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Rational Curves on K3 Surfaces

in Positive Characteristic

To study isolated (smooth) rational curves on K3-fibered Calabi-Yau threefolds,
as in [3], a major task is to construct a polarized family of K3-surfaces, such
that the special fiber contains a rational curve C of given degree. This is may
be reduced to finding a single K3-surface Y that should act as the special fiber.
I would like to thank Torsten Ekedahl for suggesting this field of research to me.

We will assume that the base field has positive characteristic. In character-
istic zero existence of the desired Y was proved by Oguiso [8], following earlier
work of Mori [4]. In this situation one can make use of global period theory and
the surjectivity of the period mapping.

Let two positive integers n and d be given. We are supposed to find a K3
surface Y , such that NSY contains a class H with H2 = 2n, and another class C
with C2 = −2 and C ·H = d. It is furthermore required that H be very ample,
and that C should be a smooth rational curve. We proceed by constructing
a K3-surface X (in characteristic p) with 20-dimensional Néron-Severi group.
We embed the rank-two lattice S given by H and C into NSX , using the work
of Nikulin. Thereafter the plethora of curves on X turns hindersome, and we
deform it to get Y , such that NS Y = S. On Y then, H will be very ample and
C will be smooth. To see that such a deformation of X exists, we must use
some variant of local period theory in characteristic p.

As the integral lattice S is of rank two, its discriminant group is generated
by two elements (or fewer). We take X as the Kummer surface of A = E ×E,
where E is an ordinary elliptic curve with complex multiplication. Then NSX
has rank 20. Since X is ordinary, it can be lifted to characteristic zero. Denote
the lifting by X ′. Then by construction NSX′ also has rank 20, and we have
a mapping ϕ : NSX′ → NSX . By a reasoning essentially contained in [10], the
discriminant group of NSX′ is generated by two elements (or fewer). To see
this, just note that the transcendental lattice is of rank two. As ϕ clearly is
injective, DX is a quotient of DX′ , so it can also be generated by two elements.

Proposition 1 The given lattice S can be primitively embedded into NSX .

Proof: Let an even lattice S be given, and let (s+, s−) be its signature, DS its
discriminant group, qS its discriminant quadratic form and `S the number of
generators of DS. Introduce analogous notation for M , another even lattice into
which we want to embed S primitively. In our case (s+, s−) = (1, 1), `S = 2,
(m+,m−) = (1, 19) and `M ≤ 2. Then there exists an even lattice K with
qK = −qS and signature (k+, k−), where in our case we can take k+ = 0 and
k− = 8. Namely, we must have k+ − k− ≡ s− − s+ mod 8 and k+ + k− > `S
[6, 1.10.2]. Then put n+ = m+ − k+ − s+ and n− = m− − k− − s−, so
that n+ − n− ≡ m+ − m− mod 8. In our case n+ = 1 − 0 − 1 = 0 and
n− = 19 − 8 − 1 = 10. Then by the existence theorem again, there is an even
lattice N with qN = qM and having signature (n+, n−). This holds true, since
n+ + n− > `M .

2



Now consider the lattice T = N × K × S. There is an isotropic subgroup
H of DT , given by the graph of the isomorphism γ : DS → DK ⊂ DN×K .
This determines, as in [6, 1.5.1], a bigger lattice M ′ having qM ′ = qN . Namely,
DM ′ is isometric to the orthogonal complement H⊥

DT
modulo H . But using the

fact that S and K are non-degenerate, we see that H⊥
DT

∩DS×K is simply H .

Therefore H⊥
DT

= H × DN . The lattice M ′ that we thus have found is now
guaranteed to be isomorphic to the sought-for M , since by [6, 1.13.3] an even
non-degenerate indefinite lattice L is uniquely determined by qL and (l+, l−),
provided l+ + l− ≥ `L + 2. 2

To understand the local moduli space, we use the “period matrices”that arise
from the enlarged formal Brauer group of [1]. The relation to moduli of ordinary
K3 surfaces was explored in [7]. The reason for not using the crystalline theory
of [2] is that it uses the p-adic exponential, so it doesn’t work for p = 2. Let
X/A be a lifting to an Artin algebra. The enlarged formal Brauer group ψX/A
is an extension

0 → Br∧X/A → ψX/A → H2
fl(X/k, µp∞) → 0.

It is known that such extensions are uniquely given by elements in

HomZp
(H2

fl(X/k,Zp(1)),Br∧X/A(A)).

This morphism is constructed as a limit of certain morphisms

“pr” : H2
fl(X/k, µpr) → Br∧X/A(A).

On the other hand, consider the long exact cohomology sequence of

0 → 1 + mOX/A → O∗
X/A/O

∗pr

X/A → O∗
X/k/O

∗pr

X/k → 0.

We get a connecting homomorphism

βr : H1(X/k,O∗
X/k/O∗pr

X/k) → H2(X/k, 1 + mOX/A).

The source and target both have other interpretations; we may write

βr : H2
fl(X/k, µpr) → Br∧X/A(A).

By a proposition in [7], we know that “pr” and βr are the same maps. Passing to
the limit, an invertible sheaf lifts to A exactly when it maps to zero in Br∧X/A(A),
and the locus in the 20 dimensional local moduli spaceM where it lifts is defined
by one non-trivial equation. Then it easily follows that a generic deformation
preserving algebraicity of our rank two lattice S will destroy algebraicity of the
rest of NSX . After algebraizing, a typical member Y has NS Y = S.

In fact, identifying M with

HomZp
(H2

fl(X/k,Zp(1)),Br∧X/A(A)),

we see that it is a formal torus, and the lifting loci VL of line bundles L are kernels
of characters. So the rank-two lattice S lifts to an 18-dimensional subvariety V .
We need to construct a curve in V that is contained in none of the unwanted VL’s.
This can be done by induction over NSX , using the fact that intersections of
various VL’s have expected dimension as long as the corresponding line bundles
are linearly independent in NSX .
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Proposition 2 Given positive integers n and d, there exists a K3 surface Y
over k, such that NSY has rank two with intersection form given by

(
2n d
d −2

)
.

in a basis {H,C}, where H is very ample and C is a smooth rational curve.

Proof: There remains to prove very ampleness and smoothness. Using the
smallness of NSY , this follows by arguments contained in [5] and [8]. More
precisely, smoothness of C follows by a straightforward lattice theoretic calcu-
lation, and the same holds for the fact that H doesn’t contract (−2)-curves.
Saint-Donat gives (for any p) numerical criteria concerning irreducibilty and
freeness from fixed components. These criteria are checked in [5]. Then Saint-
Donat proves freeness from fixed points, again for any p. It follows from the
theory of varieties of small degree that ϕC must be of degree 1 or 2. Saint-
Donat gives criteria for birationality if p > 2, and these criteria are checked
in [5]. In our case we can exclude a degree two map if p = 2, as this would
imply unirationality of Y (but Y is an ordinary K3 surface). Finally, Saint-
Donat’s argument to show separation of tangent vectors outside (−2)-curves for
a birational mapping does not depend on p. 2
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Equations for some Enriques Surfaces

in Characteristic Two

This paper is concerned with the theory of Enriques surfaces in characteristic 2.
There are three types: µµµ2, Z/2 and ααα2. The names refer to the structure of
their respective Picard schemes. Roughly, ααα2 surfaces are the most special, and
the other two types can degenerate into these.

It is known [13] that an Enriques surface X of type Z/2 contains a regular
vector field exactly when it satisfies one of the following (mutually exclusive)
conditions:

a) X has a genus one fibering with a double fiber of type Ẽ8. This fibering
is then quasi-elliptic.

b) X has a genus one fibering with a double fiber of type Ẽ7. This fibering
is then quasi-elliptic.

c) X has a quasi-elliptic fibering with a simple fiber of type Ẽ7; it then also
has an elliptic fibering with a nodal double section and a double fiber of
Ẽ6 type.

These cases are referred to as types Ẽ8, Ẽ7 and Ẽ6, respectively. By explicit
calculation, I show that these surfaces depend on one, two and three moduli,
respectively, and we will also see that the implication contained in (c) can be
reversed. So we will study genus one fibrations of Enriques surfaces X , such
that there is a double section R with self intersection −2, and such that there
is a double fiber of type Ẽn (or a simple fiber of type Ẽ7). The linear system
R represents X as a double cover X ′ of a ruled surface, where X ′ is X twice
blown up and with the double fiber contracted to a non-rational singularity. We
will also investigate surfaces of type ααα2 while we’re at it. Among other things
we will get an explicit equation for “the most exceptional Enriques surface”; it
is unique, and it looks like this: z2 + x3 + x8t + xt4 = 0. I would like thank
Torsten Ekedahl for suggesting this project to me.

The Equation of a Z/2 Surface with a Nodal Double Section

Let π : X → P1 be a genus one fibered Z/2 surface, having a given nodal
double section R. After blowing up base points to obtain X ′′, there is a map
ψ : X ′′ → Y := P(π∗OX′′(R)). This map factors through a finite double
covering ϕ : X ′ → Y .

X ′

ϕ

!!C
C

C
C

C
C

C
C

X ′′oo

ψ

��

// X

π

��
Y // P1

Proposition 3 The relative system |R| has exactly two base points, occurring
at the intersections between R and the two double fibers.
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Proof: The system |R+nF | (F a fiber) is isomorfic locally on P1, and as R+nF
has self-intersection � 0, Theorem 4.4.1 (p.240) of [12] applies. 2

Proposition 4 Y is isomorphic to the rational ruled surface F2.

Proof: After two blowing ups, the self intersection of R is −4. Also, the restric-
tion of ϕ to R must be a map of degree two, since otherwise π would have R as a
section. Therefore R is the pullback of ϕ(R), so we may conclude that ϕ(R) has
self intersection −2 (intersection-numbers get doubled on a double covering). 2

Write the double covering as z2 + zg + f with g ∈ L and f ∈ L2, where L
is a line bundle on Y . Introduce on Y the coordinates x, y, s, t, where x, y are
pulled back from P1 and s, t are vertical. Let s = 0 define ϕ(R). Curves on Y
are then defined by polynomials that are homogeneous in s, t as well as in t, x, y,
where t now has weight 2. Denote a curve that is cut out by a polynomial p
by Cp.

Proposition 5 L ∼= OY (2Ct + Cx).

Proof: Because of the blow ups ωX′ equals OX′(F ). As ωY = OY (−2Cs −
4Cx) = OY (−2Ct) and ωX′ = ϕ∗(ωY ⊗ L), we must have L ∼= OY (2Ct +Cx).2

We may assume that f is square free. Namely, put z 7→ z + h, where h ∈ L
is such that the square parts of h2 + gh and f are equal. Such a polynomial can
be found, according to the the following lemma, that I learned from Torsten
Ekedahl:

Lemma 6 Let Rµ be a homogeneous component of a graded polynomial ring
(in characteristic p). Let g ∈ R(p−1)µ and u ∈ Rµ. There exists a (non-unique)
polynomial h ∈ Rµ, such that the p’th power part of hp + gh is up.

Proof: The proof is non-constructive. We will need to consider Rµ as an alge-
braic group, rather than as a vector space. Define a group scheme endomorphism
τ by first sending an h ∈ Rµ to the p’th power part of hp+gh and then dividing
all exponents in the resulting polynomial by p. Suppose ker(τ) is not a finite
group scheme. Then there exists [14, sect. 20] a non-constant homomorphism
σ : Ga → Rµ, such that composing with τ kills it. Explicitly σ is given by a
vector of additive polynomials:

x 7→ (a10x+ a11x
p + a12x

p2 + · · · , a20x+ · · · , . . . ).

But since τ is the sum of the Frobenius map and a linear transformation, looking
at the terms of highest degree that occur in the expression for σ, it is impossible
that the compostion τσ is the zero map. So ker(τ) is finite, showing that τ is
surjective, which was to be proved. 2

As we have determined how sections in L look like, we now know that the
covering is given by

z2 + z(B5s
2 +B3st+B1t

2)+
A10s

4 +A8s
3t+A6s

2t2 +A4st
3 +A2t

4 = 0,
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where the Ai’s and Bi’s are forms in x, y of degree i.
When blowing up a rational surface singularity, embedded in three-space, one

obtains a conic C in the exceptional plane. If it is reduced, then the singularity
was of An type. To get the other types, the quadratic piece of the equation that
defines the singularity must therefore be a square, say z 2. Next, Lipman [15]
considers the cubic piece (modulo z). If the three linear factors are separate,
then we have a D4. If it two of them come together, we get higher Dn types. If
all three coincide, then we get some En. In this case write the cubic piece as y3,
and introduce a third coordinate x. One proceeds by obtaining conditions on the
coeffcients in the original equation, using these coordinates, for the singularity
to be of a particular En type. The relevant coefficients are first β and γ, in
fron of zx2 and x4. If these coefficients are general, then we get E6. If not,
we consider ρ and σ, the coefficients of x3y and x5. The nature of the first
distinguish between E7 and E8, whereas the latter tells E8 apart from non-
rational singularities.

Proposition 7 Any Z/2 surface with a nodal double section can be (biration-
ally) written as

z2 + z
(
(b1y + b2x)x

2y2s2 + (b3y + b4x)xyst
)
+

(y4 + x4)x3y3s4 + (a1y
2 + a2xy + a3x

2)x3y3s3t+
a4x

3y3s2t2 + a5x
2y2st3 + xyt4 = 0,

and conversely, these equations define such surfaces (or possibly some non-
normal surface).

Proof: Assume first X ′ is of the given type. Since we are not going to study
degenerations into ααα2 surfaces, we may put the two non-rational singularities
at x = t = 0 and y = t = 0. To get double fibers, x and y must divide f and
g. Put y, s = 1 to study the non-rational singularity at x, t = 0. The equation
now looks like

z2 + z
(
(β1x+ b1x

2 + b2x
3 + β2x

4)s2 + (b3x+ b4x
2)t

)

α1x+ α2x
3 + α3x

5 + α4x
7 + α5x

9+
(α6x+ α7x

2 + a1x
3 + a2x

4 + a3x
5 + α8x

6 + α9x
7)t+

(α10x+ a4x
3 + α11x

5)t2+
(α12x+ a5x

2 + α13x
3)t3 + α14xt

4 = 0.

To have a singularity at x = t = 0, we must have α1 = 0. To get a non-rational
singularity, by Lipman [15] the quadratic part of the polynomial must be a
square. Therefore β1 = α6 = 0. The cubic part of f must be a cube, giving
α7 = α10 = 0. To have X ′ smooth over Cx, we must have α12 = 0 and α14 6= 0,
so put α14 = 1. If α2 = 0 the genus drops at the first blowing up, and there
is then a further rational singularity over Cx. This contradicts Proposition 3,
saying that there should be only one vertical curve on X ′′ connecting R to the
proper transform of the double fiber. So α2 6= 0, and we may put it equal to 1
by using the third automorphism of P1 or t 7→ λt. After repeating everything
at the other point, we get the desired polynomial by putting α3 = 0. This is
possible by using t 7→ t + λsxy. Doing this, a square is re-introduced into f ,
namely a linear combination of x4y6s4 and x6y4s4. This can however easily be
removed by z 7→ z + µ1x

2y3s2 + µ2x
3y2s2.
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Then to check the converse statement, let an equation as above be given.
Denote the double cover again by X ′, and the smooth model by X . To see
that it is an Enriques surface (granted X ′ is normal) we calculate χ(X) and
ωX . Putting L = OY (C) we get χ(X ′) = χ(L−1) + χ(F2) = χ(F2) − χ(C) +
χ(F2) = 2χ(F2)− (−C2 −C ·KY )/2 = 2 · 1− (−12 + 10)/2 = 3. Furthermore,
ωX′ = ϕ∗(ωY ⊗ L) = OX′(F ). There are two non-rational singularities to
resolve, making χ(X) ≤ 1. But χ(X) cannot be strictly less than one. Namely,
h01(X) = 0 sinceX is nontrivial as a genus one bundle. Therefore the arithmetic
genus drops exactly twice during resolution, and we get χ(X) = 1. We also see
that exactly minus two half fibers are added to the canonical class, as should
be the case. 2

The Equation of a Z/2 Surface with an Ẽ
n
+R Configuration

We will determine conditions on the parameters, under which the double fiber
at x = 0 is of Ẽn type. Put s = y = 1. Blow up at z = x = t = 0 by putting
x = tX , z = tz′ and dividing through by t2, to get

z′2 + z′Xt
(
(b2X + b4)Xt+ b1X + b3

)
+

Xt
(
X6t4 + a3X

4t3 + (a4X
2 + a2X

3 + a5X + 1)t2 + a1X
2t+X2

)
= 0.

Blow up again at the origin by putting t = XY , z ′ = XZ, dividing through by
X2, and finally normalizing by Z/X 7→ Z to get

Z2 + ZY
(
b2X

3Y + b4X
2Y + b1X + b3

)
+

Y
(
X8Y 4 + a3X

5Y 3 + a2X
3Y 2 + a4X

2Y 2 + a5XY
2 + a1XY + Y 2 + 1

)
= 0.

Resolution of rational surface singularities on double coverings is described
in the very readable [11, III.7]. We resolve the singularities of the branch locus
downstairs, and if the singularity is rational, the multiplicity of the exceptional
curve will be 2 or 3. If it is more, we will need to normalize the blown up
upper surface. The arithmetic genus of the normalization will be strictly lower
in general. The exact amount that the genus can be analysed in terms of
resolution data, but we will not need this.

For a general choice of parameters the inverse image of the conductor is an
elliptic curve. This, then, is the double fiber. It is obtained by putting X = 0.
The original curve over Cx, as well as the first exceptional curve, can be blown
down. We proceed to study the locus in the parameter space where the double
fiber is not an elliptic curve, so we need to specialize the parameters further.

We see that the only possible place where the elliptic curve can degenerate
(as we vary the parameters) is at Y = 1. Put this point over the origin in the
X,Y -plane by Y 7→ Y + 1, and thereafter change Z 7→ Z +

√
a4X + Y :

Z2 + Z
(
b3 + b3Y + b1X + b1XY + b4X

2 + b2X
3 + b4X

2Y 2 + b2X
3Y 2

)
+

b3Y + (a1 + a5 +
√
a4b3)X + (a5 +

√
a4b3 + b1)XY +

√
a4b1X

2 + b3Y
2+

Y 3 + (b1 + a1 + a5)XY
2 + (b4 +

√
a4b1 + a4)X

2Y + (a2 +
√
a4b4)X

3+
a5XY

3 + a4X
2Y 2 + (a2 + b2)X

3Y +
√
a4b2X

4+
(b4 + a4)X

2Y 3 + (a2 +
√
a4b4)X

3Y 2 + a3X
5+

(b2 + a2)X
3Y 3 +

√
a4b2X

4Y 2+
X8 + a3X

5Y 4 +X8Y +X8Y 4 +X8Y 5 = 0.
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Put b3 = a1 + a5 = 0 to get a singularity at all. To have a singularity of
type Dn or En, the quadratic piece of the equation must be a square. Therefore
b1 = a5 = 0. Writing the equation as Z2 +Zp1(X,Y )+ p2(X,Y ), we must have
the cubic part of p2 a cube to get an En type. Therefore a2+

√
a4b4 = b4+a4 = 0.

Summing up, we have put a1, a5, b1, b3 = 0, b4 = a4 = α2 and a2 = α3, with α
as a new parameter. We get then:

Z2 + Z
(
α2X2 + b2X

3 + α2X2Y 2 + b2X
3Y 2

)
+

Y 3+
α2X2Y 2 + (α3 + b2)X

3Y + αb2X
4+

a3X
5+

(b2 + α3)X3Y 3 + αb2X
4Y 2+

X8 + a3X
5Y 4 +X8Y +X8Y 4 +X8Y 5 = 0.

Proposition 8 Any Z/2 surface with an Ẽn + R configuration can be (bira-
tionally) written as

z2 + z(b2x
3y2s2 + α2x2yst)+

(y4 + x4)x3yys4 + (α3xy + a3x
2)x3y3s3t+ α2x3y3s2t2 + xyt4 = 0,

with α 6= 0 or α = 0, b2 6= 0 or α = b2 = 0, a3 6= 0 according as n = 6, 7, 8.
Conversely, these equations define such surfaces.

Proof: As in [15], let β, γ denote the coefficients of ZX2 and X4, so β = α2,
γ = αb2. For general parameters we have E6; to get E7, put α = 0, thus making
β = γ = 0. Then let ρ, σ denote the coefficients of X3Y and X5, so with α = 0
we have ρ = b2 and σ = a3. Put b2 = 0 to get an E8. Finally, the singularity is
rational as long as σ = a3 6= 0. 2

Proposition 9 With notations as above, a Z/2 fibering (with an Ẽn double
fiber and a nodal double section) is quasi-elliptic exactly when α = 0.

Proof: Put t, y = 1 in our equation, and differentiate with respect to z and s.
We get Dz = x2s(b2x + α2s) and Ds = x2(α2z + α3x4s2 + a3x

5s2). To get
a curve of curve singularities, these polynomials must have a common factor,
more than just x2. Therefore α = 0, and the cusp curve is s = 0. 2

Corollary 10 A genus one fibering on a Z/2 surface with a double fiber of Ẽ7

or Ẽ8 type and with a −2 double section is quasi-elliptic, and the −2 double
section is unique.

Proof: If there were another −2 double section, it would define a hyperelliptic
map such that the cusp curve would not be s = 0. 2

The Case of ααα2 Surfaces

The set-up is the same as before. The relative system |R| has exactly one base
point, occurring at the intersection between R and the double fiber. It is a
double base point, meaning that two blowing ups are needed to resolve it. As
before, we get a representation of X as a double cover of F2. And again the
double covering is given by L ∼= OY (2Ct + Cx), yielding

9



z2 + z(B5s
2 +B3st+B1t

2)+
A10s

4 +A8s
3t+A6s

2t2 +A4st
3 +A2t

4 = 0,

where the Ai’s and Bi’s are forms in x, y of degree i.

Proposition 11 Any ααα2 surface with a nodal double section can be written
birationally as

z2 + z
(
(Uy2 + b1xy + b2x

2)x3s2 + b3x
3st

)
+

x3y7s4 + (Uy4 +Wxy3 + a1x
2y2 + a2x

3y + a3x
4)x4s3t+

a4x
5ys2t2 + (Uy +Wx)x3st3 + xyt4 = 0,

and conversely, these equations define such surfaces (or possibly some non-
normal surface).

Proof: Assume first X ′ is of the given type. Put the non-rational singularity
at x, t = 0. We get the same conditions as before, and some extra ones, as we
must now have a genus 2 singularity. As before, the graph combinatorics shows
that the genus must drop at the second blowing up, and locally around x = 0,
the ααα2 surface must therefore be a degeneration of a Z/2 surface with an Ẽn
double fiber. This gives us the following equation so far:

z2 + z
(
(U + b1x+ b2x

2)x3 + b3x
3t

)
+

x3 + α1x
7 + α2x

9 + (U +Wx+ a1x
2 + a2x

3 + a3x
4)x4t+

a4x
5yt2 + (U + α3x)x

3t3 + xt4 = 0.

This time there is no double fiber at y = 0. We therefore have more param-
eters to use. Because of this, we cannot just use Proposition 8 to see that the
above equation is the right one. Instead, the proof must be repeated with the
new assumptions. This is not done here, as it involves calculations similar to
those of Propositions 7 and 8. Note that we have three parameters that must be
equal this time. They are denoted U . To get rid of α1 and α2, use y 7→ y + λx
and t 7→ t + λsx2. As before, the newly introduced squares in f can easily be
removed. Finally, I have assumed that the zx3 term is absent, as otherwise the
surface is of µµµ2 type. The reader may check this. To make the tame Ẽ8 fiber
degenerate into a wild elliptic fiber, put α3 = W . The converse statement is
proved as before. 2

To obtain the equation of an ααα2 surface with an Ẽn + R configuration,
blow up twice, normalize and put the singularity at the origin. Then blow up.
With our choice of parameters, there will be just one singularity along the new
curve; it is a genus one singularity. Blow it up and normalize. There results a
supersingular elliptic curve (if the parameters are general). As before, I denote
the new coordinates by X and Y , where X = 0 defines the elliptic curve and
Y = ∞ is the intersection with the rest of the graph. Putting X = 0 gives

Z2 + ZU + a4 + b3Y + Y 3 = 0.

A curve singularity at Y =
√
b4 appears when U = 0. Put this over the origin

by X 7→ X+
√
b4, and change Z 7→ Z+

√
a4+ 4

√
b3Y . The coefficient for ZX will

be b3, so to have a singularity of En type, we must put b3 = 0, which simplifies
a lot. Omitting terms of degree greater than five, we get:

10



Z2 +Z(b1X
2 + b2X

4)+a1X+(b1 +W )XY + b1
√
a4X

2 +Y 3 +a4X
2Y +a2X

3+
(b2 + a1)X

3Y + b2
√
a4X

4 + b1X
3Y 2 + b1

√
a4X

4Y + a3X
5 + · · · = 0.

By the same reasoning as before, b1 = W and a1, a4, a2 = 0. We then have

Z2 + Z(WX2 + b2X
4) + Y 3 + b2X

3Y +WX3Y 2 + a3X
5 + · · · = 0.

Proposition 12 Any ααα2 surface with an Ẽn + R configuration can be (bira-
tionally) written as

z2 + z
(
(Wy+ b2x

2)x4s2+
)

+x3y7s4 +(Wy3 +a3x
3)x5s3t+Wx4st3 +xyt4 = 0

with W 6= 0 or W = 0, b2 6= 0 or W = b2 = 0, a3 6= 0 according to as n = 6, 7, 8.
Conversely, these equations define such surfaces.

Proof: Use [15] again. 2

Finally, we note that our ααα2 fibering is quasi-elliptic exactly when W = 0.
Namely, put t, y = 1 in the equation, and differentiate with respect to z and s.
We get Dz = x4s2(W + b2x

2) and Ds = x4(s2Wx + s2a3x
4 +W ). A curve of

cusps appears when W = 0; it is given by s = 0 as before.

Z/2 Surfaces with a Simple Ẽ7 Fiber in a

Quasi-Elliptic Fibering

Since the fibering is quasi-elliptic, it has at least one nodal double section, and
as before we study the associated linear system (relative to the fibration). We
know X can be written according to Proposition 7. The equation in Proposition
7 does not suit us very well. Instead we use the equation as it looked before we
put α3 = 0 and α2, α4, α14 = 1 (see the proof of Proposition 7). The following
equation, where we have put s = y = 1, is of the required type:

z2 + kx3 + x5 + (k + 1)x7 + αx3t+ αx5t+ α2x3t2 + α3x2t3 + βxt4 = 0.

The Ẽ7 fiber on X will give rise to an E7 singularity on X ′. We use the
automorphisms of F2 to put the E7 singularity over the point where x = 1 and
t = 0. We are in fact only interested in exhibiting a three-parameter family
with an E7 singularity at the prescribed spot. To see that our equation defines
such a family, change x 7→ x+ 1:

z2 + βt4(x+ 1) + α3t3(x + 1)2 + α2t2(x3 + x2 + x+ 1)+
αtx2(x3 + x2 + x+ 1) + (k + 1)(x7 + x6) + k(x5 + x4) + x3 + x2 = 0.

Theorem 13 If a Z/2 surface has an elliptic fibration with a nodal double

section and an Ẽ6 double fiber, then it has a quasi-elliptic fibration with an Ẽ7

simple fiber.

Proof: The cubic part of the equation is (αt)3 + (αt)2x + αtx2 + x3. As it is
a cube, we have a singularity of type En. As the fibering is quasi-elliptic, it
is not E6. As the coefficient of tx3 6= 0, we have an E7. In prescribing the
locus where three singularities should lie we have used up all automorphisms
of F2. Our family is therefore genuinely three-dimensional. As there likewise

11



is a three-dimensional family of Z/2 surfaces with an Ẽ6 double fiber and a
nodal double section, the statement follows, since we know by [13] that the first
family is contained in the second. And we also know by the above that the
second family is irreducible. 2

12



Triangulation of Infinitesimal Cubes

I think that explicit formulae for triangulation of cubes and vice versa should
get more attention. Among other things, there may be applications to combi-
natorics or number theory. Here is a very simple construction that works only
infinitesimally.

Consider a topological space X and let 4n(X) and �n(X) denote the sets of
singular simplices and pointed cubes in it. Then we have real-valued functions
on these sets denoted 4n(X) and �

n(X). We often omit X from notation.
There are cubical differentials

dεi : �n → �n−1 , (1)

where 1 ≤ i ≤ n and ε = ±1. They are given by including I n−1 in In at the
level of the point, or minus that level, depending on ε. If we let degeneracies
put the point at 1 along the new coordinate, then the usual �∗ is the cubical
subobject of �∗ where the point lies in the (1, . . . , 1) corner.

Let ξ : ∗ → In → X be a pointed cube in X . Let the point have coordinates
z0 = (z1, . . . , zn). Then we get a simplex in X by mapping the i’th vertex to
zi = (z1, . . . ,−zi, . . . , zn). Then we extend linearly. More generally we also
consider the simplex which has the i’th vertex at zσ(i) for some σ ∈ Σ. We
denote this by λσ(ξ). We get mappings λσ : �n → 4n. We put

λ = (−1)n
∑

σ∈Σn

(−1)|σ|λσ , (2)

where λσ are the adjoint mappings.

�

� �
2

01

3

•

•

• •

�

� �
3

01

2

•

•

• •
• • •

�

� �
2

03

1

•

•

• •
(3)

Our basic claim is that λ is a chain mapping. Once we know that, we can
apply acyclic models to see that it is a chain homotopy equivalence. Unfor-
tunately our “basic claim” is (obviously) false as stated. Let us go down to
the infinitesimal level where we may hope for cancellations to save us. Our
reason for using pointed cubes is now clear: the corners of the cube disappears
infinitesimally, so we must supply a point of our own.

Assume that everything is differentiable from now on. We change slightly
the meaning of 4n. It will denote the direct product of n + 1 copies of X , so
“simplex” will mean point configuration. It is almost the same infinitesimally
near the diagonal in 4n, which is where we will work. To feel more at home
we switch to the language of algebraic geometry, although we could just as well
stick to smooth manifolds. Let’s work over an algebraically closed field, just to
fix ideas. Assume for safety that the characteristic isn’t 2. There is no longer
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any need to assume that X is smooth, but that is the most interesting case. We
may for simplicity let it be affine since everything is so very local anyway.

We need a new In. The microcube In is the direct product of copies of
Spec k[x]/x2. We let �n denote the “space” of pointed microcubes in X . It is a
non-reduced variety of finite dimension. The presence of a point in In gives rise
to a natural mapping �n → X . Moreover, as already noted, there are mappings
λσ : �n → 4n. We let �

n and 4n denote the full function algebras, and we let

�̃
n

and 4̃n denote the functions that vanish on degenerate cubes and simplices.

Theorem 14 The diagram

4n−1 d //

λ

��

4n

λ

��
�
n−1 d // �n

(4)

commutes (it is not very natural in this context to query whether it induces an
isomorphism in homology).

Proof: The proof is a direct computation, which I omit. 2

Let us turn to the easier claim that

4̃n−1 d //

λ

��

4̃n

λ

��

�̃
n−1 d //

�̃
n

(5)

commutes. Elements 4n are tensors. For a b ∈ 40, we write

bi = 1 ⊗ · · · ⊗ b⊗ · · · ⊗ 1 ∈ 4n , (6)

where the insertion is at the i’th place. We let ai denote the i’th coordinate
function on In. There is no risk of confusion with the i’th power, since (ai)2 = 0.

Following [16] we define a subscheme .n of 4n. As i, j varies from 0 to n
and b, b′ varies over 40, let En be generated by expressions like

(bi − bj)(b
′
i − b′j) (7)

or equivalently, by expressions like

(bi − b0)(bj − b0) . (8)

This is an ideal in 4n and therefore define a subscheme of 4n. We have a
corresponding .̃

n
, which now can be easily described. It is the ideal in .n that

is generated by expressions like

(b11 − b10) · · · (bpp − bp0) . (9)

Put X = In, as we may just as well do. Let us note the important fact that

λσ(bi) = ±b , (10)
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with the minus when aσ(i) divides b. This implies that λσ(bi − b0) is divisible
by aσ(i). Moreover

λσ(a
σ(i)
i − a

σ(i)
0 ) = −2aσ(i) . (11)

Theorem 15 λ(En) = 0.

Proof: Consider first a generator of type ψ = (bi − b0)(bj − b0), where i 6= j.

Let σ′ = σσij , where σij is the (ij) transposition. Then λσ(ψ) = λσ
′

(ψ), but
as |σ′| = |σ| + 1, they are given different signs by formula (2). We finish the
argument by having σ run through the even permutations. The same reasoning
works for ψ = (bi − bj)(b

′
i − b′j) as well. The final case is ψ = (bi − b0)(b

′
i − b′0).

We have seen that λσ(bi − b0) and λσ(b′i − b′0) are divisible by aσ(i). Now we
use that (aσ(i))2 = 0. 2

The advantage of knowing this is that we may restrict attention to the ideal (9).
In a certain sense one may say that the image of �n in 4n under the adjoint of λ
is contained in .n, but that is abuse of language since λ is not a ring mapping.
In fact, we may regard Theorem 15 as the main theorem of this paper. Once
we know this, we may switch to the convenient language of differential forms.
One sees that elements of .̃

n
may be decomposed into expressions

b00(b
1
1 − b10) · · · (bnn − bn0 ) , (12)

which we identify with b0db1 ∧ · · · ∧ dbn (cf. [16]). By the paucity of differential
forms on In, we may restrict attention to

ϕi = ai da1 ∧ · · · ∧ d̂ai ∧ · · · ∧ dan , (13)

ϕ = da1 ∧ · · · ∧ dan (14)

when we consider .̃
n−1

and .̃
n
.

Theorem 16 Diagram (5) commutes.

Proof: We compute dϕi = (−1)i+1ϕ and

λσ(ϕ) = (−1)n(−2)na1 · · ·an , (15)

according to (11) and (2). So in all we get

λσ(dϕi) = (−1)i+12n a1 · · ·an . (16)

Next we compute

λσ(ϕi) = 2n−1a1 · · · an , (17)

which we give the following meaning. It is a function of points on In, where a
point determine a subcube In−1 ↪→ In, the i’th insertion. Therefore it is also
a function of singular (n − 1)-cubes in In. The cubical differential then gives
the same sign as in (16) and we also get another 2 from the way the cubical
differential works. So we are done. 2
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A Holomorphic Analog of Cubical Subdivision

Cubes have been less popular among topologists than simplices. For good rea-
sons maybe, but in a wider framework of “cubical objects” and “simplicial
objects” we are sometimes forced to choose cubes. In complex algebraic geome-
try polydisks make up good “cubes”, the boundary being parametrized over S 1

instead of S0.
To make this rigorous we should set up a theory somewhat along the fol-

lowing lines. We consider holomorphic mappings of closed polydisks Dn into
an analytic manifold X . Let Qn be the “infinite-dimensional manifold” that
parametrizes such things. Let Cn be the corresponding ring of smooth complex-
valued test functions (without growth restrictions, say). Let Cn be the dis-
tributions that we thus get. All of these things are “S1-cubical objects” (or
cocubical).

A S1-cubical object is a contravariant functor from the “polydisk category”
where objects are the standard polydisks and differentials dit are insertions
Dn−1 ↪→ Dn in the evident way, where 1 ≤ i ≤ n and t ∈ ∂D. Degenera-
cies si are given by projections onto factors, so they don’t depend on t. For an
S1-cocubical complex vector space C ∗ there is a cochain complex given by:

di = c ·
∫

∂D

diz dz and d =
∑

i

(−1)i+1 di . (18)

The constant c may be chosen freely. The natural choices are

c = 1 or c =
1

2πi
. (19)

I will use the latter option. Note that a similar choice must be made in the
S0-cocubical case, where the natural choice is c = 1

2 beside c = 1.
Given a singular n-dimensional polydisk, we may pull back smooth forms of

type (0, n) from X and integrate against the standard (n, 0)-form on Dn. One
checks (using the Stokes formula) that this is compatible with the ∂̄-operator, so
we get a chain mapping C∗ → A0,∗ to the compactly supported currents on X .
Here I write A0,n for currents that are functionals on forms on type (0, n). To
check that we get an isomorphism in homology we need a subdivision operator.

We will actually subdivide down to the infinitesimal level : we will, as it
were, partition the unit disk into its tangent vectors. This seems to be the only
sensible option, as opposed to the case of euclidean cubes where dichotomization
works well.

By some straightforward combinatorics one reduces subdivision of Dn to
the D1 case. This in turn is achieved by mapping D2 → D1 in a suitable way.
In the euclidean case it looks like

-squeeze

����

HHHH -
(20)
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But in our situation we must use a whole family of mappings, each one looking
somewhat like this:

hhhh

hhhh

-z2

z1

The mapping D
2
→ D

1
⊂ C

for some fixed ε and r.

��
��

&%
'$k
k @@ r

r + ε

Image of the locus where

z1 = ±1 or z2 = ±1.

(21)

The formula for these mappings is

U ×D2

(r+εz1)z2

��
D1 ⊂ C

, (22)

where z1 and z2 are variables on D2 and r and ε are variables on the parameter
space U ∼= C2. To get a chain we must specify a distribution ξ on U . It is

ξ(g) =
−1

2πi

∫

∆

∂g

∂ε̄
dr ∧ dr̄, (23)

where ∆ ⊂ U0 is the locus where |r| < 1 and ε = 0. There remains to verify
that d1ξ = id , where id denotes the unit point measure at the identity mapping
D1 → D1. We must impose the further axiom on test functions:

f(s(τ)) = sf(τ) , (24)

where s denotes rotation by s ∈ ∂D of a factor in Dq and τ is a singular
polydisk seen as a point in Qq. See [21] for the analogous, now obsolete, axiom
in algebraic topology.

The image of our family under Q2(D
1) × ∂D → Q1(D

1) depends on a one-
dimensional parameter space, which it is convenient to identify with C (with ρ
as coordinate):

U × ∂D ×D1

(u+εz1)z2 ''OOOOOOOOOOO

(r+εz1,z2) // C×D1

ρz2yyrrrrrrrrrr

D1 ⊂ C

. (25)

Let f ∈ C1(D1) and consider its restriction to our one-dimensional space. The
variable r identifies this space with U0:

U × ∂D
r+εz1 // C

f

��
U0 × 1

?�

OO
r

66nnnnnnnnnnnnnn f̃ // C

. (26)
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We write f̃ for f pulled back to U0, so f(r) = f̃ .
Computing d1ξ(f) means doing three things: pulling back f to U × ∂D,

integrating over ∂D, and applying ξ. The first step consists in turning attention
to the function f(r + εz1).

Theorem 17 d1ξ(f) = f(id), where id now denotes the identity D1 → D1.

Proof: Integrating over z1 and applying ∂/∂ε̄ we obtain

1

2πi

∫

∂D

∂f(r + εz1)

∂ε̄
dz1 =

1

2πi

∫

∂D

∂f

∂z̄
(r + εz1) z̄1 dz1 , (27)

which when ε = 0 becomes

∂f

∂z̄
(r) =

∂f̃

∂r̄
. (28)

Then we should sum over ∆:

−1

2πi

∫

∆

∂f̃

∂r̄
dr ∧ dr̄ =

1

2πi

∫

∂∆

f̃ dr . (29)

By axiom (24) the restriction of f̃ to ∂∆ equals f̃(1)r̄, so we obtain f̃(1), or
equivalently f(1), so f gets evaluated at the identity endomorphism of D1. 2
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