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A periodisation of semisimple Lie algebras

Anna Larsson

Abstract

In this text we study classical Lie algebras. We prove that a periodi-

sation of such Lie algebras without
��� �

-component can be presented as a

free graded Lie algebra modulo quadratic relations only. Our approach

will be through a Chevalley basis and our method relies on elementary

tools only.

1 Introduction

The aim with this text is to study the periodisation of finite dimensional semisim-
ple Lie algebras over an algebraically closed field F of characteristic 0 without
sl2-component. Every finite dimensional semisimple Lie algebra can be writ-
ten as the direct sum of its simple ideals. The condition that there is no sl2-
component means that no simple ideal in this sum is of sl2-type.

From now on, let L be a finite dimensional semisimple Lie algebra over a
algebraically closed field F of characteristic 0. We will call such Lie algebras
”classical”. Furthermore, we always assume that L has no sl2-component. Let
Lper denote the periodisation of L, i.e., let Lper be the graded Lie algebra with
L in each positive degree. (A formal definition of Lper is given in section 3.)
Moreover, let F(G) be the free Lie algebra generated by G, which we consider
as graded letting the elements of G have degree 1. We call the homogeneous
elements in F(G)2 quadratic. We now state our main result:

Theorem 1. Let L be a finite dimensional semisimple Lie algebra over an alge-
braically closed field F of characteristic 0 without sl2-component. Then there is
a set of generators G and an ideal R of F(G), generated by quadratic expressions
only, such that Lper

∼= F(G)/R.

Periodisations of Lie superalgebras, that can be presented as free graded
Lie superalgebras modulo some ideal generated by quadratic expressions only,
appears in the theory of local rings (see the article [7] by Löfwall-Roos). After
the publication of this article, the study of such Lie superalgebras was natural.
As a first step in this study, we look at ordinary Lie algebras and develop a
method to show Theorem 1.

Let g =
⊕

i≥1 gi be a positively graded Lie algebra over a field F . In terms
of Lie algebra homology, a minimal set of generators for g is in one-to-one corre-
spondence with a basis for the homology group H1(g, F ). Also, given a minimal
set of generators for g, then a minimal set of generators for the relations of g is
in one-to-one correspondence with a basis for the homology group H2(g, F ) (see
[5]). Hence, the result in Theorem 1 may be expressed as H1(Lper, F ) is con-
centrated in degree 1 and H2(Lper, F ) is concentrated in degree 2. A result due
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to H.Garland and J.Lepowski [6] deal with all homology groups. It is possible
that Theorem 1 could be derived from their result. However, our approach to
Theorem 1 will be through a Chevalley basis of L and we use only elementary
methods. A short description of root systems and a Chevalley basis will be
given in section 2. We construct F(G) and an ideal R generated by quadratic
expressions only in accordance with this Chevalley basis (section 3.1). We use
induction to show that there is a set of generators for the vector space F(G)/R
which corresponds to a basis of Lper (Proposition 3.20). Then one easily finds
a graded Lie algebra isomorphism between Lper and F(G)/R (section 3.3).

Even if Theorem 1 could be derived from the result by H.Garland and
J.Lepowski, we believe that our method is of interest in itself and in a forthcom-
ing paper, we will generalize this to show similar results about Lie superalgebras
(cf. also [9]).

Acknowledgement. The author is grateful to Clas Löfwall at Stockholm Uni-
versity for guidance and comments during the work on this paper.

2 Root system and Chevalley basis

Let L be a classical Lie algebra without sl2-component. Then L has a Chevalley
basis and, as we mentioned in the Introduction, this basis is an important part
of our proof of Theorem 1. In this section a description of the Chevalley basis
will be given and some useful properties will be emphasized. These properties
are well-known results (cf. e.g. [1]). However, Lemma 2.7 is a consequence of
the assumption that L has no sl2-component.

Let h be a Cartan subalgebra of L, Φ the set of roots of L relative to h; that
is

Φ = {α ∈ h∗; α 6= 0 and Lα 6= 0}

where
Lα = {x ∈ L; [H, x] = α(H)x for all H ∈ h}.

Then Φ spans h∗. For every α ∈ Φ, there is a unique element Hα ∈ h such that
α(Hα) = 2. In particular, α(Hα) 6= 0.

Observation 2.1. Let α, β ∈ Φ. Then, β(Hα) is an integer.

Observation 2.2. If α, β ∈ Φ, then β − β(Hα)α ∈ Φ.

Observation 2.3. If α ∈ Φ, then −α ∈ Φ. If α ∈ Φ and mα ∈ Φ for some
scalar m, then m = ±1.

Notice that Observation 2.3 implies that α, β ∈ Φ are linearly dependent if
and only if α = ±β.

Observation 2.4. If α, β ∈ Φ are linearly independent, then all roots of the
form β + iα (i ∈ Z) forms a string

β − rα, β − (r − 1)α, . . . , β + (q − 1)α, β + qα

where r, q ≥ 0. This string is called the α-string through β.
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Observation 2.5. Let α, β ∈ Φ such that α 6= ±β. Then

α(Hβ)β(Hα) 6= α(Hα)β(Hβ).

Let Π = {α1, . . . , αl} be the set of fundamental or simple roots, that is;

α1, . . . , αl is a basis of h∗ and each root α ∈ Φ can be written as α =
∑l

i=1 ciαi

where ci are integral coefficients, either all positive (α is a positive root) or all
negative (α is a negative root). Let Φ+ and Φ− be the sets of positive and
negative roots respectively. Then Φ = Φ+ ∪ Φ−.

Observation 2.6. If α ∈ Φ+ such that α /∈ Π, then α−β ∈ Φ+ for some β ∈ Π
(see [1], Lemma A in section 10.2).

To abbreviate, let Hi = Hαi
for all 1 ≤ i ≤ l. Then {Hi; 1 ≤ i ≤ l} is a basis

of h. From now on, let {Xα; α ∈ Φ}∪ {Hi; 1 ≤ i ≤ l} be a Chevalley basis of L.
This means that:

1. [Hα, Hβ ] = 0 for all α, β ∈ Φ

2. [Hβ, Xα] = α(Hβ)Xα for all α, β ∈ Φ

3. [Xα, X−α] = Hα for all α ∈ Φ

4. Let α, β ∈ Φ such that α 6= −β. Then

[Xα, Xβ ] =

{

Nα,βXα+β if α + β ∈ Φ
0 if α + β /∈ Φ

where Nα,β is a non-zero integer.

5. If α, β, α + β ∈ Φ then Nα,β = −N−α,−β

To simplify calculations, let Nα,β = 0 if α, β or α+β /∈ Φ. The following lemma
is a consequence of the fact that L has no sl2-component. Let rank(L) denote
the dimension of h∗. This is well defined when L is semisimple.

Lemma 2.7. If α ∈ Π, then α + β ∈ Φ for some β ∈ Φ.

Proof. L is a direct sum of simple Lie algebras, none of sl2-type, i.e., all of
rank ≥ 2. The union of the root systems of these simple Lie algebras gives
the decomposition of Φ into its irreducible components. If α ∈ Π, let Φ′ be
the component such that α ∈ Φ′ and let L′ be the corresponding simple Lie
algebra. Since α is a fundamental root of L, α is a fundamental root of L ′.
Now, Φ′ is irreducible and hence, the Dynkin diagram of Φ′ is connected. Since
dim(Φ′) ≥ 2, there is a fundamental root β ∈ Φ′ such that α 6= β. Choose β to
be a neighbour of α in the diagram, i.e., α(Hβ) 6= 0. In fact, then α(Hβ) < 0
since α and β are fundamental roots. Furthermore, α − α(Hβ)β ∈ Φ′. In view
of this and of the β-string through α, we have that α + β ∈ Φ.

We end this section with a lemma about the structure constants.

Lemma 2.8. Let α, β ∈ Φ such that α 6= ±β. Then

−α(Hβ) = Nα,−βNβ,α−β + Nβ,αN−β,β+α.
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Proof.

[Xα, Hβ] = [Xα, [Xβ , X−β]] = [Xβ , [Xα, X−β]] + [X−β, [Xβ , Xα]]

= Nα,−βNβ,α−βXα + Nβ,αN−β,β+αXα

= (Nα,−βNβ,α−β + Nβ,αN−β,β+α)Xα

[Xα, Hβ] = −α(Hβ)Xα

Hence, −α(Hβ) = Nα,−βNβ,α−β + Nβ,αN−β,β+α.

3 The free graded Lie algebra and proof of

Theorem 1

The notation follows the previous sections, L is a classical Lie algebra over a
field F without sl2-component. Furthermore, h is a Cartan subalgebra of L, Φ
the root system relative to h, Π = {α1, . . . αl} a set of fundamental roots of Φ
and {Xα ; α ∈ Φ } ∪ {Hi ; 1 ≤ i ≤ l } a Chevalley basis of L. Also,
let F(G) be the free graded Lie algebra letting the elements in G have degree
1. Define the periodisation of L, Lper, as follows:

Definition 3.1. Let Lper be the positive graded Lie algebra defined by

Lper = L ⊗ tF [t] =
⊕

i≥1

Lti

with [x⊗ a, y ⊗ b] = [x, y]⊗ ab for all x, y ∈ L and a, b ∈ tF [t]. If x ∈ L, let x(i)

denote the homogeneous element x ⊗ ti.

The Lie algebra Lper can be considered as the graded Lie algebra with L in
each degree. We write (Lper)i for the homogeneous part in Lper of degree i (i.e.,
(Lper)i = Lti). Then, if x ∈ L, x(i) is the corresponding element in (Lper)i.

Observe that the set {X
(i)
α ; α ∈ Φ } ∪ {H

(i)
i ; 1 ≤ i ≤ l } is a basis of

the vector space (Lper)i for all i ≥ 1. Furthermore, [x(i), y(j)] = [x, y](i+j) for
all x, y ∈ L and i, j ≥ 1.

Remark 3.2. Let C[t, t−1] be the algebra of Laurent polynomials in t and let g

be a Lie algebra. The well known loop algebra, L(g) = g⊗C[t, t−1] =
⊕∞

−∞ gti,
is constructed in the same manner as Lper, Lper is the positive part of the loop

algebra of L. Given a matrix A, let g(A) be the Kac-Moody algebra. Let
◦

A be a

Cartan matrix of finite type and let A be the affine extended Cartan matrix of
◦

A.

Then L(g(
◦

A)) is isomorphic to [g(A), g(A)]/c where c is the center of [g(A), g(A)]
(see Theorem 7.4 in [8]). For further information about this subject, we refer
to [8]. It is probably possible to deduce Theorem 1 from this isomorphism and
the Serre relations.

In this section, the object is to prove Theorem 1; i.e., to show that there
exists a set G and an ideal R of F(G), generated by quadratic expressions only,
such that Lper

∼= F(G)/R. In section 3.1 we construct G and R, in 3.2 we
state and prove an important proposition, and in section 3.3 we restate and
prove Theorem 1.
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3.1 Construction of generators and relations

Recall that Lper is the graded Lie algebra with L in each degree and if x ∈ L,
we denote x ∈ (Lper)i by x(i). Also, to abbreviate, let x(1) = x. The object is
to construct G and R with the Chevalley basis in mind.

Let G = {xα; α ∈ Φ} ∪ {hi; 1 ≤ i ≤ l} and deg(x) = 1 for all x ∈ G. Let
F = F(G).

Definition 3.3. Define a Lie algebra homomorphism φ : F −→ Lper by induc-
tion and linear extension:

1. φ : xα 7→ Xα, φ : hi 7→ Hi, α ∈ Φ, 1 ≤ i ≤ l

2. φ : [x, y] 7→ [φ(x), φ(y)], x, y ∈ F

Remark 3.4. An easy induction on i shows that φ : Fi −→ (Lper)i for all
i ≥ 1. Hence, φ is in fact a graded Lie algebra homomorphism. Since [L, L] = L,
induction on i shows that φ maps F onto Lper.

Recall that, for all α ∈ Φ, there is Hα ∈ h such that α(Hα) = 2. If

Hα =
∑l

i=1 ciHi, let hα =
∑l

i=1 cihi. Then φ(hα) = Hα for all α ∈ Φ. To
construct R, consider the restriction of φ to F2:

φ|F2
: F2 −→ Lper :











[xα, xβ ] 7→ [Xα, Xβ ], α, β ∈ Φ

[hi, xα] 7→ [Hi, Xα], α ∈ Φ, 1 ≤ i ≤ l

[hi, hj] 7→ [Hi, Hj ], 1 ≤ i, j ≤ l

Let R be the ideal in F generated by ker(φ|F2
). Since ker(φ|F2

) ⊆ F2, R is
generated by quadratic expressions. Next is an example of an expression in this
kernel:

Example 3.5. If α, β, α + β ∈ Φ, then we have the following relation in L

Nα,β[Xα+β , X−α−β] = −N−α,−β[Xα+β , X−α−β] = −[Xα+β, [X−α, X−β]]

= −[X−α, [Xα+β, X−β ]] − [X−β , [X−α, Xα+β]]

= −Nα+β,−β[X−α, Xα] + N−α,α+β[Xβ , X−β].

Using this relation in L, we get the following expression in ker(φ|F2
) ⊂ F

Nα,β[xα+β , x−α−β ] + Nα+β,−β [x−α, xα] − N−α,α+β[xβ , x−β ].

Even though we do not need it, the following proposition gives an explicit
list of quadratic expressions generating R.

Proposition 3.6. Let L be a classical Lie algebra, h a Cartan subalgebra of L,
Φ the root system of L relative to h with a set Π = {α1, . . . , αl} of fundamental
roots. Let G be the set given above, φ the graded Lie algebra epimorphism given
by Definition 3.3 and let R be the ideal in F = F(G) generated by ker(φ|F2

).
Then R is generated by the following quadratic expressions:

1. α(Hα)[hi, xα] − α(Hi)[hα, xα] for all α ∈ Φ, 1 ≤ i ≤ l

2. (α + β)(Hα+β)[xα, xβ ] − Nα,β [hα+β , xα+β ] for all α, β ∈ Φ such that
α + β ∈ Φ

5



3. [xα, xβ ] for all α, β ∈ Φ such that α + β /∈ Φ, α 6= −β

4. [hi, hj ] for all 1 ≤ i, j ≤ l

5. [xα, x−α] −
∑l

i=1 ci[xαi
, x−αi

] for all α ∈ Φ where Hα =
∑l

i=1 ciHi

Proof. First to abbreviate, let φ2 = φ|F2
. Let R′ be the ideal in F generated by

the quadratic expressions in 1-5. We must show that R′ = R. Let R′
2 = F2∩R′.

Clearly, R′ is generated by R′
2. Since R by definition is generated by ker(φ2),

it suffices to show that R′
2 = ker(φ2).

To take φ2 on an expression in F2 is to change small letters in the expression
to capital ones. In view of the list of properties of the Chevalley basis given in
section 2, it is easy to see that the quadratic expressions given in Proposition 3.6
are in ker(φ2). Hence, R′

2 ⊂ ker(φ2). Consider the vector space epimorphism:

ϕ : F2/R′
2 −→ F2/ ker(φ2) : x + R′

2 7→ x + ker(φ2)

If we can show that ϕ is an isomorphism, then we know that R′ = ker(φ2) and
we are done.

Now, F2/R′
2 and F2/ ker(φ2) are finite dimensional vector spaces. Thus, to

show that ϕ is an isomorphism, it suffices to show that
dimF2/R′

2 = dimF2/ ker(φ2). Since ϕ is an epimorphism, we have that
dimF2/R′

2 ≥ dimF2/ ker(φ2). Furthermore, Im(φ2) = (Lper)2 ∼= L. Hence,
F2/ ker(φ2) ∼= L, and we must show that dimF2/R′

2 ≤ dim L.
If x ∈ F2, let x̄ denote the image of x in F2/R′

2. F2 is generated by

{[xα, xβ ]; α, β ∈ Φ} ∪ {[xα, hi]; α ∈ Φ, 1 ≤ i ≤ l} ∪ {[hi, hj ; 1 ≤ i, j ≤ l]}

and then, F2/R′
2 is generated by

{[x̄α, x̄β ]; α, β ∈ Φ} ∪ {[h̄i, x̄α]; α ∈ Φ, 1 ≤ i ≤ l} ∪ {[h̄i, h̄j ; 1 ≤ i, j ≤ l]}.

From 1-5 in Proposition 3.6 we have that:

[h̄i, x̄α] =
α(Hi)

α(Hα)
[h̄α, x̄α] for all α ∈ Φ, 1 ≤ i ≤ l

[x̄α, x̄β ] =
Nα,β

(α + β)(Hα+β)
[h̄α+β , x̄α+β ] for all α, β ∈ Φ such

that α + β ∈ Φ

[x̄α, x̄β ] = 0 for all α, β ∈ Φ such that α + β /∈ Φ, α 6= −β

[h̄i, h̄j] = 0 for all 1 ≤ i 6= j ≤ l

[x̄α, x̄−α] =
l

∑

i=1

ci[x̄αi
, x̄−αi

] for all α ∈ Φ where Hα =
l

∑

i=1

ciHi

Hence, F2/R′
2 is generated by

{[h̄α, x̄α]; α ∈ Φ} ∪ {[x̄αi
, x̄−αi

]; 1 ≤ i ≤ l}.

Since {Xα; α ∈ Φ} ∪ {Hi; 1 ≤ i ≤ l} is a basis of L, we have that
dimF2/R′

2 ≤ dim L.
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Remark 3.7. If L is a simple Lie algebra, there is a unique maximal root γ ∈ Φ
(the root such that γ + α /∈ Φ for any α ∈ Φ+), and Xγ is the unique maximal
vektor up to nonzero scalar multiples in L viewed as an L-module (i.e., the
vector such that Xα.Xγ = 0 for all α ∈ Φ+). Let V be the subspace in F2

generated by the expressions in Proposition 3.6. Then V is an L-module and
the vectors

[xγ−αi
, xγ ] where αi ∈ Π such that γ − αi ∈ Φ (1)

are the maximal vectors up to nonzero scalar multiples. Hence, V is generated
by the vectors (1) as an L-module. Table 1 shows the maximal root and the
maximal vectors, or generators, for the different types of L. We see that if L is

Table 1: Generators for V

Type Maximal root γ Generators for V
Al α1 + . . . + αl [xγ−α1

, xγ ], [xγ−αl
, xγ ]

Bl α1 + 2α2 + . . . + 2αl [xγ−α2
, xγ ]

Cl 2α1 + . . . + 2αl−1 + αl [xγ−α1
, xγ ]

Dl α1 + 2α2 + . . . + 2αl−2 + αl−1 + αl [xγ−α2
, xγ ]

E6 α1 + 2α2 + . . . + 2α5 + α6 [xγ−α2
, xγ ]

E7 2α1 + 2α2 + 3α3 + 4α4 + 3α5 + 2α6 + α7 [xγ−α1
, xγ ]

E8 2α1 + 3α2 + 4α3 + 6α4 + 5α5 + 4α6 + 3α7 + 2α8 [xγ−α8
, xγ ]

F4 2α1 + 3α2 + 4α3 + 2α4 [xγ−α1
, xγ ]

G2 3α1 + 2α2 [xγ−α2
, xγ ]

of type Al (l ≥ 2), V has two generators and else, V is generated by one vector
only.

From now on, we mainly do calculations in F/R. To simplify the notations,
we therefore let {xα, α ∈ Φ}∪{hi, 1 ≤ i ≤ l} denote the images of the generators
for F in F/R. Hopefully, no confusion will arise. To make later calculations
more understandable, we do the following abbreviations. Note that α(Hα) 6= 0.

Definition 3.8. Let {xα, α ∈ Φ} ∪ {hi, 1 ≤ i ≤ l} be the images of the genera-
tors for F in F/R. Define by induction:

1. x
(2)
α = 1

α(Hα) [hα, xα], x
(n)
α = 1

α(Hα) [hα, x
(n−1)
α ]

2. h
(2)
α = [xα, x−α], h

(n)
α = [xα, x

(n−1)
−α ]

Furthermore, let x
(1)
α = xα, h

(1)
i = hi

Example 3.9. In this example, we derive two relations in F(G)/R that will be
used many times later on. Take any α, β ∈ Φ such that α + β ∈ Φ.

1. Using the properties of the Chevalley basis listed in section 2, the relation
in L given in Example 3.5 can be written as

Nα,βHα+β + Nα+β,−βH−α − N−α,α+βHβ = 0.

By the definition of hδ when δ ∈ Φ, we have that

Nα,βhα+β + Nα+β,−βh−α − N−α,α+βhβ = 0 in F(G)/R.
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2. Take the expression in ker(φ|F2
) given in Example 3.5 and use Defini-

tion 3.8. Then we have that

Nα,βh
(2)
α+β + Nα+β,−βh

(2)
−α − N−α,α+βh

(2)
β = 0 in F(G)/R.

3.2 Statement and proof of a proposition

In this section the object is to state and prove a proposition concerning relations
between elements in F/R. This is an important result, since these relations
reduce the dimension in each homogeneous part of F/R (cf. Proposition 3.20).
In fact, as we will see in section 3.3, this proposition does all the hard work in
proving Theorem 1.

Proposition 3.10. Let L be a classical Lie algebra without sl2-component, h

a Cartan subalgebra of L and Φ the root system of L relative to h with a set
Π = {α1, . . . αl} of fundamental roots. Let {Xα ; α ∈ Φ } ∪ {Hi ; 1 ≤ i ≤ l }
be a Chevalley basis of L. Moreover, let G be the set of generators and R the
ideal of F(G) given in section 3.1. Take any α, β ∈ Φ and 1 ≤ i, j ≤ l. Then,
for every k ≥ 1 we have the following relations in F(G)/R:

1. [hi, x
(k)
α ] = α(Hi)x

(k+1)
α

2. If α 6= −β, then [xα, x
(k)
β ] = Nα,βx

(k+1)
α+β

3. [xα, h
(k)
i ] = −α(Hi)x

(k+1)
α

4. [hi, h
(k)
j ] = 0

5. [xα, x
(k)
−α] is a linear combination of h

(k+1)
1 , . . . , h

(k+1)
l

Notice that the statement in 2. is a bit unclear since xα+β is not defined
when α + β /∈ Φ. However, Nα,β = 0 if α + β /∈ Φ, so what we actually mean is
that

[xα, x
(k)
β ] =

{

Nα,βx
(k+1)
α+β if α + β ∈ Φ

0 if α + β /∈ Φ

Hence, let x
(k)
δ = 0 for all δ /∈ Φ and all k ≥ 1 and we get the statement in 2.

The advantage in writing like this is the simplicity in the calculations.
The proof of Proposition 3.10 is done by induction and depends on several

lemmas. Since these lemmas depend on the induction hypothesis, they are
included in the proof.

Proof of Proposition 3.10. We use induction on k. For k = 1, 1-5 of Proposi-
tion 3.10 are just consequences of the quadratic expressions in R and Defini-
tion 3.8 (cf. Proposition 3.6). Assume that Proposition 3.10 is true for all k < n
for some n ≥ 2. The induction step is given in the lemmas below. Observe that
the induction hypothesis is assumed to be valid in the lemmas.

Lemma 3.11. Let i ∈ {1, . . . , l}. Then for any α ∈ Φ:

[hi, x
(n)
α ] = α(Hi)x

(n+1)
α

8



Proof of Lemma 3.11.

[hi, x
(n)
α ] =

1

α(Hα)
[hi, [hα, x(n−1)

α ]]

=
1

α(Hα)
[hα, [hi, x

(n−1)
α ]] +

1

α(Hα)
[x(n−1)

α , [hα, hi]]

=
α(Hi)

α(Hα)
[hα, x(n)

α ] = α(Hi)x
(n+1)
α

The first and the last equality follows from Definition 3.8, the second from
the Jacobi identity and the third equality follows from the fact hα is a lin-
ear combination of h1, . . . , hl and the quadratic relations [hj , hi] = 0 for all
1 ≤ i , j ≤ l.

Lemma 3.12. Let H =
∑l

i=1 ciHi and let h =
∑l

i=1 cihi be the corresponding
element in F/R. Then

[h, x(k)
α ] = α(H)x(k+1)

α

for all k ≤ n.

Proof of Lemma 3.12. According to the induction hypothesis and Lemma 3.11
we have that

[hi, x
(k)
α ] = α(Hi)x

(k+1)
α

for all 1 ≤ i ≤ l and k ≤ n. Then, by linearity of the bracket-operator and of
α, we have the desired equality.

Lemma 3.13. Let α, β ∈ Φ such that α 6= −β. Then

[xα, x
(n)
β ] = Nα,βx

(n+1)
α+β .

Proof of Lemma 3.13. We proceed in steps:
(i) If α, β are linearly independent (α, β ∈ h∗), there is H ∈ h such that α(H) = 0
and β(H) 6= 0. Let h denote the corresponding element in F/R. Then:

[xα, x
(n)
β ] =

1

β(H)
[xα, [h, x

(n−1)
β ]]

=
1

β(H)
[h, [xα, x

(n−1)
β ]] +

1

β(H)
[x

(n−1)
β , [h, xα]]

=
Nα,β

β(H)
[h, x

(n)
α+β ] +

α(H)

β(H)
[x

(n−1)
β , x(2)

α ] = Nα,βx
(n+1)
α+β

The first equation follows from Lemma 3.12, the third from the induction hy-
pothesis and Lemma 3.12 and the last equality follows from Lemma 3.12 and
the fact that α(H) = 0.
(ii) If α and β are linearly dependent then α = β according to Observation 2.3

and the assumption that α 6= −β. Hence, we must show that [xα, x
(n)
α ] = 0. By

combining Observation 2.6 and Lemma 2.7 and considering the different cases
when ±α ∈ Π and ±α ∈ Φ+ but ±α /∈ Π respectively, we have that there is a
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γ ∈ Φ such that α 6= ±γ and α + γ ∈ Φ. Then Nα+γ,−γ 6= 0 and we have that:

[xα, x(n)
α ] =

1

Nα+γ,−γ

[xα, [xα+γ , x
(n−1)
−γ ]]

=
1

Nα+γ,−γ

[xα+γ , [xα, x
(n−1)
−γ ]] +

1

Nα+γ,−γ

[x
(n−1)
−γ , [xα+γ , xα]]

=
Nα,−γ

Nα+γ,−γ

[xα+γ , x
(n)
α−γ ] +

Nα+γ,α

Nα+γ,−γ

[x
(n−1)
−γ , x

(2)
2α+γ ]

The first and the last equality follows from the induction hypothesis. We will
show that both terms in this sum are zero. If α − γ /∈ Φ then Nα,−γ = 0.
If α − γ ∈ Φ then α + γ and α − γ must be linear independent. By the first

part of the proof we have that [xα+γ , x
(n)
α−γ ] = 0 since 2α /∈ Φ according to

Observation 2.3. Let δ = 2α + γ. If δ /∈ Φ then Nα+γ,α = 0. If δ ∈ Φ then

[x
(n−1)
−γ , x

(2)
2α+γ ] =

1

δ(Hδ)
[x

(n−1)
−γ , [hδ, x2α+γ ]]

=
1

δ(Hδ)
(−[hδ, [x2α+γ , x

(n−1)
−γ ]] + [x2α+γ , [hδ, x

(n−1)
−γ ]])

=
−γ(Hδ)

δ(Hδ)
[x2α+γ , x

(n)
−γ ]

The first equation follows from Lemma 3.12 and the last equality follows from
Lemma 3.12, the induction hypothesis and the fact that 2α + γ − γ = 2α /∈ Φ.
Now, −γ and 2α+γ are linearly independent. Hence, according to the first part

of the proof [x2α+γ , x
(n)
−γ ] = 0.

Lemma 3.14. Let α, β ∈ Φ such that α 6= −β. Then

[x(2)
α , x

(k−1)
β ] = Nα,βx

(k+1)
α+β for all k ≤ n.

Proof of Lemma 3.14. According to the induction hypothesis and Lemma 3.13,

we have that [xα, x
(k)
β ] = Nα,βx

(k+1)
α+β for all k ≤ n. Hence:

[x(2)
α , x

(k−1)
β ] = −

1

α(Hα)
[x

(k−1)
β , [hα, xα]]

= −
1

α(Hα)
[hα, [x

(k−1)
β , xα]] −

1

α(Hα)
[xα, [hα, x

(k−1)
β ]]

=
(α + β)(Hα)

α(Hα)
Nα,βx

(k+1)
α+β −

β(Hα)

α(Hα)
Nα,βx

(k+1)
α+β

= Nα,βx
(k+1)
α+β

We have now done the induction step for statement 1 - 2 in Proposition 3.10.
Before proceeding, we give a useful lemma that generalizes the relations given
in Example 3.9.

Lemma 3.15. Let α, β, α + β ∈ Φ. Then

Nα,βh
(n)
α+β + Nα+β,−βh

(n)
−α − N−α,α+βh

(n)
β = 0

10



Proof of Lemma 3.15. If n = 2, Lemma 3.15 follows from Example 3.9. Assume
that n > 2. Since α+β ∈ Φ, it follows that −α−β ∈ Φ and N−α,−β 6= 0. Then:

Nα,βh
(n)
α+β = −N−α,−β[xα+β , x

(n−1)
−α−β ] = −[xα+β , [x−α, x

(n−2)
−β ]]

= −[x−α, [xα+β , x
(n−2)
−β ]] − [x

(n−2)
−β , [x−α, xα+β ]]

= −Nα+β,−β [x−α, x(n−1)
α ] − N−α,α+β [x

(n−2)
−β , x

(2)
β ]

= −Nα+β,−βh
(n)
−α] − N−α,α+β [x

(n−2)
−β , x

(2)
β ]

[x
(n−2)
−β , x

(2)
β ] =

1

β(Hβ)
[x

(n−2)
−β , [hβ , xβ ]]

=
1

β(Hβ)
[hβ , [x

(n−2)
−β , xβ ]] +

1

β(Hβ)
[xβ , [hβ, x

(n−2)
−β ]]

= −
1

β(Hβ)
[hβ , h

(n−1)
β ] − [xβ , x

(n−1)
−β ]] = −h

(n)
β

Hence, Nα,βh
(n)
α+β = −Nα+β,−βh

(n)
−α + N−α,α+βh

(n)
β

Lemma 3.16. Let i ∈ {1, . . . , l} and let α ∈ Φ. Then

[xα, h
(n)
i ] = −α(Hi)x

(n+1)
α

Proof of Lemma 3.16. First, take any δ ∈ Φ such that α 6= ±δ. Then:

[xα, h
(n)
δ ] = [xα, [xδ, x

(n−1)
−δ ]] = [xδ, [xα, x

(n−1)
−δ ]] + [x

(n−1)
−δ , [xδ, xα]]

= Nα,−δ[xδ, x
(n)
α−δ] + Nδ,α[x

(n−1)
−δ , x

(2)
δ+α]

= Nα,−δNδ,α−δx
(n+1)
α + Nδ,αN−δ,δ+αx(n+1)

α

= (Nα,−δNδ,α−δ + Nδ,αN−δ,δ+α)x(n+1)
α = −α(Hδ)x

(n+1)
α

The third equality follows from Lemma 3.13 and Lemma 3.14 and the last
equality follows from Lemma 2.8. Hence:

[xα, h
(n)
δ ] = −α(Hδ)x

(n+1)
α for all δ ∈ Φ such that α 6= ±δ (2)

If α 6= ±αi, take δ = αi in equation (2) and we are done. Assume that α = ±αi.
According to Lemma 2.7 there is a β ∈ Φ such that αi 6= ±β and αi + β ∈ Φ.
Now, use the following relation given in Lemma 3.15:

Nβ,αi
h

(n)
β+αi

+ Nβ+αi,−αi
h

(n)
−β − N−β,β+αi

h(n)
αi

= 0

Then N−β,β+αi
6= 0 and we have that:

[xα, h
(n)
i ] =

Nβ,αi

N−β,β+αi

[xα, h
(n)
β+αi

] +
Nβ+αi,−αi

N−β,β+αi

[xα, h
(n)
−β ]

=
Nβ,αi

N−β,β+αi

[x(n)
α , hβ+αi

] +
Nβ+αi,−αi

N−β,β+αi

[x(n)
α , h−β]

= [x(n)
α , hi] = −α(Hi)x

(n+1)
α

The second equality follows from the fact that α 6= ±(β + αi) and α 6= ±β,
equation (2) and Lemma 3.12. The third equality follows from Example 3.9 and
the last equality follows from Lemma 3.11.
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Before doing the induction step for the last two statements in Proposi-
tion 3.10, we need the following lemma.

Lemma 3.17. Let α ∈ Π. Then:

[xα, x
(n)
−α] + [x

(n−1)
−α , x(2)

α ] = 0

[x−α, x(n)
α ] + [x(n−1)

α , x
(2)
−α] = 0

[xα, x
(n)
−α] + [x−α, x(n)

α ] = 0

Proof of Lemma 3.17. By Lemma 2.7, there is β ∈ Φ such that α + β ∈ Φ.
Furthermore, according to Observation 2.3 and the fact that 0 /∈ Φ, we have
that α 6= ±β. Consider the relation given in Lemma 3.15:

Nα,βh
(n)
α+β + Nα+β,−βh

(n)
−α − N−α,α+βh

(n)
β = 0

Taking the Lie bracket with this relation and, on one hand hα and, on the other
hand hβ, we get the following system of equations:

{

Nα,β [hα, h
(n)
α+β] + Nα+β,−β [hα, h

(n)
−α] − N−α,α+β [hα, h

(n)
β ] = 0

Nα,β [hβ, h
(n)
α+β ] + Nα+β,−β [hβ , h

(n)
−α] − N−α,α+β [hβ, h

(n)
β ] = 0

(3)

Now, take any δ, γ ∈ Φ. Then we have that:

[hγ , h
(n)
δ ] = [hγ , [xδ, x

(n−1)
−δ ]]

= [xδ, [hγ , x
(n−1)
−δ ]] + [x

(n−1)
−δ , [xδ, hγ ]]

= −δ(Hγ)[xδ, x
(n)
−δ ] − δ(Hγ)[x

(n−1)
−δ , x

(2)
δ ] (4)

The first equality follows from Definition 3.8, the second from the Jacobi iden-
tity. Recall that if Hγ =

∑l
i=1 ciHi, we defined hγ =

∑l
i=1 cihi and the last

equality follows from Lemma 3.12. Apply equation (4) to each bracket in sys-
tem (3). To simplify, put:











x = Nα,β([xα+β , x
(n)
−α−β ] + [x

(n−1)
−α−β , x

(2)
α+β ])

y = Nα+β,−β([x−α, x
(n)
α ] + [x

(n−1)
α , x

(2)
−α])

z = N−α,α+β([xβ , x
(n)
−β ] + [x

(n−1)
−β , x

(2)
β ])

System (3) then becomes:

{

−(α + β)(Hα)x + α(Hα)y + β(Hα)z = 0
−(α + β)(Hβ)x + α(Hβ)y + β(Hβ)z = 0

Adding the multiple −β(Hα) of the second row to the multiple β(Hβ) of the
first row, and adding the multiple −α(Hα) of the second row to the multiple
α(Hβ) of the first row we obtain:

{

(

α(Hβ)β(Hα) − α(Hα)β(Hβ)
)

(x − y) = 0
(

α(Hα)β(Hβ) − α(Hβ)β(Hα)
)

(x − z) = 0
(5)

According to Observation 2.5 (and the fact that α 6= ±β), we have that
α(Hβ)β(Hα) 6= α(Hα)β(Hβ). Hence, dividing the equations in system (5) by
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α(Hβ)β(Hα) − α(Hα)β(Hβ) and α(Hα)β(Hβ) − α(Hβ)β(Hα) respectively, we
get

{

x − y = 0
x − z = 0.

(6)

The idea is to find a third relation between x, y and z which is linearly inde-
pendent of the first two.

Consider the following relations:

Nα,β[xα+β , x
(n)
−α−β ] = −N−α,−β[xα+β , x

(n)
−α−β ] = −[xα+β , [x−α, x

(n−1)
−β ]]

= −[x−α, [xα+β , x
(n−1)
−β ]] − [x

(n−1)
−β , [x−α, xα+β ]]

= −Nα+β,−β [x−α, x(n)
α ] − N−α,α+β [x

(n−1)
−β , x

(2)
β ]

Nα,β[x
(n−1)
−α−β , x

(2)
α+β ] = [x

(n−1)
−α−β , [xα, xβ ]]

= [xα, [x
(n−1)
−α−β , xβ ]] + [xβ , [xα, x

(n−1)
−α−β ]]

= N−α−β,β [xα, x
(n)
−α] + Nα,−α−β[xβ , x

(n)
−β ]

= −Nα+β,−β [xα, x
(n)
−α] − N−α,α+β[xβ , x

(n)
−β ]

Adding these two equalities we get

x + Nα+β,−β([xα, x
(n)
−α] + [x−α, x(n)

α ]) + z = 0 (7)

We proceed in steps:

(i) When n = 2, we must show that [xα, x
(2)
−α] + [x−α, x

(2)
α ] = 0 for all α ∈ Π. If

n = 2, then

y = Nα+β,−β([xα, x
(2)
−α] + [x−α, x(2)

α ])

and equation (7) becomes x + y + z = 0. This equation is linearly independent

with the two in system (6). Hence, x = y = z = 0 and particularly, [xα, x
(2)
−α] +

[x−α, x
(2)
α ] = 0.

(ii) For n > 2, we first show that

[xα, x
(k)
−α] = [x(m1)

α , x
(m2)
−α ] (8)

for all 1 ≤ k ≤ n − 1 and all m1, m2 ≥ 1 such that m1 + m2 = k + 1. Observe

that the induction hypothesis gives that [hα, h
(k)
α ] = 0 for all k < n. If k = 2

equation (8) follows from (i). Assume that equation (8) is true for all k < l
where 2 < l ≤ n − 1. Take any 1 ≤ m ≤ l − 1. Then:

[x(m)
α , x

(l−m+1)
−α ] = −

1

α(Hα)
[x(m)

α , [hα, x
(l−m)
−α ]]

= −
1

α(Hα)
[hα, [x(m)

α , x
(l−m)
−α ]] −

1

α(Hα)
[x

(l−m)
−α , [hα, x(m)

α ]]

= −
1

α(Hα)
[hα, [xα, x

(l−1)
−α ]] − [x

(l−m)
−α , x(m+1)

α ]

= −
1

α(Hα)
[hα, h(l)

α ] + [x(m+1)
α , x

(l−m)
−α ] = [x(m+1)

α , x
(l−m)
−α ]
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The third equality follows from the fact that l − 1 < l and the assumption that
equation (8) is true for all k < l. The last equality follows from the fact that
l ≤ n− 1 and the induction hypothesis. Now, let m run from 1 to l − 1 and we
are done. Hence (8) is proved.

Consider the following relation for all 1 ≤ m ≤ n − 1:

[hα, h(n)
α ] = [hα, [xα, x

(n−1)
−α ]] = [hα, [x(m)

α , x
(n−m)
−α ]]

= [x(m)
α , [hα, x

(n−m)
−α ]] + [x

(n−m)
−α , [x(m)

α , hα]]

= −α(hα)[x(m)
α , x

(n−m+1)
−α ] − α(hα)[x

(n−m)
−α , x(m+1)

α ]

= −α(hα)([x(m)
α , x

(n−m+1)
−α ] + [x

(n−m)
−α , x(m+1)

α ])

The second equality follows from equation (8) for k = n − 1. By letting m run
from 1 to n − 1 we get:

[xα, x
(n)
−α] + [x

(n−1)
−α , x(2)

α ] = −[x
(n−1)
−α , x(2)

α ] + [x
(n−2)
−α , x(3)

α ] =

−[x
(n−2)
−α , x(3)

α ] + [x
(n−3)
−α , x(4)

α ] = · · · = −[x
(2)
−α, x(n−1)

α ] + [x−α, x(n)
α ] (9)

Adding all the equations in (9) gives:

(n − 1)([x−α, x(n)
α ] + [x(n−1)

α , x
(2)
−α]) = [xα, x

(n)
−α] + [x−α, x(n)

α ] (10)

This inserted in equation (7) gives x+(n−1)y + z = 0. Since the characteristic
is 0, this equation is linearly independent with the two in system (6) and hence,

x = y = z = 0. Particularly, [x−α, x
(n)
α ] + [x

(n−1)
α , x

(2)
−α] = 0. By equation (9),

we also have that

[xα, x
(n)
−α] + [x

(n−1)
−α , x(2)

α ] = [x−α, x(n)
α ] + [x(n−1)

α , x
(2)
−α] = 0.

Finally, by equation (10) we have that [xα, x
(n)
−α] + [x−α, x

(n)
α ] = 0.

Lemma 3.18. Let i, j ∈ {1, . . . , l}. Then for all n ≥ 1:

[hi, h
(n)
j ] = 0

Proof of Lemma 3.18. Take any 1 ≤ i, j ≤ l. Then:

[hi, h
(n)
j ] = [hi, [xαj

, x
(n−1)
−αj

]]

= [xαj
, [hi, x

(n−1)
−αj

]] + [x
(n−1)
−αj

, [xαj
, hi]]

= −αj(hi)[xαj
, x

(n)
−αj

] − αj(hi)[x
(n−1)
−αj

, x(2)
αj

] = 0

The last equality follows from Lemma 3.17.

Lemma 3.19. Let α ∈ Φ. Then [xα, x
(n)
−α] is a linear combination of

h
(n+1)
1 , . . . , h

(n+1)
l .

Proof of Lemma 3.19. Recall from section 2 that every positive root can be
written uniquely as a sum of fundamental roots. Hence, we can talk about the
length of a root. If α ∈ Φ, let l(α) denote the length of α. Clearly, l(α) = l(−α).
We use induction over this length to prove Lemma 3.19.
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If l(α) = 1, then α = ±αi for some i ∈ {1, . . . l}. Clearly, [xαi
, x

(n)
−αi

] =

h
(n+1)
i by Definition 3.8. According to Lemma 3.17, we have that [x−αi

, x
(n)
αi ] =

−[xαi
, x

(n)
−αi

] = h
(n+1)
i . Now, assume that Lemma 3.19 is true for all roots of

length < m for some m > 1, and let α ∈ Φ such that l(α) = m. Since m > 1,
we have that ±α is not fundamental. We proceed in steps:
(i) If α ∈ Φ+ there is, according to Observation 2.6, αi ∈ Π such that α − αi ∈
Φ+. Clearly, l(α − αi) < m. Furthermore, N−α+αi,−αi

6= 0 and

[xα, x
(n)
−α] =

1

N−α+αi,−αi

[xα, [x−α+αi
, x

(n−1)
−αi

]]

=
1

N−α+αi,−αi

[x−α+αi
, [xα, x

(n−1)
−αi

]]

+
1

N−α+αi,−αi

[x
(n−1)
−αi

, [x−α+αi
, xα]]

=
Nα,−αi

N−α+αi,−αi

[x−α+αi
, x

(n)
α−αi

] +
N−α+αi,α

N−α+αi,−αi

[x
(n−1)
−αi

, x(2)
αi

]

=
Nα,−αi

N−α+αi,−αi

[x−α+αi
, x

(n)
α−αi

] −
N−α+αi,α

N−α+αi,−αi

[xαi
, x

(n)
−αi

]

The last equality follows from Lemma 3.17. Now, since l(αi) < m, and l(−α +

αi) = l(α − αi) < m we have that [xαi
, x

(n)
−αi

] and [x−α+αi
, x

(n)
α−αi

] are linear

combinations of h
(n+1)
1 , . . . , h

(n+1)
l . Hence, [xα, x

(n)
−α] is a linear combination of

h
(n+1)
1 , . . . , h

(n+1)
l .

(ii) If α ∈ Φ− then −α ∈ Φ+. Since −α /∈ Π, there is, according to Observa-
tion 2.6, αi ∈ Π such that −α − αi ∈ Φ+. Hence, there is αi ∈ Π such that
α + αi ∈ Φ. Clearly, l(α + αi) < m. Furthermore N−α−αi,αi

6= 0 and

[xα, x
(n)
−α] =

1

N−α−αi,αi

[xα, [x−α−αi
, x(n−1)

αi
]]

=
1

N−α−αi,αi

[x−α−αi
, [xα, x(n−1)

αi
]]

+
1

N−α−αi,αi

[x(n−1)
αi

, [x−α−αi
, xα]]

=
Nα,αi

N−α−αi,αi

[x−α−αi
, x

(n)
α+αi

] +
N−α−αi,α

N−α−αi,αi

[x(n−1)
αi

, x
(2)
−αi

]

=
Nα,αi

N−α+αi,αi

[x−α−αi
, x

(n)
α+αi

] +
N−α−αi,α

N−α−αi,αi

[xαi
, x

(n)
−αi

]

The last equality follows from Lemma 3.17. Since l(αi) < m and l(−α − αi) =

l(α + αi) < m, we have that [xαi
, x

(n)
−αi

] and [x−α−αi
, x

(n)
α+αi

] are linear com-

binations of h
(n+1)
1 , . . . , h

(n+1)
l . Hence, [xα, x

(n)
−α] is a linear combination of

h
(n+1)
1 , . . . , h

(n+1)
l .

In Lemma 3.11, 3.13, 3.16, 3.18 and 3.19 we have done the induction step
for statement 1-5 in Proposition 3.10. Hence Proposition 3.10 is true for all
k ≥ 1.
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3.3 Proof of Theorem 1

In this section we restate and prove our main result, Theorem 1, and end with
an example of a Lie algebra with sl2-component. Before doing so, we prove a
result that is a consequence of Proposition 3.10.

Proposition 3.20. Let L be a classical Lie algebra without sl2-component . Let
{Xα ; α ∈ Φ } ∪ {Hi ; 1 ≤ i ≤ l } be a Chevalley basis of L, where Φ
is the root system of L relative to a Cartan subalgebra h and Π = {α1, . . . αl} is
a set of fundamental roots. Take G to be the set of generators and R to be the
ideal of F = F(G) given in section 3.1. Then the set

{x(k)
α ; α ∈ Φ} ∪ {h

(k)
i ; 1 ≤ i ≤ l}

(see Definition 3.8) generates (F/R)k for all k ≥ 1.

Proof. This is clear for k = 1. Assume that { x
(k)
α ; α ∈ Φ } ∪ {h

(k)
i ; 1 ≤ i ≤ l}

generates (F/R)k for all k ≤ n, for some n ≥ 1. Take any y ∈ (F/R)1,
z ∈ (F/R)n. Then

y =

l
∑

i=1

aihi +
∑

α∈Φ

aαxα, z =

l
∑

i=1

bih
(n)
i +

∑

α∈Φ

bαx(n)
α

for some coefficients ai, aα, bi, bα. Hence,

[y, z] =
[

l
∑

i=1

aihi +
∑

α∈Φ

aαxα,

l
∑

i=1

bih
(n)
i +

∑

α∈Φ

bαx(n)
α

]

=

l
∑

i=1

l
∑

j=1

aibj[hi, h
(n)
j ] +

∑

α∈Φ

l
∑

i=1

aibα[hi, x
(n)
α ] +

∑

α∈Φ

l
∑

i=1

aαbi[xα, h
(n)
i ]

+
∑

α∈Φ

∑

β∈Φ

aαbβ[xα, x
(n)
β ]

=
∑

α∈Φ

l
∑

i=1

(aibα − aαbi)α(Hi)x
(n+1)
α +

∑

α∈Φ

∑

β∈Φ
β 6=−α

aαbβNα,βx
(n+1)
α+β

+
∑

α∈Φ

aαb−αh(n+1)
α .

The third equality follows from Proposition 3.10. Moreover, according to Propo-

sition 3.10 we have that h
(n+1)
α is a linear combination of h

(n+1)
1 , . . . , h

(n+1)
l .

Since every element in (F/R)n+1 can be written as a finite sum of terms of the
form [y, z] where y ∈ (F/R)1 and z ∈ (F/R)n we are done.

Now we restate our main theorem:

Theorem 1. Let L be a finite dimensional semisimple Lie algebra over an al-
gebraically closed field F of characteristic 0 without sl2-component. Then there
is a set of generators G and an ideal R of F(G), generated by quadratic relations
only, such that Lper

∼= F(G)/R.
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Proof. Let G be the set of generators and R the ideal of F(G) given in sec-
tion 3.1. To abbreviate, let F = F(G). Consider the graded Lie algebra epi-
morphism φ : F → Lper also given in Section 3.1. Now, R ⊂ ker(φ) and let ϕ
be the graded Lie algebra epimorphism such that

ϕ : F/R −→ Lper : ϕ(x + R) = φ(x) for all x ∈ F .

To show that Lper
∼= F/R it suffices to show that ϕ is one-to-one.

The set
⋃

k≥1

(

{X(k)
α ; α ∈ Φ} ∪ {H

(k)
i ; 1 ≤ i ≤ l}

)

is a basis of Lper (see the paragraph after Definition 3.1) and, according to
Proposition 3.20, the set

⋃

k≥1

(

{x(k)
α ; α ∈ Φ} ∪ {h

(k)
i ; 1 ≤ i ≤ l}

)

generates F/R. Furthermore, by induction over k, we see that

ϕ(x(k)
α ) = X(k)

α , ϕ(h
(k)
i ) = H

(k)
i

for all α ∈ Φ, 1 ≤ i ≤ l and all k ≥ 1. Hence, ϕ maps a set of generators to a
basis and thus, ϕ is one-to-one.

We end with an example of a Lie algebra with a sl2-component, namely sl2
itself, and for which Theorem 1 not is fulfilled.

Example 3.21. Consider the Lie algebra sl2 over an algebraically closed field
F of characteristic 0. For a Chevalley basis, take

X =

(

1 0
0 0

)

Y =

(

0 0
1 0

)

H =

(

1 0
0 −1

)

where [X, Y ] = H , [H, X ] = 2X and [H, Y ] = −2Y . Since char(F ) = 0, there
are no quadratic relations in (sl2)per. Hence, no presentation of (sl2)per with
generators and relations can have any quadratic relations. On the other hand,
there are cubic relations in (sl2)per, e.g. [Y, [H, Y ]]. In fact, (sl2)per can be
presentated by cubic relations. Let G = {x, y, h} and let R be generated by
[x, [h, x]], [h, [h, x]] + 2[x, [x, y]], [h, [x, y]], [h, [h, y]] + 2[y, [y, x]] and [y, [h, y]].
Then (sl2)per

∼= F(G)/R. Furthermore, the vectorspace R∩F(G)3 is generated
by [x, [h, x]] as an sl2-module (c.f. Remark 3.7).
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