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Spectral asymptotics for Schrödinger

operators with periodic point interactions

P.Kurasov and J.Larson

Abstract. Spectrum of the second order differential operator with peri-
odic point interactions in L2(R) is investigated. Classes of unitary equiva-
lent operator of this type are described. Spectral asymptotics for the whole
family of periodic operators are calculated. It is proven that the first sev-
eral terms of the asymptotics determine the class of equivalent operators
uniquely. It is proven that the spectrum of the operators with anomalous
spectral asymptotics (when the ratio between the lengths of the bands and
gaps tends to zero at infinity) can be approximated by standard periodic
“weighted” operators.

1. Introduction, definition of the operator.

Differential and pseudodifferential operators with points interaction are
widely used in applications to quantum and atomic physics to produce exactly
solvable models of complicated physical phenomena [1, 5]. Applications of
this method to solid state physics is of particular interest, since these models
reproduce the geometry of the problem extremely well. The first model of this
type is due to R. de L. Kronig and W.G.Penney [11] and can be described by
the following Hamiltonian in L2(R)

H = − d2

dx2
+
∑

n∈Z

αnδ(x− n),

where δ is Dirac’s delta function and αn are real coupling constants describing
each of the point interactions. If all coupling constants are equal αn = α one
obtains periodic operator modelling particle moving in a one-dimensional pe-
riodic potential. This model known as Kronig-Penney model became classical
and is included in many text books on quantum mechanics. One can prove
that the functions from the domain of the operator H satisfy the following
boundary conditions at each point x = n

(

ψ(n+)
ψ′(n+)

)

=

(

1 0
α 1

)(

ψ(n−)
ψ′(n−)

)

.

Different models with point interactions can be obtained by considering more
general boundary conditions at the singular points. Consider first one point

1



2 P.KURASOV AND J.LARSON

interaction at the origin. Mathematically rigorous description of such point
interaction can be obtained by considering all possible self-adjoint extensions
of the symmetric operator H0 = − d2

dx2 with the domain

Dom (H0) = {ψ ∈ W 2
2 (R) : ψ(0) = ψ′(0) = 0}.

One can prove that the self-adjoint extensions can be divided into two classes:
connected and separated extensions. Separated extensions are described by
two independent boundary conditions on the the half axes and are equal to the
orthogonal sum of the two self-adjoint in L2(R−) and L2(R+). Such extensions
are not interesting in our studies and will be excluded from our consideration.
Connected extensions of the operator H0 can be described by the following
boundary conditions at the origin

(

ψ(0+)
ψ′(0+)

)

= eiθ

(

a b
c d

)(

ψ(0−)
ψ′(0−)

)

, (1)

where the parameters a, b, c, d are real, ad − bc = 1, and θ ∈ [0, 2π). These
point interactions are well described in the literature [1, 2, 7, 12, 13, 14].

In the current paper we are going to study the operator L = L(A, θ) - the
second derivative operator with periodic local point interactions determined
by

Definition 1. Let A =

(

a b
c d

)

∈ SL(2,R) and θ ∈ [0, 2π). Then the

operator L ≡ L(A, θ) is the second derivative operator L = − d2

dx2
acting in the

Hilbert space L2(R) defined on the functions from W 2
2 (R \ {n}n∈Z) satisfying

the boundary conditions
(

u(n+)
u′(n+)

)

= eiθ

(

a b
c d

)(

u(n−)
u′(n−)

)

, n ∈ Z. (2)

Each operator L is a self-adjoint extension of the unperturbed second de-
rivative operator L0 = − d

2

dx2 restricted to the set of functions from W 2
2 (R)

vanishing in a neighborhood of the points x = n. The spectrum of the op-
erator L can be investigated using Bloch’s theorem (see [8], where Bloch’s
theorem has been applied to point interaction models).

The aim of the current paper is to study the spectral asymptotics for the op-
erator L. Since all operators L are bounded from below, the positive part of the
spectrum will be investigated. The spectrum of this operator is pure absolutely
continuous and fills in infinite number of bands separated by gaps. In Section
2 we discuss the classes of unitary equivalent operators with periodic point
interactions. The monodromy matrix and dispersion relation are obtained in
Section 3. This relation is used to calculate the spectral bands. At this point
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our approach is different from [8]. In addition the whole 4-parameter family
of periodic operators is studied.1 The character of the spectral asymptotics
depends on the parameters appearing in (2) and is described by Propositions
1-3. These propositions correspond to three different asymptotic pictures ob-
served for periodic operators. In particular it is proven that if the parameter
b 6= 0, then the ratio between the lengths of the bands and gaps tends to
zero at high energies (Theorem 1). This behavior is different from those for
the periodic Schrödinger operator. Therefore periodic operators of this type
attracted attention of several scientists [1, 3, 6]. It is shown in Section 6
that such spectrum can be obtained as a limit of the spectrum of the periodic
“weighted” operator, which corroborates another one time approach developed
in [4, 12]. Section 5 is devoted to the inverse spectral problem for the sin-
gular periodic operator. It is proven that the first few terms in the spectral
asymptotics determine the class of unitary equivalent operators uniquely.

2. Unitary equivalence and reduction of the parameters.

The parameters a, b, c, d and θ do not parametrize the operators L uniquely.
Really the operator determined by the matrix −A and the phase θ+π coincides
with the operator determined by A and θ, since these parameters determine
just the same boundary conditions (2). Therefore without loss of generality we
reduce our studies to operators determined by matrices A with positive trace

t ≡ a+ d ≥ 0. (3)

Since our goal is to study the spectrum of the operators L, let us describe the
classes of unitary equivalent operators.

We note first that the operators determined by the same matrices A and
different phases θ are unitary equivalent. Consider the unimodular function

U(x) = ein(θ2−θ1), x ∈ [(n− 1), n).

Then the unitary equivalence between the operators L(A, θ1) and L(A, θ2)
follows from

L(A, θ1) = U−1L(A, θ2)U.

Consider the reflection operator (If)(x) = f(−x). Then the unitary equiva-

lence between the operators L

((

a b
c d

)

, θ

)

and L

((

d b
c a

)

,−θ
)

follows

1To our surprise the whole family of operators with periodic point interactions have not
been studied in details.
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from2

L

((

d b
c a

)

,−θ
)

= I−1L

((

a b
c d

)

, θ

)

I.

Definition 2. The operators L(A1, θ1) and L(A2, θ2) are called equiva-

lent if and only if at least one of the following two equalities is satisfied3

a1 = a2

b1 = b2
c1 = c2
d1 = d2

or

a1 = d2

b1 = b2
c1 = c2
d1 = a2

. (4)

The classes of equivalent operators can be described by three independent
real parameters (instead of four independent real parameters describing the
operators L)

t = a + d, b, and c,

subject to the inequality

t ≥ 2
√

1 + bc. (5)

Really taking into account that ad−bc = 1, the parameter a can be determined
from the second order algebraic equation a2 − at + 1 + bc = 0, which has two
real solutions due to (5). The two different solutions corresponds to the two
equivalent operators which one gets interchanging the parameters a and d.

The class of operators described by the parameters a = 1, b = 0, c = 0, d =
1 is equivalent to the second derivative operator in L2(R) with the domain
W 2

2 (R). The spectrum of this operator is pure absolutely continuous and covers
the interval [0,∞). This trivial case will be excluded from our consideration.

3. The monodromy matrix and dispersion relation.

The monodromy matrix for the interval 0− → 1− is given by

Mλ(0−, 1−) =

(

cos k
1

k
sin k

−k sin k cos k

)

(

a b
c d

)

=

(

a cos k +
c

k
sin k b cos k +

d

k
sin k

−ak sin k + c cos k −bk sin k + d cos k

)

,

(6)

2One has to take into account that the first derivative changes sign under reflection
d

dx
(If)(x) = − d

dx
f(−x).

3We have already restricted our consideration to the set of operators described by ma-
trices with nonnegative trace (3).
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where k =
√
λ. The characteristic determinant of the monodromy matrix is

det
(

Mλ − λI
)

= λ2 − λTrMλ + detMλ

= λ2 − λTrMλ + 1,
(7)

since detMλ = 1. The spectrum of the operator L coincides with the set
of λ for which the zeroes of the characteristic determinant are nonreal, i.e.
|TrMλ| ≤ 2

|(a+ d) cos k +
( c

k
− bk

)

sin k| ≤ 2. (8)

The last equation describes the spectrum of the periodic operator with the
interaction given by (1). We introduce the function f

f(k) = t cos k +
( c

k
− bk

)

sin k. (9)

Then the spectrum of L is described by the equation

|f(k)| ≤ 2. (10)

Solving this inequality we will get the spectrum of the periodic operator L in
the following section. The spectrum consists of infinite number of bands of the
absolutely continuous spectrum. Depending on the parameters t, b and c the
asymptotics of this spectrum is different. The graph of the function f and the
spectrum of the corresponding periodic operator are plotted on Figure 1.

4. Spectral asymptotics for the periodic operator.

The spectrum of the operators L is pure absolutely continuous and consists
of infinite number of bands tending to +∞[1, 8]. In this section the spectral
asymptotics of these operators will be studied in details. The following three
cases covering all possible values of the parameters t, b, and c will be considered
separately
A. b 6= 0, t and c arbitrary satisfying (5);
B. b = 0, t > 2, c arbitrary;
C. b = 0, t = 2, c 6= 0 arbitrary.

The case A is generic, but the spectral asymptotics in this case is different
from those for the standard Schrödinger operator in dimension one. The case
C corresponds to periodic delta interactions well studied in the literature.

The following three Propositions describe the spectrum of the operator L
in the three outlined cases.

Case A.
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(A) t=2, b=1, c=0

+2

-2

k

f(k)

0

(B) t=2.5, b=0, c=0

+2

-2

k

f(k)

0

(C) t=2, b=0, c=1

+2

-2

k

f(k)

0

Figure 1. The function f(k) = t cos(k)+ (c/k− bk) sin(k) and
the positive spectrum of the periodic operator.

Proposition 1. Let b 6= 0, then the spectrum of the operator L consists
of infinite number of bands ∆n = [a2

n
, b2

n
] situated for large values of n on the

intervals [(πn−π/2)2, (πn+π/2)2]. The asymptotics when λ→∞ of the band
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edges is

an = πn + 1
π

[

t

b
− 2

|b|

]

1
n

+
[

− t3

3b3π3 −
(

1− 1
|b|

)

t2

b2π3 +
(

c

b2π3 + 4|b|
b3π3

)

t− 4
3|b|3π3 − 2

b3π3 (2b + c|b|)
]

1
n3

+O( 1
n5 ), as n→∞;

bn = πn+ 1
π

[

t

b
+ 2

|b|

]

1
n

+
[

− t3

3b3π3 −
(

1 + 1
|b|

)

t2

b2π3 +
(

c

b2π3 − 4|b|
b3π3

)

t + 4
3|b|3π3 − 2

b3π3 (2b− c|b|)
]

1
n3

+O( 1
n5 ), as n→∞.

(11)

The length |∆n| and the middle point mn of the band ∆n are asymptotically
given by

|∆n| =
8

|b| +
4

π2

(

− 1

|b| b2 t
2 − 2

b |b|t+
4

3 |b|3 +
2c

b |b|

)

1

n2
+O(

1

n4
), as n→∞,

(12)

and

mn = π2n2 +
2t

b
+

1

π2

(

− 2

3b3
t3 − 1

b2
t2 +

2c

b2
t− 4

b2

)

1

n2
+O(

1

n4
), as n→∞,

(13)

respectively.

Proof. We first prove that exactly one band ∆n of the absolutely contin-
uous spectrum is situated in each interval ln = [(πn− π/2)2, (πn + π/2)2] for
large enough values of k.4 The values of the function f at the end points of
each interval ln

f(πn+ π/2) = (−1)n

(

c

πn+ π/2
− b(πn + π/2)

)

= (−1)n+1bπn +O(1), asn→∞

have alternating signs and absolute value > 2 if n is sufficiently large. Tak-
ing into account that the function f(k) is continuous we conclude that each
considered interval contains at least one spectral band.

4We find it convenient to count the band of the continuous spectrum by the number n,
so that the band ∆n is situated near the point π2n2 for large values of the energy.
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The zeroes of f ′(k) = −
(

t+ c

k2 + b
)

sin k +
(

c

k
− bk

)

cos k are determined
by the equation

tan k =
k(c− bk2)

(t+ b)k2 + c
. (14)

The function k(c−bk2)
(t+b)k2+c

is rational and tends to ±∞ as k →∞ as follows

k(c− bk2)

(t+ b)k2 + c
=

{

− b

t+b
k + c(t+2b)

(t+b)2
1
k

+O( 1
k2 ), t + b 6= 0;

k − b

c
k3, t + b = 0, c 6= 0.

In the special case t+b = 0, c = 0 the relation (14) takes the form −bk cos k = 0
and has solutions k = π

2
+ πn. Therefore each interval ln contains exactly one

extreme point for the function f when n → ∞. Since f is continuous and
monotonous between the extreme points, it follows that there is precisely one
interval where |f(k)| ≤ 2 in each ln if n is sufficiently large.

The end points of each band ∆n = [a2
n
, b2

n
] can be calculated solving the

equation |f(k)| = 2. Consider first the case b > 0. Then the left and right end
points of the intervals ∆n satisfy the following equations respectively

t cos an +

(

c

an

− b an

)

sin an = (−1)n2; (15)

t cos bn +

(

c

bn
− b bn

)

sin bn = −(−1)n2. (16)

Since the points an and bn are close to πn for large n, we use the asymptotic
representations

an = πn+
α

n
+
α′

n3
+O(

1

n5
),

bn = πn+
β

n
+
β ′

n3
+O(

1

n5
),

n→∞.
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Substituting these representations into (15) we get

an = πn +
t− 2

bπ

1

n
+

(

− 1

3b3π3
t3 +

1− b

b3π3
t2 +

c+ 4

b2π3
t− 4

3b3π3
− 4 + 2c

b2π3

)

1

n3

+O(
1

n5
), as n→∞;

bn = πn +
t+ 2

bπ

1

n
+

(

− 1

3b3π3
t3 − 1 + b

b3π3
t2 +

c− 4

b2π3
t+

4

3b3π3
+

2c− 4

b2π3

)

1

n3

+O(
1

n5
), as n→∞.

(17)

Similar analysis in the case b < 0 leads to formula (11).
The length and the middle point of the band ∆n are given by

|∆n| = b2
n
− a2

n
, mn =

a2
n

+ b2
n

2
. (18)

Then formulas (12) and (13) are straightforward corollaries of (17). The propo-
sition is proven.

The length of the gap Gn between the bands with the numbers n and n+1
can be calculated as follows

|Gn| = a2
n+1 − b2

n
= 2π2n + π2 − 8

|b| +O(
1

n2
). (19)

The ratio between the lengths of the bands and forbidden gaps tends to zero
as follows

|∆n|
|Gn|

=
4

π2|b|
1

n
+O(

1

n3
), as n→∞. (20)

Case B.

Proposition 2. Let b = 0 and t > 2, then the spectrum of the operator L
consists of infinite number of bands ∆n = [a2

n
, b2

n
] situated for sufficiently large

n inside the intervals [π2n2, π2(n+ 1)2] . The asymptotics of the band edges is
given by

an = πn+ arccos
2

t
+

c

πtn
+O(

1

n2
), as n→∞;

bn = π(n+ 1)− arccos
2

t
+

c

πtn
+O(

1

n2
), as n→∞.

(21)
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The length |∆n| and the middle point mn of the band ∆n are asymptotically
given by

|∆n| = 2π(π − 2 arccos
2

t
)n+ (π2 − 2π arccos

2

t
) +O(

1

n
), as n→∞, (22)

and

mn = π2

(

n +
1

2

)2

+

(

arccos
2

t
− π

2

)2

+
2c

t
+O(

1

n
), as n→∞. (23)

Proof. The function f looks as follows in the considered case

f(k) = t cos k +
c

k
sin k. (24)

The proof of the fact that exactly one band of the absolutely continuous spec-
trum is situated in each interval ln = [π2n2, π2(n + 1)2] is similar to that of
Proposition 1. Really the values of the function f at the end points of each
interval ln

f(πn) = (−1)nt,

have alternating signs and absolute value > 2 for sufficiently large n. The
equation for extreme points

tan k =
ck

k2t+ c

has exactly one solution in each interval, since the function ck

k2t+c
is decreasing

if k is sufficiently large.
Solutions to the equation t cos k = ±2 are situated at the points

k = ± arccos
2

t
+ πn.

Since 0 < 2
t
< 1, arccos 2

t
satisfies

0 < arccos
2

t
< π/2.

Since the points an and bn are close to πn + arccos 2
t

and π(n + 1)− arccos 2
t

respectively, the following representations can be used

an = πn+ arccos
2

t
+ αn, bn = π(n+ 1)− arccos

2

t
+ βn.

The equation for the left end point

t cos
(

πn+ arccos 2
t
+ αn

)

+ c

πn+arccos 2

t
+αn

sin
(

πn + arccos 2
t
+ αn

)

= (−1)n2
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implies that

t

(

2

t
cosαn − sin

(

arccos
2

t

)

sinαn

)

+
c

πn+ arccos 2
t
+ αn

(

sin

(

arccos
2

t

)

cosαn +
2

t
sinαn

)

= 2.

Keeping the first terms of the perturbation theory we get

αn =
c

πtn
+O(

1

n2
), n→∞

and formula (21). The representation for bn can be proven similarly. Formulas
(22) and (23) follow directly from the asymptotic representations (21) and
definition (18). The proposition is proven.

The length of the gap between the spectral bands ∆n and ∆n+1 is

|Gn| = 4π

(

arccos
2

t

)

n+ 4π arccos
2

t
+O(

1

n
), as n→∞. (25)

Both the gaps and the bands are growing approximately linear with the number
n. The ratio between the lengths of the bands and gaps tends to the finite
nonzero limit depending on the parameter t only

|∆n|
|Gn|

=
π/2− arccos 2

t

arccos 2
t

+O(
1

n
), as n→∞. (26)

Case C.

Proposition 3. Let b = 0, t = 2, and c 6= 0, then the spectrum of the
operator L consists of infinite number of bands ∆n = [a2

n
, b2

n
] situated for

sufficiently large n inside the intervals [π2n2, π2(n + 1)2]. The asymptotics of
the band edges is

an = πn +
c

πn
+O(

1

n2
), as n→∞,

bn = π(n+ 1),
if c > 0;

an = πn,

bn = π(n+ 1)− |c|
πn

+O(
1

n2
), as n→∞ if c < 0.

(27)
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The length |∆n| and the middle point mn of the band ∆n are asymptotically
given by

|∆n| = 2π2n+ (π2 − 2|c|) +O(
1

n
), as n→∞; (28)

mn = π2n2 + π2n+
π2

2
+ c+O(

1

n
), as n→∞. (29)

Proof. The proof of this proposition follows the same lines as those of
propositions 1 and 2. It can be found in many text books (See e.g. [1]).

The length of the gap between the bands is given by

|Gn| = 2|c|+O(
1

n
), n→∞. (30)

The ratio between the length of the n-th band and the width of the n-th gap
tends to infinity as follows

|∆n|
|Gn|

=
π2

|c|n+O(1), n→∞. (31)

In the case t = 2 , b = c = 0 the operator L coincides with the unperturbed
second derivative operator. The gaps between the spectral bands disappear
when c → 0 and the absolutely continuous spectrum fills the whole interval
[0,∞).

Our results concerning the spectral asymptotics for the periodic operator
with point interactions can be summarized as follows

Theorem 1. The spectrum of the operator L with periodic point inter-
actions consists of infinite number of bands ∆n of the absolutely continuous
spectrum separated by infinite number of gaps Gn (if the operator is not equiv-
alent to the unperturbed second derivative operator). The lengths of the bands
and gaps and the ratio between them are given by

• if b 6= 0

|∆n| =
8

|b| +O(
1

n2
),

|Gn| = 2π2n+O(1),

|∆n|
|Gn|

=
4

π2|b|
1

n
+O(

1

n2
),

as n→∞. (32)
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• if b = 0, t > 2

|∆n| = 2π

(

π − 2 arccos
2

t

)

n +O(1),

|Gn| = 4π

(

arccos
2

t

)

n+O(1),

|∆n|
|Gn|

=
π/2− arccos 2

t

arccos 2
t

+O(
1

n
),

as n→∞. (33)

• if b = 0, t = 2 , c 6= 0

|∆n| = 2π2n+O(1),

|Gn| = 2|c|+O(
1

n
),

|∆n|
|Gn|

=
π2

|c|n+O(1),

as n→∞. (34)

5. The inverse spectral problem for the periodic operator.

The spectral asymptotics determine the class of equivalent operators uniquely.

Theorem 2. The spectral asymptotics for the operator L with periodic
point interactions determine uniquely the class of equivalent operators, namely
the parameters t = a + d, b and c can uniquely be determined either from the
asymptotics of the band edges or from the asymptotics of the lengths and middle
points of the spectral bands.

Proof. Let us consider the three cases described by propositions 1-3 sep-
arately. These cases can easily be distinguished from the spectral asymptotics,
since the ratio between the lengths of the bands and gaps has different behavior
for large values of the energy.

In the case A the terms of order 1
n

in formulas (11) determine the parame-
ters b and t uniquely, since the parameter t is positive. Then the parameter c is
determined by the third order term. Similarly the first two terms in the asymp-
totics of |∆n| and the first three terms in the asymptotics of mn determine the
three parameters t, b and c as well.

The cases B and C are similar. The Theorem is proven.
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The theorem implies that the spectral asymptotics generally does not de-
termine uniquely the parameters of the periodic operator L. The set of opera-
tors having the same spectral asymptotics coincides with the set of equivalent
operators.

6. Spectral asymptotics for periodic operator and “weighted”

operator

The spectral asymptotics calculated in Section 4 can be compared with
the spectral asymptotics for non singular periodic one dimensional operators.
The asymptotics in Case C resembles the asymptotics for periodic Schrödinger
operator

− d2

dx2
+ U(x), U(x + 1) = U(x), U ∈ C(R).

We would like to remind that this operator has absolutely continuous spectrum
filling up the bands separated by finite or infinite number of gaps. The ratio
between the lengths of the bands and gaps is increasing as λ→∞.

The spectral asymptotics obtained in Case A differs from those for the
periodic Schrödinger operator drastically. In this case the ratio between the
lengths of the bands and gaps tends to zero as λ→∞. In this section we show
that such spectral asymptotics appears naturally during the investigation of
the periodic “weighted” operator

WΨ = −1

ρ

d

dx

(

ρ
d

dx
ψ

)

, (35)

with ρ ∈ W 1
2 , ρ > 0. This operator was investigated recently by E.Korotyaev

(See [9, 10] for references and historical remarks). Consider the following
periodic weighted operator

WεΨ = − 1

ρε(x)

d

dx

(

ρε(x)
d

dx
Ψ

)

, (36)

where the density function

ρε(x) = 1 +
∞
∑

n=−∞

h
1

ε
χε(x− n), h ∈ R+, (37)

is defined using the characteristic function

χε(x) =

{

1, x ∈ [0, ε]
0, x /∈ [0, ε]

. (38)

The density function ρε is chosen so that it converges to the sum of delta
functions as ε→ 0.
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Let us study the spectrum of the operator Wε. Since the function ρε is
discontinuous at x = n, x = n + ε, the functions from the domain of the
operator Wε satisfy the boundary conditions

{

Ψ(n+) = Ψ(n−),
(1 + h1

ε
)Ψ′(n+) = Ψ′(0−),

{

Ψ ((n + ε)+) = Ψ ((n+ ε)−) ,
Ψ′ ((n+ ε)+) = (1 + h1

ε
)Ψ′ ((n+ ε)−) .

(39)

These condition guarantee that the functions Ψ and ρεΨ
′ are continuous. The

monodromy matrix for the operator W is equal to the product of four ma-
trices: two monodromy matrices for the second derivative operator on the
intervals (0+, ε−) and (ε+, 1−) and two monodromy matrices corresponding to
discontinuities at x = 0 and x = ε

Mλ

W
(0−, 1−) = Mλ

− d2

dx2

(ε+, 1−)

(

1 0
0 1 + h

ε

)

Mλ

− d2

dx2

(0+, ε−)

(

1 0
0 1− h

ε+h

)

=

(

cos k − 1
ε
sin(1− ε)k sin εk 1

k
sin k − 1

k(ε+h)
cos(1− ε)k sin εk

−k sin k − k

ε
cos(1− ε)k sin εk cos k + 1

ε+h
sin(1− ε)k sin εk

)

(40)

Since the determinant of the monodromy matrix Mλ

W
is equal to one, the

spectrum of the operator is determined by the trace of the monodromy matrix

|TrMλ

W
| = |2 cos k − h

ε(ε+ 1)
sin [(1− ε)k] sin [kε] | ≤ 2. (41)

Consider the limit ε → 0, then the last equation transforms into the fol-
lowing equation

|2 cos k − hk sin k| ≤ 2, (42)

which coincides with the dispersion equation for the operator with periodic
point interactions determined by the parameters

a = 1, b = h, c = 0, d = 1.

It follows that each band of the absolutely continuous spectrum of the operator
Wε as ε→ 0 converges to a certain band of the absolutely continuous spectrum
of the operator L with the parameters chosen as above. These calculation
shows another one time that the singular second derivative operator described
by the boundary conditions (1) with θ = 0 and a = d = 1, c = 0, b 6= 0 can
be interpreted as the operator with singular density. This fact was observed
for the first time in [12], where singular interactions for the second derivative
operator in L2(R) were investigated.
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