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A geometrical version of Hardy’s inequality for
◦
W 1,p(Ω)

Jesper Tidblom

Abstract

The aim of this article is to prove a Hardy type inequality, concerning

functions in
◦

W1,p(Ω) for some domain Ω ⊂ Rn, involving the volume of Ω
and the distance to the boundary of Ω. The inequality is a generalization
of a recently proved inequality by M.Hoffmann–Ostenhof, T.Hoffmann–
Ostenhof and A.Laptev [9], which dealt with the special case p = 2.

0 Introduction

The history of Hardy type inequalities goes back to Hardy and the 1920’s when
the following original one-dimensional inequality appeared in [8].

∫ ∞

0

(

F (x)

x

)p

dx ≤
(

p

p − 1

)p ∫ ∞

0

f(x)pdx,

where

p > 1, f(x) ≥ 0 and F (x) =

∫ x

0

f(t)dt

(see also [7]). A multidimensional version of this inequality is

∫

Rn

|∇u|pdx ≥
∣

∣

∣

∣

n − p

p

∣

∣

∣

∣

p ∫

Rn

|u(x)|p
|x|p dx, u ∈ C∞

0 (Rn
r {0}),

where p > 1 and the constant
∣

∣

∣

n−p
p

∣

∣

∣

p

is optimal (see for example [13]).

Later on, these inequalities have been generalized and modified in many
different ways and the literature concerning such inequalities is extensive.
There is an entire book by B.Opic and A.Kufner devoted to various Hardy
type inequalities (see [13]). Many other Hardy-Sobolev type inequalities may
be found in the excellent book “Sobolev Spaces” [12] by V.G.Maz’ja.
In the past few years a lot of articles on the subject has been published, see [3]
for a review of recent results in the field. In the article [1] G.Barbatis,
S.Filippas and A.Tertikas give a very comprehensive treatment of improved Lp
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Hardy inequalities with best constants, involving various kinds of distance
functions.

Let Ω be an open set in Rn and δ(x) = dist(x, ∂Ω). It is known (see for
example [11]) that for any p > 1 we have

∫

Ω

|∇u|pdx ≥ cp

∫

Ω

|u|p
δ(x)p

dx, u ∈
◦

W1,p(Ω), (0.1)

where Ω is convex and cp =
(

p−1
p

)p

is the best constant (see for example [11]).
◦

W1,p(Ω) as usual is the completion of C∞
0 (Ω) with respect to the Sobolev norm

||u||W1,p(Ω) = ||u||Lp(Ω) +

n
∑

i=1

∣

∣

∣

∣

∣

∣

∂u

∂xi

∣

∣

∣

∣

∣

∣

Lp(Ω)
.

The main result to be proved in this paper is that an extra term of the form

a(p, n)

|Ω| p

n

∫

Ω

|u(x)|pdx, (a(p, n) > 0),

where |Ω| =vol(Ω), may be added to the right hand side of the inequality (0.1).

Let Ω ⊂ Rn be an arbitrary convex domain. In [2] H.Brezis and M.Marcus
proved that the largest possible constant λ(Ω) in the inequality
∫

Ω

|∇u(x)|2dx ≥ 1

4

∫

Ω

|u(x)|2
δ2(x)

dx + λ(Ω)

∫

Ω

|u(x)|2dx, u ∈
◦

W1,2(Ω),

satisfies

λ(Ω) ≥ 1

4 · diam2(Ω)
.

In the same paper H.Brezis and M.Marcus have asked whether the above
estimate can be replaced by some other estimate of the type λ(Ω) ≥ α|Ω|−2/n

for some universal constant α > 0.
This question was recently answered affirmative by M.Hoffmann–Ostenhof,
T.Hoffmann–Ostenhof and A.Laptev in [9]. In that paper, the following Hardy
type inequality
∫

Ω

|∇u(x)|2dx ≥ 1

4

∫

Ω

|u(x)|2
δ2(x)

dx +
µn

|Ω| 2

n

∫

Ω

|u(x)|2dx, u ∈
◦

W1,2(Ω), (0.2)

where

µn =
n(n−2)/n|Sn−1|2/n

4
,

is established.

Here we shall prove a similar “geometric” inequality for functions from the

Sobolev space
◦

W1,p(Ω). More precisely, we shall prove
∫

Ω

|∇u|pdx ≥ cp

∫

Ω

|u(x)|p
δp(x)

dx +
a(p, n)

|Ω| p

n

∫

Ω

|u(x)|pdx, u ∈
◦

W1,p(Ω),
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where

a(p, n) =
(p − 1)p+1

pp
·
( |Sn−1|

n

)

p

n

·
√

π · Γ
(

n+p
2

)

Γ
(

p+1
2

)

Γ
(

n
2

) .

The latter inequality is a generalization of inequality (0.2) for any p > 1. In
particular, a(2, n) = µn.
In section one, we shall, following a method from [9], prove a one-dimensional
version of the inequality and in section two, we shall extend it to higher
dimensions.
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1 One-dimensional inequalities

Let f be a function defined and differentiable on (0, b] for some b > 0. We say
that f belongs to the class Φp(0, b) if f is real-valued and there exists a
constant C = C(f) such that

sup
0<t≤b

(tp−1|f(t)| + tp|f ′(t)|) ≤ C.

Throughout this article it is assumed that p > 1.

Lemma 1.1. Let u ∈ C1[0, b], b > 0, u(0) = 0 and let f ∈ Φp(0, b). Then we

have the following inequality :

∫ b

0

|u′(t)|pdt ≥ 1

pp

|
∫ b

0 f ′(t)|u(t)|pdt|p
(

∫ b

0
|f(t) − f(b)|

p

p−1 |u(t)|pdt
)p−1 .

Proof. Let c be a constant. We have :

|(f(b) − c)|u(b)|p −
∫ b

0

f ′(t)|u(t)|pdt|

=

∣

∣

∣

∣

∣

∫ b

0

(f(t) − c)(|u(t)|p)′dt

∣

∣

∣

∣

∣

=
p

2

∣

∣

∣

∣

∣

∫ b

0

(f(t) − c)(u
p

2
−1ū

p

2 u′ + ū
p

2
−1u

p

2 ū′)dt

∣

∣

∣

∣

∣

≤ p

∫ b

0

|f(t) − c||u|p−1|u′|dt

≤ p

(

∫ b

0

|f(t) − c|
p

p−1 |u|pdt

)p−1
∫ b

0

|u′|pdt.

Now put c = f(b) and rise both sides to the power p. We get
∣

∣

∣

∣

∣

∫ b

0

f ′(t)|u|pdt

∣

∣

∣

∣

∣

p

≤ pp

(

∫ b

0

|f(t) − f(b)|
p

p−1 |u|pdt

)p−1
∫ b

0

|u′|pdt

and we are done.
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Corollary 1.1. Let u be as in the lemma above and put

f(t) = t1−p

1−p ∈ Φp(0, b). Then the following improved Hardy inequality holds

∫ b

0

|u′(t)|pdt ≥ cp

(

∫ b

0
|u|p

tp dt
)p

(

∫ b

0
|t1−p − b1−p|

p

p−1 |u|pdt
)p−1

≥ cp

∫ b

0

|u|p
tp

dt.

Proof. Use the previous lemma.

Now we give a linearized version of the corollary :

Corollary 1.2 (linearized version). Let u be as above. Then

∫ b

0

|u′(t)|pdt ≥ cp

(

∫ b

0

( p

tp
− (p − 1)(t1−p − b1−p)

p

p−1

)

|u|pdt

)

. (1.1)

Proof. Young’s inequality gives us

Ap

Bp−1
≥ pA − (p − 1)B.

If we put A =
∫ b

0
|u|p

tp dt, B =
∫ b

0
|t1−p − b1−p|

p

p−1 |u|pdt and use Corollary 1.1,
we get (1.1).

An easy consequence of Corollary 1.2 (see also [9]) is

Lemma 1.2. Let u ∈
◦

W1,p(0, 2b), b > 0. Then we have

∫ 2b

0

|u′(t)|pdt ≥ cp

∫ 2b

0

(

p

ρ(t)p
− (p − 1)

(

1

ρ(t)p−1
− 1

bp−1

)
p

p−1

)

|u(t)|pdt,

where

ρ(t) = dist(t, R r [0, 2b]) = min(t, 2b− t).

Proof. By rewriting the inequality (1.1) for the interval [b, 2b] for functions
u ∈ C1[b, 2b] such that u(2b) = 0, we get

∫ 2b

b

|u′(t)|pdt ≥ cp

∫ 2b

b

(

p

(2b − t)p
− (p − 1)

((2b − t)1−p − b1−p)
−p

p−1

)

|u|pdt. (1.2)

If we add the inequalities (1.1) and (1.2) and use standard density arguments,
we get the statement of the lemma.

Theorem 1.1 (one-dimensional version). Let u ∈
◦

W1,p(a, b). Then we

have

∫ b

a

|u′(t)|pdt ≥ cp

(

∫ b

a

|u(t)|p
ρ(t)p

dt +
p − 1
(

b−a
2

)p

∫ b

a

|u(t)|pdt

)

. (1.3)
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Proof. Without loss of generality we can assume the interval of integration is
[0, 2b]. The right hand side in Lemma 1.2 may be written

cp





∫ 2b

0

|u(t)|p
ρ(t)p

dt +

∫ 2b

0

p − 1

ρ(t)p



1 −
(

1 −
(

ρ(t)

b

)p−1
)

p

p−1



 |u(t)|pdt



 .

We will now estimate the expression in front of |u|p in the last integral from
below. We begin by noticing that ρ(t) ≤ b. We get :

1

ρ(t)p



1 −
(

1 −
(

ρ(t)

b

)p−1
)

p

p−1



 ≥ 1

ρ(t)p

(

1 −
(

1−
(

ρ(t)

b

)p−1
))

=
1

ρ(t)bp−1
≥ 1

bp
.

This, together with Lemma 1.2, immediately gives us inequality (1.3).

2 Inequalities in higher dimensions

In this section we will extend the one–dimensional results in the previous
section to higher dimensions, using almost the same arguments as in [9]. For
simplicity I use the same notation as in the mentioned article. If ν ∈ Sn−1, we
put

τν(x) = min{s > 0 : x + sν /∈ Ω}, ρν(x) = min(τν(x), τ−ν(x))

Dν(x) = τν(x) + τ−ν(x), Ωx = {y ∈ Ω : x + t(y − x) ∈ Ω, ∀t ∈ [0, 1]}

δ(x) = inf
ν∈Sn−1

τν(x) = dist(x, ∂Ω)

dω(ν) denotes the normalized surface measure on Sn−1,
∫

Sn−1 dω(ν) = 1.
Before stating our main theorem we need an auxilary lemma.

Lemma 2.1.

∫

Sn−1

(

2

Dν(x)

)p

dω(ν) ≥
(

n|Ωx|
|Sn−1|

)− p

n

. (2.1)

Proof. Since the function f(t) = t−p is convex when t > 0, we can use Jensens
inequality to get

∫

Sn−1

(

2

Dν(x)

)p

dω(ν) ≥
(∫

Sn−1

(

Dν(x)

2

)

dω(ν)

)−p

.
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Since
∫

Sn−1

(

Dν(x)

2

)

dω(ν) =
1

2

∫

Sn−1

τν + τ−νdω(ν)

=

∫

Sn−1

τνdω(ν)

≤
(∫

Sn−1

τn
ν dω(ν)

)
1

n

=

(

n|Ωx|
|Sn−1|

)
1

n

we obtain (2.1).

We are now ready for the main theorem.

Theorem 2.1. Let Ω be a domain in Rn. Then the following Hardy-type

inequality holds for all u ∈
◦

W1,p(Ω), p > 1 :

∫

Ω

|∇u|pdx ≥ cp
√

π · Γ
(

n+p
2

)

Γ
(

p+1
2

)

Γ
(

n
2

)

(

∫

Ω

∫

Sn−1

1

ρv(x)p
dω(ν)|u(x)|pdx

+ (p − 1)

( |Sn−1|
n

)

p

n
∫

Ω

|u(x)|p
|Ωx|

p

n

dx

)

(2.2)

Proof. Clearly, we can assume u ∈ C∞
0 (Ω). At first, we also assume that u is

real valued. E.B.Davies arguments (see [6]) together with the one-dimensional
inequality (Theorem 1.1) gives

∫

Ω

|∂νu|pdx ≥ cp

∫

Ω

|u(x)|p
ρν(x)p

dx + cp(p − 1)

∫

Ω

(

2

Dν(x)

)p

|u(x)|pdx.

By definition, we have

|∂νu| = |ν · ∇u| = |∇u|| cos(ν,∇u)|,

where cos(v, w) denotes the angle between v, w ∈ Rn.
By inserting this into the above inequality and integrating both sides with
respect to the normalized surface measure on Sn−1, we get

∫

Ω

∫

Sn−1

| cos(ν,∇u)|pdω(ν)|∇u(x)|pdx ≥ (2.3)

cp

(

∫

Ω

∫

Sn−1

(

1

ρv(x)p
+ (p − 1)

(

2

Dν(x)

)p)

dω(ν)|u(x)|pdx

)

. (2.4)

Now note that
∫

Sn−1

| cos(ν,∇u)|pdω(ν) =

∫

Sn−1

| cos(e, ν)|pdω(ν)

6



for any fixed unit vector e ∈ Rn. Elementary calculations shows that

∫

Sn−1

| cos(e, ν)|pdω(ν) =
Γ
(

p+1
2

)

Γ
(

n
2

)

√
π · Γ

(

n+p
2

) .

By dividing both sides in (2.3), (2.4) with the latter quantity and using the
above lemma, we get

∫

Ω

|∇u|pdx ≥ cp
√

π · Γ
(

n+p
2

)

Γ
(

p+1
2

)

Γ
(

n
2

)

(

∫

Ω

∫

Sn−1

1

ρv(x)p
dω(ν)|u(x)|pdx

+ (p − 1)

( |Sn−1|
n

)

p

n
∫

Ω

|u(x)|p
|Ωx|

p

n

dx

)

as desired. By standard density arguments, we get the same inequality for all

real-valued u ∈
◦

W1,p(Ω).
Now take an arbitrary v(x) ∈ C∞

0 (Ω) (not nessesarily real-valued).

Then we have |v| ∈
◦

W1,p(Ω). Hence, we get the inequality (2.2) for the
function u(x) = |v(x)|.

Since |∇|v(x)|| ≤ |∇v(x)| a.e (see for example E.H.Lieb and M.Loss [10],

p.144), we get inequality (2.2) for all u ∈ C∞
0 (Ω) and thus for all u ∈

◦

W1,p(Ω).
This concludes the proof of the theorem.

For convex domains an easy geometric argument shows that

∫

Sn−1

1

ρν(x)p
dω(ν) ≥

∫

Sn−1

| cos(e, ν)|pdω(ν) · 1

δ(x)p
=

Γ
(

p+1
2

)

Γ
(

n
2

)

√
π · Γ

(

n+p
2

)

δ(x)p
.

For such domains we also know that Ω = Ωx for every x ∈ Ω. Using the above
theorem, we get

Theorem 2.2. For any convex domain Ω ⊂ Rn and u ∈
◦

W1,p(Ω) we have

∫

Ω

|∇u|pdx ≥ cp

∫

Ω

|u(x)|p
δp(x)

dx +
a(p, n)

|Ω| p

n

∫

Ω

|u(x)|pdx,

where

a(p, n) =
(p − 1)p+1

pp
·
( |Sn−1|

n

)

p

n

·
√

π · Γ
(

n+p
2

)

Γ
(

p+1
2

)

Γ
(

n
2

) .

If Ω is not convex, we have the following counterpart of Corollary 3.1 in [9].

Corollary 2.1. Suppose there exist a constant κ such that for each y ∈ ∂Ω
and each a > 0 there exists a ball B with centre z disjoint from Ω and radius

β ≥ aκ, where |z − y| = a. Then there exists a constant θ ≤ cp such that

cp ·
√

π · Γ
(

n+p
2

)

Γ
(

p+1
2

)

Γ
(

n
2

)

∫

Sn−1

1

ρν(x)p
dω(ν) ≥ θ

1

δp(x)
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and hence
∫

Ω

|∇u|pdx ≥ θ

∫

Ω

∫

Sn−1

1

ρv(x)p
dω(ν)|u(x)|pdx

+ (p − 1)
cp
√

π · Γ
(

n+p
2

)

Γ
(

p+1
2

)

Γ
(

n
2

)

( |Sn−1|
n

)

p

n
∫

Ω

|u(x)|p
|Ωx|

p

n

dx.
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