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Normal maximal ideal in one-dimensional local

rings

Vincenzo Micale∗

March 13, 2001

Abstract

We give a criterion for the maximal ideal M of the numerical semigroup
S to be normal and for 3-generated numerical semigroups we character-
ize those that have normal maximal ideal. We also give a criterion for
the maximal ideal of Noetherian, local one-dimensional, analytically irre-
ducible domains (R,m) such that R and R, the integral closure of R in its
quotient field, have the same residue field, to be normal and we answer the
question whether m normal implies M normal where M is the maximal
ideal of S = v(R). We show, in a particular case, how the property for
the associated graded ring of R with respect to m to be Cohen-Macaulay
is strictly related to the normality of m.

MSC: 20Mxx; 13H10

1 Introduction

Let R be a local, Noetherian, one-dimensional domain; assume also that R is
analytically irreducible or, equivalently, that the integral closure R of R in its
quotient field is a discrete valuation ring (DVR) and a finitely generated R-
module. Let K denote the quotient field of R and R, let v be the discrete
valuation on K∗ = K \ {0} associated to R and, for each subset B of K, let
v(B) denote the image under v of the set of nonzero elements of B.
We call v(R) = {v(r) | r ∈ R} the value semigroup associated to R. It is a
subsemigroup of N and it is well known that there is a close connection between
R and v(R), when R and R have the same residue field (cf. [8],[10]).

An early paper on the connection between semigroups and one-dimensional
local domains is [1]. This connection has since been studied in e.g. [7] and there
is an extensive study on numerical semigroups and their applications to integral
domains in [2].

The key fact that allows to connect a ring to its value semigroup is that it
is possible to compute the lenght lR(I/J) (where I ⊇ J are fractional ideals of
R) in terms of the semigroup (cf.Theorem 2.1).

∗email vmicale@dipmat.unict.it
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1.1 Description of the content

We now make a closer description of the content of this paper. In Section 2 we
introduce the concepts of numerical semigroup S and of ideal in a numerical
semigroup. Then we introduce v(R), the associated value semigroup to a ring
R and we recall some known results about the connection between the ring and
its associated value semigroup. In Section 3, we give a criterion for the maximal
ideal M of S to be normal and we use it to give a criterion for a generic ideal of
S to be normal. We also answer the question whether Mn, the maximal ideal
in Sn = 〈g1, . . . , gn〉, could be normal when Mi is not normal for some i < n
( where Mi denote the maximal ideal of Si = 〈g1, . . . , gi〉). In Section 4 we
consider the case of 3-generated semigroups and for this case we characterize
the numerical semigroups that have normal maximal ideal. In Section 5 we
give a criterion for the maximal ideal m of R to be normal and we answer the
question whether m normal implies M normal where M is the maximal ideal
of S = v(R). In Section 6 we prove, in a particular case, that m is normal if
and only if G(m) is C-M, where G(m) is the associated graded ring of R with

respect to m. In Section 7 we find a bound for lR(mi/m
i) for i � 0.

2 Preliminaries

Let N denote the natural numbers (including 0). A subsemigroup S of (N, +)
with 0 ∈ S is called a numerical semigroup. Each semigroup S has a natural
partial ordering ≤S where for two elements s and t in S, s ≤S t if there is an
u ∈ S such that t = s+u. The set {gi} of the minimal elements in S\{0} in this
ordering is called the minimal set of generators for S. In fact all elements of S are
linear combinations with non-negative integers coefficients of minimal elements.
Note that the set {gi} of minimal generators is finite since for any s ∈ S, s 6= 0,
we have gi 6= gj (mod s). The same argument shows that the number of
minimal generators is at most min{s ∈ S | s 6= 0}. A numerical semigroup
generated by g1 < g2 < · · · < gn is called an n-generated numerical semigroup
and we denote it by 〈g1, g2, . . . , gn〉. Since the semigroup 〈g1, g2, . . . , gn〉 is
isomorphic to 〈dg1, dg2, . . . , dgn〉 for any d ∈ N \ {0}, we assume, in the sequel,
that gcd(g1, g2, . . . , gn) = 1. This is easily seen to be equivalent to |N \S| < ∞.
Since |N\S| < ∞, there exist in S elements s such that the set {s, s+1,−→} ⊆ S
(where the symbol ”−→” means that all subsequent natural numbers belong to
the set). We call the smallest of such elements s the conductor of S, and we
denote it by c = c(S).

A relative ideal of a semigroup S is a nonempty subset H of Z such that
H + S ⊆ H and H + s ⊆ S for some s ∈ S. A relative ideal of S which is
contained in S is simply called an ideal of S. Clearly S is an ideal of S, but {0}
is not an ideal of S. By a proper ideal, we mean an ideal distinct from S, i.e., an
ideal not containing 0. It is straightforward to see that if H and N are relative
ideals of S, then H +N and kH(= H + · · ·+H , k summands for k ≥ 1) are also
relative ideals of S. Sometimes it is useful to consider kH for k = 0; in this case
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we let 0H = S. The ideal M = {s ∈ S | s 6= 0} is called the maximal ideal of
S. For every ideal H , we consider H = {s ∈ S | s ≥ h̄} where h̄ = min{h ∈ H}
and we call H , the integral closure of H in S. In general iH ⊆ iH . We say that
H is normal if iH = iH for every i ≥ 1. Clearly M = M .

Throughout the rest of the paper we will assume that (R, m) is a local,
Noetherian, one-dimensional domain. We assume also that R is analytically
irreducible or, equivalently, that the integral closure R of R in its quotient field
is a DVR and a finite generated R-module and that R and R have the same
residue field. For every such ring, v(R) is a numerical semigroup and throughout
the rest of the paper, we will denote it by S.

We also will denote by g1 < g2 < · · · < gn and by M = v(m) respectively
the generators and the maximal ideal of S.
If I is an ideal of R, we denote by I the integral closure {x ∈ R | xn + r1x

n−1 +

· · · + rn = 0, for some ri ∈ I i}. We say that I is normal if Ij = Ij for every
j ≥ 1. When I is a fractional ideal of R, then v(I) = {v(i) | i ∈ I} is a relative
ideal of the semigroup S.

With our choice of R, we have the following theorems.

Theorem 2.1. If I ⊆ J are fractional ideals of R, then lR(I/J) = |v(I)−v(J)|

Proof. Cf. [10, Proposition 1]

Corollary 2.2. Let I ⊆ J be fractional ideals of R, then v(I) = v(J) if and
only if I = J .

For every a ∈ S, we denote in the sequel the ideal {r ∈ R | v(r) ≥ a} of R
by R(a), the ideal {r ∈ R | v(r) ≥ a} of R by R(a) and the semigroup ideal
{s ∈ S | s ≥ a} of S by S(a).

Theorem 2.3. Let I be a fractional ideal of R, I be the integral closure of I in
R and a = min{v(i) | i ∈ I}. Then I = R(a).

Proof. Let x ∈ I such that v(x) = a. It is known (cf. [9, Remark (a), p.
659]) that z ∈ R is integral over the ideal xR if and only if z/x ∈ R, i.e., if and
only if v(z) ≥ v(x) = a. Thus the integral closure of xR is R(a) and R(a) is
integrally closed. By xR ⊆ I ⊆ R(a), the claim follows.

3 Normal maximal ideal in a numerical semi-

group

Let S be a numerical semigroup generated by g1 < g2 < · · · < gn. The following
statements are easy to see:

if x ∈ S and x > ign, then x ∈ (i + 1)M (3.1)
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for every numerical semigroup S, we have M = M (3.2)

for any ideal H of S, if [a, a + g1 − 1] ⊆ H , then [a,∞) ⊆ H (3.3)

From now on we denote by γ = min{m ∈ N | mg1 ≥ c(S)}.

Proposition 3.1. If M is normal, then g2 = g1 + 1.

Proof. Suppose that g2 = g1 + x with x > 1. Since the second smallest
element in γM is min{(γ + 1)g1, (γ − 1)g1 + g2 = γg1 + x} > γg1 + 1, we have
that γg1 + 1 ∈ γM \ γM , hence M is not normal.

From now on we denote by α the integer such that (α − 1)gn < αg1 and
αgn ≥ (α + 1)g1.

Proposition 3.2. For every i ≤ α, iM = iM .

Proof. By definition of α, we have ign < (i + 1)g1 for every i < α. We
show that ign < (i + 1)g1 implies (i + 1)M = (i + 1)M . We have only to show
that (i + 1)M ⊆ (i + 1)M . Let x ∈ (i + 1)M . Then x ≥ (i + 1)g1. Since
ign < (i + 1)g1, we have x > ign, hence, by (3.1), x ∈ (i + 1)M . So iM = iM
for every i such that 2 ≤ i ≤ α and (3.2) completes the proof of the proposition.

Now we give a sufficient condition for M to be normal. We know that if
g2 > g1 + 1, then M is not normal.

Proposition 3.3. Let g2 = g1 + 1. If iM = iM for every i ≤ γ, then M is
normal.

Proof. By hypothesis, iM = iM for every i ≤ γ, in particular γM = γM .
So, by γg1 ≥ c, we have γM = γM = {γg1,−→}. Thus for every j > γ, we
have jM = {jg1,−→} = jM . Hence M is normal.

For every a ≥ 1, we denote by Ca = (a + 1)M \ (aM + M).
This is an important set for us and we use it many times in the paper.

Remark 3.4. Note that C1 = 2M \ (M + M) = 2M \ 2M = {gi | gi > 2g1}
where the second equality holds by (3.2).

Lemma 3.5. Let x = gs1
+ · · · + gst

∈ Ca with g2 = g1 + 1. Then sj > 2 for
every j = 1, . . . , t.

Proof. Suppose s1 = 1 or 2. Since x ∈ Ca, then x > (a + 1)g1, hence
x − gs1

≥ ag1, that is x − gs1
∈ aM and hence x ∈ aM + M . A contradiction

to x ∈ Ca.

Lemma 3.6. If x = gs1
+ · · ·+ gst

∈ Ca, then t ≤ a.

Proof. Suppose t > a. Then x− gsi
≥ ag1 for every i and as in the proof of

Lemma 3.5, we have a contradiction to x ∈ Ca.
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Remark 3.7. Note that in general Ca ⊆ (a + 1)M \ (a + 1)M , since (a + 1)M ⊆
aM + M .

Proposition 3.8. If Ci = ∅ for every i ≤ a− 1, then (i + 1)M \ (i + 1)M = ∅
for every i ≤ a− 1 and Ca = (a + 1)M \ (a + 1)M .

Proof. We prove the first part of the proposition by induction on i. If i = 1,
then 2M \ 2M = ∅ follows by C1 = ∅ and by Remark 3.4.
Suppose now that for every j < i ≤ a − 1, (j + 1)M \ (j + 1)M = ∅ ( i.e.
(j + 1)M = (j + 1)M for every j < i ≤ a − 1) and we prove that (i + 1)M \
(i + 1)M = ∅. In fact ∅ = Ci = (i + 1)M \ (iM + M) = (i + 1)M \ (iM +M) =
(i + 1)M \ (i+1)M , where the third equality holds by the inductive hypothesis.
Now we prove the second part of the proposition. Since (i + 1)M \ (i+1)M = ∅
for every i ≤ a−1, in particular aM = aM . Hence Ca = (a + 1)M\(aM+M) =
(a + 1)M \ (aM + M) = (a + 1)M \ (a + 1)M .

Example 3.9. Consider the numerical semigroup S = 〈13, 14, 19〉. It is easy to
check that iM \ iM = ∅ for every i 6= 4, 5, 4M \ 4M = {57} and 5M \ 5M =
{76}. By Remark 3.7, we have Ci = ∅ for every i 6= 3, 4. By Proposition 3.8,
C3 = {57}. By Remark 3.7 and since 76 = 57 + 19, where 57 ∈ 4M , we have
C4 = ∅.

Remark 3.10. By definitions of γ and Ci, it is straightforward to prove that
Ci = ∅ for every i ≥ γ. If g2 = g1 + 1, then, by (3.3), we have iM \ iM = ∅
for every i � 0 (e.g. i ≥ g1 − 1). However if g2 > g1 + 1, then, by the proof of
Proposition 3.1, iM \ iM 6= ∅ for every i ≥ γ.

Now we give a criterion for the maximal ideal M to be normal.

Theorem 3.11. The following statements are equivalent:

(i) M is normal.

(ii) (a + 1)M = aM + M for every a ≥ 0.

Proof. (i) ⇒ (ii): This follows by the definition of normality of M .
(ii) ⇒ (i): We want to prove that iM = iM for every i ≥ 1. Since Ca = ∅ for
every a, then by (3.2) and by Proposition 3.8, we have the proof.

We recall that we always assume g1 < · · · < gn. If Mi denote the maximal
ideal of Si = 〈g1, . . . , gi〉, it is natural to ask whether Mn could be normal when
Mi is not normal for some i < n. The following theorem answers this question.

Theorem 3.12. If Mi is not normal, then Mn is not normal.

Proof. Since Mi is not normal, then, by the definition of normal maximal
ideal and by Proposition 3.8, there exist an integer a and an element x =
gs1

+ · · · + gst
such that x ∈ (a + 1)Mi \ (a + 1)Mi = (a + 1)Mi \ aMi + Mi.

Now we prove that x ∈ (a + 1)Mn \ (a + 1)Mn, hence Mn is not normal.
Clearly x ∈ (a + 1)Mi ⊆ (a + 1)Mn. Since x ∈ (a + 1)Mi \ aMi + Mi, we
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have x − gsj
< ag1 for every j = 1, . . . , t. If x ∈ (a + 1)Mn, then x is a sum

of at least a + 1 generators with at least one generator greater than gi since
x /∈ (a + 1)Mi. But this is impossible since, by gsj

≤ gi for every j = 1, . . . , t,
we have x− gi+1 < x− gsj

< ag1.

We can use what studied till now about the normality of maximal ideals for
the study of the normality of generic ideals of a numerical semigroup.

Let H be an ideal of S. We recall that H = {s ∈ S | s ≥ h̄}, where
h̄ = min{h ∈ H}, is the integral closure of H in S. Thus H is integrally closed
if and only if H = S(h̄).

By definition of ideal in a numerical semigroup, we have that H ∪ {0} is a
numerical semigroup. We denote it by SH and we denote its maximal ideal by
MH .

Remark 3.13. Let H be an integrally closed ideal of S, then H = [h̄,∞) ∩ S =
[h̄,∞) ∩ SH = MH .

Proposition 3.14. Let H be an integrally closed ideal of S. Then iH = iMH

for every i ≥ 1.

Proof. By H = MH , we have iH = {s ∈ S | s ≥ ih̄} = {s ∈ SH | s ≥ ih̄} =
iMH .

Hence, by Remark 3.13 and Proposition 3.14, we have that the study of the
normality of any integrally closed ideal H of S, is related to the study of the
normality of the maximal ideal of a new numerical semigroup SH . This allows
us to translate the results of the first part of this section. In particular we have

H is normal if and only if (a + 1)H = aH + H for every a ≥ 0. (3.4)

Remark 3.15. We remark that there is no connection between the generators
of S and the generators of SH . We know only that the number of generator
of S are less or equal of those of SH , SH ⊆ S and, if H is integrally closed,
c(S) = c(SH).

Example 3.16. Let S = 〈7, 8, 9, 12, 13〉 and let H = S(9), K = S(8) two inte-
grally closed ideals of S.
For H , we have SH = 〈9, 12, 13, 14, 15, 16, 17, 19, 20〉. Hence H is not normal by
Proposition 3.1 applied to SH .

For K, we have SK = 〈8, 9, 12, 13, 14, 15, 19〉. Since 19 ∈ C1 = 2MH \ 2MH ,
we have K is not normal by Remark 3.4 applied to SK .

Example 3.17. Let S = 〈10, 12, 15, 16, 17〉 and let H = S(15), K = S(12) two
integrally closed ideals of S.

For H we have SH = 〈15, 16, 17, 20, 22, 24, 25, 26, 27, 28, 29〉. Since γ = 2 and
H is integrally closed, we have H is normal by Proposition 3.3 applied to SH .

Instead, as in the example 3.16, K is not normal by Proposition 3.1 applied
to SK .
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4 The 3-generated case

In this section we consider only 3-generated numerical semigroups and we deter-
mine which of them that have normal maximal ideal M . We know, by Propo-
sitions 3.1 and 3.11 and Remark 3.4, that if g2 > g1 + 1 or g3 > 2g1, then M is
not normal. Hence throughout the rest of this section we assume g2 = g1 + 1
and g3 < 2g1. We recall that, by Lemmas 3.5 and 3.6, Ca is empty or contains
elements only of the form tg3 with t ≤ a.

We recall also that for us α is the unique integer such that (α− 1)g3 < αg1

and αg3 ≥ (α+1)g1, i.e. the unique integer such that (α+1)g1 ≤ αg3 < αg1+g3.

Lemma 4.1. Ca = ∅ for every a < α and Cα = (α + 1)M \ (α + 1)M .

Proof. By Proposition 3.2 and by definition of Ca, we have Ca = ∅ for every
a < α. Hence, by Proposition 3.8, we have the second part of the proof.

Lemma 4.2. Ca is empty or of the form {tg3} where t ≤ a is the unique integer
which satisfies (a + 1)g1 < tg3 < ag1 + g3. In particular Cα is empty or of the
form {αg3}.

Proof. Let tg3 ∈ Ca. By Lemma 3.6 and by definition of Ca, we have t ≤ a
and (a + 1)g1 < tg3. Since tg3 /∈ aM + M , then (t − 1)g3 ∈ S \ aM , hence
(t− 1)g3 < ag1, i.e. tg3 < ag1 + g3.
The second part of the theorem follows immediately by definion of α.

Remark 4.3. We note that could happen that (a + 1)g1 < tg3 < ag1 + g3, but
Ca = ∅.

Lemma 4.4. Cα = ∅ if and only if αg3 ≤ (α + 1)g2.

Proof. Suppose αg3 > (α + 1)g2. We want to prove that αg3 ∈ (α + 1)M \
(α + 1)M , hence, by Lemma 4.1, Cα 6= ∅. Suppose αg3 ∈ (α + 1)M . So
αg3 = xg1 + yg2 + zg3 with x + y + z ≥ α + 1. By (α − z)g3 ≥ (α − z + 1)g1

and by the definition of α, we have z = 0. Furthermore, by αg3 > (α + 1)g2,
we have that αg3 is a sum of at least (α + 2) generators g1 and g2, hence, by
αg3 ≥ (α+2)g1 and (α−1)g3 < αg1 (by definition of α), we have a contradiction
to g3 < 2g1.
Suppose now αg3 ≤ (α + 1)g2. Since g2 = g1 + 1, we have that every element
between (α+1)g1 and (α+1)g2 is a sum of α+1 elements g1 or g2. In particular
αg3 ∈ (α + 1)M . Hence, by the second part of the Lemma 4.2 and By Lemma
4.1, we have Cα = ∅.

Lemma 4.5. If Cα = ∅, then Ca = ∅ for every a.

Proof. Let t ≤ a the number which satisfies (a + 1)g1 < tg3 < ag1 + g3. By
Cα = ∅ and by Lemma 4.4, we have αg3 ≤ (α + 1)g2. Moreover, by definition
of α, we have (α +1)g1 ≤ αg3 and α ≤ t (since (t+1)g1 ≤ (a+1)g1 < tg3). We
prove that tg3 ∈ aM + M , then Ca = ∅ follows by Lemma 4.2.
Consider first the case αg3 = (α+1)g2. Since (a+1)g1 < tg3 and g2 = g1+1, we
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have ag1+g2 ≤ tg3. Thus ag1 ≤ tg3−g2 = (t−α)g3+αg3−g2 = (t−α)g3+αg2,
that is tg3 − g2 ∈ aM . Hence tg3 ∈ aM + M .
Suppose now αg3 < (α+1)g2. By g2 = g1 +1, we have αg3 = g1 + s with s ∈ S.
Thus ag1 < tg3−g1 = (t−α)g3 +αg3−g1 = (t−α)g3 +s, that is tg3−g1 ∈ aM .
Hence tg3 ∈ aM + M .

Theorem 4.6. Let g2 = g1 + 1 and g3 < 2g1. Then M is normal if and only if
αg3 ≤ (α + 1)g2.

Proof. By Theorem 3.11 and definition of Ca, we have that M is normal if
and only if Ca = ∅ for every a. Hence, by Lemmas 4.5 and 4.4, we have the
proof.

Example 4.7. Let S = 〈10, 11, 10+ x〉. We want to study for which values of x,
M is normal. By Proposition 3.11 and Remark 3.4, we only consider values of
x for which 10 + x < 20, hence 2 ≤ x ≤ 9. By definition of α and Theorem 4.6,
M is normal if and only if there exist integers α satisfying the following system
of inqualities







(α− 1)(10 + x) < 10α
α(10 + x) ≥ 10(α + 1)
α(10 + x) ≤ 11(α + 1)

⇐⇒







xα < 10 + x
xα ≥ 10
xα ≤ α + 11

It easy to check that the system has solution only for x = 2, 3, . . . , 6. Hence M
is normal if and only if S = 〈10, 11, 10 + x〉 with x = 2, 3, . . . , 6.

Example 4.8. Let us consider the numerical semigroup 〈100, 101, 117〉. Since
5 · 117 = 585 < 6 · 100 = 600 and 6 · 117 = 702 > 7 · 100 = 700, we have α = 6.
Since 702 ≤ 7 ·101 = 707 and by Theorem 4.6, M is normal. Now let us consider
the numerical semigroup 〈100, 101, 118〉. Since 5 ·118 = 590 < 6 ·100 = 600 and
6 · 188 = 708 > 7 · 100 = 700, we have α = 6. Since 708 > 7 · 101 = 707 and by
Theorem 4.6, M is not normal. We note that we can find semigroups for which
M is normal and g3 > 118. In fact using the same argument as above one can
easily check that 〈100, 101, 150〉, has normal maximal ideal M .

Now we give, for each k ≥ 3, an example of a numerical semigroup for which
iM = iM for every i < k, but kM 6= kM .

Example 4.9. Let S = 〈k2 − 3, k2 − 2, k2 + k − 1〉. Since

(k − 1)(k2 + k − 1) ≥ k(k2 − 3) ⇐⇒ 1 ≥ −3k

and
(k − 2)(k2 + k − 1) < (k − 1)(k2 − 3) ⇐⇒ 2 < 3,

we have α = k − 1. Hence by

(k − 1)(k2 + k − 1) > k(k2 − 2) ⇐⇒ 1 > 0

and by Lemmas 4.1 and 4.4 and by definition of Ca, the semigroup satisfies the
condition above.
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Let us denote the number of 3-generated numerical semigroups with normal
maximal ideal and g1 = m by N(m), the number of numerical semigroups with
g1 = m and g2 = m + 1 by W (m) and the number of 3-generated numerical
semigroups 〈m, m + 1, m + x〉 with x < m by B(m).

Remark 4.10. Since 2 ≤ x < m, then B(m) = m− 2. Consider S = 〈m, m + 1〉.
Clearly W (m) is equal to the number integers y such that y > m + 1 and
y /∈ 〈m, m + 1〉 (so that we have the numerical semigroup 〈m, m + 1, y〉). It is
well known (cf. e.g. [6]) that any 2-generated numerical semigroup is symmetric
i.e. has just as many elements as non-elements below the conductor and that

c(S) = m(m + 1)− 2m. Hence W (m) = c(S)
2 − (m− 1) = (m−2)(m−1)

2 .

By Proposition 3.11 and Remark 3.4, we know that if 〈m, m + 1, m + x〉
has normal maximal ideal, then x < m. Hence N(m) is very small compared
to W (m) for large m. The following theorem shows that N(m) is very small
compared also to B(m) for large m.

Theorem 4.11. Let N(m) and B(m) be as above. Then limm→∞
N(m)
B(m) = 0.

Proof. By Theorem 4.6, the values of x such that 〈m, m + 1, m + x〉 has
normal maximal ideal satisfy the following system of inequalities







(α − 1)(m + x) < αm− 1
α(m + x) ≥ (α + 1)m
α(m + x) ≤ (α + 1)m + (α + 1)

⇐⇒







(α− 1)x < m− 1
αx ≥ m
αx ≤ m + α + 1

that is m
α
≤ x ≤ min{m−1

α−1 , m
α

+ 1 + 1
α
}.

We note that min{m−1
α−1 , m

α
+ 1+ 1

α
}− m

α
≤ (m

α
+ 1+ 1

α
)− m

α
= 1+ 1

α
< 2, since

by x < m, we have α ≥ 2. Hence for every α there are at most two integers in
the interval [m

α
, min{m−1

α−1 , m
α

+ 1 + 1
α
}].

Suppose α−1 ≥
√

m− 1, then m−1
α−1 ≤

√
m− 1. Thus for every such α, we have

2 ≤ x ≤
√

m− 1. Hence there are at most
√

m− 1 − 1 such values of x such
that 〈m, m+1, m+x〉 has normal maximal ideal. Suppose now α−1 <

√
m− 1.

Thus 2 ≤ α < 1 +
√

m− 1. Since for every α there are at most two integers in
the interval [m

α
, min{m−1

α−1 , m
α

+1 + 1
α
}], then if 2 ≤ α < 1+

√
m− 1, there exist

at most 2(1+
√

m− 1) such values of x such that 〈m, m +1, m +x〉 has normal
maximal ideal.
Hence N(m) ≤ (

√
m− 1 − 1) + (2 + 2

√
m− 1) = 3

√
m− 1 + 1. By N(m)

B(m) ≤
3
√

m−1+1
m−2 , we have the proof.

5 Normality of the maximal ideal in a ring

We recall that for us R is a local, Noetherian, one-dimensional domain such
that the integral closure R of R in its quotient field is a DVR and a finitely
generated R-module and such that R and R have the same residue field. We
recall also that v(R) = S = 〈g1, . . . , gn〉 with g1 < g2 < · · · < gn.
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In this section we study the connection between the normality of m and the
normality of v(m) = M .

We note that in general iv(m) ⊆ v(mi) and the inclusion could be strict.

Example 5.1. Let R = K[[t4+t5, t6, t11]] with K a field of characteristic different
from 3 and let S = 〈4, 6, 11, 13〉. One can easily check that v(R) = S and, by
(t4 + t5)3 − (t6)2 = 3t13 + 3t14 + t15, we have 13 ∈ v(m2). However 13 /∈ 2v(m).

Proposition 5.2. For every i ≥ 1 we have v(mi) = iv(m).

Proof. Since, by Theorem 2.3, m
i = R(ig1), then v(mi) = S(ig1) = iv(m).

The following theorem is an analogue for rings to Theorem 3.11. We recall
that m = m is always true.

Proposition 5.3. The maximal ideal m is normal if and only if m
i+1 = m

i
m

for every i ≥ 1.

Proof. Clearly m normal implies m
i+1 = m

i
m for every i.

Suppose now m
i+1 = m

i
m for every i ≥ 1 and we want to prove that m

i = m
i.

We prove it by induction on i. We know that m = m. Suppose m
i = m

i for every
i ≤ n and we prove that m

n+1 = m
n+1. In fact m

n+1 = m
n
m = m

n
m = m

n+1.

Theorem 5.4. If v(m) is normal, then m is normal.

Proof. By iv(m) + v(m) ⊆ v(mi
m) and by Proposition 5.2, we have that

v(mi+1) \ v(mi
m) ⊆ (i + 1)v(m) \ (iv(m) + v(m)).

Hence if v(m) is normal, then m normal follows by Corollary 2.2 and Proposition
5.3.

It is natural to ask whether m normal implies v(m) normal.
By iv(m) ⊆ v(mi) and Proposition 5.2, for every i ≥ 1, the following lemma
follows immediately.

Lemma 5.5. For every i ≥ 1, v(mi) \ v(mi) ⊆ iv(m) \ iv(m) .

Example 5.6. Consider the ring R = K[[t12 + t18, t13 + t18, t15 + t20, t22]] with
K a field of characteristic different from 2 and S = 〈12, 13, 15, 22〉. One can
easily check that v(R) = S. We have iv(m) = iv(m) for every i 6= 3 and
3v(m) \ 3v(m) = {44}, hence v(m) is not normal. By Lemma 5.5 and Corollary

2.2, m
i = m

i for every i 6= 3. Since (t13 + t18)3 − (t12 + t18)2(t15 + t20) =
2t44 − 2t45 − 2t50 − t51 + t54 − t56 ∈ m

3 and by Lemma 5.5, we also have
m

3 = m
3. Hence m is normal.

We denote min{(i + 1)g1, (i− 1)g1 + g2} by µi.

Lemma 5.7. For every i ≥ 1, the two smallest values in v(mi) are ig1 and µi.

Proof. Let m = (r1, . . . , rn) with v(rj) = gj for every j = 1, 2, . . . , n (this is
not in general a minimal set of generators of m). We know that every element
x ∈ m

i is of the type x = b1r
i
1 + b2r

i−1
1 r2 + y with v(y) > µi. By properties of

10



valuation, we also know that if b1 is not unit, then v(b1r
i
1) ≥ (i + 1)g1 ≥ µi and

if b2 is unit then v(b2r
i−1
1 r2) = (i − 1)g1 + g2 ≥ µi. Hence if b1 is a unit, then

v(x) = ig1, otherwise v(x) ≥ µi. Since ri+1
1 and ri−1

1 r2 are in m
i, we have the

proof.

The following proposition is an analogue for rings to Proposition 3.1.

Proposition 5.8. If m is normal, then g2 = g1 + 1.

Proof. Suppose g2 > g1 +1. By the proof of Proposition 3.1, we have that if
i is an integer such that i ≥ γ, then ig1 + 1 ∈ iv(m) \ iv(m). Hence by Lemma

5.7, ig1 + 1 ∈ v(mi) \ v(mi) that is m
i 6= m

i.

6 The Cohen-Macaulay property of G(m) in a

particular case

Let R be a ring as in the Section 5. Throughout the rest of this section we
assume that g2 = g1 + 1.

It is known (cf. [4, Corollary 17]) that for a ring R of our type, principal
minimal reductions always exist and that if x ∈ m then xR is a minimal reduc-
tion of m if and only if x is of minimal value in m. For everything concerning
reduction of an ideal, we refer to [11].

We denote by G(m) the associated graded ring of R with respect to m, that is
G(m) = ⊕i≥0m

i/m
i+1. The question whether, for a local ring, G(m) is Cohen-

Macaulay is an important one. In fact it is important and often difficult to
compute the Hilbert function of a local ring, however, if the associated graded
ring is Cohen-Macaulay, then the computation of the Hilbert function can be
reduced to the computation of the Hilbert function of an Artinian local ring.

An element 0̄ 6= z̄ = z + m
s+1 ∈ G(m) is a zero divisor in G(m) if and only

if there exists an element 0̄ 6= ȳ = y + m
r+1 ∈ G(m) such that z̄ · ȳ = 0 i.e.

z · y ∈ m
s+r+1.

Remark 6.1. Let m = (x1, x2, . . . , xr) the maximal ideal of R. By the hy-
potheses above on R, we can assume v(x1) = g1 and v(x2) = g1 + 1. Hence

m
h = m

h = R(hg1) for every h � 0 (for example h ≥ g1 − 1).

Throughout the rest of the section we denote by x1R a principal minimal
reduction of m. It is known that G(m) is C-M if and only if x1 is a non-zero
divisor in G(m) (cf. [5, Remark 3.1]).

Lemma 6.2. If G(m) is C-M, then for every i ≥ 1 and for every w ∈ m
i \m

i+1

we have v(w) < (i + 1)g1.

Proof. By Remark 6.1, we have only to consider i < h and we use decreasing
induction on i. For every w ∈ m

h−1\mh = m
h−1\mh clearly we have v(w) < hg1.

Now we prove that if for every w ∈ m
h−a\m

h−a+1 we have v(w) < (h−a+1)g1,
then for every f ∈ m

h−a−1 \m
h−a we have v(f) < (h−a)g1. Since G(m) is C-M

11



it follows that for every f ∈ m
h−a−1 \m

h−a we have x1f ∈ m
h−a \m

h−a+1. By
inductive hypothesis we have that v(x1f) = g1 + v(f) < (h− a + 1)g1 which is
v(f) < (h− a)g1.

Now we are ready to characterize when G(m) is C-M for a ring R under the
hypotheses at the beginning of this section.

Theorem 6.3. Let R be a ring as above, then G(m) is C-M if and only if m is
normal.

Proof. If m is normal, then G(m) is C-M (cf. [3, Proposition 2.1]).

Suppose now G(m) is C-M and that m is not normal. Let x ∈ m
β \m

β and let
r the integer such that x ∈ m

r \ m
r+1 (hence r < β). By Lemma 6.2 we have

v(x) < (r+1)g1 and, by r < β and x ∈ m
β \m

β, we have (r+1)g1 ≤ βg1 < v(x).
A contradiction.

Let m = (x1, . . . , xr), r ≤ n be the maximal ideal of R, with v(x1) = g1 and
v(x2) = g1 + 1. We will study the connection between the property that G(m)
is C-M and G(mT ) is C-M, where mT = (tg1 , tg2 , . . . , tgn) is the maximal ideal
of the semigroup ring T = K[[S]] = K[[tg1 , tg2 , . . . , tgn ]].

Proposition 6.4. If G(mT ) is C-M, then G(m) is C-M.

Proof. Suppose G(mT ) is C-M. By Theorem 6.3, we have mT normal, hence
m normal by Corollary 5.4. Again by Theorem 6.3, G(m) is C-M.

It is natural to ask whether the converse to Proposition 6.4 holds.

Remark 6.5. If G(m) is C-M, then in general is not true that G(mT ) is C-M. In
fact consider m = (t12 + t18, t13 + t18, t15 + t20, t22) and mT = (t12, t13, t15, t22) in
the Example 5.6. Since m is normal, then G(m) is C-M. However, by Theorem
6.3, G(mT ) is not C-M since mT is not normal.

7 A bound for lR(mi/mi)

Let R be a ring as in Section 5, with maximal ideal m = (x1, x2, . . . , xp), where
v(x1) = g1 and v(x1) < v(x2) < · · · < v(xp). Let us denote by r = r(m) =
min{n | mn+1 = zm

n for some z ∈ m} the reduction number of m.
We let µ(R) = lR(mi/m

i+1), with i ≥ r and we call µ(R) the multiplicity of
R.

As in Section 6, we assume that x1R is a principal minimal reduction of m.
By definition of r and Theorem 2.1, the following statements are easy to see:

for every i ≥ r, m
i+1 = x1m

i (7.1)

for every i ≥ r, µ(R) = v(x1) = g1 (7.2)

12



By [10, Lemma 2], we have that (R : R) = {x ∈ R | v(x) ≥ c(S)}. Hence
min{a ∈ N | xa

1 ∈ (R : R)} = γ, where γ is the integer introduced in the Section

3. From now on we denote by β = max{γ, r} and by q = lR(mβ/m
β).

Proposition 7.1. For every i ≥ β, lR(mi/m
i) = q .

Proof. Let i ≥ β. By β ≥ γ, we have m
β = R(βg1) = R(βg1). Since x1R is a

principal minimal reduction and i ≥ r, we have m
i = xi−β

1 m
β and m

i = xi−β
1 m

β .

Hence lR(mi/m
i) = lR(xi−β

1 m
β/xi−β

1 m
β) = lR(mβ/m

β) = q.

Theorem 7.2. For every i ≥ β, 0 ≤ lR(mi/m
i) ≤ lR(R/R)− µ(R) + 1.

Proof. Let us consider the second inequality and let T = k[[tg1 , tg2 , . . . , tgn ]]
be the semigroup ring associated to S with maximal ideal mT = (tg1 , tg2 , . . . , tgn).

We first prove that the inequality holds for T . Let x ∈ m
i
T \ m

i
T with i ≥ 0.

Then x = tig1 ty with y > 0 and tg1 ty /∈ m (if not x = t(i−1)g1 tg1 ty ∈ m
i
T ).

Clearly the map that associates the element ig1 +y ∈ v(mi
T )\ v(mi

T ) to g1 +y ∈
v(T (g1))\ v(mT ) is injective, hence lT (mi

T /m
i
T ) = |v(mi

T )\ v(mi
T )| ≤ |v(T (g1))\

v(mT )| = lT (T/T )− g1 + 1.

Noting that v(mi
T ) = iv(m) and v(mi

T ) = iv(m), by Theorem 2.1, Lemma
5.5 and 7.2, we have

lR(mi/m
i) ≤ lT (mi

T /m
i
T ) ≤ lT (T/T )− g1 + 1 = lR(R/R)− µ(R) + 1.

Now we show that the bounds are the best possible.

Proposition 7.3. We have lR(mi/m
i) = 0 for every i ≥ β if and only if

v(x2) = g1 + 1.

Proof. Let lR(mi/m
i) = 0. Suppose v(r2) > g1 + 1. By the proof of Propo-

sition 5.8, for every i � 0 we have m
i 6= m

i. A contradiction to lR(mi/m
i) = 0

for every i ≥ β.
Vice versa, let v(r2) = g1 + 1. Then, as in the Remark 6.1, we have m

h = m
h

for h � 0, hence, by Proposition 7.1, m
β = m

β. Using again Proposition 7.1,
we have lR(mi/m

i) = 0 for every i ≥ β.

Now we give a class of rings for which lR(mi/m
i) = lR(R/R)− µ(R) + 1 for

every i ≥ β.

Example 7.4. Let R = k[[t2, t2a+1]] with a ≥ 1.
Thus m = {t2, t4, . . . , t2a, t2a+1, . . . }, hence lR(R/R)− v(t2) + 1 = |N \S| − 1 =
a− 1.

Since m
i = {t2i, . . . , t2(a+(i−1)), t2(a+(i−1))+1, . . . } for every i ≥ 1, thus for

every i ≥ 1, lR(mi/m
i) = |v(mi) \ v(mi)| = |{2i,−→} \ {2i, . . . , 2(a + i− 1),−→

}| = |{2i,−→} \ {2i, . . . , 2i + 2(a− 1),−→}| = a− 1.
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Remark 7.5. The rings R = k[[t2, t2a+1]] with a ≥ 1, are not the only rings for

which lR(mi/m
i) = lR(R/R)−µ(R)+1 for every i ≥ β. For example every ring

R = k[[tg1 , tg2 , . . . , tgn ]] = K[[S]], with g2 < c(S) ≤ 2g1 and 3g1 = 2g2, satisfies
the equality above.

Example 7.6. Now we give a class of rings R = k[[tg1 , tg2 , . . . , tgn ]] for which

lR(mi/m
i), for every i ≥ β, is equal to a fixed x ≥ 1.

Let R = k[[t2x+1, t3x+2, t3x+3, . . . , t4x+1]]. So m = {t2x+1, t3x+2, t3x+3, . . . , t4x+2,
t5x+3, t5x+4, . . . }. In fact for every 1 ≤ y ≤ x, we have 6x + 3 + y = (3x + 2) +
(3x+1+y). Thus m

i = {ti(2x+1), ti(2x+1)+x+1, ti(2x+1)+x+2, . . . } for every i ≥ 2,

hence lR(mi/m
i) = |{i(2x+1),−→}\{i(2x+1), i(2x+1)+x+1,−→}| = x for

every i ≥ β ≥ 2.
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The author wishes to thank R. Fröberg and C. Gottlieb for their helpful
comments and for a careful reading of the manuscript.

References
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[3] V. Barucci-M. D’Anna-R. Fröberg, Normal Hilbert functions of one-
dimensional local rings, Comm. Algebra 28 (2001), 333-341.
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