Normal maximal ideal in one-dimensional local rings

Vincenzo Micale

Research Reports in Mathematics
Number 5, 2001
Department of Mathematics
Stockholm University

Electronic versions of this document are available at http://www.matematik.su.se/reports/2001/5

Date of publication: March 13, 2001
Keywords: Normal ideal.
Postal address:
Department of Mathematics
Stockholm University
S-106 91 Stockholm
Sweden

Electronic addresses:
http://www.matematik.su.se
info@matematik.su.se

Normal maximal ideal in one-dimensional local rings

Vincenzo Micale*

March 13, 2001

Abstract

We give a criterion for the maximal ideal M of the numerical semigroup S to be normal and for 3-generated numerical semigroups we characterize those that have normal maximal ideal. We also give a criterion for the maximal ideal of Noetherian, local one-dimensional, analytically irreducible domains (R, \mathbf{m}) such that R and \bar{R}, the integral closure of R in its quotient field, have the same residue field, to be normal and we answer the question whether \mathbf{m} normal implies M normal where M is the maximal ideal of $S=v(R)$. We show, in a particular case, how the property for the associated graded ring of R with respect to \mathbf{m} to be Cohen-Macaulay is strictly related to the normality of \mathbf{m}.

MSC: 20Mxx; 13H10

1 Introduction

Let R be a local, Noetherian, one-dimensional domain; assume also that R is analytically irreducible or, equivalently, that the integral closure \bar{R} of R in its quotient field is a discrete valuation ring (DVR) and a finitely generated R module. Let K denote the quotient field of R and \bar{R}, let v be the discrete valuation on $K^{*}=K \backslash\{0\}$ associated to \bar{R} and, for each subset B of K, let $v(B)$ denote the image under v of the set of nonzero elements of B.
We call $v(R)=\{v(r) \mid r \in R\}$ the value semigroup associated to R. It is a subsemigroup of \mathbb{N} and it is well known that there is a close connection between R and $v(R)$, when R and \bar{R} have the same residue field (cf. [8],[10]).

An early paper on the connection between semigroups and one-dimensional local domains is [1]. This connection has since been studied in e.g. [7] and there is an extensive study on numerical semigroups and their applications to integral domains in [2].

The key fact that allows to connect a ring to its value semigroup is that it is possible to compute the lenght $l_{R}(I / J)$ (where $I \supseteq J$ are fractional ideals of R) in terms of the semigroup (cf.Theorem 2.1).

[^0]
1.1 Description of the content

We now make a closer description of the content of this paper. In Section 2 we introduce the concepts of numerical semigroup S and of ideal in a numerical semigroup. Then we introduce $v(R)$, the associated value semigroup to a ring R and we recall some known results about the connection between the ring and its associated value semigroup. In Section 3, we give a criterion for the maximal ideal M of S to be normal and we use it to give a criterion for a generic ideal of S to be normal. We also answer the question whether M_{n}, the maximal ideal in $S_{n}=\left\langle g_{1}, \ldots, g_{n}\right\rangle$, could be normal when M_{i} is not normal for some $i<n$ (where M_{i} denote the maximal ideal of $S_{i}=\left\langle g_{1}, \ldots, g_{i}\right\rangle$). In Section 4 we consider the case of 3 -generated semigroups and for this case we characterize the numerical semigroups that have normal maximal ideal. In Section 5 we give a criterion for the maximal ideal \mathfrak{m} of R to be normal and we answer the question whether \mathfrak{m} normal implies M normal where M is the maximal ideal of $S=v(R)$. In Section 6 we prove, in a particular case, that \mathfrak{m} is normal if and only if $G(\mathfrak{m})$ is C-M, where $G(\mathfrak{m})$ is the associated graded ring of R with respect to \mathfrak{m}. In Section 7 we find a bound for $l_{R}\left(\overline{\mathfrak{m}^{i}} / \mathfrak{m}^{i}\right)$ for $i \gg 0$.

2 Preliminaries

Let \mathbb{N} denote the natural numbers (including 0). A subsemigroup S of $(\mathbb{N},+)$ with $0 \in S$ is called a numerical semigroup. Each semigroup S has a natural partial ordering \leq_{S} where for two elements s and t in $S, s \leq_{S} t$ if there is an $u \in S$ such that $t=s+u$. The set $\left\{g_{i}\right\}$ of the minimal elements in $S \backslash\{0\}$ in this ordering is called the minimal set of generators for S. In fact all elements of S are linear combinations with non-negative integers coefficients of minimal elements. Note that the set $\left\{g_{i}\right\}$ of minimal generators is finite since for any $s \in S, s \neq 0$, we have $g_{i} \neq g_{j}(\bmod s)$. The same argument shows that the number of minimal generators is at most $\min \{s \in S \mid s \neq 0\}$. A numerical semigroup generated by $g_{1}<g_{2}<\cdots<g_{n}$ is called an n-generated numerical semigroup and we denote it by $\left\langle g_{1}, g_{2}, \ldots, g_{n}\right\rangle$. Since the semigroup $\left\langle g_{1}, g_{2}, \ldots, g_{n}\right\rangle$ is isomorphic to $\left\langle d g_{1}, d g_{2}, \ldots, d g_{n}\right\rangle$ for any $d \in \mathbb{N} \backslash\{0\}$, we assume, in the sequel, that $\operatorname{gcd}\left(g_{1}, g_{2}, \ldots, g_{n}\right)=1$. This is easily seen to be equivalent to $|\mathbb{N} \backslash S|<\infty$. Since $|\mathbb{N} \backslash S|<\infty$, there exist in S elements s such that the set $\{s, s+1, \longrightarrow\} \subseteq S$ (where the symbol " \longrightarrow " means that all subsequent natural numbers belong to the set). We call the smallest of such elements s the conductor of S, and we denote it by $c=c(S)$.

A relative ideal of a semigroup S is a nonempty subset H of \mathbb{Z} such that $H+S \subseteq H$ and $H+s \subseteq S$ for some $s \in S$. A relative ideal of S which is contained in S is simply called an ideal of S. Clearly S is an ideal of S, but $\{0\}$ is not an ideal of S. By a proper ideal, we mean an ideal distinct from S, i.e., an ideal not containing 0 . It is straightforward to see that if H and N are relative ideals of S, then $H+N$ and $k H(=H+\cdots+H, k$ summands for $k \geq 1)$ are also relative ideals of S. Sometimes it is useful to consider $k H$ for $k=0$; in this case
we let $0 H=S$. The ideal $M=\{s \in S \mid s \neq 0\}$ is called the maximal ideal of S. For every ideal H, we consider $\bar{H}=\{s \in S \mid s \geq \bar{h}\}$ where $\bar{h}=\min \{h \in H\}$ and we call \bar{H}, the integral closure of H in S. In general $i H \subseteq \overline{i H}$. We say that H is normal if $i H=\overline{i H}$ for every $i \geq 1$. Clearly $M=\bar{M}$.

Throughout the rest of the paper we will assume that (R, \mathfrak{m}) is a local, Noetherian, one-dimensional domain. We assume also that R is analytically irreducible or, equivalently, that the integral closure \bar{R} of R in its quotient field is a DVR and a finite generated R-module and that R and \bar{R} have the same residue field. For every such ring, $v(R)$ is a numerical semigroup and throughout the rest of the paper, we will denote it by S.

We also will denote by $g_{1}<g_{2}<\cdots<g_{n}$ and by $M=v(\mathfrak{m})$ respectively the generators and the maximal ideal of S.
If I is an ideal of R, we denote by \bar{I} the integral closure $\left\{x \in R \mid x^{n}+r_{1} x^{n-1}+\right.$ $\cdots+r_{n}=0$, for some $\left.r_{i} \in I^{i}\right\}$. We say that I is normal if $I^{j}=\overline{I^{j}}$ for every $j \geq 1$. When I is a fractional ideal of R, then $v(I)=\{v(i) \mid i \in I\}$ is a relative ideal of the semigroup S.

With our choice of R, we have the following theorems.
Theorem 2.1. If $I \subseteq J$ are fractional ideals of R, then $l_{R}(I / J)=|v(I)-v(J)|$
Proof. Cf. [10, Proposition 1]
Corollary 2.2. Let $I \subseteq J$ be fractional ideals of R, then $v(I)=v(J)$ if and only if $I=J$.

For every $a \in S$, we denote in the sequel the ideal $\{r \in R \mid v(r) \geq a\}$ of R by $R(a)$, the ideal $\{r \in \bar{R} \mid v(r) \geq a\}$ of \bar{R} by $\bar{R}(a)$ and the semigroup ideal $\{s \in S \mid s \geq a\}$ of S by $S(a)$.

Theorem 2.3. Let I be a fractional ideal of R, \bar{I} be the integral closure of I in R and $a=\min \{v(i) \mid i \in I\}$. Then $\bar{I}=R(a)$.

Proof. Let $x \in I$ such that $v(x)=a$. It is known (cf. [9, Remark (a), p. 659]) that $z \in R$ is integral over the ideal $x R$ if and only if $z / x \in \bar{R}$, i.e., if and only if $v(z) \geq v(x)=a$. Thus the integral closure of $x R$ is $R(a)$ and $R(a)$ is integrally closed. By $x R \subseteq I \subseteq R(a)$, the claim follows.

3 Normal maximal ideal in a numerical semigroup

Let S be a numerical semigroup generated by $g_{1}<g_{2}<\cdots<g_{n}$. The following statements are easy to see:

$$
\begin{equation*}
\text { if } x \in S \text { and } x>i g_{n} \text {, then } x \in(i+1) M \tag{3.1}
\end{equation*}
$$

$$
\begin{equation*}
\text { for every numerical semigroup } S \text {, we have } M=\bar{M} \tag{3.2}
\end{equation*}
$$

$$
\begin{equation*}
\text { for any ideal } H \text { of } S \text {, if }\left[a, a+g_{1}-1\right] \subseteq H, \text { then }[a, \infty) \subseteq H \tag{3.3}
\end{equation*}
$$

From now on we denote by $\gamma=\min \left\{m \in \mathbb{N} \mid m g_{1} \geq c(S)\right\}$.
Proposition 3.1. If M is normal, then $g_{2}=g_{1}+1$.
Proof. Suppose that $g_{2}=g_{1}+x$ with $x>1$. Since the second smallest element in γM is $\min \left\{(\gamma+1) g_{1},(\gamma-1) g_{1}+g_{2}=\gamma g_{1}+x\right\}>\gamma g_{1}+1$, we have that $\gamma g_{1}+1 \in \overline{\gamma M} \backslash \gamma M$, hence M is not normal.

From now on we denote by α the integer such that $(\alpha-1) g_{n}<\alpha g_{1}$ and $\alpha g_{n} \geq(\alpha+1) g_{1}$.
Proposition 3.2. For every $i \leq \alpha, i M=\overline{i M}$.
Proof. By definition of α, we have $i g_{n}<(i+1) g_{1}$ for every $i<\alpha$. We show that $i g_{n}<(i+1) g_{1}$ implies $(i+1) M=\overline{(i+1) M}$. We have only to show that $\overline{(i+1) M} \subseteq(i+1) M$. Let $x \in \overline{(i+1) M}$. Then $x \geq(i+1) g_{1}$. Since $i g_{n}<(i+1) g_{1}$, we have $x>i g_{n}$, hence, by (3.1), $x \in(i+1) M$. So $i M=\overline{i M}$ for every i such that $2 \leq i \leq \alpha$ and (3.2) completes the proof of the proposition.

Now we give a sufficient condition for M to be normal. We know that if $g_{2}>g_{1}+1$, then M is not normal.

Proposition 3.3. Let $g_{2}=g_{1}+1$. If $\overline{i M}=i M$ for every $i \leq \gamma$, then M is normal.

Proof. By hypothesis, $\overline{i M}=i M$ for every $i \leq \gamma$, in particular $\overline{\gamma M}=\gamma M$. So, by $\gamma g_{1} \geq c$, we have $\gamma M=\overline{\gamma M}=\left\{\gamma g_{1}, \longrightarrow\right\}$. Thus for every $j>\gamma$, we have $j M=\left\{j g_{1}, \longrightarrow\right\}=\overline{j M}$. Hence M is normal.

For every $a \geq 1$, we denote by $C_{a}=\overline{(a+1) M} \backslash(\overline{a M}+M)$.
This is an important set for us and we use it many times in the paper.
Remark 3.4. Note that $C_{1}=\overline{2 M} \backslash(\bar{M}+M)=\overline{2 M} \backslash 2 M=\left\{g_{i} \mid g_{i}>2 g_{1}\right\}$ where the second equality holds by (3.2).

Lemma 3.5. Let $x=g_{s_{1}}+\cdots+g_{s_{t}} \in C_{a}$ with $g_{2}=g_{1}+1$. Then $s_{j}>2$ for every $j=1, \ldots, t$.

Proof. Suppose $s_{1}=1$ or 2 . Since $x \in C_{a}$, then $x>(a+1) g_{1}$, hence $x-g_{s_{1}} \geq a g_{1}$, that is $x-g_{s_{1}} \in \overline{a M}$ and hence $x \in \overline{a M}+M$. A contradiction to $x \in C_{a}$.

Lemma 3.6. If $x=g_{s_{1}}+\cdots+g_{s_{t}} \in C_{a}$, then $t \leq a$.
Proof. Suppose $t>a$. Then $x-g_{s_{i}} \geq a g_{1}$ for every i and as in the proof of Lemma 3.5, we have a contradiction to $x \in C_{a}$.
$\underline{\text { Remark 3.7. Note that in general } C_{a} \subseteq \overline{(a+1) M} \backslash(a+1) M \text {, since }(a+1) M \subseteq}$ $\overline{a M}+M$.
Proposition 3.8. If $C_{i}=\emptyset$ for every $i \leq a-1$, then $\overline{(i+1) M} \backslash(i+1) M=\emptyset$ for every $i \leq a-1$ and $C_{a}=\overline{(a+1) M} \backslash(a+1) M$.

Proof. We prove the first part of the proposition by induction on i. If $i=1$, then $\overline{2 M} \backslash 2 M=\emptyset$ follows by $C_{1}=\emptyset$ and by Remark 3.4.
Suppose now that for every $j<i \leq a-1, \overline{(j+1) M} \backslash(j+1) M=\emptyset$ (i.e. $\overline{(j+1) M}=(j+1) M$ for every $j<i \leq a-1)$ and we prove that $\overline{(i+1) M} \backslash$ $\underline{(i+1) M}=\emptyset$. In fact $\emptyset=C_{i}=\overline{(i+1) M} \backslash(\overline{i M}+M)=\overline{(i+1) M} \backslash(i M+M)=$ $\overline{(i+1) M} \backslash(i+1) M$, where the third equality holds by the inductive hypothesis. Now we prove the second part of the proposition. Since $\overline{\overline{(i+1) M}} \backslash(i+1) M=\emptyset$ for every $i \leq a-1$, in particular $\overline{a M}=a M$. Hence $C_{a}=\overline{(a+1) M} \backslash(\overline{a M}+M)=$ $\overline{(a+1) M} \backslash(a M+M)=\overline{(a+1) M} \backslash(a+1) M$.

Example 3.9. Consider the numerical semigroup $S=\langle 13,14,19\rangle$. It is easy to check that $\overline{i M} \backslash i M=\emptyset$ for every $i \neq 4,5, \overline{4 M} \backslash 4 M=\{57\}$ and $\overline{5 M} \backslash 5 M=$ $\{76\}$. By Remark 3.7, we have $C_{i}=\emptyset$ for every $i \neq 3,4$. By Proposition 3.8, $C_{3}=\{57\}$. By Remark 3.7 and since $76=57+19$, where $57 \in \overline{4 M}$, we have $C_{4}=\emptyset$.

Remark 3.10. By definitions of γ and C_{i}, it is straightforward to prove that $C_{i}=\emptyset$ for every $i \geq \gamma$. If $g_{2}=g_{1}+1$, then, by (3.3), we have $\overline{i M} \backslash i M=\emptyset$ for every $i \gg 0$ (e.g. $i \geq g_{1}-1$). However if $g_{2}>g_{1}+1$, then, by the proof of Proposition 3.1, $\overline{i M} \backslash i M \neq \emptyset$ for every $i \geq \gamma$.

Now we give a criterion for the maximal ideal M to be normal.
Theorem 3.11. The following statements are equivalent:
(i) M is normal.
(ii) $\overline{(a+1) M}=\overline{a M}+M$ for every $a \geq 0$.

Proof. (i) \Rightarrow (ii): This follows by the definition of normality of M.
(ii) \Rightarrow (i): We want to prove that $\overline{i M}=i M$ for every $i \geq 1$. Since $C_{a}=\emptyset$ for every a, then by (3.2) and by Proposition 3.8, we have the proof.

We recall that we always assume $g_{1}<\cdots<g_{n}$. If M_{i} denote the maximal ideal of $S_{i}=\left\langle g_{1}, \ldots, g_{i}\right\rangle$, it is natural to ask whether M_{n} could be normal when M_{i} is not normal for some $i<n$. The following theorem answers this question.

Theorem 3.12. If M_{i} is not normal, then M_{n} is not normal.
Proof. Since M_{i} is not normal, then, by the definition of normal maximal ideal and by Proposition 3.8, there exist an integer a and an element $x=$ $g_{s_{1}}+\cdots+g_{s_{t}}$ such that $x \in \overline{(a+1) M_{i}} \backslash(a+1) M_{i}=\overline{(a+1) M_{i}} \backslash \overline{a M_{i}}+M_{i}$. Now we prove that $x \in \overline{(a+1) M_{n}} \backslash(a+1) M_{n}$, hence M_{n} is not normal.
Clearly $x \in \overline{(a+1) M_{i}} \subseteq \overline{(a+1) M_{n}}$. Since $x \in \overline{(a+1) M_{i}} \backslash \overline{a M_{i}}+M_{i}$, we
have $x-g_{s_{j}}<a g_{1}$ for every $j=1, \ldots, t$. If $x \in(a+1) M_{n}$, then x is a sum of at least $a+1$ generators with at least one generator greater than g_{i} since $x \notin(a+1) M_{i}$. But this is impossible since, by $g_{s_{j}} \leq g_{i}$ for every $j=1, \ldots, t$, we have $x-g_{i+1}<x-g_{s_{j}}<a g_{1}$.

We can use what studied till now about the normality of maximal ideals for the study of the normality of generic ideals of a numerical semigroup.

Let H be an ideal of S. We recall that $\bar{H}=\{s \in S \mid s \geq \bar{h}\}$, where $\bar{h}=\min \{h \in H\}$, is the integral closure of H in S. Thus H is integrally closed if and only if $H=S(\bar{h})$.

By definition of ideal in a numerical semigroup, we have that $H \cup\{0\}$ is a numerical semigroup. We denote it by S_{H} and we denote its maximal ideal by M_{H}.

Remark 3.13. Let H be an integrally closed ideal of S, then $H=[\bar{h}, \infty) \cap S=$ $[\bar{h}, \infty) \cap S_{H}=M_{H}$.
Proposition 3.14. Let H be an integrally closed ideal of S. Then $\overline{i H}=\overline{i M_{H}}$ for every $i \geq 1$.
$\frac{\text { Proof. By } H=M_{H} \text {, we have } \overline{i H}=\{s \in S \mid s \geq i \bar{h}\}=\left\{s \in S_{H} \mid s \geq i \bar{h}\right\}=}{\overline{i M}}=$ $\overline{i M_{H}}$.

Hence, by Remark 3.13 and Proposition 3.14, we have that the study of the normality of any integrally closed ideal H of S, is related to the study of the normality of the maximal ideal of a new numerical semigroup S_{H}. This allows us to translate the results of the first part of this section. In particular we have

$$
\begin{equation*}
H \text { is normal if and only if } \overline{(a+1) H}=\overline{a H}+H \text { for every } a \geq 0 . \tag{3.4}
\end{equation*}
$$

Remark 3.15. We remark that there is no connection between the generators of S and the generators of S_{H}. We know only that the number of generator of S are less or equal of those of $S_{H}, S_{H} \subseteq S$ and, if H is integrally closed, $c(S)=c\left(S_{H}\right)$.

Example 3.16. Let $S=\langle 7,8,9,12,13\rangle$ and let $H=S(9), K=S(8)$ two integrally closed ideals of S.
For H, we have $S_{H}=\langle 9,12,13,14,15,16,17,19,20\rangle$. Hence H is not normal by Proposition 3.1 applied to S_{H}.

For K, we have $S_{K}=\langle 8,9,12,13,14,15,19\rangle$. Since $19 \in C_{1}=\overline{2 M_{H}} \backslash 2 M_{H}$, we have K is not normal by Remark 3.4 applied to S_{K}.

Example 3.17. Let $S=\langle 10,12,15,16,17\rangle$ and let $H=S(15), K=S(12)$ two integrally closed ideals of S.

For H we have $S_{H}=\langle 15,16,17,20,22,24,25,26,27,28,29\rangle$. Since $\gamma=2$ and H is integrally closed, we have H is normal by Proposition 3.3 applied to S_{H}.

Instead, as in the example $3.16, K$ is not normal by Proposition 3.1 applied to S_{K}.

4 The 3-generated case

In this section we consider only 3 -generated numerical semigroups and we determine which of them that have normal maximal ideal M. We know, by Propositions 3.1 and 3.11 and Remark 3.4, that if $g_{2}>g_{1}+1$ or $g_{3}>2 g_{1}$, then M is not normal. Hence throughout the rest of this section we assume $g_{2}=g_{1}+1$ and $g_{3}<2 g_{1}$. We recall that, by Lemmas 3.5 and $3.6, C_{a}$ is empty or contains elements only of the form $t g_{3}$ with $t \leq a$.

We recall also that for us α is the unique integer such that $(\alpha-1) g_{3}<\alpha g_{1}$ and $\alpha g_{3} \geq(\alpha+1) g_{1}$, i.e. the unique integer such that $(\alpha+1) g_{1} \leq \alpha g_{3}<\alpha g_{1}+g_{3}$.

Lemma 4.1. $C_{a}=\emptyset$ for every $a<\alpha$ and $C_{\alpha}=\overline{(\alpha+1) M} \backslash(\alpha+1) M$.
Proof. By Proposition 3.2 and by definition of C_{a}, we have $C_{a}=\emptyset$ for every $a<\alpha$. Hence, by Proposition 3.8, we have the second part of the proof.

Lemma 4.2. C_{a} is empty or of the form $\left\{\operatorname{tg}_{3}\right\}$ where $t \leq a$ is the unique integer which satisfies $(a+1) g_{1}<t g_{3}<a g_{1}+g_{3}$. In particular C_{α} is empty or of the form $\left\{\alpha g_{3}\right\}$.

Proof. Let $t g_{3} \in C_{a}$. By Lemma 3.6 and by definition of C_{a}, we have $t \leq a$ and $(a+1) g_{1}<t g_{3}$. Since $t g_{3} \notin \overline{a M}+M$, then $(t-1) g_{3} \in S \backslash \overline{a M}$, hence $(t-1) g_{3}<a g_{1}$, i.e. $t g_{3}<a g_{1}+g_{3}$.
The second part of the theorem follows immediately by definion of α.
Remark 4.3. We note that could happen that $(a+1) g_{1}<t g_{3}<a g_{1}+g_{3}$, but $C_{a}=\emptyset$.

Lemma 4.4. $C_{\alpha}=\emptyset$ if and only if $\alpha g_{3} \leq(\alpha+1) g_{2}$.
Proof. Suppose $\alpha g_{3}>(\alpha+1) g_{2}$. We want to prove that $\alpha g_{3} \in \overline{(\alpha+1) M} \backslash$ $(\alpha+1) M$, hence, by Lemma 4.1, $C_{\alpha} \neq \emptyset$. Suppose $\alpha g_{3} \in(\alpha+1) M$. So $\alpha g_{3}=x g_{1}+y g_{2}+z g_{3}$ with $x+y+z \geq \alpha+1$. By $(\alpha-z) g_{3} \geq(\alpha-z+1) g_{1}$ and by the definition of α, we have $z=0$. Furthermore, by $\alpha g_{3}>(\alpha+1) g_{2}$, we have that αg_{3} is a sum of at least $(\alpha+2)$ generators g_{1} and g_{2}, hence, by $\alpha g_{3} \geq(\alpha+2) g_{1}$ and $(\alpha-1) g_{3}<\alpha g_{1}$ (by definition of α), we have a contradiction to $g_{3}<2 g_{1}$.
Suppose now $\alpha g_{3} \leq(\alpha+1) g_{2}$. Since $g_{2}=g_{1}+1$, we have that every element between $(\alpha+1) g_{1}$ and $(\alpha+1) g_{2}$ is a sum of $\alpha+1$ elements g_{1} or g_{2}. In particular $\alpha g_{3} \in(\alpha+1) M$. Hence, by the second part of the Lemma 4.2 and By Lemma 4.1, we have $C_{\alpha}=\emptyset$.

Lemma 4.5. If $C_{\alpha}=\emptyset$, then $C_{a}=\emptyset$ for every a.
Proof. Let $t \leq a$ the number which satisfies $(a+1) g_{1}<t g_{3}<a g_{1}+g_{3}$. By $C_{\alpha}=\emptyset$ and by Lemma 4.4, we have $\alpha g_{3} \leq(\alpha+1) g_{2}$. Moreover, by definition of α, we have $(\alpha+1) g_{1} \leq \alpha g_{3}$ and $\alpha \leq t$ (since $\left.(t+1) g_{1} \leq(a+1) g_{1}<t g_{3}\right)$. We prove that $\operatorname{tg}_{3} \in \overline{a M}+\bar{M}$, then $C_{a}=\emptyset$ follows by Lemma 4.2.
Consider first the case $\alpha g_{3}=(\alpha+1) g_{2}$. Since $(a+1) g_{1}<t g_{3}$ and $g_{2}=g_{1}+1$, we
have $a g_{1}+g_{2} \leq t g_{3}$. Thus $a g_{1} \leq t g_{3}-g_{2}=(t-\alpha) g_{3}+\alpha g_{3}-g_{2}=(t-\alpha) g_{3}+\alpha g_{2}$,
that is $t g_{3}-g_{2} \in \overline{a M}$. Hence $t g_{3} \in \overline{a M}+M$.
Suppose now $\alpha g_{3}<(\alpha+1) g_{2}$. By $g_{2}=g_{1}+1$, we have $\alpha g_{3}=g_{1}+s$ with $s \in S$.
Thus $a g_{1}<t g_{3}-g_{1}=(t-\alpha) g_{3}+\alpha g_{3}-g_{1}=(t-\alpha) g_{3}+s$, that is $t g_{3}-g_{1} \in \overline{a M}$. Hence $t g_{3} \in \overline{a M}+M$.
Theorem 4.6. Let $g_{2}=g_{1}+1$ and $g_{3}<2 g_{1}$. Then M is normal if and only if $\alpha g_{3} \leq(\alpha+1) g_{2}$.

Proof. By Theorem 3.11 and definition of C_{a}, we have that M is normal if and only if $C_{a}=\emptyset$ for every a. Hence, by Lemmas 4.5 and 4.4, we have the proof.

Example 4.7. Let $S=\langle 10,11,10+x\rangle$. We want to study for which values of x, M is normal. By Proposition 3.11 and Remark 3.4, we only consider values of x for which $10+x<20$, hence $2 \leq x \leq 9$. By definition of α and Theorem 4.6, M is normal if and only if there exist integers α satisfying the following system of inqualities

$$
\left\{\begin{array} { l }
{ (\alpha - 1) (1 0 + x) < 1 0 \alpha } \\
{ \alpha (1 0 + x) \geq 1 0 (\alpha + 1) } \\
{ \alpha (1 0 + x) \leq 1 1 (\alpha + 1) }
\end{array} \Longleftrightarrow \left\{\begin{array}{l}
x \alpha<10+x \\
x \alpha \geq 10 \\
x \alpha \leq \alpha+11
\end{array}\right.\right.
$$

It easy to check that the system has solution only for $x=2,3, \ldots, 6$. Hence M is normal if and only if $S=\langle 10,11,10+x\rangle$ with $x=2,3, \ldots, 6$.
Example 4.8. Let us consider the numerical semigroup $\langle 100,101,117\rangle$. Since $5 \cdot 117=585<6 \cdot 100=600$ and $6 \cdot 117=702>7 \cdot 100=700$, we have $\alpha=6$. Since $702 \leq 7 \cdot 101=707$ and by Theorem $4.6, M$ is normal. Now let us consider the numerical semigroup $\langle 100,101,118\rangle$. Since $5 \cdot 118=590<6 \cdot 100=600$ and $6 \cdot 188=708>7 \cdot 100=700$, we have $\alpha=6$. Since $708>7 \cdot 101=707$ and by Theorem 4.6, M is not normal. We note that we can find semigroups for which M is normal and $g_{3}>118$. In fact using the same argument as above one can easily check that $\langle 100,101,150\rangle$, has normal maximal ideal M.

Now we give, for each $k \geq 3$, an example of a numerical semigroup for which $i M=\overline{i M}$ for every $i<k$, but $k M \neq \overline{k M}$.
Example 4.9. Let $S=\left\langle k^{2}-3, k^{2}-2, k^{2}+k-1\right\rangle$. Since

$$
(k-1)\left(k^{2}+k-1\right) \geq k\left(k^{2}-3\right) \Longleftrightarrow 1 \geq-3 k
$$

and

$$
(k-2)\left(k^{2}+k-1\right)<(k-1)\left(k^{2}-3\right) \Longleftrightarrow 2<3
$$

we have $\alpha=k-1$. Hence by

$$
(k-1)\left(k^{2}+k-1\right)>k\left(k^{2}-2\right) \Longleftrightarrow 1>0
$$

and by Lemmas 4.1 and 4.4 and by definition of C_{a}, the semigroup satisfies the condition above.

Let us denote the number of 3-generated numerical semigroups with normal maximal ideal and $g_{1}=m$ by $N(m)$, the number of numerical semigroups with $g_{1}=m$ and $g_{2}=m+1$ by $W(m)$ and the number of 3 -generated numerical semigroups $\langle m, m+1, m+x\rangle$ with $x<m$ by $B(m)$.
Remark 4.10. Since $2 \leq x<m$, then $B(m)=m-2$. Consider $S=\langle m, m+1\rangle$. Clearly $W(m)$ is equal to the number integers y such that $y>m+1$ and $y \notin\langle m, m+1\rangle$ (so that we have the numerical semigroup $\langle m, m+1, y\rangle$). It is well known (cf. e.g. [6]) that any 2-generated numerical semigroup is symmetric i.e. has just as many elements as non-elements below the conductor and that $c(S)=m(m+1)-2 m$. Hence $W(m)=\frac{c(S)}{2}-(m-1)=\frac{(m-2)(m-1)}{2}$.

By Proposition 3.11 and Remark 3.4, we know that if $\langle m, m+1, m+x\rangle$ has normal maximal ideal, then $x<m$. Hence $N(m)$ is very small compared to $W(m)$ for large m. The following theorem shows that $N(m)$ is very small compared also to $B(m)$ for large m.

Theorem 4.11. Let $N(m)$ and $B(m)$ be as above. Then $\lim _{m \rightarrow \infty} \frac{N(m)}{B(m)}=0$.
Proof. By Theorem 4.6, the values of x such that $\langle m, m+1, m+x\rangle$ has normal maximal ideal satisfy the following system of inequalities

$$
\left\{\begin{array} { l }
{ (\alpha - 1) (m + x) < \alpha m - 1 } \\
{ \alpha (m + x) \geq (\alpha + 1) m } \\
{ \alpha (m + x) \leq (\alpha + 1) m + (\alpha + 1) }
\end{array} \Longleftrightarrow \left\{\begin{array}{l}
(\alpha-1) x<m-1 \\
\alpha x \geq m \\
\alpha x \leq m+\alpha+1
\end{array}\right.\right.
$$

that is $\frac{m}{\alpha} \leq x \leq \min \left\{\frac{m-1}{\alpha-1}, \frac{m}{\alpha}+1+\frac{1}{\alpha}\right\}$.
We note that $\min \left\{\frac{m-1}{\alpha-1}, \frac{m}{\alpha}+1+\frac{1}{\alpha}\right\}-\frac{m}{\alpha} \leq\left(\frac{m}{\alpha}+1+\frac{1}{\alpha}\right)-\frac{m}{\alpha}=1+\frac{1}{\alpha}<2$, since by $x<m$, we have $\alpha \geq 2$. Hence for every α there are at most two integers in the interval $\left[\frac{m}{\alpha}, \min \left\{\frac{m-1}{\alpha-1}, \frac{m}{\alpha}+1+\frac{1}{\alpha}\right\}\right]$.
Suppose $\alpha-1 \geq \sqrt{m-1}$, then $\frac{m-1}{\alpha-1} \leq \sqrt{m-1}$. Thus for every such α, we have $2 \leq x \leq \sqrt{m-1}$. Hence there are at most $\sqrt{m-1}-1$ such values of x such that $\langle m, m+1, m+x\rangle$ has normal maximal ideal. Suppose now $\alpha-1<\sqrt{m-1}$. Thus $2 \leq \alpha<1+\sqrt{m-1}$. Since for every α there are at most two integers in the interval $\left[\frac{m}{\alpha}, \min \left\{\frac{m-1}{\alpha-1}, \frac{m}{\alpha}+1+\frac{1}{\alpha}\right\}\right]$, then if $2 \leq \alpha<1+\sqrt{m-1}$, there exist at most $2(1+\sqrt{m-1})$ such values of x such that $\langle m, m+1, m+x\rangle$ has normal maximal ideal.
Hence $N(m) \leq(\sqrt{m-1}-1)+(2+2 \sqrt{m-1})=3 \sqrt{m-1}+1$. By $\frac{N(m)}{B(m)} \leq$ $\frac{3 \sqrt{m-1}+1}{m-2}$, we have the proof.

5 Normality of the maximal ideal in a ring

We recall that for us R is a local, Noetherian, one-dimensional domain such that the integral closure \bar{R} of R in its quotient field is a DVR and a finitely generated R-module and such that R and \bar{R} have the same residue field. We recall also that $v(R)=S=\left\langle g_{1}, \ldots, g_{n}\right\rangle$ with $g_{1}<g_{2}<\cdots<g_{n}$.

In this section we study the connection between the normality of \mathfrak{m} and the normality of $v(\mathfrak{m})=M$.

We note that in general $i v(\mathfrak{m}) \subseteq v\left(\mathfrak{m}^{i}\right)$ and the inclusion could be strict.
Example 5.1. Let $R=K\left[\left[t^{4}+t^{5}, t^{6}, t^{11}\right]\right]$ with K a field of characteristic different from 3 and let $S=\langle 4,6,11,13\rangle$. One can easily check that $v(R)=S$ and, by $\left(t^{4}+t^{5}\right)^{3}-\left(t^{6}\right)^{2}=3 t^{13}+3 t^{14}+t^{15}$, we have $13 \in v\left(\mathfrak{m}^{2}\right)$. However $13 \notin 2 v(\mathfrak{m})$.

Proposition 5.2. For every $i \geq 1$ we have $v\left(\overline{\mathfrak{m}^{i}}\right)=\overline{i v(\mathfrak{m})}$.
Proof. Since, by Theorem 2.3, $\overline{\mathfrak{m}^{i}}=R\left(i g_{1}\right)$, then $v\left(\overline{\mathfrak{m}^{i}}\right)=S\left(i g_{1}\right)=\overline{i v(\mathfrak{m})}$.
The following theorem is an analogue for rings to Theorem 3.11. We recall that $\overline{\mathfrak{m}}=\mathfrak{m}$ is always true.

Proposition 5.3. The maximal ideal \mathfrak{m} is normal if and only if $\overline{\mathfrak{m}^{i+1}}=\overline{\mathfrak{m}^{i}} \mathfrak{m}$ for every $i \geq 1$.

Proof. Clearly \mathfrak{m} normal implies $\overline{\mathfrak{m}^{i+1}}=\overline{\mathfrak{m}^{i}} \mathfrak{m}$ for every i.
Suppose now $\overline{\mathfrak{m}^{i+1}}=\overline{\mathfrak{m}^{i}} \mathfrak{m}$ for every $i \geq 1$ and we want to prove that $\overline{\mathfrak{m}^{i}}=\mathfrak{m}^{i}$. We prove it by induction on i. We know that $\overline{\mathfrak{m}}=\mathfrak{m}$. Suppose $\overline{\mathfrak{m}^{i}}=\mathfrak{m}^{i}$ for every $i \leq n$ and we prove that $\overline{\mathfrak{m}^{n+1}}=\mathfrak{m}^{n+1}$. In fact $\overline{\mathfrak{m}^{n+1}}=\overline{\mathfrak{m}^{n}} \mathfrak{m}=\mathfrak{m}^{n} \mathfrak{m}=\mathfrak{m}^{n+1}$.

Theorem 5.4. If $v(\mathfrak{m})$ is normal, then \mathfrak{m} is normal.
Proof. By $\overline{i v(\mathfrak{m})}+v(\mathfrak{m}) \subseteq v\left(\overline{\mathfrak{m}^{i}} \mathfrak{m}\right)$ and by Proposition 5.2, we have that $\left.v\left(\overline{\mathfrak{m}^{i+1}}\right) \backslash v\left(\overline{\mathfrak{m}^{i}} \mathfrak{m}\right) \subseteq \overline{(i+1) v(\mathfrak{m})} \backslash \overline{(\overline{i v(\mathfrak{m})}}+v(\mathfrak{m})\right)$.
Hence if $v(\mathfrak{m})$ is normal, then \mathfrak{m} normal follows by Corollary 2.2 and Proposition 5.3.

It is natural to ask whether \mathfrak{m} normal implies $v(\mathfrak{m})$ normal.
By $i v(\mathfrak{m}) \subseteq v\left(\mathfrak{m}^{i}\right)$ and Proposition 5.2, for every $i \geq 1$, the following lemma follows immediately.
Lemma 5.5. For every $i \geq 1, v\left(\overline{\mathfrak{m}^{i}}\right) \backslash v\left(\mathfrak{m}^{i}\right) \subseteq \overline{i v(\mathfrak{m})} \backslash i v(\mathfrak{m})$.
Example 5.6. Consider the ring $R=K\left[\left[t^{12}+t^{18}, t^{13}+t^{18}, t^{15}+t^{20}, t^{22}\right]\right]$ with K a field of characteristic different from 2 and $S=\langle 12,13,15,22\rangle$. One can easily check that $v(R)=S$. We have $\overline{i v(\mathfrak{m})}=i v(\mathfrak{m})$ for every $i \neq 3$ and $\overline{3 v(\mathfrak{m})} \backslash 3 v(\mathfrak{m})=\{44\}$, hence $v(\mathfrak{m})$ is not normal. By Lemma 5.5 and Corollary $2.2, \mathfrak{m}^{i}=\overline{\mathfrak{m}^{i}}$ for every $i \neq 3$. Since $\left(t^{13}+t^{18}\right)^{3}-\left(t^{12}+t^{18}\right)^{2}\left(t^{15}+t^{20}\right)=$ $2 t^{44}-2 t^{45}-2 t^{50}-t^{51}+t^{54}-t^{56} \in \mathfrak{m}^{3}$ and by Lemma 5.5, we also have $\mathfrak{m}^{3}=\overline{\mathfrak{m}^{3}}$. Hence \mathfrak{m} is normal.

We denote $\min \left\{(i+1) g_{1},(i-1) g_{1}+g_{2}\right\}$ by μ_{i}.
Lemma 5.7. For every $i \geq 1$, the two smallest values in $v\left(\mathfrak{m}^{i}\right)$ are $i g_{1}$ and μ_{i}.
Proof. Let $\mathfrak{m}=\left(r_{1}, \ldots, r_{n}\right)$ with $v\left(r_{j}\right)=g_{j}$ for every $j=1,2, \ldots, n$ (this is not in general a minimal set of generators of \mathfrak{m}). We know that every element $x \in \mathfrak{m}^{i}$ is of the type $x=b_{1} r_{1}^{i}+b_{2} r_{1}^{i-1} r_{2}+y$ with $v(y)>\mu_{i}$. By properties of
valuation, we also know that if b_{1} is not unit, then $v\left(b_{1} r_{1}^{i}\right) \geq(i+1) g_{1} \geq \mu_{i}$ and if b_{2} is unit then $v\left(b_{2} r_{1}^{i-1} r_{2}\right)=(i-1) g_{1}+g_{2} \geq \mu_{i}$. Hence if b_{1} is a unit, then $v(x)=i g_{1}$, otherwise $v(x) \geq \mu_{i}$. Since r_{1}^{i+1} and $r_{1}^{i-1} r_{2}$ are in \mathfrak{m}^{i}, we have the proof.

The following proposition is an analogue for rings to Proposition 3.1.
Proposition 5.8. If \mathfrak{m} is normal, then $g_{2}=g_{1}+1$.
Proof. Suppose $g_{2}>g_{1}+1$. By the proof of Proposition 3.1, we have that if i is an integer such that $i \geq \gamma$, then $i g_{1}+1 \in \overline{i v(\mathfrak{m})} \backslash i v(\mathfrak{m})$. Hence by Lemma 5.7, $i g_{1}+1 \in v\left(\overline{\mathfrak{m}^{i}}\right) \backslash v\left(\mathfrak{m}^{i}\right)$ that is $\overline{\mathfrak{m}^{i}} \neq \mathfrak{m}^{i}$.

6 The Cohen-Macaulay property of $G(\mathfrak{m})$ in a particular case

Let R be a ring as in the Section 5. Throughout the rest of this section we assume that $g_{2}=g_{1}+1$.

It is known (cf. [4, Corollary 17]) that for a ring R of our type, principal minimal reductions always exist and that if $x \in \mathfrak{m}$ then $x R$ is a minimal reduction of \mathfrak{m} if and only if x is of minimal value in \mathfrak{m}. For everything concerning reduction of an ideal, we refer to [11].

We denote by $G(\mathfrak{m})$ the associated graded ring of R with respect to \mathfrak{m}, that is $G(\mathfrak{m})=\oplus_{i \geq 0} \mathfrak{m}^{i} / \mathfrak{m}^{i+1}$. The question whether, for a local ring, $G(\mathfrak{m})$ is CohenMacaulay is an important one. In fact it is important and often difficult to compute the Hilbert function of a local ring, however, if the associated graded ring is Cohen-Macaulay, then the computation of the Hilbert function can be reduced to the computation of the Hilbert function of an Artinian local ring.

An element $\overline{0} \neq \bar{z}=z+\mathfrak{m}^{s+1} \in G(\mathfrak{m})$ is a zero divisor in $G(\mathfrak{m})$ if and only if there exists an element $\overline{0} \neq \bar{y}=y+\mathfrak{m}^{r+1} \in G(\mathfrak{m})$ such that $\bar{z} \cdot \bar{y}=0$ i.e. $z \cdot y \in \mathfrak{m}^{s+r+1}$.

Remark 6.1. Let $\mathfrak{m}=\left(x_{1}, x_{2}, \ldots, x_{r}\right)$ the maximal ideal of R. By the hypotheses above on R, we can assume $v\left(x_{1}\right)=g_{1}$ and $v\left(x_{2}\right)=g_{1}+1$. Hence $\mathfrak{m}^{h}=\overline{\mathfrak{m}^{h}}=\bar{R}\left(h g_{1}\right)$ for every $h \gg 0$ (for example $h \geq g_{1}-1$).

Throughout the rest of the section we denote by $x_{1} R$ a principal minimal reduction of \mathfrak{m}. It is known that $G(\mathfrak{m})$ is C-M if and only if $\overline{x_{1}}$ is a non-zero divisor in $G(\mathfrak{m})$ (cf. [5, Remark 3.1]).
Lemma 6.2. If $G(\mathfrak{m})$ is C - M, then for every $i \geq 1$ and for every $w \in \mathfrak{m}^{i} \backslash \mathfrak{m}^{i+1}$ we have $v(w)<(i+1) g_{1}$.

Proof. By Remark 6.1, we have only to consider $i<h$ and we use decreasing induction on i. For every $w \in \mathfrak{m}^{h-1} \backslash \mathfrak{m}^{h}=\mathfrak{m}^{h-1} \backslash \overline{\mathfrak{m}^{h}}$ clearly we have $v(w)<h g_{1}$. Now we prove that if for every $w \in \mathfrak{m}^{h-a} \backslash \mathfrak{m}^{h-a+1}$ we have $v(w)<(h-a+1) g_{1}$, then for every $f \in \mathfrak{m}^{h-a-1} \backslash \mathfrak{m}^{h-a}$ we have $v(f)<(h-a) g_{1}$. Since $G(\mathfrak{m})$ is C-M
it follows that for every $f \in \mathfrak{m}^{h-a-1} \backslash \mathfrak{m}^{h-a}$ we have $x_{1} f \in \mathfrak{m}^{h-a} \backslash \mathfrak{m}^{h-a+1}$. By inductive hypothesis we have that $v\left(x_{1} f\right)=g_{1}+v(f)<(h-a+1) g_{1}$ which is $v(f)<(h-a) g_{1}$.

Now we are ready to characterize when $G(\mathfrak{m})$ is C-M for a ring R under the hypotheses at the beginning of this section.

Theorem 6.3. Let R be a ring as above, then $G(\mathfrak{m})$ is $C-M$ if and only if \mathfrak{m} is normal.

Proof. If \mathfrak{m} is normal, then $G(\mathfrak{m})$ is C-M (cf. [3, Proposition 2.1]).
Suppose now $G(\mathfrak{m})$ is C-M and that \mathfrak{m} is not normal. Let $x \in \overline{\mathfrak{m}^{\beta}} \backslash \mathfrak{m}^{\beta}$ and let r the integer such that $x \in \mathfrak{m}^{r} \backslash \mathfrak{m}^{r+1}$ (hence $r<\beta$). By Lemma 6.2 we have $v(x)<(r+1) g_{1}$ and, by $r<\beta$ and $x \in \overline{\mathfrak{m}^{\beta}} \backslash \mathfrak{m}^{\beta}$, we have $(r+1) g_{1} \leq \beta g_{1}<v(x)$. A contradiction.

Let $\mathfrak{m}=\left(x_{1}, \ldots, x_{r}\right), r \leq n$ be the maximal ideal of R, with $v\left(x_{1}\right)=g_{1}$ and $v\left(x_{2}\right)=g_{1}+1$. We will study the connection between the property that $G(\mathfrak{m})$ is C-M and $G\left(\mathfrak{m}_{T}\right)$ is C-M, where $\mathfrak{m}_{T}=\left(t^{g_{1}}, t^{g_{2}}, \ldots, t^{g_{n}}\right)$ is the maximal ideal of the semigroup ring $T=K[[S]]=K\left[\left[t^{g_{1}}, t^{g_{2}}, \ldots, t^{g_{n}}\right]\right]$.

Proposition 6.4. If $G\left(\mathfrak{m}_{T}\right)$ is $C-M$, then $G(\mathfrak{m})$ is $C-M$.
Proof. Suppose $G\left(\mathfrak{m}_{T}\right)$ is C-M. By Theorem 6.3, we have \mathfrak{m}_{T} normal, hence \mathfrak{m} normal by Corollary 5.4. Again by Theorem 6.3, $G(\mathfrak{m})$ is C-M.

It is natural to ask whether the converse to Proposition 6.4 holds.
Remark 6.5. If $G(\mathfrak{m})$ is C-M, then in general is not true that $G\left(\mathfrak{m}_{T}\right)$ is C-M. In fact consider $\mathfrak{m}=\left(t^{12}+t^{18}, t^{13}+t^{18}, t^{15}+t^{20}, t^{22}\right)$ and $\mathfrak{m}_{T}=\left(t^{12}, t^{13}, t^{15}, t^{22}\right)$ in the Example 5.6. Since \mathfrak{m} is normal, then $G(\mathfrak{m})$ is C-M. However, by Theorem 6.3, $G\left(\mathfrak{m}_{T}\right)$ is not C-M since \mathfrak{m}_{T} is not normal.

7 A bound for $l_{R}\left(\overline{\mathfrak{m}^{i}} / \mathfrak{m}^{i}\right)$

Let R be a ring as in Section 5 , with maximal ideal $\mathfrak{m}=\left(x_{1}, x_{2}, \ldots, x_{p}\right)$, where $v\left(x_{1}\right)=g_{1}$ and $v\left(x_{1}\right)<v\left(x_{2}\right)<\cdots<v\left(x_{p}\right)$. Let us denote by $r=r(\mathfrak{m})=$ $\min \left\{n \mid \mathfrak{m}^{n+1}=z \mathfrak{m}^{n}\right.$ for some $\left.z \in \mathfrak{m}\right\}$ the reduction number of \mathfrak{m}.

We let $\mu(R)=l_{R}\left(\mathfrak{m}^{i} / \mathfrak{m}^{i+1}\right)$, with $i \geq r$ and we call $\mu(R)$ the multiplicity of R.

As in Section 6, we assume that $x_{1} R$ is a principal minimal reduction of \mathfrak{m}. By definition of r and Theorem 2.1, the following statements are easy to see:

$$
\begin{gather*}
\text { for every } i \geq r, \mathfrak{m}^{i+1}=x_{1} \mathfrak{m}^{i} \tag{7.1}\\
\text { for every } i \geq r, \mu(R)=v\left(x_{1}\right)=g_{1} \tag{7.2}
\end{gather*}
$$

By [10, Lemma 2], we have that $(R: \bar{R})=\{x \in \bar{R} \mid v(x) \geq c(S)\}$. Hence $\min \left\{a \in \mathbb{N} \mid x_{1}^{a} \in(R: \bar{R})\right\}=\gamma$, where γ is the integer introduced in the Section 3. From now on we denote by $\beta=\max \{\gamma, r\}$ and by $q=l_{R}\left(\overline{\mathfrak{m}^{\beta}} / \mathfrak{m}^{\beta}\right)$.

Proposition 7.1. For every $i \geq \beta, l_{R}\left(\overline{\mathfrak{m}^{i}} / \mathfrak{m}^{i}\right)=q$.
Proof. Let $i \geq \beta$. By $\beta \geq \gamma$, we have $\overline{\mathfrak{m}^{\beta}}=\bar{R}\left(\beta g_{1}\right)=R\left(\beta g_{1}\right)$. Since $x_{1} R$ is a principal minimal reduction and $i \geq r$, we have $\overline{\mathfrak{m}^{i}}=x_{1}^{i-\beta} \overline{\mathfrak{m}^{\beta}}$ and $\mathfrak{m}^{i}=x_{1}^{i-\beta} \mathfrak{m}^{\beta}$. Hence $l_{R}\left(\overline{\mathfrak{m}^{i}} / \mathfrak{m}^{i}\right)=l_{R}\left(x_{1}^{i-\beta} \overline{\mathfrak{m}^{\beta}} / x_{1}^{i-\beta} \mathfrak{m}^{\beta}\right)=l_{R}\left(\overline{\mathfrak{m}^{\beta}} / \mathfrak{m}^{\beta}\right)=q$.
Theorem 7.2. For every $i \geq \beta, 0 \leq l_{R}\left(\overline{\mathfrak{m}^{i}} / \mathfrak{m}^{i}\right) \leq l_{R}(\bar{R} / R)-\mu(R)+1$.
Proof. Let us consider the second inequality and let $T=k\left[\left[t^{g_{1}}, t^{g_{2}}, \ldots, t^{g_{n}}\right]\right]$ be the semigroup ring associated to S with maximal ideal $\mathfrak{m}_{T}=\left(t^{g_{1}}, t^{g_{2}}, \ldots, t^{g_{n}}\right)$. We first prove that the inequality holds for T. Let $x \in \overline{\mathfrak{m}_{T}^{i}} \backslash \mathfrak{m}_{T}^{i}$ with $i \geq 0$. Then $x=t^{i g_{1}} t^{y}$ with $y>0$ and $t^{g_{1}} t^{y} \notin \mathfrak{m}$ (if not $x=t^{(i-1) g_{1}} t^{g_{1}} t^{y} \in \mathfrak{m}_{T}^{i}$). Clearly the map that associates the element $i g_{1}+y \in v\left(\overline{\mathfrak{m}_{T}^{i}}\right) \backslash v\left(\mathfrak{m}_{T}^{i}\right)$ to $g_{1}+y \in$ $v\left(\bar{T}\left(g_{1}\right)\right) \backslash v\left(\mathfrak{m}_{T}\right)$ is injective, hence $l_{T}\left(\overline{\mathfrak{m}_{T}^{i}} / \mathfrak{m}_{T}^{i}\right)=\left|v\left(\overline{\mathfrak{m}_{T}^{i}}\right) \backslash v\left(\mathfrak{m}_{T}^{i}\right)\right| \leq \mid v\left(\bar{T}\left(g_{1}\right)\right) \backslash$ $v\left(\mathfrak{m}_{T}\right) \mid=l_{T}(\bar{T} / T)-g_{1}+1$.

Noting that $v\left(\mathfrak{m}_{T}^{i}\right)=i v(\mathfrak{m})$ and $v\left(\overline{\mathfrak{m}_{T}^{i}}\right)=\overline{i v(\mathfrak{m})}$, by Theorem 2.1, Lemma 5.5 and 7.2 , we have

$$
l_{R}\left(\overline{\mathfrak{m}^{i}} / \mathfrak{m}^{i}\right) \leq l_{T}\left(\overline{\mathfrak{m}_{T}^{i}} / \mathfrak{m}_{T}^{i}\right) \leq l_{T}(\bar{T} / T)-g_{1}+1=l_{R}(\bar{R} / R)-\mu(R)+1
$$

Now we show that the bounds are the best possible.
Proposition 7.3. We have $l_{R}\left(\overline{\mathfrak{m}^{i}} / \mathfrak{m}^{i}\right)=0$ for every $i \geq \beta$ if and only if $v\left(x_{2}\right)=g_{1}+1$.

Proof. Let $l_{R}\left(\overline{\mathfrak{m}^{i}} / \mathfrak{m}^{i}\right)=0$. Suppose $v\left(r_{2}\right)>g_{1}+1$. By the proof of Proposition 5.8, for every $i \gg 0$ we have $\overline{\mathfrak{m}^{i}} \neq \mathfrak{m}^{i}$. A contradiction to $l_{R}\left(\overline{\mathfrak{m}^{i}} / \mathfrak{m}^{i}\right)=0$ for every $i \geq \beta$.
Vice versa, let $v\left(r_{2}\right)=g_{1}+1$. Then, as in the Remark 6.1, we have $\mathfrak{m}^{h}=\overline{\mathfrak{m}^{h}}$ for $h \gg 0$, hence, by Proposition 7.1, $\mathfrak{m}^{\beta}=\overline{\mathfrak{m}^{\beta}}$. Using again Proposition 7.1, we have $l_{R}\left(\overline{\mathfrak{m}^{i}} / \mathfrak{m}^{i}\right)=0$ for every $i \geq \beta$.

Now we give a class of rings for which $l_{R}\left(\overline{\mathfrak{m}^{i}} / \mathfrak{m}^{i}\right)=l_{R}(\bar{R} / R)-\mu(R)+1$ for every $i \geq \beta$.

Example 7.4. Let $R=k\left[\left[t^{2}, t^{2 a+1}\right]\right]$ with $a \geq 1$.
Thus $\mathfrak{m}=\left\{t^{2}, t^{4}, \ldots, t^{2 a}, t^{2 a+1}, \ldots\right\}$, hence $l_{R}(\bar{R} / R)-v\left(t^{2}\right)+1=|\mathbb{N} \backslash S|-1=$ $a-1$.

Since $\mathfrak{m}^{i}=\left\{t^{2 i}, \ldots, t^{2(a+(i-1))}, t^{2(a+(i-1))+1}, \ldots\right\}$ for every $i \geq 1$, thus for every $\left.i \geq 1, l_{R} \overline{\mathfrak{m}^{i}} / \mathfrak{m}^{i}\right)=\left|v\left(\overline{\mathfrak{m}^{i}}\right) \backslash v\left(\mathfrak{m}^{i}\right)\right|=\mid\{2 i, \longrightarrow\} \backslash\{2 i, \ldots, 2(a+i-1), \longrightarrow$ $\}|=|\{2 i, \longrightarrow\} \backslash\{2 i, \ldots, 2 i+2(a-1), \longrightarrow\}|=a-1$.

Remark 7.5. The rings $R=k\left[\left[t^{2}, t^{2 a+1}\right]\right]$ with $a \geq 1$, are not the only rings for which $l_{R}\left(\overline{\mathfrak{m}^{i}} / \mathfrak{m}^{i}\right)=l_{R}(\bar{R} / R)-\mu(R)+1$ for every $i \geq \beta$. For example every ring $R=k\left[\left[t^{g_{1}}, t^{g_{2}}, \ldots, t^{g_{n}}\right]\right]=K[[S]]$, with $g_{2}<c(S) \leq 2 g_{1}$ and $3 g_{1}=2 g_{2}$, satisfies the equality above.

Example 7.6. Now we give a class of rings $R=k\left[\left[t^{g_{1}}, t^{g_{2}}, \ldots, t^{g_{n}}\right]\right]$ for which $l_{R}\left(\overline{\mathfrak{m}^{i}} / \mathfrak{m}^{i}\right)$, for every $i \geq \beta$, is equal to a fixed $x \geq 1$.
Let $\left.R=k\left[t^{2 x+1}, t^{3 x+2}, t^{3 x+3}, \ldots, t^{4 x+1}\right]\right]$. So $\mathfrak{m}=\left\{t^{2 x+1}, t^{3 x+2}, t^{3 x+3}, \ldots, t^{4 x+2}\right.$, $\left.t^{5 x+3}, t^{5 x+4}, \ldots\right\}$. In fact for every $1 \leq y \leq x$, we have $6 x+3+y=(3 x+2)+$ $(3 x+1+y)$. Thus $\mathfrak{m}^{i}=\left\{t^{i(2 x+1)}, t^{i(2 x+1)+x+1}, t^{i(2 x+1)+x+2}, \ldots\right\}$ for every $i \geq 2$, hence $\left.l_{R} \overline{\mathfrak{m}^{i}} / \mathfrak{m}^{i}\right)=|\{i(2 x+1), \longrightarrow\} \backslash\{i(2 x+1), i(2 x+1)+x+1, \longrightarrow\}|=x$ for every $i \geq \beta \geq 2$.

Acknowledgements

The author wishes to thank R. Fröberg and C. Gottlieb for their helpful comments and for a careful reading of the manuscript.

References

[1] R. Apery, Sur les superlinéaires des courbes algébriques, C. R. Acad. Sc. Paris 222 (1946), 1198-1200.
[2] V. Barucci-D. E. Dobbs-M. Fontana, Properties in numerical semigroups and applications to one-dimensional analytically irreducible local domains, Mem. Amer. Math. Soc. vol 125, 598 (1997).
[3] V. Barucci-M. D'Anna-R. Fröberg, Normal Hilbert functions of onedimensional local rings, Comm. Algebra 28 (2001), 333-341.
[4] V. Barucci-R. Fröberg, One-dimensional Almost Gorenstein Rings, J. Algebra 188 (1997), 418-442.
[5] M. D'Anna-A. Guerrieri- W. Heinzer, Ideals having a Onedimensional Fiber Cone, Preprint.
[6] R. Fröberg-C. Gottlieb-R. Häggkvist, On numerical semigroups, Semigroup forum 35 (1987), 63-83.
[7] J. Herzog-E. Kunz, Die Wertehalbgruppe eines lokalen Rings der Dimension 1, Sitzungsber. Heidelberger Ak. Wiss. 22 (1971), 26-67.
[8] E. Kunz, The value-semigoup of a one-dimensional Gorenstein ring, Proc. Amer. Math. Soc. 25 (1970), 748-751.
[9] J. Lipman, Stable ideals and Arf rings, Amer. J. Math. 93 (1971), 649-685.
[10] T. Matsuoka, On the degree of singularity of one-dimensional analytically irreducible noetherian local rings, J. Math. Kyoto Univ., 11-3 (1971), 485-494.
[11] D. Rees-R. Y. Sharp, On a theorem of B. Teissier on multiplicities of ideals in local rings, J. London Math. Soc. 18 (1978), 449-463.

[^0]: *email vmicale@dipmat.unict.it

