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THE LEMPERT FUNCTION IN THE BIDISC -

A PARTIAL COMPUTATION

MAGNUS CARLEHED

1. Introduction

In the preprint [C-W] Jan Wiegerinck and the author give a counter-
example to a conjecture by Coman, by showing that the Lempert function
and the pluricomplex Green function are different in the bidisc for the case
of two poles and different weights. However, in that proof the Lempert
function is not computed explicitly. Here we give a partial computation.

Let ∆ be the unit disc in C and Ω a domain in C
n. We fix a finite subset

A of Ω × R
+, and write A = {(w1, ν1), . . . , (wk, νk)}. For a point z ∈ Ω,

we let Fz denote the family of analytic discs f : ∆ → Ω such that f(0) = z
and there exist ζ1, . . . , ζk ∈ Ω with f(ζj) = wj , j = 1, . . . , k. For each

disc f ∈ Fz, we define d(f) =
∑k

j=1 νj log |ζj |, and finally δ(z) = δ(z,A) =

inff∈Fz
d(f). We call δ the Lempert function of Ω with respect to A.

2. The general setup of the computation

Let Ω be the bidisc, i.e., Ω = ∆ × ∆ ⊂ C
2. We let the poles be (a, 0)

and (b, 0), a 6= b, with the weights µ and ν respectively. We may assume
that µ ≥ ν. The goal of this note is to compute the corresponding Lempert
function, but only when ab̄ < 0 and z = (0, γ), γ ∈ ∆ \ {0}.

Let f = (f1, f2) be an analytic disc in the family Fz. Then, by definition
there are points ζ1, ζ2 ∈ ∆, such that f1(ζ1) = a, f1(ζ2) = b, f1(0) = 0 and
f2(ζ1) = f2(ζ2) = 0, f2(0) = γ. We can immediately see from the Schwarz
lemma that |ζ1| ≥ |a| and |ζ2| ≥ |b|. We call this Condition (II).

Let Tγ be the Möbius transformation Tγ(w) = (w− γ)/(1− γ̄w), and put

f̃2(ζ) = (Tγ ◦ f2)(ζ). Then f̃2(ζ1) = f̃2(ζ2) = −γ, and f̃(0) = 0. Here we see
that min{|ζ1|, |ζ2|} ≥ |γ|, which we call Condition (IV).

Further, let g1(ζ) = f1(ζ)/ζ and g2(ζ) = f̃2(ζ)/ζ, and extend these
functions analytically in the obvious way. Then, by the Schwarz lemma,
g = (g1, g2) is an analytic disc such that g1(ζ1) = a/ζ1, g1(ζ2) = b/ζ2

and g2(ζ1) = γ/ζ1, g2(ζ2) = γ/ζ2. Let us call the family of discs with
these properties Gz. Obviously, for any disc g ∈ Gz, we can construct a
corresponding disc f ∈ Fz. Hence the optimization in the definition of the
Lempert function can be done over the set Gz instead of Fz.

From the Pick-Nevanlinna interpolation theorem (see [G]) applied to g1,
we find that a necessary and sufficient condition for such a function to exist
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is that the matrix

P1 =







1−
�
�
�

a
ζ1

�
�
�

2

1−|ζ1|2

1− ab̄

ζ1 ζ̄2

1−ζ1 ζ̄2

1− āb

ζ̄1ζ2

1−ζ̄1ζ2

1−
�
�
�

b
ζ2

�
�
�

2

1−|ζ2|2







is positive definite. Let Condition (I) be the statement that det(P1) ≥ 0.
Then the Pick-Nevanlinna condition is equivalent to (I) and (II) combined.
Then we apply the same theorem to g2. Now we find that the matrix

P2 =







1−
�
�
�

γ

ζ1

�
�
�

2

1−|ζ1|2

1−
|γ|2

ζ1 ζ̄2

1−ζ1 ζ̄2

1− |γ|2

ζ̄1ζ2

1−ζ̄1ζ2

1−
�
�
�

γ

ζ2

�
�
�

2

1−|ζ2|2







must be positive definite. This is equivalent to Condition (IV) combined
with det(P2) ≥ 0, which we call Condition (III).

Summing up we have four conditions:

(I) det(P1) ≥ 0,

(II) |ζ1| ≥ |a| ∧ |ζ2| ≥ |b|,
(III) det(P2) ≥ 0,

(IV) |ζ1|, |ζ2| ≥ |γ|.
Let S be the set (x, y) ∈ R

2 such that there exist ζ1, ζ2 ∈ ∆, ζ1 6= ζ2,
with |ζ1| = x, |ζ2| = y and such that conditions (I)-(IV) hold. We now want
to minimize the function L(x, y) := µ log x + ν log y over S. Clearly, the
minimum must be attained at the boundary of S, i.e., at a point where one
of the conditions (I)-(IV) is satisfied with equality.

The conditions (III) and (IV) are invariant under rotations in γ. Hence
we may assume that γ ∈ (0, 1).

3. Conditions (III) and (IV)

We will now take a closer look at Conditions (III) and (IV). Obviously,
they only depend on the modulus of ζ1, ζ2 and the real part of ζ1ζ̄2. Hence
it is natural to write x = |ζ1|, y = |ζ2|,Re ζ1ζ̄2 = xyt, where −1 ≤ t ≤ 1.
The conditions now take the form

1− γ2

x2

1− x2
·
1− γ2

y2

1− y2
−

1 + γ4

x2y2 − 2γ2t
xy

1 + x2y2 − 2xyt
≥ 0,

x, y ≥ γ.

All denominators in the fractions that occur here are positive. After
multiplying the first inequality by the three denominators and by x2y2, and
after cancelling some positive factors, we can reduce Condition (III) to

(xy − γ)(x2 + y2 − 2xyt) ≥ 0.

Now, the second bracket in the last expression is non-negative, and is strictly
positive unless x = y and t = 1. However, this would correspond to ζ1 = ζ2,
which is not allowed. We conclude that the third condition can be replaced
by xy ≥ γ. This in turn implies the fourth condition. Therefore we can
replace Conditions (III) and (IV) by the single condition

(H) xy ≥ γ,
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(H for hyperbola).

4. Conditions (I) and (II)

Our assumption that ab̄ is real and negative implies that Conditions (I)
and (II) only depend on the modulus of ζ1, ζ2 and the real part of ζ1ζ̄2, as
was the case for the other conditions. We keep the notation x, y, t, and also
set c = |a|, d = |b|. It follows that ab̄ = −cd.

The conditions now take the form

1− c2

x2

1− x2
·
1− d2

y2

1− y2
−

1 + c2d2

x2y2 + 2cdt
xy

1 + x2y2 − 2xyt
≥ 0,

x ≥ c ∧ y ≥ d.

Eventually we will minimize L under these conditions. The variable t
does not occur in the function to be minimized, but is still important; in the
minimization we are only allowed to choose x and y such that there exists
t, −1 ≤ t ≤ 1, with Condition (I) satisfied.

After similar manipulations as in the previous section we can write Condi-
tion (I) as Q1 −Q2t ≥ 0, where

Q1 = (x2 − c2)(y2 − d2)(1 + x2y2)− (1− x2)(1− y2)(x2y2 + c2d2),

and

Q2 = 2xy[(x2 − c2)(y2 − d2) + cd(1 − x2)(1− y2)].

Using Condition (II) we see that Q2 > 0, hence we may write Condition (I)
as t ≤ Q1/Q2. Recall that t takes values in the interval [−1, 1]. Hence,
we can always find a suitable t as long as Q1/Q2 is at least −1. Therefore
Condition (I) is equivalent to Q1 +Q2 ≥ 0. It turns out that Q1 +Q2 can be
factorized into a product of two cubic polynomials in x and y. Condition (I)
takes the form

(dx + cdx− cy + cdy − x2y + dx2y − xy2 − cxy2)×

×(−dx+cdx+cy+cdy−x2y−dx2y−xy2+cxy2) ≥ 0.

Let us call the two factors C1 and C2 respectively.
Next, we need to take a closer look at these two cubics Ci = 0, i = 1, 2.

We are interested in their behaviour in the rectangle c ≤ x ≤ 1, d ≤ y ≤ 1.
We claim the following.

1. The curve C1 = 0 passes through the points (c, d) and (1, d), and it is
a graph over the x-axis in the interval [c, 1].

2. The curve C2 = 0 passes through the points (c, d) and (c, 1), and it is
a graph over the y-axis in the interval [d, 1].

3. The only point of intersection between the two curves in the rectangle
is (c, d).

4. The part of the rectangle where the Condition (I) holds is situated
above C1 = 0 and to the right of C2 = 0. There we have C1, C2 < 0.

It is easy to check all these statements. For instance, to show that C2 = 0
is a graph over the y-axes we compute

∂C2

∂x
= −(y2 + d)d(1 − c)− 2xy(1 + d) < 0.
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Figure 1. C1 and C2 (c = d = 1/2).

We arrive at the following reformulation of Conditions (I) and (II) :

(C) C1 < 0, C2 < 0,

(C for cubic).
It will turn out that only C2 and not C1 will play a role in the minimization.

The reason is that µ ≥ ν, hence it makes more sense to take a small x than
a small y, and C2 < 0 is an obstruction to that. On the other hand C1 < 0
for all the points that interests us. See the graph of the region (Fig. 1).

5. The minimization

Having described the admissible region, we turn to the minimization itself.
There are three cases.
Case 1. γ ≤ cd.

In this case Condition (C) implies Condition (H); the hyperbola does not
enter into the region defined by the two cubics (not even into the rectangle).
We can always let x = c, y = d, and this gives us the minimum µ log c +
ν log d. Hence the Lempert function is simply this constant.
Case 2. c ≤ γ.

Here, we first minimize L over the hyperbola xy = γ that is contained in
the rectangle. It is easy to check that the gradient of L and the gradient
of xy − γ are non-parallel for all points on the hyperbola. The minimum is
hence attained at an endpoint. A trivial calculation shows that the minimum
is µ log γ, attained at the point (γ, 1) (recall that µ ≥ ν). If this point is
allowed by Condition (C) we are done. This is easily seen to be the case.
Thus the Lempert function becomes µ log γ.

Geometrically this means that the hyperbola is to the right of C2 = 0,
and they never intersect. We remark that the hyperbola might cut the other
cubic, but that doesn’t matter here. See Fig. 2.

Case 3. cd < γ < c.
This is the interesting case. It is natural to modify the idea in the previous

case, i.e., to minimize L over the part of the hyperbola. This would give
(µ−ν) log c+ν log γ in the point (c, γ/c). However, it is easily seen that this
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Figure 2. γ = 2/3, c = d = 1/2.
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Figure 3. γ = 1/3, c = d = 1/2.

point violates Condition (C). We are led to look for the minimum in a point
of intersection between the hyperbola and the cubic C2 = 0. See Figure 3.

We now claim:

1. The gradient of L and the gradient of C2 are non-parallel for all points
on the cubic C2 = 0.

2. There is exactly one point of intersection between the hyperbola and
the cubic.

We omit the easy but tedious proof of the first statement. For the second,
let y = γ/x in the equation of the cubic and solve for x. The result is

x =
√

γ

√

c(1 + d)− γ(1− c)

γ(1 + d) + d(1− c)
.

We conclude that the minimum must be attained either in this intersection
point or possibly in the point where the cubic leaves the rectangle, i.e. in
the point (c, 1). We compute first the value of the function µ log x + ν log y
in the intersection point:



6 MAGNUS CARLEHED

µ log x + ν log y = (µ− ν) log x + ν log γ

=
µ− ν

2
[log γ + log

c(1 + d)− γ(1− c)

γ(1 + d) + d(1 − c)
] + ν log γ

=
µ + ν

2
log γ +

µ− ν

2
log

c(1 + d)− γ(1− c)

γ(1 + d) + d(1− c)
.

The value in the other point is easily seen to be larger, hence we have found
the Lempert function in this case.

6. Conclusion and an example

We have proved the following formula.

Proposition 6.1. Let a 6= b be two points in the unit disc such that ab̄ < 0,
µ ≥ ν > 0 and 0 < |γ| < 1. Then the Lempert function for the bidisc with

poles (a, 0), (b, 0) and weights µ, ν is given by

δ((0, γ)) =











µ log c + ν log d, 0 < |γ| ≤ cd
µ+ν

2 log |γ|+ µ−ν
2 log c(1+d)−|γ|(1−c)

|γ|(1+d)+d(1−c) , cd < |γ| < c

µ log |γ|, c ≤ |γ|

where c = |a| and d = |b|.

The Lempert function is not plurisubharmonic, since it does not equal
the Green function (the latter equals (µ − ν) log c + ν log |γ| in the middle
interval). However we can also see this directly from the formula. Recall that
a subharmonic function in the unit disc that only depends on the modulus
of z must be an increasing convex function of log |z|. Replacing |γ| by eu

and differentiating twice with respect to u, we obtain (µ− ν)R(u), where R
is negative in the critical interval. This shows that the Lempert function is
subharmonic on the disc {0} ×∆ only if µ = ν, in which case we know that
it equals the Green function in the whole bidisc.

In [C-W], the case µ = 2, ν = 1 is used in the given counterexample. The
pluricomplex Green function is in this case

g((0, γ)) =











2 log c + log d, 0 < γ ≤ cd

log γ + log c cd < γ < c

2 log γ, c ≤ γ

However, we have just seen that the Lempert function is

δ((0, γ)) =











2 log c + log d, 0 < γ ≤ cd
3
2 log |γ|+ 1

2 log c(1+d)−|γ|(1−c)
|γ|(1+d)+d(1−c) , 1/4 < |γ| < 1/2

2 log γ, c ≤ γ

We conclude this note with a graph for the case a = −b = 1/2, µ = 2, ν =
1 (Fig. 4). It shows the Lempert function and the Green function in the
critical interval 1/4 ≤ γ ≤ 1/2.
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Figure 4. The Lempert function and the Green function.
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