ISSN: 1401-5617

Normal maximal ideal in one-dimensional local rings

Vincenzo Micale

Research Reports in Mathematics Number 5, 2001

Department of Mathematics Stockholm University Electronic versions of this document are available at http://www.matematik.su.se/reports/2001/5 $\,$

Date of publication: March 13, 2001 Keywords: Normal ideal.

Postal address: Department of Mathematics Stockholm University S-106 91 Stockholm Sweden

Electronic addresses: http://www.matematik.su.se info@matematik.su.se

Normal maximal ideal in one-dimensional local rings

Vincenzo Micale*

March 13, 2001

Abstract

We give a criterion for the maximal ideal M of the numerical semigroup S to be normal and for 3-generated numerical semigroups we characterize those that have normal maximal ideal. We also give a criterion for the maximal ideal of Noetherian, local one-dimensional, analytically irreducible domains (R, \mathbf{m}) such that R and \overline{R} , the integral closure of R in its quotient field, have the same residue field, to be normal and we answer the question whether \mathbf{m} normal implies M normal where M is the maximal ideal of S = v(R). We show, in a particular case, how the property for the associated graded ring of R with respect to \mathbf{m} to be Cohen-Macaulay is strictly related to the normality of \mathbf{m} .

MSC: 20Mxx; 13H10

1 Introduction

Let R be a local, Noetherian, one-dimensional domain; assume also that R is analytically irreducible or, equivalently, that the integral closure \overline{R} of R in its quotient field is a discrete valuation ring (DVR) and a finitely generated Rmodule. Let K denote the quotient field of R and \overline{R} , let v be the discrete valuation on $K^* = K \setminus \{0\}$ associated to \overline{R} and, for each subset B of K, let v(B) denote the image under v of the set of nonzero elements of B.

We call $v(R) = \{v(r) \mid r \in R\}$ the value semigroup associated to R. It is a subsemigroup of \mathbb{N} and it is well known that there is a close connection between R and v(R), when R and \overline{R} have the same residue field (cf. [8],[10]).

An early paper on the connection between semigroups and one-dimensional local domains is [1]. This connection has since been studied in e.g. [7] and there is an extensive study on numerical semigroups and their applications to integral domains in [2].

The key fact that allows to connect a ring to its value semigroup is that it is possible to compute the lenght $l_R(I/J)$ (where $I \supseteq J$ are fractional ideals of R) in terms of the semigroup (cf.Theorem 2.1).

^{*} email vmicale@dipmat.unict.it

1.1 Description of the content

We now make a closer description of the content of this paper. In Section 2 we introduce the concepts of numerical semigroup S and of ideal in a numerical semigroup. Then we introduce v(R), the associated value semigroup to a ring R and we recall some known results about the connection between the ring and its associated value semigroup. In Section 3, we give a criterion for the maximal ideal M of S to be normal and we use it to give a criterion for a generic ideal of S to be normal. We also answer the question whether M_n , the maximal ideal in $S_n = \langle g_1, \ldots, g_n \rangle$, could be normal when M_i is not normal for some i < n(where M_i denote the maximal ideal of $S_i = \langle g_1, \ldots, g_i \rangle$). In Section 4 we consider the case of 3-generated semigroups and for this case we characterize the numerical semigroups that have normal maximal ideal. In Section 5 we give a criterion for the maximal ideal \mathfrak{m} of R to be normal and we answer the question whether \mathfrak{m} normal implies M normal where M is the maximal ideal of S = v(R). In Section 6 we prove, in a particular case, that **m** is normal if and only if $G(\mathfrak{m})$ is C-M, where $G(\mathfrak{m})$ is the associated graded ring of R with respect to \mathfrak{m} . In Section 7 we find a bound for $l_R(\overline{\mathfrak{m}^i}/\mathfrak{m}^i)$ for $i \gg 0$.

2 Preliminaries

Let \mathbb{N} denote the natural numbers (including 0). A subsemigroup S of $(\mathbb{N}, +)$ with $0 \in S$ is called a *numerical semigroup*. Each semigroup S has a natural partial ordering \leq_S where for two elements s and t in S, $s \leq_S t$ if there is an $u \in S$ such that t = s + u. The set $\{g_i\}$ of the minimal elements in $S \setminus \{0\}$ in this ordering is called the minimal set of generators for S. In fact all elements of S are linear combinations with non-negative integers coefficients of minimal elements. Note that the set $\{g_i\}$ of minimal generators is finite since for any $s \in S, s \neq 0$, we have $g_i \neq g_j \pmod{s}$. The same argument shows that the number of minimal generators is at most min $\{s \in S \mid s \neq 0\}$. A numerical semigroup generated by $g_1 < g_2 < \cdots < g_n$ is called an *n*-generated numerical semigroup and we denote it by $\langle g_1, g_2, \ldots, g_n \rangle$. Since the semigroup $\langle g_1, g_2, \ldots, g_n \rangle$ is isomorphic to $\langle dg_1, dg_2, \ldots, dg_n \rangle$ for any $d \in \mathbb{N} \setminus \{0\}$, we assume, in the sequel, that $gcd(g_1, g_2, \ldots, g_n) = 1$. This is easily seen to be equivalent to $|\mathbb{N} \setminus S| < \infty$. Since $|\mathbb{N}\setminus S| < \infty$, there exist in S elements s such that the set $\{s, s+1, \longrightarrow\} \subseteq S$ (where the symbol " \longrightarrow " means that all subsequent natural numbers belong to the set). We call the smallest of such elements s the *conductor* of S, and we denote it by c = c(S).

A relative ideal of a semigroup S is a nonempty subset H of Z such that $H + S \subseteq H$ and $H + s \subseteq S$ for some $s \in S$. A relative ideal of S which is contained in S is simply called an *ideal* of S. Clearly S is an ideal of S, but $\{0\}$ is not an ideal of S. By a proper ideal, we mean an ideal distinct from S, i.e., an ideal not containing 0. It is straightforward to see that if H and N are relative ideals of S, then H + N and $kH (= H + \cdots + H, k$ summands for $k \ge 1$) are also relative ideals of S. Sometimes it is useful to consider kH for k = 0; in this case

we let 0H = S. The ideal $M = \{s \in S \mid s \neq 0\}$ is called the maximal ideal of S. For every ideal H, we consider $\overline{H} = \{s \in S \mid s \geq \overline{h}\}$ where $\overline{h} = \min\{h \in H\}$ and we call \overline{H} , the integral closure of H in S. In general $iH \subseteq \overline{iH}$. We say that H is normal if $iH = \overline{iH}$ for every $i \geq 1$. Clearly $M = \overline{M}$.

Throughout the rest of the paper we will assume that (R, \mathfrak{m}) is a local, Noetherian, one-dimensional domain. We assume also that R is analytically irreducible or, equivalently, that the integral closure \overline{R} of R in its quotient field is a DVR and a finite generated R-module and that R and \overline{R} have the same residue field. For every such ring, v(R) is a numerical semigroup and throughout the rest of the paper, we will denote it by S.

We also will denote by $g_1 < g_2 < \cdots < g_n$ and by $M = v(\mathfrak{m})$ respectively the generators and the maximal ideal of S.

If *I* is an ideal of *R*, we denote by \overline{I} the integral closure $\{x \in R \mid x^n + r_1 x^{n-1} + \cdots + r_n = 0, \text{ for some } r_i \in I^i\}$. We say that *I* is normal if $I^j = \overline{I^j}$ for every $j \geq 1$. When *I* is a fractional ideal of *R*, then $v(I) = \{v(i) \mid i \in I\}$ is a relative ideal of the semigroup *S*.

With our choice of R, we have the following theorems.

Theorem 2.1. If $I \subseteq J$ are fractional ideals of R, then $l_R(I/J) = |v(I) - v(J)|$

Proof. Cf. [10, Proposition 1]

Corollary 2.2. Let $I \subseteq J$ be fractional ideals of R, then v(I) = v(J) if and only if I = J.

For every $a \in S$, we denote in the sequel the ideal $\{r \in R \mid v(r) \geq a\}$ of R by R(a), the ideal $\{r \in \overline{R} \mid v(r) \geq a\}$ of \overline{R} by $\overline{R}(a)$ and the semigroup ideal $\{s \in S \mid s \geq a\}$ of S by S(a).

Theorem 2.3. Let I be a fractional ideal of R, \overline{I} be the integral closure of I in R and $a = \min\{v(i) \mid i \in I\}$. Then $\overline{I} = R(a)$.

Proof. Let $x \in I$ such that v(x) = a. It is known (cf. [9, Remark (a), p. 659]) that $z \in R$ is integral over the ideal xR if and only if $z/x \in \overline{R}$, i.e., if and only if $v(z) \ge v(x) = a$. Thus the integral closure of xR is R(a) and R(a) is integrally closed. By $xR \subseteq I \subseteq R(a)$, the claim follows.

3 Normal maximal ideal in a numerical semigroup

Let S be a numerical semigroup generated by $g_1 < g_2 < \cdots < g_n$. The following statements are easy to see:

if
$$x \in S$$
 and $x > ig_n$, then $x \in (i+1)M$ (3.1)

for any ideal H of S, if $[a, a + g_1 - 1] \subseteq H$, then $[a, \infty) \subseteq H$ (3.3)

From now on we denote by $\gamma = \min\{m \in \mathbb{N} \mid mg_1 \ge c(S)\}.$

Proposition 3.1. If M is normal, then $g_2 = g_1 + 1$.

Proof. Suppose that $g_2 = g_1 + x$ with x > 1. Since the second smallest element in γM is $\min\{(\gamma + 1)g_1, (\gamma - 1)g_1 + g_2 = \gamma g_1 + x\} > \gamma g_1 + 1$, we have that $\gamma g_1 + 1 \in \overline{\gamma M} \setminus \gamma M$, hence M is not normal.

From now on we denote by α the integer such that $(\alpha - 1)g_n < \alpha g_1$ and $\alpha g_n \ge (\alpha + 1)g_1$.

Proposition 3.2. For every $i \leq \alpha$, $iM = \overline{iM}$.

Proof. By definition of α , we have $ig_n < (i+1)g_1$ for every $i < \alpha$. We show that $ig_n < (i+1)g_1$ implies (i+1)M = (i+1)M. We have only to show that $(i+1)M \subseteq (i+1)M$. Let $x \in (i+1)M$. Then $x \ge (i+1)g_1$. Since $ig_n < (i+1)g_1$, we have $x > ig_n$, hence, by (3.1), $x \in (i+1)M$. So $iM = \overline{iM}$ for every i such that $2 \le i \le \alpha$ and (3.2) completes the proof of the proposition.

Now we give a sufficient condition for M to be normal. We know that if $g_2 > g_1 + 1$, then M is not normal.

Proposition 3.3. Let $g_2 = g_1 + 1$. If $\overline{iM} = iM$ for every $i \leq \gamma$, then M is normal.

Proof. By hypothesis, $\overline{iM} = \underline{iM}$ for every $i \leq \gamma$, in particular $\overline{\gamma M} = \gamma M$. So, by $\gamma g_1 \geq c$, we have $\gamma M = \overline{\gamma M} = \{\gamma g_1, \longrightarrow\}$. Thus for every $j > \gamma$, we have $jM = \{jg_1, \longrightarrow\} = \overline{jM}$. Hence M is normal.

For every $a \ge 1$, we denote by $C_a = \overline{(a+1)M} \setminus (\overline{aM} + M)$. This is an important set for us and we use it many times in the paper.

Remark 3.4. Note that $C_1 = \overline{2M} \setminus (\overline{M} + M) = \overline{2M} \setminus 2M = \{g_i \mid g_i > 2g_1\}$ where the second equality holds by (3.2).

Lemma 3.5. Let $x = g_{s_1} + \cdots + g_{s_t} \in C_a$ with $g_2 = g_1 + 1$. Then $s_j > 2$ for every j = 1, ..., t.

Proof. Suppose $s_1 = 1$ or 2. Since $x \in C_a$, then $x > (a+1)g_1$, hence $x - g_{s_1} \ge ag_1$, that is $x - g_{s_1} \in \overline{aM}$ and hence $x \in \overline{aM} + M$. A contradiction to $x \in C_a$.

Lemma 3.6. If $x = g_{s_1} + \cdots + g_{s_t} \in C_a$, then $t \le a$.

Proof. Suppose t > a. Then $x - g_{s_i} \ge ag_1$ for every *i* and as in the proof of Lemma 3.5, we have a contradiction to $x \in C_a$.

Remark 3.7. Note that in general $C_a \subseteq \overline{(a+1)M} \setminus (a+1)M$, since $(a+1)M \subseteq \overline{aM} + M$.

Proposition 3.8. If $C_i = \emptyset$ for every $i \le a - 1$, then $\overline{(i+1)M} \setminus (i+1)M = \emptyset$ for every $i \le a - 1$ and $C_a = \overline{(a+1)M} \setminus (a+1)M$.

Proof. We prove the first part of the proposition by induction on *i*. If i = 1, then $\overline{2M} \setminus 2M = \emptyset$ follows by $C_1 = \emptyset$ and by Remark 3.4. Suppose now that for every $j < i \leq a - 1$, $\overline{(j+1)M} \setminus (j+1)M = \emptyset$ (i.e. (j+1)M = (j+1)M for every $j < i \leq a - 1$) and we prove that $\overline{(i+1)M} \setminus (i+1)M = \emptyset$. In fact $\emptyset = C_i = \overline{(i+1)M} \setminus (\overline{iM} + M) = \overline{(i+1)M} \setminus (iM + M) = \overline{(i+1)M} \setminus (i+1)M$, where the third equality holds by the inductive hypothesis. Now we prove the second part of the proposition. Since $\overline{(i+1)M} \setminus (i+1)M = \emptyset$ for every $i \leq a-1$, in particular $\overline{aM} = aM$. Hence $C_a = (a+1)M \setminus (\overline{aM} + M) = \overline{(a+1)M} \setminus (a+1)M = \emptyset$.

Example 3.9. Consider the numerical semigroup $S = \langle 13, 14, 19 \rangle$. It is easy to check that $\overline{iM} \setminus iM = \emptyset$ for every $i \neq 4, 5, \overline{4M} \setminus 4M = \{57\}$ and $\overline{5M} \setminus 5M = \{76\}$. By Remark 3.7, we have $C_i = \emptyset$ for every $i \neq 3, 4$. By Proposition 3.8, $C_3 = \{57\}$. By Remark 3.7 and since 76 = 57 + 19, where $57 \in \overline{4M}$, we have $C_4 = \emptyset$.

Remark 3.10. By definitions of γ and C_i , it is straightforward to prove that $C_i = \emptyset$ for every $i \geq \gamma$. If $g_2 = g_1 + 1$, then, by (3.3), we have $\overline{iM} \setminus iM = \emptyset$ for every $i \gg 0$ (e.g. $i \geq g_1 - 1$). However if $g_2 > g_1 + 1$, then, by the proof of Proposition 3.1, $\overline{iM} \setminus iM \neq \emptyset$ for every $i \geq \gamma$.

Now we give a criterion for the maximal ideal M to be normal.

Theorem 3.11. The following statements are equivalent:

- (i) M is normal.
- (ii) $\overline{(a+1)M} = \overline{aM} + M$ for every $a \ge 0$.

Proof. (i) \Rightarrow (ii): This follows by the definition of normality of M. (ii) \Rightarrow (i): We want to prove that iM = iM for every $i \ge 1$. Since $C_a = \emptyset$ for every a, then by (3.2) and by Proposition 3.8, we have the proof.

We recall that we always assume $g_1 < \cdots < g_n$. If M_i denote the maximal ideal of $S_i = \langle g_1, \ldots, g_i \rangle$, it is natural to ask whether M_n could be normal when M_i is not normal for some i < n. The following theorem answers this question.

Theorem 3.12. If M_i is not normal, then M_n is not normal.

Proof. Since M_i is not normal, then, by the definition of normal maximal ideal and by Proposition 3.8, there exist an integer a and an element $x = g_{s_1} + \cdots + g_{s_t}$ such that $x \in (a+1)M_i \setminus (a+1)M_i = (a+1)M_i \setminus (a\overline{M_i} + M_i)$. Now we prove that $x \in (a+1)M_n \setminus (a+1)M_n$, hence M_n is not normal. Clearly $x \in (a+1)M_i \subseteq (a+1)M_n$. Since $x \in (a+1)M_i \setminus \overline{aM_i} + M_i$, we have $x - g_{s_j} < ag_1$ for every $j = 1, \ldots, t$. If $x \in (a+1)M_n$, then x is a sum of at least a + 1 generators with at least one generator greater than g_i since $x \notin (a+1)M_i$. But this is impossible since, by $g_{s_j} \leq g_i$ for every $j = 1, \ldots, t$, we have $x - g_{i+1} < x - g_{s_j} < ag_1$.

We can use what studied till now about the normality of maximal ideals for the study of the normality of generic ideals of a numerical semigroup.

Let *H* be an ideal of *S*. We recall that $\overline{H} = \{s \in S \mid s \geq \overline{h}\}$, where $\overline{h} = \min\{h \in H\}$, is the integral closure of *H* in *S*. Thus *H* is integrally closed if and only if $H = S(\overline{h})$.

By definition of ideal in a numerical semigroup, we have that $H \cup \{0\}$ is a numerical semigroup. We denote it by S_H and we denote its maximal ideal by M_H .

Remark 3.13. Let H be an integrally closed ideal of S, then $H = [\bar{h}, \infty) \cap S = [\bar{h}, \infty) \cap S_H = M_H$.

Proposition 3.14. Let H be an integrally closed ideal of S. Then $\overline{iH} = \overline{iM_H}$ for every $i \ge 1$.

Proof. By $H = M_H$, we have $\overline{iH} = \{s \in S \mid s \ge i\overline{h}\} = \{s \in S_H \mid s \ge i\overline{h}\} = \overline{iM_H}$.

Hence, by Remark 3.13 and Proposition 3.14, we have that the study of the normality of any integrally closed ideal H of S, is related to the study of the normality of the maximal ideal of a new numerical semigroup S_H . This allows us to translate the results of the first part of this section. In particular we have

H is normal if and only if
$$\overline{(a+1)H} = \overline{aH} + H$$
 for every $a \ge 0$. (3.4)

Remark 3.15. We remark that there is no connection between the generators of S and the generators of S_H . We know only that the number of generator of S are less or equal of those of S_H , $S_H \subseteq S$ and, if H is integrally closed, $c(S) = c(S_H)$.

Example 3.16. Let $S = \langle 7, 8, 9, 12, 13 \rangle$ and let H = S(9), K = S(8) two integrally closed ideals of S.

For H, we have $S_H = \langle 9, 12, 13, 14, 15, 16, 17, 19, 20 \rangle$. Hence H is not normal by Proposition 3.1 applied to S_H .

For K, we have $S_K = \langle 8, 9, 12, 13, 14, 15, 19 \rangle$. Since $19 \in C_1 = \overline{2M_H} \setminus 2M_H$, we have K is not normal by Remark 3.4 applied to S_K .

Example 3.17. Let $S = \langle 10, 12, 15, 16, 17 \rangle$ and let H = S(15), K = S(12) two integrally closed ideals of S.

For *H* we have $S_H = \langle 15, 16, 17, 20, 22, 24, 25, 26, 27, 28, 29 \rangle$. Since $\gamma = 2$ and *H* is integrally closed, we have *H* is normal by Proposition 3.3 applied to S_H .

Instead, as in the example 3.16, K is not normal by Proposition 3.1 applied to S_K .

4 The 3-generated case

In this section we consider only 3-generated numerical semigroups and we determine which of them that have normal maximal ideal M. We know, by Propositions 3.1 and 3.11 and Remark 3.4, that if $g_2 > g_1 + 1$ or $g_3 > 2g_1$, then M is not normal. Hence throughout the rest of this section we assume $g_2 = g_1 + 1$ and $g_3 < 2g_1$. We recall that, by Lemmas 3.5 and 3.6, C_a is empty or contains elements only of the form tg_3 with $t \leq a$.

We recall also that for us α is the unique integer such that $(\alpha - 1)g_3 < \alpha g_1$ and $\alpha g_3 \ge (\alpha+1)g_1$, i.e. the unique integer such that $(\alpha+1)g_1 \le \alpha g_3 < \alpha g_1+g_3$.

Lemma 4.1. $C_a = \emptyset$ for every $a < \alpha$ and $C_\alpha = \overline{(\alpha + 1)M} \setminus (\alpha + 1)M$.

Proof. By Proposition 3.2 and by definition of C_a , we have $C_a = \emptyset$ for every $a < \alpha$. Hence, by Proposition 3.8, we have the second part of the proof.

Lemma 4.2. C_a is empty or of the form $\{tg_3\}$ where $t \leq a$ is the unique integer which satisfies $(a + 1)g_1 < tg_3 < ag_1 + g_3$. In particular C_{α} is empty or of the form $\{\alpha g_3\}$.

Proof. Let $tg_3 \in C_a$. By Lemma 3.6 and by definition of C_a , we have $t \leq a$ and $(a + 1)g_1 < tg_3$. Since $tg_3 \notin \overline{aM} + M$, then $(t - 1)g_3 \in S \setminus \overline{aM}$, hence $(t - 1)g_3 < ag_1$, i.e. $tg_3 < ag_1 + g_3$.

The second part of the theorem follows immediately by definion of α .

Remark 4.3. We note that could happen that $(a + 1)g_1 < tg_3 < ag_1 + g_3$, but $C_a = \emptyset$.

Lemma 4.4. $C_{\alpha} = \emptyset$ if and only if $\alpha g_3 \leq (\alpha + 1)g_2$.

Proof. Suppose $\alpha g_3 > (\alpha + 1)g_2$. We want to prove that $\alpha g_3 \in \overline{(\alpha + 1)M} \setminus (\alpha + 1)M$, hence, by Lemma 4.1, $C_{\alpha} \neq \emptyset$. Suppose $\alpha g_3 \in (\alpha + 1)M$. So $\alpha g_3 = xg_1 + yg_2 + zg_3$ with $x + y + z \ge \alpha + 1$. By $(\alpha - z)g_3 \ge (\alpha - z + 1)g_1$ and by the definition of α , we have z = 0. Furthermore, by $\alpha g_3 > (\alpha + 1)g_2$, we have that αg_3 is a sum of at least $(\alpha + 2)$ generators g_1 and g_2 , hence, by $\alpha g_3 \ge (\alpha - 2)g_1$ and $(\alpha - 1)g_3 < \alpha g_1$ (by definition of α), we have a contradiction to $g_3 < 2g_1$.

Suppose now $\alpha g_3 \leq (\alpha + 1)g_2$. Since $g_2 = g_1 + 1$, we have that every element between $(\alpha + 1)g_1$ and $(\alpha + 1)g_2$ is a sum of $\alpha + 1$ elements g_1 or g_2 . In particular $\alpha g_3 \in (\alpha + 1)M$. Hence, by the second part of the Lemma 4.2 and By Lemma 4.1, we have $C_{\alpha} = \emptyset$.

Lemma 4.5. If $C_{\alpha} = \emptyset$, then $C_a = \emptyset$ for every a.

Proof. Let $t \leq a$ the number which satisfies $(a + 1)g_1 < tg_3 < ag_1 + g_3$. By $C_{\alpha} = \emptyset$ and by Lemma 4.4, we have $\alpha g_3 \leq (\alpha + 1)g_2$. Moreover, by definition of α , we have $(\alpha + 1)g_1 \leq \alpha g_3$ and $\alpha \leq t$ (since $(t + 1)g_1 \leq (a + 1)g_1 < tg_3$). We prove that $tg_3 \in \overline{aM} + M$, then $C_a = \emptyset$ follows by Lemma 4.2.

Consider first the case $\alpha g_3 = (\alpha + 1)g_2$. Since $(a+1)g_1 < tg_3$ and $g_2 = g_1 + 1$, we

have $ag_1+g_2 \leq tg_3$. Thus $ag_1 \leq tg_3-g_2 = (t-\alpha)g_3+\alpha g_3-g_2 = (t-\alpha)g_3+\alpha g_2$, that is $tg_3-g_2 \in \overline{aM}$. Hence $tg_3 \in \overline{aM} + M$.

Suppose now $\alpha g_3 < (\alpha + 1)g_2$. By $g_2 = g_1 + 1$, we have $\alpha g_3 = g_1 + s$ with $s \in S$. Thus $ag_1 < tg_3 - g_1 = (t - \alpha)g_3 + \alpha g_3 - g_1 = (t - \alpha)g_3 + s$, that is $tg_3 - g_1 \in \overline{aM}$. Hence $tg_3 \in \overline{aM} + M$.

Theorem 4.6. Let $g_2 = g_1 + 1$ and $g_3 < 2g_1$. Then M is normal if and only if $\alpha g_3 \leq (\alpha + 1)g_2$.

Proof. By Theorem 3.11 and definition of C_a , we have that M is normal if and only if $C_a = \emptyset$ for every a. Hence, by Lemmas 4.5 and 4.4, we have the proof.

Example 4.7. Let $S = \langle 10, 11, 10 + x \rangle$. We want to study for which values of x, M is normal. By Proposition 3.11 and Remark 3.4, we only consider values of x for which 10 + x < 20, hence $2 \le x \le 9$. By definition of α and Theorem 4.6, M is normal if and only if there exist integers α satisfying the following system of inqualities

$$\begin{cases} (\alpha - 1)(10 + x) < 10\alpha \\ \alpha(10 + x) \ge 10(\alpha + 1) \\ \alpha(10 + x) \le 11(\alpha + 1) \end{cases} \iff \begin{cases} x\alpha < 10 + x \\ x\alpha \ge 10 \\ x\alpha \le \alpha + 11 \end{cases}$$

It easy to check that the system has solution only for x = 2, 3, ..., 6. Hence M is normal if and only if $S = \langle 10, 11, 10 + x \rangle$ with x = 2, 3, ..., 6.

Example 4.8. Let us consider the numerical semigroup $\langle 100, 101, 117 \rangle$. Since $5 \cdot 117 = 585 < 6 \cdot 100 = 600$ and $6 \cdot 117 = 702 > 7 \cdot 100 = 700$, we have $\alpha = 6$. Since $702 \le 7 \cdot 101 = 707$ and by Theorem 4.6, M is normal. Now let us consider the numerical semigroup $\langle 100, 101, 118 \rangle$. Since $5 \cdot 118 = 590 < 6 \cdot 100 = 600$ and $6 \cdot 188 = 708 > 7 \cdot 100 = 700$, we have $\alpha = 6$. Since $708 > 7 \cdot 101 = 707$ and by Theorem 4.6, M is normal. We note that we can find semigroups for which M is normal and $g_3 > 118$. In fact using the same argument as above one can easily check that $\langle 100, 101, 150 \rangle$, has normal maximal ideal M.

Now we give, for each $k \ge 3$, an example of a numerical semigroup for which $iM = \overline{iM}$ for every i < k, but $kM \ne \overline{kM}$.

Example 4.9. Let $S = \langle k^2 - 3, k^2 - 2, k^2 + k - 1 \rangle$. Since

$$(k-1)(k^2+k-1) \ge k(k^2-3) \Longleftrightarrow 1 \ge -3k$$

and

$$(k-2)(k^2+k-1) < (k-1)(k^2-3) \Longleftrightarrow 2 < 3,$$

we have $\alpha = k - 1$. Hence by

$$(k-1)(k^2+k-1) > k(k^2-2) \iff 1 > 0$$

and by Lemmas 4.1 and 4.4 and by definition of C_a , the semigroup satisfies the condition above.

Let us denote the number of 3-generated numerical semigroups with normal maximal ideal and $g_1 = m$ by N(m), the number of numerical semigroups with $g_1 = m$ and $g_2 = m + 1$ by W(m) and the number of 3-generated numerical semigroups (m, m+1, m+x) with x < m by B(m).

Remark 4.10. Since $2 \le x < m$, then B(m) = m - 2. Consider $S = \langle m, m + 1 \rangle$. Clearly W(m) is equal to the number integers y such that y > m + 1 and $y \notin \langle m, m+1 \rangle$ (so that we have the numerical semigroup $\langle m, m+1, y \rangle$). It is well known (cf. e.g. [6]) that any 2-generated numerical semigroup is symmetric i.e. has just as many elements as non-elements below the conductor and that c(S) = m(m+1) - 2m. Hence $W(m) = \frac{c(S)}{2} - (m-1) = \frac{(m-2)(m-1)}{2}$.

By Proposition 3.11 and Remark 3.4, we know that if $\langle m, m+1, m+x \rangle$ has normal maximal ideal, then x < m. Hence N(m) is very small compared to W(m) for large m. The following theorem shows that N(m) is very small compared also to B(m) for large m.

Theorem 4.11. Let N(m) and B(m) be as above. Then $\lim_{m\to\infty} \frac{N(m)}{B(m)} = 0$.

Proof. By Theorem 4.6, the values of x such that (m, m+1, m+x) has normal maximal ideal satisfy the following system of inequalities

$$\left\{ \begin{array}{ll} (\alpha - 1)(m + x) < \alpha m - 1 \\ \alpha(m + x) \ge (\alpha + 1)m \\ \alpha(m + x) \le (\alpha + 1)m + (\alpha + 1) \end{array} \right. \iff \left\{ \begin{array}{ll} (\alpha - 1)x < m - 1 \\ \alpha x \ge m \\ \alpha x \ge m \\ \alpha x \le m + \alpha + 1 \end{array} \right.$$

that is $\frac{m}{\alpha} \leq x \leq \min\{\frac{m-1}{\alpha-1}, \frac{m}{\alpha} + 1 + \frac{1}{\alpha}\}$. We note that $\min\{\frac{m-1}{\alpha-1}, \frac{m}{\alpha} + 1 + \frac{1}{\alpha}\} - \frac{m}{\alpha} \leq (\frac{m}{\alpha} + 1 + \frac{1}{\alpha}) - \frac{m}{\alpha} = 1 + \frac{1}{\alpha} < 2$, since by x < m, we have $\alpha \geq 2$. Hence for every α there are at most two integers in the interval $[\frac{m}{\alpha}, \min\{\frac{m-1}{\alpha-1}, \frac{m}{\alpha} + 1 + \frac{1}{\alpha}\}]$. Suppose $\alpha - 1 \geq \sqrt{m-1}$, then $\frac{m-1}{\alpha-1} \leq \sqrt{m-1}$. Thus for every such α , we have $\alpha = 1 + \frac{1}{\alpha} \leq \frac{1}{\alpha} + \frac{1}{\alpha} = 1 + \frac{1}{\alpha} = \frac{1}{\alpha} = 1 + \frac{1}{\alpha} = 1 + \frac{1}{\alpha} = \frac{1}{$

 $2 \le x \le \sqrt{m-1}$. Hence there are at most $\sqrt{m-1} - 1$ such values of x such that $\langle m, m+1, m+x \rangle$ has normal maximal ideal. Suppose now $\alpha - 1 < \sqrt{m-1}$. Thus $2 \le \alpha < 1 + \sqrt{m-1}$. Since for every α there are at most two integers in the interval $[\frac{m}{\alpha}, \min\{\frac{m-1}{\alpha-1}, \frac{m}{\alpha} + 1 + \frac{1}{\alpha}\}]$, then if $2 \le \alpha < 1 + \sqrt{m-1}$, there exist at most $2(1 + \sqrt{m-1})$ such values of x such that $\langle m, m+1, m+x \rangle$ has normal maximal ideal.

Hence $N(m) \leq (\sqrt{m-1}-1) + (2+2\sqrt{m-1}) = 3\sqrt{m-1} + 1$. By $\frac{N(m)}{B(m)} \leq 1$ $\frac{3\sqrt{m-1}+1}{m-2}$, we have the proof.

Normality of the maximal ideal in a ring 5

We recall that for us R is a local, Noetherian, one-dimensional domain such that the integral closure \overline{R} of R in its quotient field is a DVR and a finitely generated R-module and such that R and \overline{R} have the same residue field. We recall also that $v(R) = S = \langle g_1, \ldots, g_n \rangle$ with $g_1 < g_2 < \cdots < g_n$.

In this section we study the connection between the normality of \mathfrak{m} and the normality of $v(\mathfrak{m}) = M$.

We note that in general $iv(\mathfrak{m}) \subseteq v(\mathfrak{m}^i)$ and the inclusion could be strict.

Example 5.1. Let $R = K[[t^4+t^5, t^6, t^{11}]]$ with K a field of characteristic different from 3 and let $S = \langle 4, 6, 11, 13 \rangle$. One can easily check that v(R) = S and, by $(t^4+t^5)^3 - (t^6)^2 = 3t^{13} + 3t^{14} + t^{15}$, we have $13 \in v(\mathfrak{m}^2)$. However $13 \notin 2v(\mathfrak{m})$.

Proposition 5.2. For every $i \ge 1$ we have $v(\overline{\mathfrak{m}^i}) = \overline{iv(\mathfrak{m})}$.

Proof. Since, by Theorem 2.3, $\overline{\mathfrak{m}^i} = R(ig_1)$, then $v(\overline{\mathfrak{m}^i}) = S(ig_1) = \overline{iv(\mathfrak{m})}$.

The following theorem is an analogue for rings to Theorem 3.11. We recall that $\overline{\mathfrak{m}} = \mathfrak{m}$ is always true.

Proposition 5.3. The maximal ideal \mathfrak{m} is normal if and only if $\overline{\mathfrak{m}^{i+1}} = \overline{\mathfrak{m}^{i}\mathfrak{m}}$ for every $i \geq 1$.

Proof. Clearly \mathfrak{m} normal implies $\overline{\mathfrak{m}^{i+1}} = \overline{\mathfrak{m}^i}\mathfrak{m}$ for every i. Suppose now $\overline{\mathfrak{m}^{i+1}} = \overline{\mathfrak{m}^i}\mathfrak{m}$ for every $i \ge 1$ and we want to prove that $\overline{\mathfrak{m}^i} = \mathfrak{m}^i$. We prove it by induction on i. We know that $\overline{\mathfrak{m}} = \mathfrak{m}$. Suppose $\overline{\mathfrak{m}^i} = \mathfrak{m}^i$ for every $i \le n$ and we prove that $\overline{\mathfrak{m}^{n+1}} = \mathfrak{m}^{n+1}$. In fact $\overline{\mathfrak{m}^{n+1}} = \overline{\mathfrak{m}^n}\mathfrak{m} = \mathfrak{m}^n\mathfrak{m} = \mathfrak{m}^{n+1}$.

Theorem 5.4. If $v(\mathfrak{m})$ is normal, then \mathfrak{m} is normal.

Proof. By $iv(\mathfrak{m}) + v(\mathfrak{m}) \subseteq v(\mathfrak{m}^{i}\mathfrak{m})$ and by Proposition 5.2, we have that $v(\overline{\mathfrak{m}^{i+1}}) \setminus v(\overline{\mathfrak{m}^{i}\mathfrak{m}}) \subseteq \overline{(i+1)v(\mathfrak{m})} \setminus (\overline{iv(\mathfrak{m})} + v(\mathfrak{m}))$. Hence if $v(\mathfrak{m})$ is normal, then \mathfrak{m} normal follows by Corollary 2.2 and Proposition 5.3.

It is natural to ask whether \mathfrak{m} normal implies $v(\mathfrak{m})$ normal.

By $iv(\mathfrak{m}) \subseteq v(\mathfrak{m}^i)$ and Proposition 5.2, for every $i \geq 1$, the following lemma follows immediately.

Lemma 5.5. For every $i \ge 1$, $v(\overline{\mathfrak{m}^i}) \setminus v(\mathfrak{m}^i) \subseteq \overline{iv(\mathfrak{m})} \setminus iv(\mathfrak{m})$.

Example 5.6. Consider the ring $R = K[[t^{12} + t^{18}, t^{13} + t^{18}, t^{15} + t^{20}, t^{22}]]$ with K a field of characteristic different from 2 and $S = \langle 12, 13, 15, 22 \rangle$. One can easily check that v(R) = S. We have $iv(\mathfrak{m}) = iv(\mathfrak{m})$ for every $i \neq 3$ and $\overline{3v(\mathfrak{m})} \setminus 3v(\mathfrak{m}) = \{44\}$, hence $v(\mathfrak{m})$ is not normal. By Lemma 5.5 and Corollary 2.2, $\mathfrak{m}^i = \overline{\mathfrak{m}^i}$ for every $i \neq 3$. Since $(t^{13} + t^{18})^3 - (t^{12} + t^{18})^2(t^{15} + t^{20}) = 2t^{44} - 2t^{45} - 2t^{50} - t^{51} + t^{54} - t^{56} \in \mathfrak{m}^3$ and by Lemma 5.5, we also have $\mathfrak{m}^3 = \overline{\mathfrak{m}^3}$. Hence \mathfrak{m} is normal.

We denote $\min\{(i+1)g_1, (i-1)g_1 + g_2\}$ by μ_i .

Lemma 5.7. For every $i \ge 1$, the two smallest values in $v(\mathfrak{m}^i)$ are ig_1 and μ_i .

Proof. Let $\mathfrak{m} = (r_1, \ldots, r_n)$ with $v(r_j) = g_j$ for every $j = 1, 2, \ldots, n$ (this is not in general a minimal set of generators of \mathfrak{m}). We know that every element $x \in \mathfrak{m}^i$ is of the type $x = b_1 r_1^i + b_2 r_1^{i-1} r_2 + y$ with $v(y) > \mu_i$. By properties of

valuation, we also know that if b_1 is not unit, then $v(b_1r_1^i) \ge (i+1)g_1 \ge \mu_i$ and if b_2 is unit then $v(b_2r_1^{i-1}r_2) = (i-1)g_1 + g_2 \ge \mu_i$. Hence if b_1 is a unit, then $v(x) = ig_1$, otherwise $v(x) \ge \mu_i$. Since r_1^{i+1} and $r_1^{i-1}r_2$ are in \mathfrak{m}^i , we have the proof.

The following proposition is an analogue for rings to Proposition 3.1.

Proposition 5.8. If \mathfrak{m} is normal, then $g_2 = g_1 + 1$.

Proof. Suppose $g_2 > g_1 + 1$. By the proof of Proposition 3.1, we have that if i is an integer such that $i \ge \gamma$, then $ig_1 + 1 \in iv(\mathfrak{m}) \setminus iv(\mathfrak{m})$. Hence by Lemma 5.7, $ig_1 + 1 \in v(\mathfrak{m}^i) \setminus v(\mathfrak{m}^i)$ that is $\mathfrak{m}^i \neq \mathfrak{m}^i$.

6 The Cohen-Macaulay property of $G(\mathfrak{m})$ in a particular case

Let R be a ring as in the Section 5. Throughout the rest of this section we assume that $g_2 = g_1 + 1$.

It is known (cf. [4, Corollary 17]) that for a ring R of our type, principal minimal reductions always exist and that if $x \in \mathfrak{m}$ then xR is a minimal reduction of \mathfrak{m} if and only if x is of minimal value in \mathfrak{m} . For everything concerning reduction of an ideal, we refer to [11].

We denote by $G(\mathfrak{m})$ the associated graded ring of R with respect to \mathfrak{m} , that is $G(\mathfrak{m}) = \bigoplus_{i \ge 0} \mathfrak{m}^i / \mathfrak{m}^{i+1}$. The question whether, for a local ring, $G(\mathfrak{m})$ is Cohen-Macaulay is an important one. In fact it is important and often difficult to compute the Hilbert function of a local ring, however, if the associated graded ring is Cohen-Macaulay, then the computation of the Hilbert function can be reduced to the computation of the Hilbert function of an Artinian local ring.

An element $\overline{0} \neq \overline{z} = z + \mathfrak{m}^{s+1} \in G(\mathfrak{m})$ is a zero divisor in $G(\mathfrak{m})$ if and only if there exists an element $\overline{0} \neq \overline{y} = y + \mathfrak{m}^{r+1} \in G(\mathfrak{m})$ such that $\overline{z} \cdot \overline{y} = 0$ i.e. $z \cdot y \in \mathfrak{m}^{s+r+1}$.

Remark 6.1. Let $\mathfrak{m} = (x_1, x_2, \dots, x_r)$ the maximal ideal of R. By the hypotheses above on R, we can assume $v(x_1) = g_1$ and $v(x_2) = g_1 + 1$. Hence $\mathfrak{m}^h = \overline{\mathfrak{m}^h} = \overline{R}(hg_1)$ for every $h \gg 0$ (for example $h \ge g_1 - 1$).

Throughout the rest of the section we denote by x_1R a principal minimal reduction of \mathfrak{m} . It is known that $G(\mathfrak{m})$ is C-M if and only if $\overline{x_1}$ is a non-zero divisor in $G(\mathfrak{m})$ (cf. [5, Remark 3.1]).

Lemma 6.2. If $G(\mathfrak{m})$ is C-M, then for every $i \ge 1$ and for every $w \in \mathfrak{m}^i \setminus \mathfrak{m}^{i+1}$ we have $v(w) < (i+1)g_1$.

Proof. By Remark 6.1, we have only to consider i < h and we use decreasing induction on i. For every $w \in \mathfrak{m}^{h-1} \setminus \mathfrak{m}^h = \mathfrak{m}^{h-1} \setminus \overline{\mathfrak{m}^h}$ clearly we have $v(w) < hg_1$. Now we prove that if for every $w \in \mathfrak{m}^{h-a} \setminus \mathfrak{m}^{h-a+1}$ we have $v(w) < (h-a+1)g_1$, then for every $f \in \mathfrak{m}^{h-a-1} \setminus \mathfrak{m}^{h-a}$ we have $v(f) < (h-a)g_1$. Since $G(\mathfrak{m})$ is C-M it follows that for every $f \in \mathfrak{m}^{h-a-1} \setminus \mathfrak{m}^{h-a}$ we have $x_1 f \in \mathfrak{m}^{h-a} \setminus \mathfrak{m}^{h-a+1}$. By inductive hypothesis we have that $v(x_1 f) = g_1 + v(f) < (h-a+1)g_1$ which is $v(f) < (h-a)g_1$.

Now we are ready to characterize when $G(\mathfrak{m})$ is C-M for a ring R under the hypotheses at the beginning of this section.

Theorem 6.3. Let R be a ring as above, then $G(\mathfrak{m})$ is C-M if and only if \mathfrak{m} is normal.

Proof. If \mathfrak{m} is normal, then $G(\mathfrak{m})$ is C-M (cf. [3, Proposition 2.1]). Suppose now $G(\mathfrak{m})$ is C-M and that \mathfrak{m} is not normal. Let $x \in \overline{\mathfrak{m}^{\beta}} \setminus \mathfrak{m}^{\beta}$ and let r the integer such that $x \in \mathfrak{m}^r \setminus \mathfrak{m}^{r+1}$ (hence $r < \beta$). By Lemma 6.2 we have $v(x) < (r+1)g_1$ and, by $r < \beta$ and $x \in \overline{\mathfrak{m}^{\beta}} \setminus \mathfrak{m}^{\beta}$, we have $(r+1)g_1 \leq \beta g_1 < v(x)$. A contradiction.

Let $\mathfrak{m} = (x_1, \ldots, x_r), r \leq n$ be the maximal ideal of R, with $v(x_1) = g_1$ and $v(x_2) = g_1 + 1$. We will study the connection between the property that $G(\mathfrak{m})$ is C-M and $G(\mathfrak{m}_T)$ is C-M, where $\mathfrak{m}_T = (t^{g_1}, t^{g_2}, \ldots, t^{g_n})$ is the maximal ideal of the semigroup ring $T = K[[S]] = K[[t^{g_1}, t^{g_2}, \ldots, t^{g_n}]].$

Proposition 6.4. If $G(\mathfrak{m}_T)$ is C-M, then $G(\mathfrak{m})$ is C-M.

Proof. Suppose $G(\mathfrak{m}_T)$ is C-M. By Theorem 6.3, we have \mathfrak{m}_T normal, hence \mathfrak{m} normal by Corollary 5.4. Again by Theorem 6.3, $G(\mathfrak{m})$ is C-M.

It is natural to ask whether the converse to Proposition 6.4 holds.

Remark 6.5. If $G(\mathfrak{m})$ is C-M, then in general is not true that $G(\mathfrak{m}_T)$ is C-M. In fact consider $\mathfrak{m} = (t^{12} + t^{18}, t^{13} + t^{18}, t^{15} + t^{20}, t^{22})$ and $\mathfrak{m}_T = (t^{12}, t^{13}, t^{15}, t^{22})$ in the Example 5.6. Since \mathfrak{m} is normal, then $G(\mathfrak{m})$ is C-M. However, by Theorem 6.3, $G(\mathfrak{m}_T)$ is not C-M since \mathfrak{m}_T is not normal.

7 A bound for $l_R(\overline{\mathfrak{m}^i}/\mathfrak{m}^i)$

Let R be a ring as in Section 5, with maximal ideal $\mathfrak{m} = (x_1, x_2, \dots, x_p)$, where $v(x_1) = g_1$ and $v(x_1) < v(x_2) < \cdots < v(x_p)$. Let us denote by $r = r(\mathfrak{m}) = \min\{n \mid \mathfrak{m}^{n+1} = z\mathfrak{m}^n \text{ for some } z \in \mathfrak{m}\}$ the *reduction number* of \mathfrak{m} .

We let $\mu(R) = l_R(\mathfrak{m}^i/\mathfrak{m}^{i+1})$, with $i \ge r$ and we call $\mu(R)$ the multiplicity of R.

As in Section 6, we assume that x_1R is a principal minimal reduction of \mathfrak{m} . By definition of r and Theorem 2.1, the following statements are easy to see:

for every
$$i \ge r$$
, $\mathfrak{m}^{i+1} = x_1 \mathfrak{m}^i$ (7.1)

for every
$$i \ge r$$
, $\mu(R) = v(x_1) = g_1$

$$(7.2)$$

By [10, Lemma 2], we have that $(R : \overline{R}) = \{x \in \overline{R} \mid v(x) \ge c(S)\}$. Hence $\min\{a \in \mathbb{N} \mid x_1^a \in (R : \overline{R})\} = \gamma$, where γ is the integer introduced in the Section 3. From now on we denote by $\beta = \max\{\gamma, r\}$ and by $q = l_R(\overline{\mathfrak{m}^\beta}/\mathfrak{m}^\beta)$.

Proposition 7.1. For every $i \ge \beta$, $l_R(\overline{\mathfrak{m}^i}/\mathfrak{m}^i) = q$.

Proof. Let $i \geq \beta$. By $\beta \geq \gamma$, we have $\overline{\mathfrak{m}^{\beta}} = \overline{R}(\beta g_1) = R(\beta g_1)$. Since $x_1 R$ is a principal minimal reduction and $i \geq r$, we have $\overline{\mathfrak{m}^i} = x_1^{i-\beta} \overline{\mathfrak{m}^{\beta}}$ and $\mathfrak{m}^i = x_1^{i-\beta} \mathfrak{m}^{\beta}$. Hence $l_R(\overline{\mathfrak{m}^i}/\mathfrak{m}^i) = l_R(x_1^{i-\beta} \overline{\mathfrak{m}^{\beta}}/x_1^{i-\beta} \mathfrak{m}^{\beta}) = l_R(\overline{\mathfrak{m}^{\beta}}/\mathfrak{m}^{\beta}) = q$.

Theorem 7.2. For every $i \ge \beta$, $0 \le l_R(\overline{\mathfrak{m}^i}/\mathfrak{m}^i) \le l_R(\overline{R}/R) - \mu(R) + 1$.

Proof. Let us consider the second inequality and let $T = k[[t^{g_1}, t^{g_2}, \dots, t^{g_n}]]$ be the semigroup ring associated to S with maximal ideal $\mathfrak{m}_T = (t^{g_1}, t^{g_2}, \dots, t^{g_n})$. We first prove that the inequality holds for T. Let $x \in \overline{\mathfrak{m}_T^i} \setminus \mathfrak{m}_T^i$ with $i \ge 0$. Then $x = t^{ig_1}t^y$ with y > 0 and $t^{g_1}t^y \notin \mathfrak{m}$ (if not $x = t^{(i-1)g_1}t^{g_1}t^y \in \mathfrak{m}_T^i$). Clearly the map that associates the element $ig_1 + y \in v(\overline{\mathfrak{m}_T^i}) \setminus v(\mathfrak{m}_T^i)$ to $g_1 + y \in v(\overline{T}(g_1)) \setminus v(\mathfrak{m}_T)$ is injective, hence $l_T(\overline{\mathfrak{m}_T^i}/\mathfrak{m}_T^i) = |v(\overline{\mathfrak{m}_T^i}) \setminus v(\mathfrak{m}_T^i)| \le |v(\overline{T}(g_1)) \setminus v(\mathfrak{m}_T)| = l_T(\overline{T}/T) - g_1 + 1$.

Noting that $v(\mathfrak{m}_T^i) = iv(\mathfrak{m})$ and $v(\overline{\mathfrak{m}_T^i}) = iv(\mathfrak{m})$, by Theorem 2.1, Lemma 5.5 and 7.2, we have

$$l_R(\overline{\mathfrak{m}^i}/\mathfrak{m}^i) \le l_T(\overline{\mathfrak{m}^i_T}/\mathfrak{m}^i_T) \le l_T(\overline{T}/T) - g_1 + 1 = l_R(\overline{R}/R) - \mu(R) + 1.$$

Now we show that the bounds are the best possible.

Proposition 7.3. We have $l_R(\overline{\mathfrak{m}^i}/\mathfrak{m}^i) = 0$ for every $i \geq \beta$ if and only if $v(x_2) = g_1 + 1$.

Proof. Let $l_R(\overline{\mathfrak{m}^i}/\mathfrak{m}^i) = 0$. Suppose $v(r_2) > g_1 + 1$. By the proof of Proposition 5.8, for every $i \gg 0$ we have $\overline{\mathfrak{m}^i} \neq \mathfrak{m}^i$. A contradiction to $l_R(\overline{\mathfrak{m}^i}/\mathfrak{m}^i) = 0$ for every $i \ge \beta$.

Vice versa, let $v(r_2) = g_1 + 1$. Then, as in the Remark 6.1, we have $\mathfrak{m}^h = \overline{\mathfrak{m}^h}$ for $h \gg 0$, hence, by Proposition 7.1, $\mathfrak{m}^\beta = \overline{\mathfrak{m}^\beta}$. Using again Proposition 7.1, we have $l_R(\overline{\mathfrak{m}^i}/\mathfrak{m}^i) = 0$ for every $i \ge \beta$.

Now we give a class of rings for which $l_R(\overline{\mathfrak{m}^i}/\mathfrak{m}^i) = l_R(\overline{R}/R) - \mu(R) + 1$ for every $i \geq \beta$.

Example 7.4. Let $R = k[[t^2, t^{2a+1}]]$ with $a \ge 1$. Thus $\mathfrak{m} = \{t^2, t^4, \dots, t^{2a}, t^{2a+1}, \dots\}$, hence $l_R(\overline{R}/R) - v(t^2) + 1 = |\mathbb{N} \setminus S| - 1 = a - 1$.

Since $\mathfrak{m}^i = \{t^{2i}, \dots, t^{2(a+(i-1))}, t^{2(a+(i-1))+1}, \dots\}$ for every $i \ge 1$, thus for every $i \ge 1$, $l_R(\overline{\mathfrak{m}^i}/\mathfrak{m}^i) = |v(\overline{\mathfrak{m}^i}) \setminus v(\mathfrak{m}^i)| = |\{2i, \dots\} \setminus \{2i, \dots, 2(a+i-1), \dots\}\}$ $|| = |\{2i, \dots\} \setminus \{2i, \dots, 2i+2(a-1), \dots\}| = a-1.$ Remark 7.5. The rings $R = k[[t^2, t^{2a+1}]]$ with $a \ge 1$, are not the only rings for which $l_R(\overline{\mathfrak{m}^i}/\mathfrak{m}^i) = l_R(\overline{R}/R) - \mu(R) + 1$ for every $i \ge \beta$. For example every ring $R = k[[t^{g_1}, t^{g_2}, \ldots, t^{g_n}]] = K[[S]]$, with $g_2 < c(S) \le 2g_1$ and $3g_1 = 2g_2$, satisfies the equality above.

Example 7.6. Now we give a class of rings $R = k[[t^{g_1}, t^{g_2}, \dots, t^{g_n}]]$ for which $l_R(\overline{\mathfrak{m}^i}/\mathfrak{m}^i)$, for every $i \geq \beta$, is equal to a fixed $x \geq 1$. Let $R = k[[t^{2x+1}, t^{3x+2}, t^{3x+3}, \dots, t^{4x+1}]]$. So $\mathfrak{m} = \{t^{2x+1}, t^{3x+2}, t^{3x+3}, \dots, t^{4x+2}, t^{5x+3}, t^{5x+4}, \dots\}$. In fact for every $1 \leq y \leq x$, we have 6x + 3 + y = (3x + 2) + (3x + 1 + y). Thus $\mathfrak{m}^i = \{t^{i(2x+1)}, t^{i(2x+1)+x+1}, t^{i(2x+1)+x+2}, \dots\}$ for every $i \geq 2$, hence $l_R(\overline{\mathfrak{m}^i}/\mathfrak{m}^i) = |\{i(2x+1), \dots\} \setminus \{i(2x+1), i(2x+1)+x+1, \dots\}| = x$ for every $i \geq \beta \geq 2$.

Acknowledgements

The author wishes to thank R. Fröberg and C. Gottlieb for their helpful comments and for a careful reading of the manuscript.

References

- R. Apery, Sur les superlinéaires des courbes algébriques, C. R. Acad. Sc. Paris 222 (1946), 1198-1200.
- [2] V. Barucci-D. E. Dobbs-M. Fontana, Properties in numerical semigroups and applications to one-dimensional analytically irreducible local domains, Mem. Amer. Math. Soc. vol 125, 598 (1997).
- [3] V. Barucci-M. D'Anna-R. Fröberg, Normal Hilbert functions of onedimensional local rings, Comm. Algebra 28 (2001), 333-341.
- [4] V. Barucci-R. Fröberg, One-dimensional Almost Gorenstein Rings, J. Algebra 188 (1997), 418-442.
- [5] M. D'Anna-A. Guerrieri- W. Heinzer, Ideals having a Onedimensional Fiber Cone, Preprint.
- [6] R. Fröberg-C. Gottlieb-R. Häggkvist, On numerical semigroups, Semigroup forum 35 (1987), 63-83.
- J. Herzog-E. Kunz, Die Wertehalbgruppe eines lokalen Rings der Dimension 1, Sitzungsber. Heidelberger Ak. Wiss. 22 (1971), 26-67.
- [8] E. Kunz, The value-semigoup of a one-dimensional Gorenstein ring, Proc. Amer. Math. Soc. 25 (1970), 748-751.
- [9] J. Lipman, Stable ideals and Arf rings, Amer. J. Math. 93 (1971), 649-685.

- T. Matsuoka, On the degree of singularity of one-dimensional analytically irreducible noetherian local rings, J. Math. Kyoto Univ., 11-3 (1971), 485-494.
- D. Rees-R. Y. Sharp, On a theorem of B. Teissier on multiplicities of ideals in local rings, J. London Math. Soc. 18 (1978), 449-463.