannot calculate this matrix (having 9 real parameters) from the value of the
scattering matrix (which is 2 × 2 unitary matrix) for certain energy. Therefore we
are going to use the knowledge of the scattering matrix for different values of the
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energy. Let us choose the parametrization on each edge so that

a1 + a2 = 0,
a3 + a4 = 0,
a5 = a6 = 0.

Consider scattering solutions which are symmetric with respect to the isomorphism
P. Then the asymptotics of such function on the external edges is determined by
the reflection coefficient

R(k) = s11(k) + s21(k).

The most general solution to the differential equation having this asymptotics is






f1 = α cos kx
f2 = β cos kx
f3 = f4 = exp(−ikx) + R(k) exp(ikx)

,

where α, β are certain constants. We took into account that the function is invariant
under the automorphism P. Substitution into the boundary conditions gives the
following equation

C





α cos k|l1|/2
β cos k|l2|/2
1 + R(k)



 =





kα sin k|l1|/2
kβ sink|l2|/2
−ik(1 −R(k))



 . (18)

To prove that (18) determines the matrix C uniquely consider first the following
values of k : kn|l1|/2 = π/2 + πn. The system (18) reduces to

c22β cos kn|l2|/2 + c23(1 + R(kn)) = knβ sin kn|l2|/2
c32β cos kn|l2|/2 + c33(1 + R(kn)) = −ikn(1−R(kn))

and implies that

−ik
1−R(kn)

1 + R(kn)
= c33 +

|c23|
2 cos kn|l2|/2

kn sin kn|l2|/2− c22 cos kn|l2|/2
.

Then the constants c22, c33 and |c23| can be calculated from the last formula if |l1|
and |l2| are not rationally dependent. The coefficients c11 and |c13| can be calculated
similarly considering k : km|l2|/2 = π/2 + πm. The phases of the coefficients c13

and c23 do not play any role as far as unitary equivalent Schrödinger operators are
not distinguished. Therefore we can suppose that the coefficients c11, c13, c22, c23, c33

of the Hermitian matrix C are known. The last coefficient c12 can be calculated
substituting all known parameters into (18). We know that the system of equations���

�
c11 cos k|l1|/2−k sink|l1|/2 c12 cos k|l2|/2 c13(1+R(k))

c̄12 cos k|l1|/2 c22 cos k|l2|/2−k sink|l2|/2 c23(1+R(k))

c31 cos k|l1|/2 c32 cos k|l2| c33(1+R(k))+ik(1−R(k))

����
�

���
�

α
β
1

����
� =0

has a nontrivial solution. Therefore the determinant of the matrix is zero and gives
an equation to calculate c12. This example shows that the boundary conditions at
the vertices can be determined by the scattering matrix, even if the dimension of
the matrix is not very high.



24 P.KURASOV AND F.STENBERG

References

[1] V. Adamyan, Scattering matrices for microschemes, Operator Theory: Advances and
Applications, 59 (1992), 1-10.

[2] Z.S.Agranovich and V.A.Marchenko, Reconstruction of the potential energy from the
scattering matrix (Russian), Uspehi Mat. Nauk (N.S.), 12 (1957), 143–145.

[3] Z.S.Agranovich and V.A.Marchenko, The inverse problem of scattering theory, Gordon
and Breach Science Publishers, New York-London 1963 xiii+291 pp.

[4] S.Albeverio, L.Dabrowski, and P.Kurasov, Symmetries of Schrödinger operators with
point interactions, Lett.Math.Phys., 45 (1998), 33-47.

[5] S.Albeverio, F.Gesztesy, R.Høegh-Krohn, and H.Holden, Solvable models in quantum
mechanics, Springer, 1988.

[6] S.Albeverio and P.Kurasov, Singular perturbations of differential operators, Cambridge
Univ. Press, 2000 (London Mathematical Society Lecture Notes N271).

[7] V.Bargmann, Remarks on the determination of a central field of force from the elastic
scattering phase shifts, Physical Rev. (2) 75 (1949), 301–303.

[8] V.Bargmann, On the connection between phase shifts and scattering potential, Rev.
Modern Physics, 21 (1949). 488–493.

[9] G.Berkolaiko and J.P.Keating, Two-point Spectral Correlations for Star Graphs.
J.Phys.A, 32 (1999), 7827–7841.

[10] G.Berkolaiko, E.B.Bogomolny, and J.P.Keating, Star Graphs and Seba Billiards,
J.Phys.A, 34 (2001), 335-350.

[11] M.Birman and M.Solomjak, Spectral theory of selfadjoint operators in Hilbert space, D.
Reidel Publishing Co., Dordrecht, 1987.

[12] J.Boman and P.Kurasov, Finite rank singular perturbations and distributions with dis-
continuous test functions, Proc. Amer. Math. Soc., 126 (1998), 1673–1683.

[13] G.Borg, Inverse problems in the theory of characteristic values of differential systems,
C. R. Dixième Congrès Math. Scandinaves 1946, pp. 172–180.

[14] G.Borg, Uniqueness theorems in the spectral theory of y” + (λ − q(x))y = 0, Den
11te Skandinaviske Matematikerkongress, Trondheim, 1949, pp. 276–287. Johan Grundt
Tanums Forlag, Oslo, 1952.

[15] R. Carlson Adjoint and self-adjoint differential operators on graphs,
Electronic journal of Differential Equations, 1998 (1998), 1-10, url:
http://ejde.math.swt.edu/Volumes/1998/06/abstr.html.

[16] R. Carlson, Inverse eigenvalue problems on directed graphs, Transactions of the Amer-
ican mathematical society, 351 (1999), 4069-4088.

[17] K.Chadan and P.C.Sabatier, Inverse Problems in Quantum Scattering Theory, 2nd edn,
Springer Verlag, New York, 1989.

[18] S.Clark, F.Gesztesy, H.Holden, and B.Levitan, Borg-type theorems for matrix-valued
Schrödinger operators, J. Differential Equations, 167 (2000), 181–210.

[19] J.Desbois, Spectral Determinant of Schrödinger Operators on Graphs, J.Phys.A, 33
(2000), L63-L67.

[20] P. Exner, Contact interactions on graph superlattices, J. Phys A: Math. Gen., 29 (1996),
87-102.

[21] P.Exner, Weakly Coupled States on Branching Graphs, Lett. Math. Phys. 38 (1996),
313-320.
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