
ISSN: 1401-5617

H
−n-perturbations of self-adjoint

operators

and Krein’s resolvent formula

P.Kurasov

Research Reports in Mathematics

Number 4, 2001

Department of Mathematics

Stockholm University



Electronic versions of this document are available at
http://www.matematik.su.se/reports/2001/4

Date of publication: February 12, 2001
Keywords: Self-adjoint operators, singular perturbations, Gelfand triplet.

Postal address:
Department of Mathematics
Stockholm University
S-106 91 Stockholm
Sweden

Electronic addresses:
http://www.matematik.su.se
info@matematik.su.se



H−n-perturbations of self-adjoint operators

and Krein’s resolvent formula.

P.Kurasov

Abstract. Supersingular H
−n rank one perturbations of arbitrary posi-

tive self-adjoint operator A acting in the Hilbert space H are investigated.
The operator corresponding to the formal expression

Aα = A + α〈ϕ, ·〉ϕ, α ∈ R, ϕ ∈ H
−n(A),

is determined as a regular operator with pure real spectrum acting in a
certain extended Hilbert space H ⊃ H. The resolvent of the operator so
defined is given by a certain generalization of Krein’s resolvent formula. It
is proven that spectral properties of the operator are described by general-
ized Nevanlinna functions. The results of [23] are extended to the case of
arbitrary integer n ≥ 4.

1. Introduction.

Finite rank singular perturbations of self-adjoint operators have been stud-
ied intensively during the recent years [2, 3, 4, 6, 14, 15, 19, 27, 28, 36]. In
particular partial differential operators with point interactions are described
in [1, 8], following the pioneering work by F.Berezin and L.Faddeev from 1961
[7]. One of the main mathematical tools to study spectral properties of these
operators is well-known Krein’s resolvent formula relating the resolvents of
two self-adjoint extensions of one symmetric operator having finite or infinite
deficiency indices [20, 26, 33]. Self-consistent presentation of this theory can
be found in recent papers [4, 13].

In the current paper we continue our studies of singular rank one perturba-
tions of a self-adjoint operator A acting in the Hilbert space H. The perturbed
operator can formally be defined by

Aα = A+ α〈ϕ, ·〉ϕ, (1)

where α ∈ R is a coupling constant and ϕ is the singular vector describing
the interaction. To measure the singularity of the interaction one can use the
scale Hs of Hilbert spaces1 associated with the positive self-adjoint operator

1See precise definition in Section 2.
1
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A acting in the Hilbert space H

. . . ⊂ H4 ⊂ H3 ⊂

Dom (A)
‖

H2 ⊂ H1 ⊂

H
‖

H0 ⊂ H−1 ⊂

(Dom (A))∗

‖

H−2 ⊂ H−3 ⊂ H−4 ⊂ . . .
(2)

We say that the interaction is from the classH−n if and only if ϕ ∈ H−n\H−n+1.
The singular interactions from the classes H−1 and H−2 can be defined

using operators acting in the original Hilbert space H. The perturbation term
α〈ϕ, ·〉ϕ is infinitesimally form bounded with respect to the operator A If
ϕ ∈ H−1. The perturbed operator is uniquely defined using KLMN theorem
[32]. The perturbed operator in the case of H−2 perturbations is not defined
uniquely - one dimensional family of self-adjoint operators corresponds to for-
mal expression (1) [18, 2, 3, 4].

Current paper is devoted to so-called supersingular perturbations de-
fined by vectors from H−n, n ≥ 3. Such perturbations have been studied using
certain extension of the original Hilbert space. In [34, 35, 11, 12] rank one
supersingular perturbations were defined using self-adjoint operators acting in
Pontryagin spaces. It was shown that the spectral properties of these mod-
els are described by generalized Nevanlinna functions with a finite number
of negative squares [15]. Similar ideas were used in [17, 29, 30, 31] where
concrete problems of mathematical physics were attacked. Different physicists
and mathematicians tried to define supersingular perturbations [9, 10, 16, 5].

In [22] supersingular rank one perturbation of positive self-adjoint opera-
tor have been defined without any use of spaces with indefinite metrics. The
approach was limited to the case of H−3 perturbations. In [23] we were able
to make one step further and describe all supersingular perturbations from the
class H−4. The perturbed operator has been defined in an extended Hilbert
space, but no self-adjoint operator corresponds to the formal expression (1)
in this case. The perturbed operator has been defined in the class of regular
operators, i.e. densely defined operator having two remarkable properties:
The domain of the operator and it adjoint coincide;
The spectrum of the operator is pure real.
The formula describing the resolvent of the perturbed operator is similar to
celebrated Krein’s formula. The spectral properties of the operators are de-
scribed by generalized Nevanlinna functions. The aim of the current paper is to
generalize the ideas of [23] to the case of arbitrary supersingular perturbations.

We decided to remind the reader all necessary preliminary fact concerning
rank one singular perturbations in Section 2. The main ideas of the current
paper are described in this section. In particular it is proposed to define the
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perturbed operator as a restriction of a certain maximal operator. The maxi-
mal operator and the extended Hilbert space used to construct supersingular
perturbations are described in Section 3. The family of regular operators corre-
sponding to such singular perturbation is obtained in Section 4. The resolvent
formula describing supersingular perturbation is calculated. The relations be-
tween this formula and Krein’s resolvent formula are investigated.

2. Rank one perturbations and the extension theory.

Current paper is devoted to the construction of the operator describing
rank one supersingular perturbation of a given positive self-adjoint operator A
acting in a certain Hilbert spaceH, given formally by (1). Recent developments
in this area are described in [2, 3, 14, 18, 21, 25, 36]. It has been shown that
if ϕ belongs to the original Hilbert space H then the perturbation α〈ϕ, ·〉ϕ is a
bounded symmetric operator and the perturbed operator Aα is self-adjoint on
the domain of the original operator A. The resolvent of the perturbed operator
is given by

1

Aα − λ
=

1

A− λ
−

1
1
α

+ 〈ϕ, 1
A−λ

ϕ〉

〈

1

A− λ̄
ϕ, ·

〉

1

A− λ
ϕ. (3)

All spectral properties of the perturbed operator Aα are described by the
Nevanlinna function Q(λ) = 〈ϕ, 1

A−λ
ϕ〉 (See e.g. [4]).

Consider now the scale of Hilbert spaces Hs associated with the positive
operator A. The norm in each space Hs is defined by

‖ U ‖2
Hs

= 〈U, (A+ 1)sU〉,

where 〈·, ·〉 is the scalar product in the original Hilbert space H. In order
to avoid misunderstanding only the scale of Hilbert spaces associated with
the original operator A and the original Hilbert space H will be considered
throughout the paper. All perturbations defined by vectors ϕ not from the
original Hilbert space H are called singular. These perturbations are charac-
terized by the fact that the domain of the perturbed operator does not coincide
with the domain of the original one. In the case ϕ ∈ H−1 \H the perturbation
is relatively form bounded with respect to the sesquilinear form of the operator
A and the perturbed operator can be determined using the form perturbation
technique. The resolvent of the perturbed operator is again given by (3). The
main difference is that the domain of the perturbed operator does not coincide
with the domain of the original operator in general, but the perturbed operator
is uniquely defined and is a self-adjoint operator acting in the original Hilbert
space H [36, 2]. Another way to define the perturbed operator is using the
extension theory for symmetric operators. It is obvious that the perturbed
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and original operators coincide on the linear set of functions U satisfying the
condition

〈ϕ, U〉 = 0. (4)

Then the perturbed operator is an extension of the original operator restricted
to this linear set. If ϕ ∈ H−1\H the restricted operator is a symmetric operator
with the deficiency indices (1, 1). Its self-adjoint extension corresponding to
the formal expression (1) is uniquely defined. The resolvent of the perturbed
operator can be described using Krein’s formula [20, 26], which coincides with
formula (3) in this case.

The case ϕ ∈ H−2 \ H−1 has to be treated using the extension theory for
symmetric operators, since the perturbation is not form bounded with respect
to the original operator. The restricted symmetric operator can be defined in
a way similar to H−1-case. But the perturbed operator is not uniquely defined
anymore. One can only conclude that the perturbed operator is equal to one
of the self-adjoint extensions of the restricted operator. All such operators can
be parametrized by one real parameter γ ∈ R ∪ {∞} as follows

1

Aγ − λ
=

1

A− λ
−

1

γ + 〈ϕ, 1+λ
A−λ

1
A+1

ϕ〉

〈

1

A− λ̄
ϕ, ·

〉

1

A− λ
ϕ. (5)

The relation between the real parameter γ describing the self-adjoint exten-
sions of the restricted operator and the additive real parameter α appearing in
formula (1) cannot be established without additional assumptions like homo-
geneity of the original operator and the perturbation vector.2 The Nevanlinna
function Q(λ) = 〈ϕ, 1+λ

A−λ
1

A+1
ϕ〉 can be considered as a regularization of the

resolvent 〈ϕ, 1
A−λ

ϕ〉 which is not defined in the case of ϕ ∈ H−2 \ H−1

Q(λ) = 〈ϕ,
1 + λ

A− λ

1

A+ 1
ϕ〉

formally
= 〈ϕ,

1

A− λ
ϕ〉 − 〈ϕ,

1

A + 1
ϕ〉. (6)

Observe that the two scalar products appearing in the right hand side of the
last formula are not defined for ϕ ∈ H−2 \ H−1, but their difference is in
contrast well defined. The Nevanlinna function 〈ϕ, 1+Aλ

A−λ
1

A2+1
ϕ〉 just coincides

with Krein’s Q-function appearing in the formula for the difference between
the resolvents of two different self-adjoint extensions of one symmetric operator
with the deficiency indices (1, 1) [20, 26].

The next step is to consider ϕ ∈ H−3. The restriction defined by (4) is
defined only if one considers the original operator A as an operator acting
in the Hilbert space H1. Then the domain of the unperturbed operator A
coincides with the space H3 and the restriction (4) determines a symmetric
operator. From another hand formula (3) is valid only if one considers the

2This approach has been developed in [2, 3].
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extended Hilbert space containing vectors 1
A−λ

ϕ ∈ H−1. It appears that such
extension is in fact one-dimensional, since for arbitrary λ, µ /∈ R+ the following
inclusion is valid

1

A− λ
ϕ−

1

A− µ
ϕ = (ϕ− µ)

1

(A− λ)(A− µ)
ϕ ∈ H1.

Hence it is enough to include the one dimensional subspace generated by the
vector 1

A+1
ϕ only. Hence the perturbed operator can be defined in the Hilbert

space H−3 = H1 ⊕C equipped with the natural embedding ρ−3

ρ−3 : H−3 →H−1

U = (U, u1) 7→ U + u1
1

A+1
ϕ.

(7)

The perturbed operator corresponding to the formal expression (1) has been
constructed in [22] by first defining certain maximal operator acting in H

and then restricting it to a self-adjoint operator. The maximal operator is
similar to the adjoint operator appearing in the restriction-extension procedure
used to construct H−2-perturbations. The set of self-adjoint restrictions of the
maximal operator are described by one real parameter. Therefore formula
(1) does not determine the perturbed operator uniquely, but a one parameter
family of operators like in the case of H−2-perturbations. The resolvent of
the perturbed operator restricted to the original Hilbert space is given by the
formula

ρ 1
Aθ−λ

|H1 = 1
A−λ

− 1

(λ+1) cot θ+〈ϕ, 1
A−λ

(λ+1)2

(A+1)2
ϕ〉−1

〈

1
A−λ̄

ϕ, ·
〉

1
A−λ

ϕ, (8)

where θ ∈ [0, π) is the real number parametrizing the restrictions. The simi-
larity between formulas (3) and (8) is obvious. The function

Q(λ) = 〈ϕ,
1

A− λ

(λ+ 1)2

(A + 1)2
ϕ〉

formally
= 〈ϕ,

1

A− λ
ϕ〉 − 〈ϕ,

1

A+ 1
ϕ〉 − (λ+ 1)〈ϕ,

1

(A+ 1)2
ϕ〉

(9)

is a double regularization of the resolvent function. This function describes
the spectral properties of the self-adjoint perturbed operator.

Supersingular perturbation from the class H−4 have been studied in [23].
Our original aim was simply to generalize the ideas developed in [22] to the case
of more singular perturbations. The main difference with the case ϕ ∈ H−3 is
that the original operator A should be considered as an operator acting in the
Hilbert space H2 from the scale of Hilbert spaces. Moreover this Hilbert space
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should be extended to include not only the vector

g1 =
1

A+ 1
ϕ ∈ H−2

but the vector

g2 =
1

(A+ 1)2
ϕ ∈ H

as well. Hence one has to consider the Hilbert space

H−4 = H2 ⊕C2 (10)

equipped with the standard imbedding

ρ−4 : H−4 →H−2

U = (U, u2, u1) 7→ U + u2
1

(A+1)2
+ u1

1
A+1

ϕ. (11)

The maximal operator can be defined in the way similar to H−3-perturbations.
The main difference is that any symmetric restriction of the maximal operator
is not self-adjoint. Hence no self-adjoint operator corresponds to formal ex-
pression (1). Instead one can consider the restrictions of the maximal operator
that are regular operators.3 All such restrictions are parametrized by one real
parameter in the way similar to H−3 perturbations. The real and imaginary
parts of these operators were calculated explicitly. The resolvent of the per-
turbed operator is also calculated and it is shown that the spectrum of the
perturbed regular operator is pure real. The resolvent restricted to the orig-
inal Hilbert space is given by the formula similar to Krein’s formula (5). All
spectral properties of the perturbed operator are described by the Nevanlinna
function Q given by

Q−4(λ) = 〈ϕ,
1

A− λ

(λ+ 1)4

(A+ 1)4
ϕ〉

formally
= 〈ϕ,

1

A− λ
ϕ〉 − 〈ϕ,

1

A+ 1
ϕ〉 − (λ+ 1)〈ϕ,

1

(A + 1)2
ϕ〉

−(λ + 1)2〈ϕ,
1

(A+ 1)3
ϕ〉 − (λ+ 1)3〈ϕ,

1

(A+ 1)4
ϕ〉

(12)

The aim of the current paper is to generalize the ideas of [23] to the case
of arbitrary supersingular perturbations from the class H−n, n ≥ 4.

3We call a densely defined operator B regular if its domain coincides with the domain
of the adjoint operator.
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3. The extended Hilbert space and the maximal operator.

The operator corresponding to the formal expression (1) will be constructed
as a restriction of a certain maximal operator acting in a certain extended
Hilbert space. The extended Hilbert space and the maximal operator are
described in the current section. To avoid not essential discussion we limit our
consideration to the case where ϕ ∈ H−n \ H−n+1, n ≥ 4.

Following the ideas expressed in Section 2, consider the Hilbert space H ≡
H−n = C(n−2) ⊕Hn−2 equipped with the scalar product

� U,V � = ū1v1 + . . .+ ūn−3vn−3 + ūn−2vn−2 + 〈U, V 〉Hn−2

= 〈~u,~v〉Cn−2 + 〈U, (1 + A)(n−2)V 〉,
(13)

where we used the following vector notation

~u = (u1, u2, . . . , un−2).

Different scalar products can be defined in the vectors space H. The simplest
case is considered in the current paper in order to avoid not necessary compli-
cations. The general case will be studied in one of the following publications.

The space H can be embedded into the space H−n+2 as follows

ρU = u1g1 + u2g2 + . . .+ un−2gn−2 + U

=

n−2
∑

k=1

ukgk + U,
(14)

where the vectors gk, k = 1, 2, . . . , n− 2 are defined by

g0 = ϕ, gk =
1

A+ 1
gk−1 =

1

(A+ 1)k
ϕ, k = 1, 2, . . . , n− 2. (15)

Note that the embedding operator ρ depends on the order n.
The operator A can be considered as an operator acting in the scale of

Hilbert spaces. Let us remind that the spaces Hs ⊂ H ⊂ H−s form Gelfand
triplet for any s = 1, 2, . . . : the original space H is Hilbert and H∗

s = H−s with
respect to the original scalar product in H.

Consider arbitrary Gelfand triplet K ⊂ H ⊂ K∗. Let B be a densely defined
operator in the space K then the triplet adjoint operator B† acting in K∗ is
defined on the domain

Dom (B†) = {f ∈ K∗ : g ∈ Dom (B) ⇒ |〈Bg, f〉| ≤ Cf ‖ g ‖Hs
}

by the following equality

〈Bg, f〉 = 〈g, B†f〉.
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Note that the scalar product appearing in the last definition is the scalar
product in the original Hilbert space H. The triplet adjoint operator coincides
with the standard adjoint operator in the case K = H = K∗. Otherwise the
triplet adjoint operator is different from the adjoint operator B∗ - operator
adjoint to B considered as an operator in the Hilbert space H ⊃ K.

Really consider the restriction AHn−2 of the operator A to the Hilbert space
Hn−2. This operator is a self-adjoint operator in this Hilbert space with the
domain Dom (AHn−2) = Hn. The triplet adjoint operator A†

Hn−2
coincides with

the extension of the operator A to the Hilbert space H−n+2 (the space adjoint
to Hn−2 with respect to the original scalar product). The domain of the triplet
adjoint operator coincides with the space H−n+4

Dom (A†
Hn−2

) = H−n+4.

Summing up we conclude that the triplet adjoint operator to AHn−2 with re-
spect to the triplet Hn−2 ⊂ H ⊂ H−n+2 coincides with the operator AH

−n+2 .
We define the minimal operator Amin corresponding to the formal expres-

sion (1) as the restriction of the operator AHn−2 to the domain of function
orthogonal to ϕ

Dom(Amin) = {ψ ∈ Hn : 〈ϕ, ψ〉 = 0}. (16)

Then the maximal operator Amax coincides with the triplet adjoint operator
to Amin with respect to the triplet Hn−2 ⊂ H ⊂ H−n+2

Amax = A†
min. (17)

Lemma 1. The maximal operator Amax is defined on the domain

Dom(Amax) =
{

f = f̃ + f1g1 ∈ H−n+2, f̃ ∈ H−n+4, f1 ∈ C
}

. (18)

by the following formula

A†(f̃ + f1g1) = Af̃ − f1g1. (19)

Remark. In the case n = 2 the minimal operator Amin is a symmetric
operator in the original Hilbert space having the domain Dom (Amin) = {ψ ∈
Dom(A) = H2(A) : 〈ϕ, ψ〉 = 0}. Then the maximal operator Amax coincides
with the usual adjoint operator to Amin with the domain given by (18). The
action of the adjoint operator is given by (19).

Proof. The domain of the triplet adjoint operator A†
min consists of all

elements f ∈ H−n+2 such that the sesquilinear form 〈(A+ 1)ψ, f〉 = 〈ψ, (A+
1)f〉 can be estimated as follows

|〈ψ, (A+ 1)f〉| ≤ Cf ‖ ψ ‖Hn−2
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for all ψ ∈ Dom(Amin), since the operator Amin is a restriction of the operator
A. The last estimate holds for all ψ ∈ Hn, 〈ψ, ϕ〉 = 0 if and only if

(A+ 1)f = f̂ + f1ϕ,

where f̂ ∈ H−n+2, f1 ∈ C. It follows that the function f possesses representa-
tion (18).

Suppose now that representation (18) holds. Then the sesquilinear form
can be written as follows

〈(A+ 1)ψ, f〉 = 〈(A+ 1)ψ, f̃〉+ 〈(A+ 1)ψ,
1

A + 1
ϕ〉

= 〈ψ, (A+ 1)f̃〉+ 0.

It follows that

(A + 1)†(f̃ + f1g1) = (A + 1)f̃

and hence (19) holds. The lemma is proven.

The operator Amax will be used to define the maximal operator acting in
the extended Hilbert space H.

Definition 2. The maximal operator Amax acting in the Hilbert space
H ⊂ H−n+2 is the restriction of the operator Amax to the Hilbert space H

defined by the following equality

Amaxρ = ρAmax (20)

The following lemma describes in details the maximal operator Amax.

Lemma 3. The maximal operator Amax determined by Definition 2 is de-

fined on the domain

Dom(Amax) = {U = (u1, u2, . . . , un−2, Ur + un−1gn−1),
u1, u2, . . . , un−2, un−1 ∈ C, Ur ∈ Hn}

(21)

by the formula

Amax













u1

u2

. . .
un−2

Ur + un−1gn−1













=













u2 − u1

u3 − u2

. . .
un−1 − un−2

AUr − un−1gn−1













. (22)

Proof. Consider any vector U from the domain of the operator Amax and
let us denote its image by W = (w1, w2, . . . , wn−2,W ). Then equality (20) can
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be written as follows

w1g1 + w2g2 + . . .+ wn−2gn−2 +W

=(u2 − u1)g1 + (u3 − u2)g2 + . . .+ (un−2 − un−3)g1 + AUϕ.
(23)

We conclude that

w1 = u2 − u1;
w2 = u3 − u2;
. . .
wn−3 = un−2 − un−3;

W + wn−2gn−2 = AU − un−2gn−2.

(24)

The last equality can be written as

W + U + vn−2gn−2 + un−2gn−2 = (A+ 1)U

and therefore

U =
1

A+ 1
(W + U) + (wn−2 + un−2)

1

A+ 1
gn−2.

It follows that the element U possesses the following representation

U = Ur + un−1gn−1,

where Ur ∈ Hn , un−1 ∈ C. Then equality (23) can be written as

w1g1 + w2g2 + . . .+ wn−2gn−2 +W

= (u2 − u1)g1 + (u3 − u2)g2 + . . .+ (un−1 − un−2)gn−2 + AUr − un−1gn−1,

and one can deduce that formula (22) holds. The Lemma is proven.

The spectrum of the operator Amax covers the whole complex plane. Really
consider any complex number λ. Then the element

U =















1
(1 + λ)
. . .

(1 + λ)n−3

(1 + λ)n−1

A− λ
gn−1 + (1 + λ)n−2gn−1















=















1
(1 + λ)
. . .

(1 + λ)n−3

(1 + λ)n−2A + 1

A− λ
gn−1
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solves the equation AmaxU = λU. Note that the last formula reads as follows
in the special case λ = −1

Amax













1
0
. . .
0
0













= −













1
0
. . .
0
0













.

Let us calculate the adjoint operatorAmin = A∗
max

. Note that the operator
Amin is different from the minimal operator Amin considered earlier. In fact
the operator Amin is a restriction of the operator Amin.

Lemma 4. The operator Amin, adjoint to Amax in H, is defined on the

domain

Dom(Amin) = {U = (u1, u2, . . . , un−2, Ur); u1, u2, . . . , un−2 ∈ C,
Ur ∈ Hn, un−2 = 〈ϕ, Ur〉}

(25)

by the formula

Amin













u1

u2

. . .
un−2

Ur













=













−u1

u1 − u2

. . .
un−3 − un−2

AUr













. (26)

Proof. Consider arbitrary elements U ∈ Dom (Amax) and
V = (v1, v2, . . . , vn−2, V ) ∈ H. The sesquilinear form of the operator Amax is

� (Amax + 1)U,V � = ū2v1 + ū3v2 + . . .+ ūn−1vn−2

+〈(A+ 1)Ur, (1 + A)n−2V 〉

= ū2v1 + ū3v2 + . . .+ ūn−2vn−3

+ūn−1

{

vn−2 − 〈gn−1, (1 + A)n−1V 〉
}

+〈Ur + un−1gn−1, (1 + A)n−1V 〉.

(27)

Consider first the subset of elements U ∈ Dom(A) with

uk = 0, k = 1, 2, . . . , n− 1.

Then the last term in (27) is a bounded functional with respect to U ∈ H

if and only if V = Vr ∈ Hn. Consider next arbitrary U ∈ Dom (A). Since
the functional U 7→ un−1 is not bounded in the norm of H, the last formula
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determines bounded linear functional if and only if the expression in { }
vanishes, i.e.

vn−2 = 〈gn−1, (1 + A)n−1Vr〉 ≡ 〈ϕ, Vr〉. (28)

Hence the domain of Amin is formed by the elements possessing represen-
tation

V = (v1, v2, . . . , vn−2, Vr), Vr ∈ Hn, vk ∈ C

and satisfying (28). Taking into account these relations formula for the adjoint
operator can be written as follows

� AmaxU,V � = � U,AminV �

= ū1v1 + ū2(v1 − v2) + . . .+ ūn−2(vn−3 − vn−2)

+〈Ur + un−1gn−1, (1 + A)n−2AVr〉.

It follows that the action of the minimal operator is given by (26). The Lemma
is proven.

The operator Amin is an extension of the operator Amin. Really the do-
main of Amin defined by (16) belongs to Dom (Amin) and moreover Amin =
Amin|Dom(Amin).

4

The domain of the minimal operator Amin is contained in the domain of
the maximal operator Amax, but the minimal operator does not coincide with
the restriction of the maximal operator to the domain of the minimal one.
Therefore no restriction of the operator Amax is self-adjoint like in the case of
H−3-perturbations [23]. Therefore no self-adjoint can be associated with the
formal operator (1). One can proceed now along two possible lines:
1. Construct non self-adjoint operator corresponding to (1).
2. Consider the maximal common symmetric restriction of the operators Amin

and Amax and describe all its self-adjoint extensions.
We decided to follow the first possibility, since the resolvent of the operator
obtained in this way is given by formula (45) similar to Krein’s formula for
generalized resolvents. The second approach is described in [24].

Let us have another look at the extension problem for Amin. Since the
operator Amax is closed, it coincides with the operator adjoint to Amin. Hence
all possible self-adjoint extensions of the operator Amin are described by La-
grangian planes of the symplectic boundary form of Amax.

Lemma 5. The boundary form of the maximal operator A is given by

� AmaxU,V � − � U,AmaxV �

4The operators Amin and Amin coincide only in the cases n = 1, 2.
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=

〈















0 1 . . . 0 0 0
−1 0 . . . 0 0 0
. . . . . . . . . . . . . . . . . .
0 0 . . . 0 1 0
0 0 . . . −1 0 1
0 0 . . . 0 −1 0





























u1

u2

. . .
un−2

un−3

〈ϕ, Ur〉















,















v1

v2

. . .
vn−2

vn−3

〈ϕ, Vr〉















〉

(29)

Proof. The following straightforward calculations prove the Lemma

� AmaxU,V � −� U,AmaxV �

= �













u2 − u1

u3 − u2

. . .
un−1 − un−2

AUr − un−1gn−1













,













v1

v2

. . .
vn−2

Vr + vn−1gn−1













�

−�













u1

u2

. . .
un−2

Ur + un−1gn−1













,













v2 − v1

v3 − v2

. . .
vn−1 − vn−2

AVr − vn−1gn−1













�

= +ū2v1 + ū3v2 + . . .+ ūn−1vn−2 − ū1v2 − ū2v3 − . . .− ūn−2vn−1

+〈Ur, ϕ〉vn−1 − ūn−1〈ϕ, Vr〉.

We have used that ϕ = (1 + A)n−1gn−1 in these calculations. The Lemma is
proven.

The matrix describing the boundary form

B ≡



















0 −1 0 . . . 0 0 0
1 0 −1 . . . 0 0 0
0 1 0 . . . 0 0 0
. . . . . . . . . . . . . . . . . . . . .
0 0 0 . . . 0 −1 0
0 0 0 . . . 1 0 −1
0 0 0 . . . 0 1 0



















is symplectic and has rank n for even n and n − 1 for odd n. Hence any
symmetric restriction of the operator Amax is described by at least [n

2
] bound-

ary conditions.5 Such restriction cannot be self-adjoint, since the kernel of

5[·] denotes the integer part here.
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the adjoint operator for nonreal λ is one dimensional. We have proven an-
other one time that no restriction of the operator Amax is self-adjoint in the
Hilbert space H and no self-adjoint operator corresponds to formal expression
(1) in the case ϕ ∈ H−n \H−n+1, n ≥ 4. To define a non self-adjoint operator
corresponding to this formal expression the class of regular operators will be
introduced in the following section.

If n = 3, then the rank of the matrix B is 2 and all Lagrangian planes of
the boundary form are described by one condition. Thus the restrictions of
Amax to the corresponding subspaces are self-adjoint operators [22].

4. Regular operators and supersingular perturbation of self-adjoint

operators.

The operator corresponding to the formal expression (1) is a certain re-
striction of the maximal operator. In this section we are going to study the
set of regular restrictions of the maximal operator.

Definition 6. Densely defined operator B is called regular if its domain
coincides with the domain of the adjoint operator.

The set of regular operator contains all self-adjoint operators. The class of
self-adjoint operators can be characterized by one additional restriction: the
operator B is self-adjoint if it is regular and symmetric. Obviously the set of
regular operators extends the set of self-adjoint operators enormously.

All regular restrictions of the maximal operator are characterized by the
following theorem.

Theorem 7. Let A be a regular restriction of the maximal operator Amax.
Then there exists a three dimensional nonzero real vector (a, b, c) ∈ R3 orthogo-

nal to the vector (1, 0, 1) such that the operator A coincides with the restriction

of the maximal operator to the domain

a〈ϕ, Ur〉+ bun−1 + cun−2 = 0. (30)

Proof. The domain Dom (Amax) of the maximal operator contains the
domain Dom (Amin) of its adjoint. Therefore every regular restriction of Amax

is an extension of Amin. This picture is similar to the extension theory of
symmetric operators. The domain Dom (Amax) consists of all elements U ∈ H

possessing the representation

U = (u1, u2, . . . , un−2, Ur + un−1gn−1),

where Ur ∈ Hn, uk ∈ C, k = 1, 2, . . . , n − 1. The domain Dom (Amin) of the
adjoint operator is a subdomain of Dom (Amax) characterized by the boundary
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conditions
{

un−1 = 0,
un−2 = 〈ϕ, Ur〉.

Thus the dimension of the quotient space Dom (Amax)/Dom(Amin) is equal to
2.Any linear subsetD of Dom (Amax) which does not coincide with Dom (Amin)
and Dom (Amax) is described by the boundary conditions of the form

a〈ϕ, Ur〉+ bun−1 + cun−2 = 0, (31)

where (a, b, c) is a three dimensional nonzero complex vector. (If all constants
a, b, and c are equal to zero, then the boundary condition (31) is satisfied by all
functions from Dom(Amax) and the linear subset coincides with the domain
of maximal operator.)

Thus every operator A which is a regular restriction of Amax is charac-
terized by the boundary conditions (31). It remains to study which boundary
conditions lead to regular operators.

The sesquilinear form of the operator Amax|D is given again by formula
(27), where now U ∈ D. Consider vectors U with un−2 = un−1 = 〈ϕ, Ur〉 = 0.
Then the scalar product

〈Ur, (A+ 1)n−1V 〉

generates a bounded linear functional with respect to the vector (0, 0, . . . , 0, Ur)
∈ H and the standard norm in H if and only if the following representation
holds6

(A+ 1)n−1V = cϕ+ f̃ ,

where c ∈ C, f̃ ∈ H−n+2. This implies that

V = cgn−1 +
1

(A+ 1)n−1
f̃ ,

and it follows that the vector V possesses the representation

V = Vr + vn−1gn−1,

where Vr ∈ Hn, vn−1 ∈ C. Then the sesquilinear form is given by

� (A + 1)U,V �

= 〈Ur + un−1gn−1, (A+ 1)n−1Vr〉 − ūn−1〈ϕ, Vr〉+ vn−1〈Ur, ϕ〉

+ūn−1vn−2 + ūn−2vn−3 + . . .+ ū3v2 + ū2v1.

The domain of the operator adjoint to Amax|D is characterized by the con-
dition that the last formula determines bounded linear functional with respect
to U ∈ H. We are going consider all possible values of the parameters a, b and

6Remember that Ur is orthogonal to ϕ.
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c and study the question whether the domain of the adjoint operator coincides
with the domain of the restricted operator or not. Let us call admissible the
three dimensional real vectors leading to regular restrictions of the maximal
operator. The following three cases cover all possible values of the the param-
eters.

1. The general case:

a 6= 0, b and c arbitrary.

The boundary condition can be presented in the form

〈ϕ, Ur〉 = −
b

a
un−1 −

c

a
un−2

and the sesquilinear form of the operator is given by

� (A + 1)U,V �

= 〈Ur + un−1gn−1, (A+ 1)n−1Vr〉+ ūn−1

(

−〈ϕ, Vr〉 −
b̄

ā
vn−1 + vn−2

)

+ūn−2

(

vn−3 −
c̄

ā
vn−1

)

+ ūn−3vn−4 + . . .+ ū3v2 + ū2v1.

The last expression determines a bounded linear functional if and only if the
following relation holds

ā〈ϕ, Vr〉+ b̄vn−1 − āvn−2 = 0.

This condition coincides with (31) if and only if

a = −c

and the complex numbers a and b have the same phase. Hence without loss
of generality the constants a, b, c can be chosen real and such that c = −a, i.e.
〈(a, b, c), (1, 0, 1)〉 = 0. Any vector (a, b, c) ∈ R3, (a, b, c) ⊥ (1, 0, 1), a 6= 0 is
admissible.

2. The first special case:

a = 0, b 6= 0, c arbitrary.

The boundary condition takes the form

un−1 = −
c

b
un−2. (32)
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Hence the sesquilinear form of the operator is given by

� (A + 1)U,V �

= 〈Ur + un−1gn−1, (A+ 1)n−1Vr〉+ ūn−2

[ c̄

b̄
(〈ϕ, Vr〉 − vn−2) + vn−3

]

+〈Ur, ϕ〉vn−1 + ūn−3vn−4 + . . .+ ū3v2 + ū2v1.

This form defines bounded linear functional with respect to U ∈ H if and only
if

vn−1 = 0,

since 〈Ur, ϕ〉 is not a bounded linear functional. The last condition coincides
with (32) only if c = 0. Then condition (32) reads as follows

bun−1 = 0.

Without loss of generality the constant b can be chosen real. Every vector
(0, b, 0) is orthogonal to (1, 0, 1). Any vector (0, b, 0) ∈ R3 is admissible.

3. The second special case:

a = 0, b = 0, c 6= 0.
The boundary condition is

un−2 = 0. (33)

The sesquilinear form

� (A + 1)U,V � = 〈Ur + un−1gn−1, (A+ 1)n−1Vr〉+ ūn−1 (vn−2 − 〈ϕ, Vr〉)

+vn−1〈Ur, ϕ〉+ ūn−3vn−4 + . . .+ ū3v2 + ū2v1.
,

determines bounded linear functional if and only if the following conditions
are satisfied

vn−1 = 0 and vn−2 = 〈ϕ, Vr〉.

These conditions never coincide with the condition un−2 = 0. Hence the bound-
ary condition (33) never determine a regular restriction of the operator A. No
vector (0, 0, c) ∈ R3 is admissible.

Summing up our studies we conclude that the set of admissible vectors coin-
cides with the set of three dimensional real nonzero vectors orthogonal to the
vector (1, 0, 1). The Theorem is proven.

The last theorem states that all regular restrictions of the operator Amax

are described by real three dimensional vectors (a, b, c) subject to the orthog-
onality condition (a, b, c) ⊥ (1, 0, 1). The length of the vector (a, b, c) plays no
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rôle and therefore all boundary conditions can be parametrized by one real
parameter - ”angle” θ ∈ [0, π) as follows:

sin θ〈ϕ, Ur〉+ cos θun−1 − sin θun−2 = 0. (34)

The following definition will be used.

Definition 8. The operator Aθ is the restriction of the maximal operator
Amax to the set of functions satisfying boundary conditions (34).

The domain of the operator Aθ is formed by the functions from Dom(Amax)
(given by (21)) subject to the boundary conditions (34). The action of the op-
erator Aθ is given by (22).

Thus the regular operator corresponding to the formal expression (1) is not
defined uniquely. Like in the case ofH−2 andH−3-perturbations one parameter
family of operators has been constructed.

Let us calculate the operator adjoint to Aθ. The domain of this operator
coincides with the domain Dom (Aθ). The sesquilinear form of the operator Aθ

can be presented by the following expression using the fact, that the functions
from the domains of the operators Aθ and A∗

θ satisfy (34)

� (Aθ + 1)U,V � = 〈Ur + un−1gn−1, (A+ 1)n−1Vr〉+ ūn−2 (vn−1 + vn−3)

+

n−4
∑

k=1

ūk+1vk,

and it follows that

(A∗
θ + 1)















v1

v2

. . .
vn−3

vn−2

Vr + vn−1gn−1















=















0
v1

. . .
vn−4

vn−1 + vn−3

(A+ 1)Vr















.

Hence the action of the operator A∗
θ is given by

A∗
θ















v1

v2

. . .
vn−3

vn−2

Vr + vn−1gn−1















=















−v1

v1 − v2

. . .
vn−4 − vn−3

vn−1 + vn−3 − vn−2

AVr − vn−1gn−1















. (35)

The real and imaginary parts of the operator Aθ are given by

Aθ = <Aθ + i=Aθ;
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(<Aθ)















u1

u2

. . .
un−3

un−2

Ur + un−1gn−1















=

















1
2
u2 − u1

1
2
(u3 + u1)− u2

. . .
1
2
(un−2 + un−4)− un−3

un−1 + 1
2
un−3 − un−2

AUr − un−1gn−1

















;

=Aθ =
1

2



















0 −i 0 . . . 0 0 0
i 0 −i . . . 0 0 0
0 i 0 . . . 0 0 0
. . . . . . . . . . . . . . . . . . . . .
0 0 0 . . . 0 −i 0
0 0 0 . . . i 0 0
0 0 0 . . . 0 0 0



















. (36)

The real part of the operator Aθ is a self-adjoint operator on the domain
Dom (Aθ). The imaginary part of Aθ is a bounded self-adjoint operator, which
does not depend on the parameter θ.

Let us study the operator A0 in more details. This operator is equal to the
orthogonal sum of two operators acting in the spaces Cn−2 and Hn−2. Really
the domain of the operator A0 can be decomposed as follows

Dom (A0) = Cn−2 ⊕Hn ⊂ Cn−2 ⊕Hn−2 ≡ H.

The two operators appearing in the corresponding decomposition of the oper-
ator A0

A0 = T⊕ A,

are the operator in Cn−2 given by the upper triangular matrix

T =



















−1 1 0 0 . . . 0 0
0 −1 1 0 . . . 0 0
0 0 −1 1 . . . 0 0
0 0 0 −1 . . . 0 0
. . . . . . . . . . . . . . . . . . . . .
0 0 0 0 . . . −1 1
0 0 0 0 . . . 0 −1
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and the operator A in Hn−2 with the domain Hn. The resolvent of the operator
A0 for arbitrary nonreal λ can easily be calculated

1

A0 − λ
=





























−1
1+λ

−1
(1+λ)2

−1
(1+λ)3

. . . −1
(1+λ)n−2

0 −1
(1+λ)

−1
(1+λ)2

. . . −1
(1+λ)n−3

0 0 −1
(1+λ)

. . . −1
(1+λ)n−4

. . . . . . . . . . . . . . .

0 0 0 . . . −1
1+λ





























⊕
1

A− λ
. (37)

To prove that the spectrum of the operator Aθ is real we calculate its
resolvent for arbitrary nonreal value of λ.

Theorem 9. The resolvent of the operator Aθ for all nonreal λ is given

by the (n− 1)× (n− 1) bounded matrix operator

1

Aθ − λ
=

1

A0 − λ

−
sin θ

D(λ)





























0 0 . . . 0 1
(1+λ)n−1

1
(1+λ)n−2 〈

1
A−λ

ϕ, ·〉

0 0 . . . 0 1
(1+λ)n−2

1
(1+λ)n−3 〈

1
A−λ

ϕ, ·〉

. . . . . . . . . . . . . . . . . .

0 0 . . . 0 1
(1+λ)2

1
1+λ

〈 1
A−λ

ϕ, ·〉

0 0 . . . 0 1
1+λ

1
A−λ

gn−2

(

1
A−λ

gn−2

)

〈 1
A−λ

ϕ, ·〉





























(38)

where the function D(λ, θ) is the following Nevanlinna function

D(λ, θ) =

(

〈ϕ,
1 + λ

A− λ
gn−1〉 −

1

1 + λ

)

sin θ + cos θ. (39)
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Proof. Consider arbitrary F = (f1, f2, . . . , fn−2, F ) ∈ H. Then the resol-
vent equation

(A− λ)













u1

u2

. . .
un−2

Ur + un−1gn−1













=













f1

f2

. . .
fn−2

F













(40)

together with the boundary condition (34) imply that






















−(1 + λ) 1 0 . . . 0 0 0
0 −(1 + λ) 1 . . . 0 0 0
0 0 −(1 + λ) . . . 0 0 0
. . . . . . . . . . . . . . . . . . . . .
0 0 0 . . . −(1 + λ) 1 0

0 0 0 . . . 0 −〈ϕ,
1 + λ

A− λ
gn−1〉 1

0 0 0 . . . − sin θ cos θ sin θ























×



















u1

u2

u3

. . .
un−2

un−1

〈ϕ, Ur〉



















=





















f1

f2

f3

. . .
fn−2

〈ϕ, 1
A−λ

F 〉
0





















. (41)

To derive the last equation we used the following transformation of the last
equation in the system (40)

(A− λ)Ur − (1 + λ)un−1gn−1 = F (42)

⇒ 〈ϕ, Ur〉 − (1 + λ)un−1〈ϕ,
1

A− λ
gn−1〉 = 〈ϕ,

1

A− λ
F 〉.

The determinant of the matrix appearing in the last equation is equal to
(−1)n−1(1 + λ)n−2D(λ, θ) and it vanishes for nonreal λ only if D(λ, θ) = 0.

The imaginary part of the function 〈ϕ,
1 + λ

A− λ

1

(A+ 1)n−1
ϕ〉 −

1

1 + λ
is given

by

=〈ϕ, 1+λ
A−λ

1
(A+1)n−1ϕ〉 −

1
1+λ

= y
(

〈ϕ, (A+1)2

(A−x)2+y2
1

(A+1)nϕ〉+ 1
(1+x)2+y2

)

,

where λ = x + iy, x, y ∈ R. The imaginary part cannot vanish for nonreal
values of λ if θ 6= 0. In the case θ = 0 the function D(λ, 0) ≡ 1 is constant.
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We conclude that the linear system (41) has unique solution for all nonreal λ.
It follows that the spectrum of the operator Aθ is real.

To calculate the resolvent exactly consider the system of equations for
un−2, un−1, 〈ϕ, Ur〉







−(1 + λ) 1 0

0 −〈ϕ,
1 + λ

A− λ
gn−1〉 1

− sin θ cos θ sin θ











un−2

un−1

〈ϕ, Ur



 =





fn−2

〈ϕ, 1
A−λ

F 〉
0





(43)

The solution to this linear system reads as follows

un−2 = −
(sin θ〈ϕ, 1+λ

A−λ
gn−1〉+ cos θ)fn−2 + sin θ〈ϕ, 1

A−λ
F 〉

(1 + λ)D(λ, θ)
;

un−1 = −

(

(1 + λ)〈ϕ, 1
A−λ

F 〉+ fn−2

)

sin θ

(1 + λ)D(λ, θ)
;

〈ϕ, Ur〉 = −
sin θ〈ϕ, 1+λ

A−λ
gn−1〉fn−2 + (sin θ − (1 + λ) cos θ) 〈ϕ, 1

A−λ
F 〉

(1 + λ)D(λ, θ)
.

(44)

Then all other components of the vector ~u can be calculated from the recursive
relations

ul =
1

1 + λ
ul+1 −

1

1 + λ
fl, l = 1, 2, . . . , n− 3,

which coincide with the first n−3 equations of the system (41). The following
formula holds

ul =
1

(1 + λ)n−2−l
un−2 −

n−3
∑

m=l

1

(1 + λ)m+1−l
fm.

The component U can be calculated from (42)

U = Ur + un−1gn−1

=
1

A− λ
F + (1 + λ)un−1

1

A− λ
gn−1 + un−1gn−1

=
1

A− λ
F + un−1

1

A− λ
gn−2.

This completes the calculation of the resolvent of the operator Aθ given by
formula (38) for all nonreal λ. The Theorem is proven.



H
−n-PERTURBATIONS 23

The theorem implies that the spectrum of the operator Aθ is real. Consider
the restriction of the resolvent to the subspace Hn−2 ⊂ H combined with the
embedding ρ

ρ
1

Aθ − λ
|Hn−2 =

1

A− λ

−
1

(λ+ 1)n−2
{

cot θ + 〈ϕ, 1
A−λ

1+λ
(A+1)n−1ϕ〉 −

1
1+λ

}

〈

1

A− λ̄
ϕ, ·

〉

1

A− λ
ϕ,

(45)

The last formula is analogous to Krein’s formula connecting the resolvents of
two self-adjoint extensions of one symmetric operator and is very similar to
formula (8) describing the restricted resolvent of the self-adjoint operator corre-
sponding to the singular H−3-perturbations. The main difference between this
formula and well-known Krein’s formula is that conventional Krein’s formula
describes the resolvent of self-adjoint operator, while the formula obtained
comes from a certain non self-adjoint operator if the perturbation is singular
enough ϕ ∈ H−n, n ≥ 4.

The last formula can be called Krein’s formula for supersingular interac-
tions. The spectral properties of the operator are described by the generalized
Nevanlinna function

Q(λ) = (λ+ 1)n−2

{

cot θ + 〈ϕ,
1 + λ

A− λ

1

(A+ 1)n−1
ϕ〉 −

1

1 + λ

}

. (46)

The zeroes of this function determine the singularities of the resolvent. The

function cot θ+〈ϕ,
1 + λ

A− λ

1

(A + 1)n−1
ϕ〉−

1

1 + λ
is a standard Nevanlinna func-

tion tending to −∞ and +∞ when λ → −∞ and λ → −1− respectively.
Therefore the function has at least one zero in the interval (−∞,−1). Another
one zero can be situated in the interval (−1, 0) depending on the behavior of
the function 〈ϕ, 1+λ

A−λ
1

(A+1)n−1ϕ〉 at the origin and the coupling parameter θ. Let

λ0 < 0, λ0 6= −1 be a zero of the function Q(λ). Then the vector















1
(1+λ0)n−2

1
(1+λ0)n−3

. . .
1

1+λ0
1

A−λ0

1
(A+1)n−2ϕ















(47)



24 P.KURASOV

is an eigenvector of the operator Aθ corresponding to the eigenvalue λ0. The
point λ = −1 is an eigenvalue of the operator Aθ with the eigenvector



















1
0
0
. . .
0
0
0



















.

The function Qn(λ) =
〈

ϕ, 1
A−λ

(λ+1)n−1

(A+1)n−1ϕ
〉

is an n − 1-times regularized

resolvent function

Q(λ)
formally

= 〈ϕ,
1

A− λ
ϕ〉−〈ϕ,

1

A + 1
ϕ〉−〈ϕ,

λ+ 1

(A+ 1)2
ϕ〉−. . .−〈ϕ,

(1 + λ)n−2

(A+ 1)n−1
ϕ〉.

5. Conclusions.

Rank one singular perturbations of self-adjoint determined by arbitrary
vectors from the class H−n have been defined in this article. It has been
shown that such operators can be defined in the class of non self-adjoint oper-
ators acting in a certain extended Hilbert space. The final operator obtained
is nevertheless close to a self-adjoint one - the imaginary part of the operator
is a bounded operator. It has been proven that the spectrum of the perturbed
operator is pure real. It remains to study in more details the spectral proper-
ties of the operator obtained. It is not clear whether the operator constructed
is similar to a certain self-adjoint one. These questions will be considered in
one of the future publications. The approach developed in this paper has to
be generalized in order to include perturbations of not finite rank following the
main ideas of [25].
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