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Abstract
The paper is devoted to the problem of reconstructing a tensor
field in C", if its ray transform is known along all complex lines,
intersecting a given complex curve. A procedure for recovering the
solenoidal part of the tensor field is given.

1 Introduction and some theory of tensor fields
in a complex space

For a major reference to integral geometry of tensor fields we refer the reader
to the book [2]. In the paper [3] the author considered an integral geometry
problem with incomplete data for symmetric tensor fields in a real space.
(See [1] for the references to other papers on the integral geometry problems
with incomplete data.) In the current article we are going to study a similar
problem for tensors in a complex space. The problem for the complete col-
lection of data was considered in the author’s dissertation [4], as well as in
[5]. We will need to recall some theory from these papers.
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Let p,q > 0 be integers and T} be the space of bidegree (p,q) tensors

on C", i.e. the functions f:C" x ... x C" xC" x ... x C" — (', which are
P q

C-linear with respect to each of the first p variables and C-antilinear with

respect to the last ¢. Let SI be a space of tensors, symmetric with respect

to the collections of the first p and the last ¢ variables separately. There is a

canonical projection o : T}1 — Sg :

Z Z f Zﬂlu-"vzﬂp7w517-"7w5q)7

af(z1y. .y 2p, Wi, ..o W) —
pq rell, 5€ll,

where II, II, are permutation groups. We write each tensor f € T in the
form

f=flidn e, 0dir0dd ©...0d.

Henceforth we will use the Einstein summation convention — summation
with respect to the pairs of repeated indices, independently running from 1
to n. The numbers f;" Z]: are called the coordinates (or the components) of
the tensor f. A map C" — T1 is called a tensor field on C". By C*(T}) and
S(T;1) we denote the spaces of tensor fields on C™ with smooth and rapidly
decreasing components respectively. We will need the following operators,

defined in coordinates:

0
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jqu)
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(dif)l = o
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--jq+1
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9 iy
67 11...8p /)
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The operators d are the operators of inner differentiation of the different
kinds (”1” - lower, "u” - upper), 6 — the divergence operators.

Here, as usual,

0 1
Do §<0—xk—v a—yQ

Let 7' = C™\ {0}.



Definition 1.1 The ray transform of a tensor field g € C*(Sy) is the func-
tion Ig, defined on C™ x C§ by the expression:

gz, €) = /gfj Tz tE)Eh . G §1dS(1),

where dS(t) is the area form on C, and we assume the absolute convergence
of all integrals involved.

The problem we will be dealing with is to reconstruct g from Ig. It turns
out that the operator I has a nontrivial kernel. In §(S) it consists exactly of
the tensor fields of the form djv + dyw, where v € C*®(S]_;),w € C*(SI™1)
and v, w vanish sufficiently fast at infinity.

We need the following statement.

Theorem 1.2 For a tensor field g € S(S}) there exists a unique tensor field
f e C>(S4) such that for some tensor fields v € C™(Si_;),w € C=(Si~1)
one has

g=f+dv+daw, o f =0,5,f=0; f,v,w—0 as|z| — co.

The field f is called the solenoidal part of g, we denote f = ®¢g . It turns
out that by knowing Ig we can reconstruct f = ®g, and there is in [4], [5] an
explicit inversion formula.

We will be using the following version of the Fourier transform for tensor
fields: in coordinates,

g =enm [ e

cn

V=1
7 (OGN g0 () 4V, (2),

where (-, -) is the standard Hermitian form on C™ and dV5,(2) is the volume
form on C™.

We have the following expression for f in terms of § (f = *g), which will
be useful later:

Fd0(0) = ef1(C) e (Q) (€)1 (€) g (©), (1)
where @Cj
J J
2 (C) 2 K~|2 ’

6/ — the Kroneker symbol.



2 Integral geometry problem with incom-
plete data, reconstruction of the solenoidal
part

For n > 3 let v+ C C™ be a C'-smooth complex, but not necessarily holo-
morphic curve, parametrized as follows:

z=0¢(\), \€ACC, ¢p€C'A).

Problem. Let g € S(Sf). Reconstruct its solenoidal part f = °g by the
known values 1g(z,€) for all z € v, £ € Cf.

To formulate a condition on v we need to consider the following algebraic
setting. Let P(z) be an arbitrary degree m polynomial on C, which is not
necessarily holomorphic:

P(z)= > plmidvdr i g g pr) ¢ Sy

11...9;
I+r<m

Altogether there are Ly, = (

QNT: m ) independent coefficients (taking

into account symmetries).

Definition 2.1 A collection of Ly, points in CN 1 by, .. by, 18 called
defining of order m, if a polynomial P(z) is determined uniquely by its values
P(b])7 ] == 1, e ;EN,m-

Almost all collections are defining in the sense that they form in (C™)~.m
the complement of an algebraic hypersurface.

Definition 2.2 We say that a complex curve v satisfies the complex Kirillov-
Tuy condition of order m > 1, if for every z € C™, n € S* ! (|n| =1)
we can find a defining collection of order m: ai(z,7),..., ac,_, . (2,1) in the
intersection of the complex hyperplane {a,n) = (z,n) with v. (Defining, that
is, for the polynomials on this hyperplane.)

Theorem 2.3 Let v C C™ (n > 3) be a C'-smooth complex curve, satisfying
the complex Kirillov-Tuy condition of order (p +q). If g € S(S}), then its
solenoidal part f = ®g can be uniquely reconstructed by the known values
Ig(z,&) forall z € ~, £ € CF.



Proof.
We notice the following homogeneity property of Ig with respect to the

second variable:

To(z, 7€) = Tl (2, €).

Thus for a fixed z we can treat I¢(z, -) as a tempered distribution from S’ (C™)
and consider its Fourier transform.

Lemma 2.4 We have the following formula in S'(C™):

A P4
T 1\ e ia
Ig) am) = Jim °5° %Y () ax
=0 7r=01<a1<..<ay<p 1<m <...<yr<q
xain . gl / ‘p‘2nf4ppﬁq€@((pa,n>+<n,pa>) X

lp|<H

. . . . . . N
X (2. i gl (2)) (pn) dS(p). (2)

Here we set {f1...0,—1} ={1...p}\{oa... .y}, 1 <031 < ... < By < p;
{61 .0} ={1...¢3\ {7}, 1 <& < ... <6 <gq. The limit is
taken in the weak sense in S&'(C™).

Proof of Lemma 2.4.
We need to apply both parts of (2) to a test function ¥ (n) € S(C™). The
left-hand side will then be

A ~

((Zg) (a;n),v()) = {Ig(a,y),¥(y))- (3)
Consider the right-hand side before taking the limit:

p q ‘ | | |
/ Z Z Z Z (_1>l+7‘a2a1 e azal C_]/-]Wl . a/]"/'r X
on 1=0r=01<an <...<o<p 1<y <...<v<q
X / |p|2”—4pppqe@(<pam>+(n,pa)) %

lp|<H

A

X(01 L2 e gl (2)) (o) dS(p) () dVan(n) =

‘p‘2n74ppﬁq / Z Z Z Z (_1>l+raia1 N .aial %

lpl<H Cn 1=0r=01<a1<..<oy<p 1<m <..<yr<q
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xahn . @i Zien | g e gl ()
P

x (27)" / e
Cn

~ =) )y () AV (0) dVan(2) dS(p).

We can change the order of integration, because ¢ and all the components
of g are from the Schwartz space.
The last expression above equals

[ bt [ =a - o E=ay L E )l )

lp|<H cn

xP(p(z — a)) dVan(2) dS(p).
Introducing variable change y = p(z — a) and t = 1/p, we obtain

[ [ a0 - Ve 0) o dS () -

lpl<H C

= [ [dia ot P) dVauy) dS). ()

[t|>H-1Cn

The integral above converges absolutely, i.e.
/ / gl Iyl 1l D) dS () dVanly) < oc,

because the function

y— [lgiita+wlly]- g1yl ds()

is positively homogeneous of the degree (p + ¢ — 2) and ¢ € S(C™).
Thus in (4) we can take the limit as H — oo and obtain

/ / gl o+ )y g dS() Dly) dVanly) =

_ /[g a,y)¥(y) dVan(y) = (Ig(a, y), ¥(y)),

which is the same as in (3).



This proves Lemma 2.4.

We notice that in the right-hand side of (2) we have a pointwise limit as
H — o0 in the domain {n € C™ | n # 0}, because the corresponding Fourier
transform is rapidly decreasing (if 7 = 0, then the limit does not exist).

We will need to show that the restriction of the distribution (/ g/)\ (a,n) to
this domain coincides with the regular distribution, defined by the pointwise
limit.

Each term in (2) up to a coefficient has the form

lim [ [p2nprpt e T (e tnen)) G dS(p), (5)

H—oo
lp|<H

G(e) = s i S e,

_ The components of g are from the Schwartz space, therefore G(2) and
G(z) are rapidly decreasing and

~ Cu
GO < T

for every M.
So, in (5) we have for each 1 # 0 the following value

[ 1o T 00 G S ().
C

Take a test function ¢ € S(C™) with supp ¢ C CJ. Then for some r > 0 we
have |n| > r on supp ¢. Consider the following expression

[ 1pPrtpp e e ) Ginyas(p) - () dVaa(n). (6)

" lpl<H

We have the following estimate for each n € supp ¢:

n— Y=L((pq a)) A=
[ o=t T a0 G asi(p)| <

lp|<H

C
|pf?r et ——— T dS(p) <
ol L+ oMl



Cu

st(/?) = C(M) < oo,

S / ‘p‘2n+p+q74
c
if M is sufficiently large for the last integral to converge.
Since 1) belongs to the Schwartz space and because of the Lebesgue domi-
nated convegence theorem, we can take the pointwise limit under the integral
sign over C™ in (6) and get

/ / o2~ pte 5 e ) G o) dS (p) - (1) Vo).

By the hypothesis of the theorem, we therefore know the following ex-
pression for every a € v and n € S*"~1:

p q
SRS (Capan o [P
C

=0 r=01<a1<...<<p 1<y <...<vr<q

Y1

xe P b)) (ion | isizin e gh91(2)) () dS(p). (7)

We fix an arbitrary zop € C™ and n € S?"~!. By the hypothesis we can find
a defining collection of points ai(z9,7), ..., az,_,,,(%0,n) in the intersection
of the hyperplane (a,n) = (z9,n) with 7. Note that the restriction of the
expression in (7) to this hyperplane is a polynomial P(a) on it (because
there we have (pa,n) = p{a,n) = p(z9,n) and the dependence on a is purely
polynomial).

The values P(a;(z0,7)) are known, because a;(29,n) € . Therefore P(a)
is known on the whole hyperplane.

We introduce the following polynomial JB(a), defined everywhere on C"™:

P(a) = P(z0 + m,(a — 20)),

where m,(2) = z— (z,)n is the orthogonal projection to the complement 7+
of n with respect to the Hermitian form. It is clear that P is known on C™.
Its homogeneous part of the highest degree (p + ¢) has the form

1 / |p|2" 4 pP 1 6@((0Zo,n>+(n7020)) f]ill 23;‘ (pn) dS(p)x
C

<@ = (@) (@ = () @ = (na)) . (@ = (. a)) =



— (=)t [ [pfnet e G oo gt i) S ()
C

XEE(T}) . 52’;(7)) eéll (n).. EZ (n)a* ... .a*a" .. gl =

= (=1t [t 5 ot ) fia () 4 (p)
C

xak .. afah . al, (8)

where f = °g is the solenoidal part of g. (See the formula (1) and use |n| = 1
and £ (pn) = & (n).)
Thus, we know all the coefficients in (8):

o g Y11, ” plydg /-
[ ot T o) fiss () dS ).
C

Consider now a fixed 7y € S?"~! and introduce the variable u = p. If we take
20 = A1, A € C', we therefore obtain

A

n—4 - VoL, p Ih..0
/ PPt e (oot b 20)) e (o) dS () =
C

V=T \ga,) n—4 — ply..l
— / e 7 IR | PRt fi (m) dS ().
C

Noting that @ (Mi+pA) = v/—1Re(Afi), we recognize here the 2-dimensional
Fourier transform (up to a coefficient) of the function

n—4-p. qplil

po—= P Pt f e (o)
The value A € C' can be taken arbitrary, therefore this Fourier transform is
known on C'. Applying the inversion formula for it, we find f,ill'_'_'_l,jp (uno) for
all 4 € C (and all gy € S?™1). Then, applying Fourier inversion in C", we

obtain all the components f,ill'_'_'_l,fp of the solenoidal part f. This completes

the proof of Theorem 2.3.
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