Computation of denominator polynomials for
Poincaré series on Monomial rings

Mikael Johansson

August 31, 2004

Abstract

Given a monomial ideal M in a polynomial ring @ = k[zy,...,z,] over a field

k, the Poincaré-Betti series), dimy, Tor?/ M (k, k)t' is a rational function of the
form (1 +t)"/bg/m,k(t). The denominator polynomial by, (t) depends only
on the LCM lattice and GCD graph of a generator set of the monomial ideal.

I intend to present an implementation of a simple computer program that will
explicitly calculate the denominator polynomial for a given set of generators for
the monomial ideal.

The lattices that may occur as LCM lattices for some monomial ideal with &
generators are precisely the k-atomic lattices. I will present work in progress on
listing all isomorphism classes of atomic lattices with precisely 6 atoms as well
as discuss some problems arising in such a listing.

Sammanfattning

Givet ett monomideal M i en polynomring @ = k[z1,...,z,] 1 7 variabler 6ver
en kropp k av godtycklig karakteristik definieras Poincaré-Betti-serien som den
formella potensserien . dimy Tor?/ M(k, k)ti. Den bildar en rationell funktion
pa formen (14 t)"/bg,ar,k(t) for ndgot polynom bg,ar,x(t). Namnarpolynomet
bo/m,k(t) beror endast pA MGM-spaljén och SGD-grafen associerade till en
generatorméngd till monomidealet.

Jag dmnar hirvid presentera ett program for berdknandet av nimnarpolynomet
givet en generatormingd fr monomidealet.

De spaljéer som kan forekomma som MGM-spaljéer ar precis de atoméira
spaljéerna, och jag d&mnar presentera en del pagaende arbete med att etablera
en lista Over alla isomorfiklasser av 6-atomaéara spaljéer och dven diskutera de
problem som uppstar i genererandet av en sadan lista.

Summarium

Series), dimy Tor?/ M(k,k)ti, quae Poincaré-Betti nuncupatur, multitudine
ideali, in monomine anuli ex polynominibus @ = k[z1,...,z,] consistentis quod
M dicitur, adhibita, ut series potentiae rationalis (1 +)" /bg/ar,k(t) defini-
tur. Forma polynominis denominatoris bg/ar,x(t) tantummodo ex adminiculo
supremo atque signo infimo pendet.

Institutionem computatoris, quae indicem polynominum, numero monominis
idealis dato, computare poterit, exhibiturus sum.

Haec, quae ut adminicula suprema exsistere possunt, vere adminicula atomo-
rum sunt. Ideo exhibiturus sum laborem currentem omnium classium, quae ex
adminiculis senorum atomorum constent, adhibendarum. Quaestiones etiam,
quae ab talibus adhibendis oriuntur, demonstraturus sum.

Acknowledgements

I would like to thank my thesis advisor, Jorgen Backelin, for presenting these and
several other very interesting problems to me. I am also indebted to Alexander
Berglund, with whom I started working on these themes, for ideas, advice, source
code and general solutions to the specific problems I happened to be working
on. Some of my more speculative heuristic arguments would have been even
more meaningless without the mathematical statistics knowledge of Andreas
Nordvall-Lageras, to whom I also extend thanks.

Hans Aili, doctori meo linguae latinae, pro summarium meum lecto emenda-
toque, magnas gratias ago.

The diagrams in this thesis were drawn using Paul Taylor’s commutative dia-
gram package. [Taylor, 2004] The reference guide in Appendix B was created
using the documentation tool Doxygen. [Doxygen, 2004]

Contents

1 Introduction
1.1 Preface and historical overview
1.2 Homological algebra
1.3 Simplicial Homology and Hilbert series
1.4 The Taylorcomplex
1.5 Latticetheory o

1.6 Previousresults

2 Implementation details
2.0.1 Complexity issueso

2.1 Test suite and verifications

3 Enumeration of atomic lattices
3.1 Algorithm analysis,

3.2 Combinatorial explosion of lattices

A Users guide
A1 Obtaining the program
A2 Buildandinstall 0oL

A.3 Starting the program oL o000

CONTENTS

CONTENTS

A.4 Calculation of Poincaré-Bettiseries 34
A.5 Calculation of simplicial homology 34
A6 Listofcommands. 35
A.7 Known quirks and problems 38
Programmers reference 39
B.0.1 Introduction 39
B.0.2 Imstallation 39

B.1 Monomial Class Reference 40
B.1.1 Detailed Description 42
B.1.2 Constructor & Destructor Documentation 42
B.1.3 Member Function Documentation 43

B.2 Monomialldeal Class Reference 46
B.2.1 Detailed Description 47
B.2.2 Member Function Documentation 47

B.3 SimplicialComplex Class Reference 49
B.3.1 Detailed Description 50
B.3.2 Member Function Documentation 50
B.3.3 Member Data Documentation 51

B.4 Squarefree Class Reference 53
B.4.1 Detailed Description 54
B.4.2 Member Data Documentation 54

B.5 homology.c File Reference 55
B.5.1 Detailed Description 56
B.5.2 Function Documentation 56

B.6 homology.h File Reference 58

CONTENTS

CONTENTS 4
B.6.1 Detailed Description 59
B.6.2 Function Documentation 60

B.7 main.c File Reference. o 0oL 61
B.7.1 Detailed Description 62
B.7.2 Function Documentation 62

B.8 main.h File Reference 63
B.8.1 Detailed Description 63

B.9 wui.c File Reference 64
B.9.1 Detailed Description, 65
B.9.2 Function Documentation 66

B.10 ui.h File Reference oL 67
B.10.1 Detailed Description 67
B.10.2 Function Documentation 68
B.10.3 Variable Documentation 68

Chapter 1

Introduction

1.1 Preface and historical overview

This report was originally intended to be a joint work with Alexander Berglund
[Berglund, 2003]. Circumstances dictated otherwise in the end. Since Alexander
has not quit thinking about these matters just because he started his doctorate,
several of the relevant results are to a high degree his work.

For a field k, let Q = k[z1,...,2,] and R = Q/{M) where M is an antichain M
of squarefree monomials'. The series

PE(t) = Z dimy, Torf (k, k)t?
0

is called the Poincaré-Betti series of k over R.

Jorgen Backelin showed in [Backelin, 1982] that PE(t) = ,()L':t(); holds with

degbp,k(t) < oo and Luchezar Avramov asked in [Avramov, 2002] whether
degbr,x(t) < 2m will hold for any field k, any number r of variables and any
fixed number m of monomial generators of (M). Alexander Berglund recently
found an explicit formula for bg x(t), using minimal models of the ring Q/(M).

I have in the course of my thesis work continued Alexander Berglund’s devel-
opment of a Scheme program listing all lattices on a fixed number of atoms. I
have furthermore developed a program package, written in C++, capable of cal-
culating simplicial homology over fields of arbritrary characteristic, as well as
explicitly calculating bg (t) for arbritrary characteristic of the coefficient field
k.

I cannot avoid assuming that the reader has some basic knowledge about algebra

li.e. a set of monomials such that no zf divides any monomial and such that no monomial

divides another

Homological algebra

and combinatorics. I will assume that the reader has some familiarity with rings,
ideals, fields and vector spaces as well as with generating functions. Further,
I will assume knowledge about quotient structures and substructures as they
may be applied in several different areas — quotients of groups, of vector spaces,
of rings et.c. If further material is needed, I will refer to it with some degree of
completeness, though often quite briefly. At each point, I will give references the
reader can pursue to broaden the understanding of the subject matters touched.

1.2 Homological algebra

Throughout this article, we let k£ be a field of any characteristic; @ =
k[x1,...2.]; M a finite set of independent monomials, i.e. such that no m € M
is divided by any m' € M \ {m}; and R = @ /(M) the monomial ring we study.
I use the notation (M) for the ideal generated by the elements in M. Thus, all
rings we work with are graded local rings (i.e. commutative unitary noetherian
with a unique graded maximal ideal). The image of the ideal m = (z1,...,z,)
is the unique graded maximal ideal in all rings we deal with. Recall that an
ideal I in a graded ring R is graded if there is a set of generator such that each
generator is homogenous in R.

A module M over the commutative ring R is a structure following the vector
space axioms rather closely; thus an abelian group with the group operation
denoted + together with a “scalar” multiplication with ring elements denoted
by - or by juxtaposition, such that the operations distribute over each other.
Any basic linear algebra book will give a list of axioms for a vector space — those
very same axioms hold for modules, except for the minute difference that the
scalars of a module need not be invertible.

A module over a field is a vector space. But since the scalars to a module
in the general case are from a ring, some of the vector space properties do
not necessarily hold. For instance, a module need not have a basis — which is
to say a generating set such that each element is uniquely written as a linear
combination in the generators. Modules such that there is a basis are called
free, and may easily be seen to be isomorphic to a direct sum of the scalar
ring with itself a number of times as determined by the size of the basis. For
certain arguments, it turns out that freeness captures more than is strictly
necessary. This leads to the notion of projective modules®>. A treatment of
projective modules goes outside the scope of this thesis, but the interested reader
is directed to standard works in homological algebra such as [MacLane, 1963]
and [Hilton and Stammbach, 1970].

2many ideas in Homological algebra benefit from statements with the ideas and tools from

category theory. Thus many notions are read off of diagrams asserting existences of functions
between objects. Such a diagram is dualised by inverting all arrows, and a dual concept to
something is what you’d get if you only reversed all arrows, that is to say functions, when
you talk about it. The dual notion of projective modules is injective modules, which in a
similar way expands on the notion of co-free modules; the dualisation of free modules. We will
later on touch a few situations where dualisation is of interest, though in a slightly different
context.

Homological algebra

A module M is Z-graded if it can be decomposed into a direct sum ;. M;
of modules. An endomorphism f on a graded module is said to be of degree k
if f(M;) C M1y for all i. The homogenous components of a graded module —
i.e. the direct summand of a particular degree — are denoted by subscripting the
degree.

A sequence of modules (C;) together with homomorphisms 9,

8n+1 a 6n71

C: ... 0, =3 Chg = ... (1.1)

is called a complex if 8, 0 9,41 = 0 for all n. The complex can be described in
terms of differential graded modules as well —a DG-module is a Z-graded module
C together with an endomorphism 8 of degree -1 such that 8> = 0. A complex
may be made into a DG-module by taking the direct sum of all modules in the
complex, with the appropriate degrees assigned to each. The complex is said
to be positive if C;,, = 0 for n < 0. It is said to be concentrated to degree m if
C,=0forn#m

A complex is free if all modules in the complex are free.
A complex C is minimal if 3C C mC.

The homology of a DG-module C is defined to be the quotient H(C) =
Z(C)/B(C) where Z(C) = ker 0 is called the cycles, and B(C) = im 0 is called
the boundaries. The motivation for this terminology originates in the historical
origins of the study of homology; where features of a topological space were
captured by building complexes out of the space and considering the homology
of the particular complex built.

A DG-module is called acyclic if H(C) = Ho(C). It is called ezactif H(C) = 0.

Note that C is acyclic if and only if

s Oy — Cy —5> Hy(C) — 0 (1.2)

is exact with € the canonical surjection from Cy to Cp/im 0;.

A free resolution of a module A is a free acyclic complex F together with an
isomorphism Ho(F) = A. We will most often tacitly identify Ho(F') and A
using this isomorphism.

A minimal free resolution F' of a module A is a free resolution which is minimal
as a complex.

Given a free resolution F' of the module A, let FQB = ... el F;@B o
We then define the Tor functor as Tor(A, B) = H(F ® B) for any module B.
Note that when we write Torl(A, B), this means precisely H;(F ® B) for a
resolution F' of A as a R-module and with the tensor product with B as R-
modules. It turns out the Tor has quite nice properties. More precisely, if we
have a morphism « : A — A’ then we can associate another morphism a, :

Simplicial Homology and Hilbert series

Tor(A, B) — Tor(A', B). Similarily, given 8 : B — B’, an induced morphism
B« : Tor(A, B) — Tor(A, B'). Using category theoretical language, this means
that Tor is a covariant bifunctor. For more details, I would like to refer the
reader to [Hilton and Stammbach, 1970, II1.8]

Now, the Poincaré-Betti series of the module N over the graded local ring?
(R, m, k) is the formal power series

Pf(t) = dimj Torf(N, k)t (1.3)
n>0

If F is minimal, then 8,®1(z®a) = 0(z)®a = myQa = y®ma = yQ0 = 0 for
m € m and some y € F,_1, since d(x) € mF,,_;. Thus 9 is the zero map, and
the homology groups are given by Tor®(N, k),, = ker(d, ®r 1) /im(0, ®p 1) =
F, ®grk.

Thus, for a minimal free resolution, the dimy, Tor® (N, k) can be read off of the
ranks of the individual free modules.

Note that the term squarefree monomial rming denotes some ring
k[z1,...,zk]/(M) where M is a set of squarefree monomials.

Theorem 1.1 (Weyman-Fréberg). If R = P/(M) is a monomial ring, then
there is a N > r and a squarefree monomial ring R' = k[X1,..., XN]/{M') for
some set M' of monomials in k[X1,...,XnN] such that

Pty =B (0)/(1+)N

Proof. The construction is given in [Froberg, 1982, 30-31] and again in
[Berglund, 2003, Prop. 3.6.1]. See these references for detailed proof.

For each variable z;, the maximal occuring degree D; = sup,,cs degz; (m) is
retrieved. For the new ring R’', we define D; new variables X ; that are associ-
ated to x;, in such a manner that in every monomial m = :cfl ...zl gives rise
to a new monomial M = Xl,l . Xl,leg,]_ .. X2,d2 .- Xr,l .- -Xr,dr- The set of
all transformed monomials M forms a generator set for an ideal in a polynomial

ring on N =). D; variables as required. O

1.3 Simplicial Homology and Hilbert series

The Hilbert series of a free graded module C' = (Ci)icz is the formal power series
C(t) = >_;cz rankg Cit'. The rank of a free module is the size of a basis for that

3The notation (R,m,k) for any local ring indicates that R is the ring, m is the unique
maximal ideal and £ = R/m is the quotient field.

Simplicial Homology and Hilbert series

module. We will only deal with Hilbert series of positively graded modules, i.e.
C(t) = Y, rankg Cyt'. Thus, the Poincaré-Betti series of a module N over a
ring R is the Hilbert series of the complex H(F ® k) for a free resolution F of
N.

For the sake of the current discussion we fix a field k. Furthermore, we remind
the reader that a module over a field is simply a vector space.

An abstract simplicial complez is a collection A of subsets of some finite set such
that whenever I € A and J C I it follows that J € A. Partition the collection
into subsets A; such that I € A; is equivalent to |I| = ¢ + 1. The reason
for the shift in index lies in the historical origins of the theory for simplicial
complexes — the points in the set (and thus also the points in the subsets included
in Ag) correspond to vertices in a triangulation. The subsets of two points
correspond to edges, the subsets of three points to triangles. Thus it continues
onto higher dimensions until the collection is exhausted. The dimension of each
simplex, which is to say generalised triangle, is one less than the number of
vertices spanning it. Whenever some simplex is used in the triangulation, all
the components of that simplex are also present. A much more geometric view
of what is happening here may be found in any textbook on algebraic topology,
for instance in [Armstrong, 1983], [Bredon, 1993] or [Hatcher, 2002].

For each partition A;, we construct a vector space C; with basis elements in-
dexed by the elements of A;. In addition, we wish to fix some total order on
the points of the set of points occuring in the subsets in the abstract com-
plex. So for the singleton sets in Ay, we have aj,as,...,a, ordered such
that a1 < a3 < --- < a,. We will denote the basis elements by e; for
I €] ={1,...,r} with elements p;,...,p; with the numbering fulfilling
ap, < --- < ap,. The differential that makes this a complex comes as we de-
fine a boundary homomorphism by sending the basis element indexed by some
I ={p,...,pi} to the sum Z;Zl(—l)jel\{pj} It has degree —1 since each ba-
sis element of C; is mapped to a linear combination of basis elements where
one point is removed from the defining set, thus placing each basis element
in the linear combination in C;_;. Furthermore, 0; 1 o 8; = 0 since each oc-
currence of ep\ (p,,p,,} Will arise in two ways: once from the term (=1)enip;1

and in addition to that once from the term (—l)j’el\{pj,}. Thus we get, within
im 0; 1 00; that the contributions along the basis vector b = e\ ¢p, ,p; } are given
by (=1)'=1(=1)7b 4 (=1)7(=1)7'b = (=1)7+ (b — b) = 0, since the index of p;
once p; has been removed will be shifted by one step, whereas the reverse order
of removal will not affect the indices.

Now, we need to verify that a different ordering of the points will not change
the complex. Recall that any permutation in S; may be written as a product
of transpositions on the form (m m + 1) for some m < i. Thus, it is enough
to find an isomorphism between the complex generated above and the complex
which may be generated by taking the basis vectors fr and repeat the procedure
described above, but with the points ordered as a1 < --- < a1 < @ < - -+ <
ar. Such an isomorphism is given by the function ¢ that sends ey — —fr
precisely when both m,m + 1 € I and ey — fr else. The mapping is motivated

Simplicial Homology and Hilbert series
10

by the observation that the orderings of the subset I in the two cases is identical
whenever at most one of the two transposed indices occurs. ¢ is a bijective map
from a vector space basis to another, and thus extends by linearity to a vector
space isomorphism for each C;. It remains to check that 1 o d = 0 o+ and thus
that the two complexes are isomorphic in a manner preserving the complex
structure as well.

Again, by the linearity of both + and 0, it is enough to check what happens with
basis vectors. If a particular basis vector ey happens to omit at least one of the
two permuted points, then ¢ is the identity and there is not much more to show.
The nontrivial case is when m,m + 1 € I, say that p;; = m.

We calculate
i .
tod(er) =1 E(—l)JeI\{pj}
7j=1
s .
= Z(—l)JL(el\{pj})
j=1

= > (Duengpy) + (D)7 lengmy) + ()7 ilern gmiy)
Jg{ir i1}
= > V(=) + D fngmy + DT ngmny
Jg{i i +1}

- Y Ve + D ngmeny + DT frgm
JE{i,i'+1}

= 0(—fr)

=0o.uler) (1.4)

Since C and C' are isomorphic complexes, they have in particular the same
homological properties. We see that everything important is captured regardless
of the order on the points.

Thus, we have constructed a complex C based on the abstract simplicial com-
plex. We call this complex the chain complex associated with the given abstract
simplicial complex. The homology of the abstract simplicial complex is defined
to be H(C).

The reduced homology H (C) is obtained by first augmenting the complex C
with a map € : Cy — C_1, where C_; is the vector space spanned by a single
vector, indexed by §) and € sends each generator of Cy onto this single generator.
This augmented complex is indeed a complex, since any cycle in Cy is the image
of a chain in C4, and thus is a sum of vertices, each weighted +1 or —1 in such a
manner that there are equally many positively weighted as negatively weighted
vertices. They all sum up to 0, thus proving that QZ = 0 everywhere. This
reduced homology of C is denoted H(C). H(C) = H(C) except for in degree
0, where Ho(C) = Ho(C) & k.

10

The Taylor complex
11

This construction corresponds precisely to including () as a simplex of degree
—1, and performing the same constructions as outlined in this section. It may
be noted, though, that 9(0) =

1.4 The Taylor complex

One of several common ways to obtain a free resolution is due to Diana Taylor
[Taylor, 1966]. It is also described in [Avramov, 2002] and [Berglund, 2003].
Given the polynomial ring @ = k[z1,...,2,] and the quotient R = Q/(M)
where M = {my,...,my} we may explicitly construct a free complex F by
generating each F; by the symbols {T; | J C [1,n],|J| = i}, where [1,7n] denotes
the set of integers from 1 to n. A differential operator is introduced, similar to
the construction above, for J = {j1,...,Ji} with j; <--- < j;, by

%

Ty = Z(—l)

=1 mJ\{Jl}

Thgiy (1.5)

where my = lem(m; | i € J). We can use this complex to form a free resolution
of R over () by completing the sequence of F; with R and 0 to form the exact
sequence

05 F,»--—F5R—0 (1.6)

where 7 is the quotient surjection from () to R, since Fy is spanned by Ty, and
thus isomorphic to Q.

Again, similar to what we did in the earlier definition of Tor, we tensor each
point in the complex F' by k to form the complex F = F ® k. We can observe
that H(F) = Tor?(R, k). The really interesting property is when we find that
the complex F' with differential & = d ® 1 will decompose into a direct sum of
subcomplexes. This is due to the fact that when tensoring with £ any element
of the differential with a nontrivial quotient "\’{J ~ will vanish since all z; are
killed by the surjection to k. Thus, the only parts left in the image of the
differential will be those with a coefficient of +1 for each T);.

To detail this, I would first want to note that we use a graded ring,), with one
interesting grading given by assigning to each monomial mfl ...z the point
(di,...,d;) € N". Multiplying two monomials will add their respective grades,
and keeping track of this ring grade independently from the homology grading
defined for complexes above, we can talk about most things already presented —
but multigraded. A multigraded module will be decomposed into a direct sum
of homogenous components. Multiplication by a ring element onto an element
of a multigraded module will raise the ring degree of the product.

In this case, the decomposition of F is indexed by the points in the lattice*
Ly, ie. over all least common multiples of monomials in M. For some point

4more about that later

11

Lattice theory
12

l € Ly, we can construct a simplicial complex that will be closely related to
F'. Take the set of all T; such that mj; = [. This set has a maximal element
under set inclusion, namely J; = {p € [1,n] | m,|l}. Among all these sets, some
are smaller than the maximal. Let A; = {J; \ J | my = l}. This makes A; an
abstract simplicial complex. A; will be reversed and translated when compared
to the homological behaviour of the component of the decomposition of F —
when you go down in homology grades in H(F'), you will correspondingly rise
in the homology grades in H(A;). Using this, you can find that dimy H;(F) =
> dimy Hy,_;(A;) for appropriate choices of k;.

A similar decomposition is used by Berglund further on when constructing the
denominator polynomials.

1.5 Lattice theory

Given the correspondences between points in the LCM lattice of a monomial
ideal in the Taylor construction, one would be inspired to see whether the lat-
tice structure contains information about the Tor dimensions as such. This
is discussed further later on, and related to this interest springs the interest
in listing all lattices that may occur as such LCM lattice. To prepare for
these later themes, a slight introduction to lattice theory would be appropriate.
Further good information about lattices may be found in [Stanley, 1997] or in
[Gritzer, 1998]

A lattice is a non-empty set L closed under two associative, commutative and
idempotent operations V and A, called join and meet, satisfying z A (z V y) =
xz = zV(zAy). From this follows immediately that zVy = < zAy = y. When
several lattice structures are present, we will keep them separate by labeling the
operations Vy, and Ap.

A V-semilattice is a set L closed under an associative, commutative and idem-
potent operation V. Thus a lattice is both a V-semilattice and a A-semilattice.

If x Vy = x in a lattice L, then we say that y < x. This defines a partial
order on the elements of the lattice. Indeed, x < z by idempotency, z < y
and y < z implies z = £ Vy = y. And finally, if z < y and y < z, then
zVz=zV(yVz)=(xVy)Vz=yVz=zand thus z < 2.

A subset of a lattice L is an antichain if no two elements are comparable, i.e.
for any two x,y in the antichain, neither < y nor y < z holds.

A filter in a lattice L is a subset F' C L such that whenever | € F and I' > I,
this implies I’ € F. An ideal in a lattice L is a subset F' C L such that whenever
l € F and I' <1, this implies I' € F. In other words, filters are closed under
“greater than” in the partial order above, and ideals are closed under “less
than”. A principal ideal (or filter) is the set of all elements in the lattice that
are less than (greater than) a single generating element.

12

Lattice theory
13

A lattice is complete if for any S C L, both \/;cgl and A;cgl exist in L.
Similarily, a V-semilattice is complete if \/,. g exists in the semilattice.

Any complete lattice L contains two special elements, 0 and 1, with the property
that 0Az = 0 and 1 Vz = 1 for any € L. The elements a; such that if
0 <1< a, either I =0 or | = a; are called atoms.

Any finite lattice is complete, since any finite nonempty join or meet exists by
associativity. Empty join is taken to be 0 and empty meet to be 1.

Proposition 1.2. A complete V-semilattice L is a lattice.

Proof. For L to be a lattice, we need to define A of a pair of elements in a way
that satisfies the defining identities. Pick any two elements a and b from L. Let
Sep ={z€L|zVa=aandzVb=">} DefineaAb=V, g, , I This element
exists, since L is complete.

We need to verify that

l.zA(zVy)==z

2.zV(zAy)==x

Indeed, zA(zVy) is the join of all elements z such that zVz = z and 2V (zVy) =
z V y. But associativity reduces the second condition to a consequence of the
first. Thusz A (zVy) =V z =1

z|zVz=z

Furthermore, 2 V (z Ay) =z V (Vz|qu::z z) = z by associativity of V. O

A morphism of lattices is a function f : L — M such that f(zxVy) = f(z)V f(y)
and f(x Ay) = f(x) A f(y). Similarily, a morphism of semilattices is a function
f: L — M such that f(zVy) = f(z)V f(y). Obviously, this defines two different
categories: Lat and SLat. A morphism is said to be injective or surjective if it
is injective or surjective as a function on the underlying sets.

Two lattices M and L are said to be isomorphic if there is a injective and
surjective morphism between them.

A sublattice M of a lattice L is a subset, closed under the lattice operations in
L. M is a lattice by inheritance. Similarily, subsemilattices are defined.

A congruence relation on a lattice is an equivalence relation ~ such that if
ag ~ ay and by ~ by, then ag V bg ~ a1 V by and ag A by ~ a1 A b;. Congruence
relations on semilattices are similarily defined. For the applications later on,
the most interesting case is that of semilattice congruences; where the second
A-related condition is ignored.

13

Lattice theory
14

Given a congruence relation ~ on a lattice L, the quotient lattice L/~ may be
defined as the set of equivalence classes under the relation with the operations
[a]~ V [b]~ = [aV b]~ and [a]~ A [b]~ = [a A b]~. This definition is valid since
if a ~a; and b ~ by, then aV b ~ a; V by and thus [a V b]. = [a1 V b1]~ and
similarily for A. All quotient lattices are images of surjective lattice morphisms.
The definition holds equally well for semilattices.

Proposition 1.3. Let f : L — M be a morphism of lattices. Then f(L)
is isomorphic to L/~, where a ~ b whenever f(a) = f(b). This result holds
equally well for semilattices.

Proof. The relation ~ is an equivalence relation, since reflexivity, transitivity
and symmetry all can be carried through f; and thus follow from the similar
properties of =. Further, ~ is a congruence relation since if ag ~ a; and by ~ by,
then f(a()Vb()) = f(a())Vf(b()) = f(al)Vf(bl) = f(a1Vb1) shows agVby ~ a1 Vb;.
Similarily, we show ag A by ~ a1 A by.

We thus need to show the existence of an isomorphism ¢ : L/~ — f(L). Take
#([a]~) = f(a). The function ¢ is obviously surjective. It’s injective, since if
f(a) = f(b), then by the definition of ~, a ~ b. Finally, it is a morphism, since
Blal~ V [l~) = $([aV B) = f(a VD) = (@) V f(b) = d([a]~) V $(B). D

An atomic lattice is a lattice L such that any lattice point [can be written as a
join of atoms.

The direct product of lattices is formed in the obvious way — L x L' is the set
of ordered pairs (1,1") with (a,a’) V (b,b') = (aV b,a’ V') and (a,d’) A (b,d') =
(aAb,a’ Ab'). This can easily be extended to finite direct products. The direct
product [[;-, L is denoted by L™.

Some specific lattices are worth mentioning. The set [1,n] of integers 1,...,n
forms a lattice with a V b = max(a,b) and a A b = min(a,b). We will denote
this lattice with n. The lattice 2" is called the boolean lattice on n elements,
and denoted by B,. We will habitually use the symbols 0 and 1 instead of 1
and 2 when talking about the elements of 2. The lattice of subsets of a finite
set S with n elements is isomorphic to B,, by the following construction. Let
the elements of S be ordered in some way, s1,...,8,. Then a subset S’ C S is
mapped to the element (by,...,b,) € B, such that b; = 1 whenever s; € S’ and
b; = 0 otherwise.

This particular mapping will occur a lot further on. It’s both the basis of several
connections to the boolean lattice and the method chosen to represent sets and
subsets in the implementation of simplicial homology in chapter 2.

Given a lattice L, a new lattice L* can be constructed using the same base set,
such that aVrb = aAr+«band aArLb = aV+b. The lattice L* thus constructed is
called the dual lattice to L. The dual thus defined has the property that a <j b
is equivalent to b <r- a.

14

Previous results
15

Alternatively, let Homy (L, L") be the set of V-semilattice-morphisms from L
to L'. This set forms a semilattice with ¢ V 1) defined as the morphism that
takes | € L to ¢(I) v ¢(I) € L'. This is obviously associative, commutative
and idempotent, since Vr: is. We will take a closer look at the semilattice
Homy (L,2). Any morphism ¢ € Homy (L, 2) is entirely described by the ideal
¢~ 1(0) C L. For any elements a,b € $~1(0), we have that aVv b € ¢~1(0). Thus
f=Vie 4-1(0) | exists, and ¢ 1(0) is the principal ideal associated with f. Thus
a correspondence L — Homy (L, 2) is established. Any ¢ gives rise to a separate
element f € L, and conversely, any f gives rise to a morphism that maps the
principal ideal generated by f to 0, and everything else to 1.

Proposition 1.4. L* = Homy (L, 2)

Proof. We have already established that there is a bijection a between the
elements of L and Homy (L, 2), that sends f € L to ay € Homy(L,2) defined
by af(l) =0if f > 1 and af(l) =1 otherwise.

It remains to investigate the action of V in Homy(L,2). Let ajy and a4 be
morphisms induced by f and g in L. Then (af V ay)(l) = 0 precisely when
as(l) = 0 and oy (I) = 0 and equal to 1 otherwise. This is precisely the morphism
that is 0 on all elements that are less than both f and g, and thus less than
fAg. Thus, af Vay, = afag, and thus the isomorphism above is shown, as
AL, = V= O

Elements [of a lattice L that cannot be written as a join of elements from the
set L\ {l} are called irreducible. The set of irreducible elements is denoted by
IL. The set of irreducible elements in the dual are called co-irreducible, and
denoted as I*L.

We will denote the smallest V-semilattice containing a subset M by (M); the
semilattice spanned by M. The possible ambiguity of notation when compared
to an ideal generated by a set in a ring will be resolved by context.

1.6 Previous results

In particular, we are interested in the behaviour of Tor®(k, k) for the monomial
ring R over k. In [Backelin, 1982], Jorgen Backelin shows that the Poincaré-
Betti series of a monomial ring, such as our R, is a rational function of the form

EDR
P’f(t) - (SR,k()t)'

Let M be a set of monomial generators for some monomial ideal. Given any
subset I C M, we may define mr = lem{p | p € I}. The set of all mr can be
given a lattice structure Lys by myVmy = myuy = lem(my, my). This structure
induces a partial order by my < my iff lem(my, ms) = my, which in turn implies
that mr|m . We further define a graph I'j; with vertex set M and edges (m, m')
precisely when ged(m, m') # 1. Luchezar L. Avramov proves in [Avramov, 2002]

15

Previous results
16

that if I'py = 'y and Ly = Ly, then bR’k(t) = leJc(t), where R = Q/(M)
and R' = Q/(M"). Note that the GCD graph here defined is the complement
of the restriction of the GCD graph in [Avramov, 2002] to the atoms of the
LCM lattice. Among the consequences of this result is that for a fixed number
of generators for the monomial ideal, there can exist only a finite number of
different denominator polynomials. Thus, Avramov asked in [Avramov, 2002]
whether the degrees of the denominator polynomials is bounded for any field &,
any number of variables z; in the polynomial ring, any set of fixed cardinality
of monomial ideal generators

d(n) = Sup sup |]\S/Il\1£) deg(brjey,....z.] /(M) k () (1.7)

Let M = {zf,...,22}. Then one may verify that bg,) (t) = (1 —t*)" -
a polynomial of degree 2n. Whence d(n) > 2n — and Avramov conjectures
in [Avramov, 2002] that equality holds in general. For n = 2 and n = 3,
there are very few possibilities to check to ascertain that equality holds. In
[Berglund, 2003], Alexander Berglund showed that equality holds for n = 4 and
for n = 5 using a number of criteria implying equality and a computer-generated
list of all cases for n = 5.

In particular, in [Berglund, 2003], Berglund gave an algorithm to list all atomic
semi-lattices with a fixed number of atoms based on a duality argument relating
atomic semi-lattices with join-closed subsets of a boolean lattice. I have based
part of my own work on his implementation of this algorithm.

During the spring of 2004, Berglund found a very explicit formula for the de-
nominator polynomials of the Poincaré-Betti series using the theory of minimal
models. More specifically, he studies the multigraded Poincaré series

PR(zy,...,z,,t) = Z dimy, Torfa(k,k)wo‘ti (1.8)
i>0,a€Z"

which is a more fine-tuned way of describing the behaviour of Tor(k, k) than the
simple series given before; the P{*(t) defined in (1.3) is related to this by PE(t) =

PE(1,...,1,t). In the multigraded case, Pf* = i, i) Berglund finds

bR,k (1) sTrst)
the formula

bri(es,...,znt) = [[A=ip(t)) (mod (z3,...,2%) (19)
lEL

multiplied over all monomials in the monomial lattice. Each p; is the Hilbert
series of a specific simplicial complex:

To each lattice point I, we associate the set S; of atoms a; fulfilling a;|l. To
a set S of monomials, we denote mg = lem(s | s € S). Furthermore, we may
construct the complex A; = {T C S; | my # l or T is not connected} where
connectedness is taken on the induced subgraphs of I'j;. Thus, the polynomial
pi(t) is defined by
|2
pi(t) =) dimy, H;_5(A)t’ (1.10)

=2

16

Previous results
17

where |l| denotes the total degree of [, i.e. the sum of the degrees of all occuring
variables in / and homology of the complex is taken over the field k.

17

Chapter 2

Implementation details

A user of this tool need not necessarily know much about the internals. Using
the method of Weyman-Fréberg, the program handles without problem non-
squarefree monomials in the input.

The core work of this thesis lies in the implementation of a command line tool
to calculate bg g(21,...,2z,,t) for some ring R = Q/(M) where M is a set of
monomials in Q = k[zy,...,z,]. At its current state, the program ties into
existing packages for some computational tasks. In particular, it ties into two
packages: Pari v2.2 for linear algebra in field of any characteristic, and GMP
for keeping track of bitstrings of arbitrary length.

The surrounding code deals with routines to do all the steps of the calculations
needed — such as parsing user input; constructing the differential morphisms as
matrices in a format that can use Pari for calculating the matrix ranks from
which then the homology ranks can easily be found; constructing the appropriate
complexes in each lattice point for use with Berglunds formula — which in turn
includes the construction of a graph connectivity algorithm.

Internally, a squarefree monomial is just the set of variables that occur in the
monomial. Similarily, a simplex is also just a subset of some canonical set. To
cover both these needs and encapsulate them in a programmer-friendly environ-
ment, I have implemented the class Monomial, which contains a multiprecision
integer called bitmask, a signed long called zdegree and a static translation
table implemented as a STL map! which maps STL strings to unsigned long.
The reason for this is that a subset may be seen as a bitstring representing the
characteristic function; i.e. for some enumeration of the (finite) superset, the
subset bitstring has a 1 whenever the particular element with that index is a
member of the subset and 0 else. Thus, unions and intersection can be taken
with the bitlevel and and inclusive or logical operations. The member zdegree
contains the largest n such that t" divides the monomial. Usually, zdegree is

Lalso known as associative array to programmers from other traditions

18

CHAPTER 2. IMPLEMENTATION DETAILS
19 2.0.1 Complexity issues

equal to 1.

A number of operations and functions are implemented in the class, including
wrappers for multiplying a monomial with a variable (i.e. setting a bit) and
multiplying two monomials with each other. Care must be taken when using the
present code for calculations in Q[t]/(z?,...,22) to check for relative primality
externally.

Using the class Monomial, three other classes are implemented:

MonomialIdeal, which encapsulates manipulations on a monomial ideal and
the related LCM lattice and GCD graphs, including functions to calculate the
Poincaré-Betti series denominator. Addition of a new monomial to the instan-
tiated monomial ideal is done by overloading the += operator.

SimplicialComplex, contains the machinery to handle abstract simplicial com-
plexes, together with routines to calculate the Hilbert series of the homology of
the complex.

Squarefree, which implements a polynomial in Z[z1,...,z,,t]/{z?,...,22).
Such a polynomial is stored internally as a map from Monomial to long. Various
operators, most notably += and *= are overloaded to facilitate addition and mul-
tiplication both of Monomials and of Squarefree. Within these multiplications,

care is taken to only keep products of relatively prime terms.

2.0.1 Complexity issues

The implementation here offered is in several ways rather naive, and is focused
on correct calculation albeit not necessarily efficient. Further work will include
optimisations on several levels, some of which I'd like to outline here.

To begin with, the formula implemented is possibly not the most efficient form
of the formula. By expanding the product [[;c, (1 —Ip(t)), it can be observed
that many terms will cancel due to the squarefree properties. This cancellation
can be made beforehand, and Berglund offers the sum over all subsets IV of the
generating monomials such that no two elements of NV has a common factor,
with mpy denoting the product of all monomials in IV,

bR (@1, 2p,t) = 14) mn(=1) M2 H (A,) (1) (2.1)
N

For an implementation of this form to be desirable, we would have to have a
higher rate of efficiency in finding the independent subsets N than in calculating
and discarding terms in products of squarefree polynomials.

Another point of attack is at the simplicial complexes calculated. For each set
M of monomials, the complexes calculated in each latticepoint I € Ly is a

19

Test suite and verifications
20

subcomplex of the complex calculated in 1p,,. This property is right now not
used at all, and could possibly speed up computations significantly.

Lingering at the homology calculations, memory consumption issues currently
affect the usability of the program. One of the examples I have tried to work is
to calculate the denominator polynomial of the initial terms ideal of a Grébner
basis of the ideal generated by

r1 +2x9 + 23 + x4 +T5 + Tg,

T1%2 + T2X3 + T3X4 + T4X5 + T5X6 + T1Z6,

T1T2X3 + ToL3Lg + T3L4T5 + T4LsTe + L1T5L6 + T1X2T6,

T122T3%4 + T2T3X4T5 + T3X4T5L6 + L1 T4T5T6 + T1X2T5T6 + L1T2T3%6,
T1T2T3TAT5 + ToT3T4T5%6 + T1T3T4T5T6+

T1X2T4T5%6 + L1T2T3T5L6 + L1T2X3L4T6,

6
T1T2T3L4T5T6 — Y

The initial terms ideal has 100 generators and produces a lattice with 11443 el-
ements. Invariably, the stack allocated by Pari to fill with calculation elements
fills up after between 200 and 400 treated latticepoints, depending on what size
we allow the stack to allocate?. This problem may be lessened by implement-
ing a linear algebra package over arbritrary characteristic working with sparse
matrices — i.e. instead of saving a data structure with each matrix element se-
quentially stored according to some storage scheme, the matrix is represented by
tuples (i, j, a;;) of position as well as the value of the matrix at that particular
position. If the matrix, as is the case in these calculations, has a substantial
amount of zeroes, storage will be lessened significantly.

Finally, cosmetics can always be improved. In this case, integration with other
tools would be highly desirable — for instance through higher customization of
the level of interaction available (for batch runs) and output formats compatible
with more applications, including cut-and-pasteable into LaTeX.

2.1 Test suite and verifications

I have used several suites of previous investigations to develop a test suite dur-
ing the development of the program. As a demonstration of the usage of the
program, I shall present the test suite here, with input lines to the poincare
calculator as well as the expected output and a translation to bigraded and
singly graded Poincaré-Betti series.

Throughout, I shall change the notation of the original examples slightly, using
a,b,c,... as variables in my rings and ¢ as the series variable. Each program
run is done from scratch, i.e. either with a clear command prepended or im-
mediately after starting the program. In each case, I give the command for

2tests have been performed up to a stack size of 1 000 000 000 bytes

20

Test suite and verifications
21

preparing the monomial ideal. The Poincaré-Betti series denominator is then
calculated using the denominator command.

In [Backelin and Froberg, 1985], Jorgen Backelin and Ralf Froberg listed the
Poincaré-Betti series for a classification of Artinian rings with at most three
variables. These rings are classified with a digit denoting the number of mono-
mial generators and a letter indexing different rings with equal number of gen-
erators. A list of these rings with commands for entering the monomial ideal
into poincare is given in table 2.1 on page 21.

Oa

1

la add monomial a”2

1 —a?t?

2a add monomial a"2 b~2
1 —a?t? — b2t% + a?bt*

2b add monomial a~2 axb

1 — a?t? — abt? — a®bt3

3a add monomial a"2 b"2 c”2

1 —a?t? — 022 — 22 + a0t + a2t + b2t — a?b2 Pt
3¢ add monomial a”2 a*xc b~2

1 —a?%t® — act? — b*t2 — a%ct® + a®b%t* + ab’ct* + a?b2ct?
3d add monomial a”~2 a*b b~2

1 — a’t? — abt® — b’t% — a®bt3 — ab’t?

3e add monomial a~2 ax*b a*c
1 — a2t? — abt? — act? — a?bt® — a?ct® — abet® — a?bett
4a, add monomial a”2 a*b b"2 c”2

1 — a?t? — abt? — b2t2 — 22 — a?bt® — ab?t® + a2ct* + abc?t* + b 2t +
a?bc?td + ab?c>td

4b add monomial a”"2 a*c b"2 bx*c

1 — a?t? — act? — bet? — b2 — a%ct® — abet® — b%ct® + a®b%t* + a?b2ctd
4c add monomial a”2 a*b a*c b~2

1 — a?t? — abt? — act® — bt — a®bt3 — a’ct® — abet® — ab*t® — a®bett
5a add monomial a"2 ax*b a*xc b"2 c”2

1 — a?t? — abt? — act? — b2 — 2t — a®bt® — a?ct® — abet® — ab’t®—
ac’t® — a?bet* + b2t + ab?c2td

5b add monomial a”2 a*b a*c b~2 b*c

1 — a?t? — abt? — act® — bet® — b*t2 — a®bt® — a®ct® — 2abct® — ab®t3—
b2ct® — a®bet? — ab’ctt

6a add monomial a"2 a*b a*c b~2 b*c c”2

1 — a?t? — abt? — act® — bet® — b*t2 — 22 — a®bt® — a%ct® — 2abct®—
ab?t® — b2ct® — ac’t® — bc*t® — a?bett — ab’ct* — abc it

Table 2.1: Calculation of Poincaré-Betti denominators of short Artinian rings

Mordechai Katzman gives in [Katzman, 2004] a number of examples of graph
ideals with characteristic dependent Betti numbers. Katzman starts out con-
sidering the Stanley-Reisner face ring of the 6-point triangulation of the real
projective plane given in figure 2.1. This ring is well known to display different
behaviour in characteristic 2 than otherwise. Furthermore, Katzman refines,

21

Test suite and verifications
22

from this, two examples of graphs generating squarefree ideals with generator
degree 2 such that the Betti numbers vary with the characteristic of the base
field. Finally, Katzman lists four graphs which are in some sense minimal with
the property of dependence on characteristic. These may be found in table 2.2.

\//

N

\

— b

/N
\\

Figure 2.1: A triangulation of the real projective plane

For the graphs G, H,G1,G2,Gs and G4, the calculations run into the mem-
ory management problems outlined earlier, so, alas, I can not give the multi-
graded Poincaré-Betti series for those cases. For the case of the projective
plane, though, we observe that if we evaluate the polynomials found with
a=b=c=d=e= f =1, we get the polynomials b(t) = 1 — 10> — 15¢> — 6t*
and by(t) = 1—10t? — 15t — 7t* — 5 (the latter polynomial for the case char = 2.
Katzman gives the Betti numbers for the ring as given by the Hilbert polyno-
mials H(t) = 1+ 10t + 15t> + 6> and Ho(t) = 1+ 10t + 15t2 + 7t3 +t*. We note
that one interesting property quotient rings R of Q = k[z1,...,z,] may have is
that of being Golod®. This happens if

1 —t(PI?(xl,...,a:T,t) -1)

PE(zy,...,z.,t) = (2.2)

where

PS(x1,...,2,,t) = Z dikaorfa1 o (S k)T Lzt (2.3)

1,001 500050

As b(t) and bs(t) are the denominator polynomials of PE(1,...,1,t) for R the
face ring of the projective plane triangulation given, and the Hilbert polynomials
of the Betti numbers are simply P}? (1,...,1,t) we see that R is Golod precisely
if H(t) =1—t(b(t) — 1) and Hs(t) = 1 —t(b2(t) — 1). These identities hold, and
thus we may conclude that R is Golod.

One more family of examples of characteristic dependence are the Lens spaces
L(p,q). Each L(p,q) for prime p and ¢ will have a fundamental group with
p-torsion, and thus characteristic dependent homology. The associated Stanley-
Reisner face rings will therefore most probably have characteristic dependent

3in particular, it is the surjection @ — R that is said to be Golod

22

23

Test suite and verifications

P*(R)

add monomial a*b*c a*b*e axcxf axdxe a*xdx*f
add monomial b*c*d bxdxf bxexf c*d*e c*exf

char # 2

1 — abct? — abet® — acft® — beft? — ceft® — bedt® — adet®—

cdet® — adft® — bdft? — abcet® — abeft® — abeft3 — aceft® — beeft3 —
abedt® — abdet® — acdet® — bedet® — abdft® — acdft® — bedft® — adeft3—
bdeft® — cdeft® — abceft* — abedet* — abedft* — abdeft* — acdeftt—

bede ft4
char = 2

1 — abct? — abet® — acft® — beft? — ceft? — bedt? — adet®—

cdet? — adft®> — bdft®> — abcet® — abeft® — abeft® — aceft® — beeft®—
abedt® — abdet® — acdet® — bedet® — abdft® — acdft® — bedft® — adeft3—
bdeft3 — cdeft® — abceft* — abcdet* — abedft* — abde ft* — acdeft*—
bede ft* — abede ft* — abede ft°

G

add monomial
add monomial
add monomial

ax*xb
dxf
h*1

axc
dxh
i%j

axg
dxk
ixk

axh
exf
i*l

ax*j
exg
j*k

b*c
ex]l
j*1

bxh
fxi
k*1

b*i
£%j

b*1
g*]

C*g
gxk

cxi
gxl

cxk
hx*j

d*e
hx*k

H
add monomial
add monomial

ax*c
ex]

axg
fxi

axh
fxj

axj
g*l

c*g
hxj

cxi
hxk

cxk
ixk

dx*xe
i*l

dxf
kx1

dxh

dxk

exf

exg

add monomial
add monomial

axe
d*h

axf
dxj

axh
dxk

axj
exh

bxe
exi

bxf
£xj

b*i
fxk

bxk
g*i

c*xg
g*J

c*h
hxk

cxi

c*xk

dxg

G»
add monomial
add monomial

axd
dxg

axe
dxh

axh
dxk

ax*xi
ex*xi

bxe
exj

b*f
exk

b*xh
fxh

bxj
fxi

bxk
fxk

cxf
g*]

c*g
gxk

c*i

c*j

add monomial
add monomial

axd
dxg

axe
dxh

axh
dxk

ax*xi
ex*xi

bxe
exj

bxf
exk

b*xh
fx*h

bx*j
f*i

bxk
fxk

cxf
g*]

cxg
gxk

c*i
ixk

c*j

G4

add monomial

ax*xd

axe

axg

add monomial dxh d*i dx*j

axh
dxk

bxe
exg

bxf
e*xi

b*h

b*j

bxk

exk fxh fx*i

cxf

c*g

c*i

gxj ixk j*k

c*j

Table 2.2: Calculation of Poincaré-Betti denominators of characteristic depen-

dent graph ideal quotient rings

23

Test suite and verifications
24

Poincaré-Betti series. Alas, the complexity issues make me unable to display
characteristic dependent Stanley-Reisner rings, but the homology calculations
can easily be carried through. Included in the poincare source distribution is a
source file lens. c that contains code for generation of triangulations of L(p,1)
using the algorithm described in [Birmingham, 1995, pp 5762-5764].

Please note that, when duplicating the examples here given, all the commands
need to be given on a single line. Should you want to break up the entry of
simplicial complexes or for that matter of monomial ideals on several lines, make
sure each line starts with one of the commands add monomial or add simplex
as appropriate.

24

Test suite and verifications
25

Example 2.1 Characteristic dependence of homology of triangulations of the
Lens spaces L(p,1)

% poincare

Welcome to the Poincaré calculator. You can use this program to
calculate simplicial homology over prime fields and to calculate
the denominator polynomial of the Poincaré-Betti series of monomial
rings.

(c) 2004 Mikael Johansson

This program is released under the MIT License

[add simplex command for L(3,1) cut out]

> homology

Calculating homology ranks...

*%x*x*x Hilbert series of simplicial homology **x*x*x*
Z72°3

> char 3

New characteristic: 3

> homology

Calculating homology ranks...

*xx%x% Hilbert series of simplicial homology **x*x*x*
Z7 + Z7°2 + ZZ°3

> char 0

New characteristic: 0

> clear

[add simplex command for L(5,1) cut out]

> homology

Calculating homology ranks...

*xx%x% Hilbert series of simplicial homology **x*x*x*
Z7"3

> char 5

New characteristic: 5

> homology

Calculating homology ranks...

*%x*x*x Hilbert series of simplicial homology ***x*x*
Z7Z + Z772 + ZZ73

> quit

Thanks for visiting.

25

Test suite and verifications
26

Example 2.2 Missing commands from example 2.1 for triangulations of lens
spaces.

L(3,1):

add simplex 1%2%4%5 1%2%x5%6 2%x3%5*x6 1%2*6*7 2%x3%6%7 3*x4*x6%7
1%2%7%8 2%3xT7*8 3*%4*7Tx8 4xb*7*8 1%2%x8*9 2%3*%8*9 3x4*8*9 4*5x8*9
5xBx8%9 1%3*%4*x10 1x4*5%x10 1%5x6%10 1*%6x7x10 1*7*8x10 2%x3%9%10
3%4x9%10 4%5%9%10 5x6%9%10 6x7*9*%10 1*%2%4%12 1%3*%4*12 3%4%6%12
3%5*6%12 Bx6x8x12 B5x7+8*12 1x2%x9%12 7*8*x10%12 2%x9%10%12 7x9%10*12
2x4%11%12 4%6%11%12 6%8x11%12 2%10%11%12 8x10*11%12 2%3x5%13
2x4x5x13 4x5*x7*13 4*x6*x7*13 6x7*9%13 1x8*9*13 6x8*9*13 1%3*%10%13
2x3%10%13 1%8*%10%13 2%4x11%13 4*%6x11%13 6*8*%11%13 2%x10*11%13
8x10%11%13 1%3%12%13 3*5*x12%13 H*x7*12%13 1x9*%12%13 7*9%12%13

L(5,1):

add simplex 1%2%4%5 1%2%5%6 2%x3*%5*x6 1%*2%6*7 2%x3%6%7 3*4*x6%7
1#2x7%8 2x3*%7*8 3*4*7*8 4xb5*T7x8 1*2x8*9 2x3*8*9 3*4*8*9 4*5*8*9
5xB*8x9 1%2x9%10 2%3%9%10 3*4*9%10 4*5*9%10 5*6*9%10 6*7*9%10
1%2%10%11 2%3%10%11 3%4%10%11 4x5*%10%11 5x6%10%11 6%7*10%11
T#8x10%11 1%2%11%12 2%3%11%12 3*4*11%12 4*%5*x11%12 5x6*x11%12
6%7x11%12 7#8%11%12 8*%9*11%12 1*2%12%13 2%3%12%13 3*%4*12%13
4%5%12%13 5*6%12%13 6x7*12%13 7*8*12%13 8*9*12%13 9*10%12%13
1%3%4%14 1x4%5%x14 1%5x6%14 1*6%7*14 1x7*8*14 1x8*9*14 1%*9%10%14
1%10%11%14 1%11%12%14 2%3%13*%14 3*%4*13*14 4%5*x13%14 5x6%13*14
6%7x13%14 7*8%13%14 8%9%13%14 9%10%13%14 10%*11x13%14 6%7*9%17
1%2%4%16 1%3%4%16 3*4*6%16 3*x5*6%16 H5*6*8*16 H5*7*8*16 7*8x10%16
T*9%10%16 9%10%12%16 9*11%12%16 1%2%13%16 11%12%14%16 2%13%14x%16
11%13%14%16 2%4*15%16 4*6x15%16 6*%8x15%16 8%10%*15%16 10%12%15x%16
2%14%15%16 12%14%15%16 2%3%5%17 2%4*b5x17 4xb*T*17 4%6*%7*17
6x8%9x17 8%9%11%17 8x10%11%17 10%11%13%17 1%12%13%17 10%12%13%17
1%3%14%17 2%3%14%17 1%12%14%17 2%4*15%17 4*6%15%17 6%8*15%17
8%10%15%17 10%12%15%17 2%14%15x17 12%14%15%17 1*3%16%17
5xTx16%17 7*9%16%17 O*11x16%17 1%13*16%17 11x13%16%17 3*x5x16x%17

26

Chapter 3

Enumeration of atomic
lattices

We are interested in studying properties of ideals generated by finitely many
monomials. Any minimal generating set M = {mq,...,m,} of monomials span
an atomic semilattice, using lecm for join. This semilattice is finite, and thus
complete, and thus may be transformed into a lattice by including the element
1 = 0 in the lattice. Any finite antichain of monomials will generate a lattice
in this way; a finite atomic lattice.

Any finite atomic lattice L, on the other hand, is the lattice associated to some
minimal generating set of monomials. This may be seen by considering the
mapping L — Bjr| that sends [+— F; where F; = {z | | £ z}. The image
under this mapping is a subsemilattice to B|r, isomorphic to L — indeed, it
is a mapping between sets of equal sizes, and Fyvy = F; U F,. There is a
bijection between subsets of a fixed totally ordered set A = {a1,aq2,...,a,}
and squarefree monomials, given by S — [];_, 25 where ¢; is the characteristic
function of S C A,ie.g; =1if a; € S and g; = 0 else.

A set of squarefree monomials in k[z1, ..., 2,] corresponds to a subset of B, by
sending variables to atoms, and products of variables to joins of corresponding
atoms. In this way, we may embed any monomial lattice in the boolean lattice
B,.. By listing the elements in B, corresponding to the elements in a monomial
lattice, we may exhibit the monomial lattice as a matrix where each row corre-
sponds to a monomial. Such a matrix is said to be column-reduced if no column
can be written as the join of other columns of the matrix, row-reduced if no row
is the join of other rows, and reduced if it is both row- and column-reduced.
The matrix is said to be row-full or column-full if the join of any rows, or any
columns, is in the set of rows, or columns, of the matrix. It is said to be full if
it is both row-full and column-full. Given a 2-matrix T, the set of columns is
denoted by CT and the set of rows is denoted by RT.

Proposition 3.1. For a 2-matriz T, (CT) = (RT)*.

27

CHAPTER 3. ENUMERATION OF ATOMIC LATTICES
28

Proof. This proof is due to [Berglund, 2004].

Let ¢ € (CT) be given. Then duality is exhibited by mapping ¢ to the morphism
a, sending r to the intersection of r and ¢ within 7. Denote this intersection
point with r. or ¢, interchangeably.

It is obvious that reye = r. V re and that (r V'), = r. Vrl. Thus a. is
a morphism (RT) — 2 which gives us that ¢ —» . is a morphism (CT) —
(RT)*. Injectivity is obvious. To show surjectivity, let a: (RT) — 2 be a
morphism. Set 2 = V/,,—or € (RT). Then a(r) = 0 implies r < 2, since
a(z) = V=0 a(r) = 0. Hence, for every r with a(r) = 1, we can choose a
column ¢" € (CT) such that r.- =1 and z.- = 0.

Let C =V =1 ¢" € (CT). Then a = ac. If a(z) = 0, then z < z and hence
(")y = Ter < zer = 0 whenever a(r) = 1, which implies ac(z) = C, = 0. If
a(r) =1 then (¢®), = z. = 1 and hence ac(z) = C, = 1. O

Corollary 3.2. Any full matriz is quadratic.

Thus, it is enough to list all possible, non-isomorphic 2-matrices to find all
atomic lattices. Here, isomorphism is in the meaning of isomorphic spanned
lattices. Such isomorphisms are given by reordering C'T' and RT, and thus by
permutations of rows and columns of the original matrix. Furthermore, we can
note that every lattice is the span of its join-irreducible elements. Thus, the
sets of irreducibles ICT and IRT are enough to characterise the lattice given.

Now, for our representation of a k-atomic lattice L, we note that the atoms are
the only join-irreducible elements. Thus, if we let RT be the set of atoms in
L, we see that (RT) = L. Elements in CT will be taken from By, and thus
our problem is reduced to listing irreducible subsets of By. Each such subsets
induces a k-atomic lattice by dualising.

Alexander Berglund defines in [Berglund, 2003] the embedding dimensions ry, of
a monomial lattice. It is the size of the largest irreducible subset of By, i.e. the
largest subset K of By, such that whenever aVb = ¢ for elements a, b, ¢ € K either
a =cor b= c He gives a few recursions helpful in calculating the embedding
dimensions of a lattice, one of which is r,, < 2r,_1 + 1 [Berglund, 2003, p 34].

Proposition 3.3. r1 =1, r =2, r3=4, r4=7, 7r5=13, 24 <rg<
26 and r, < 2r,_1.

Proof. The values for r; through r5 are given in [Berglund, 2003, proposition
4.2.6]. By the construction in [Berglund, 2003, proposition 4.2.8], we can con-
clude that 24 < rg.

Assume that a maximal irreducible subset K C B, is given. At least one of the
atoms will be absent from the subset, since otherwise any other element would be
the join of a set of atoms and the set would not be irreducible. By renumbering,
we can assume that the element 10...0 is absent. Then the remaining set will

28

Algorithm analysis
29

be partitioned into the elements that start with a 1 and the elements that start
with 0; say K = Ko U K; (where Ll denotes the disjoint union) for K; the set
of elements that start with 4 in the first position. Then each of these sets is
irreducible, and by truncating all elements will give rise to irreducible subsets
in B,_1. Such a set is, by definition, not larger than r,_y. Thus r, < 2r,_;
and rg < 26 follows immediately. O

At the current state of lattice generation, the largest observed irreducible subset
of Bg has 21 elements.

3.1 Algorithm analysis

As T began working, Berglund had produced a working implementation of the
algorithm stated in [Berglund, 2003] for listing atomic lattices given the above
correspondence. The algorithm — using “forbidden sets” to avoid duplicating
isomorphism checks — was rather imperfect and produces duplicate lattices in
spite of the efforts not to.

The actual algorithm uses a kernel that generates new lattices from a given
lattice. This is wrapped in a loop that generates child lattices from each lattice
in the previously generated layer, and discards lattices isomorphic to those al-
ready produced. As the size of lattices decreases by 1 for each layer traversed,
isomorphism within a layer is all that’s needed to check.

More specifically, let L be given with an associated full matrix A such that
(RA) =2 L. Then ICA may be partitioned into equivalence classes such that
I ~ I' precisely when (CA \ {l}) = (CA\ {I'}). For each such equivalence
class, pick one representative [and return the set of all such CA\ {I}. We may
note that when [€ ICA, we can generate I{C A\ {l}) as the set of irreducible
elements within the set JCA\ {{}U{lvz | x € ICA\ {l}}. Thus, we can
keep the representation of lattices as join-irreducible matrices throughout our
calculations.

The single most expensive part of the algorithm is the problem of isomorphism
checking. Isomorphism of lattices forms the basis for generation of equivalence
classes of child lattices, as well as the checks needed at adjoining generated child
lattices to the list of all atomic lattices.

Berglund used the forbidden sets to try and minimise the number of isomorphism
checks performed. Instead of those, I have chosen to store the generated lattices
in a hash table, with a signature of the irreducible matrix as hash, namely in
the current version a list of two lists, one containing the number of 1:s in each
row, and one containing a similar sum for each column. Use of this signature
speeds up detection of non-isomorphic lattice pairs considerably; but for better
performance, finding a better signature would be paramount.

29

Combinatorial explosion of lattices
30

3.2 Combinatorial explosion of lattices

The problem of listing atomic lattices suffers quite a bit under combinatorial
explosion. There is only one lattice on a single atom; and only one lattice on
two atoms. There are four different lattices on three atoms. On four atoms, 50
different lattices occur; and on five atoms, that same number is 7443. All these
may be generated within a few days on a modern computer, using MIT-Scheme
and our implementation of the listing algorithm.

For the case of six atoms though, the case is worse. Since I started listing
lattices in the autumn of 2003, I have had a process running continuously on
my workstation!. On November 7, 2003, I had to do certain rearrangements of
the way lattices were stored, moving more of the responsibility to keep track of
data out into the file system. At that point, I had generated the first 139605
lattices on 6 atoms, and could no longer hold all data needed in memory within
the MIT Scheme memory allocation. In the middle of December, 2003, I had
to do a reallocation scheme again as the mere lists of all 6-atomic lattices of
the same size grew too large for the memory allocation, and switch to a list of
“coordinates” for the lattices generated.

Due to the way that the lattice generation algorithm works the k-atomic lattices
are generated in layers such that all lattices in each layer have the same total
number of elements. Thus, the generating program works its way through layer
by layer until the smallest possible lattice is produced — i.e. the one with k + 2
elements: the k atoms and 1 and 0. Since By contains 2F elements, this leads
to the conclusion that there are a total of 2¥ — k — 2 layers of k-atomic lattices.
Thus for the current run, we observe that we will end up generating a grand
total of 56 layers. For four atoms, the corresponding figure is 10 and for five
atoms 25.

The relative sizes of the layers of 5-atomic lattices coincide roughly with a
bell curve distributing 7443 elements with a mean of 15.3484 and a standard
deviation of 3.0745. See figure 3.1. Similarily, the sizes of the layers thus far
calculated from the 6-atomic lattices indicate that a bell curve could be fitted.
It would then imply that we have a total of about 30 million lattices, see figure
3.2 and 3.3 for comparisons with the thus indicated bell curve?. These sketches
are mainly viewed as a tool to guess order of magnitude of the lattice layers —
I have not done the kind of in-depth analysis needed to present a wellfounded
argument for the size distribution of k-atomic lattices, nor have I done much
work on finding the asymptotical behaviour. It would not at all be surprising
to find between 10 and 50 million lattices, but finding only 3 million, or all of
300 million would be quite surprising.

As of the printing of this thesis, I have a total of 1 685 563 generated lattices
of 43 to 64 elements each.

! 2GHz ix86 running Redhat and with a single active user
2generated with a mean of 30 and a standard deviation of 5

30

Combinatorial explosion of lattices

31
1000 Loy T
* o * Generated lattices
/ \ — - Normal distribution
900 - / | ¥ b
/
\
I \
800 / \ A
! \
/ *
700 d \ b
Ix \
/ \
600 / \ b
! \
8 ! e
£ 500 ! B
5 * \\
B3 ! \
400 ! \
! \
&
\
300 / K
/ \
/ \
200 /* \
/ R
¥ \
100 , \
¥ »
*7 N ~
0 b——k—k x ¥ 7 I I I * K % p—x
0 5 10 15 20 25 30
Layer
Figure 3.1: 5-atomic lattices and a roughly fitting bell curve
x 10°
25 T
N\
/N
/ \
/ \
/ \
2 | \ T
/ \
/ \
I \
| \
! \
15 ; \ 1
Il \
/ \
Il \
/ \
! \
1 , \ 1
/ \
/ \
/ \
/ \
/ \
05 o \ 7
/ \
Fo) \
é N
&0 N
0 Socecl L L L S L
0 10 20 30 40 50 60

Figure 3.2: 6-atomic lattices and the suggested fitting bell curve

31

32

Combinatorial explosion of lattices

x 10
|

25

(&)

Figure 3.3: Closeup picture on the generated parts of figure 3.2

32

Appendix A

Users guide

A.1 Obtaining the program

The program is provided available for download as a source package from Stock-
holm University at http://www.math.su.se/ mik/poincare.html.

A.2 Build and install

To build the program, unpack the source distribution. It will create a directory
of its own. Within that directory, edit the Makefile to ensure that the variables
INCLUDEDIR and LIBDIR point to correct directories. This is possibly redundant,
somewhat dependent on your computing environment. Once the Makefile is
sane, run the command make within that directory to produce the compiled
program.

To install the program, simply copy the produced poincare executable file to
a directory that lies within your PATH. Examples of locations commonly default
set in the PATH are /bin, /usr/bin, /usr/local/bin and ~/bin.

A.3 Starting the program

If your system only has the correct version of the Pari library! installed, then
the program should have no significant problems running. Otherwise, you may
want to edit the included poincare.sh wrapper script to reflect the correct file
path for poincare and put poincare.sh within the executable path.

lthe program relies on Pari v2.2.x

33

Calculation of simplicial homology
34

The program is started with either poincare or poincare.sh, depending on
whether you needed to install the wrapper script or not.

-v Verbose — the program will print a progress indicator while
calculating denominator polynomials and will report on the
monomials/simplices recognised during input.

-d Debug — the program will print an insane amount of debugging
information while calculating.
-h Help — print out a summary of valid command line flags.

-p primes Tells the Pari library to precalculate primes primes and store
in a lookuptable for quick access. Default value is 10000000.
-s stacksize | Tells the Pari library to allocate a stack of stacksize bytes.
Default value is 10000000, or just over 9.6 MBytes.

Table A.1: Command line flags

A.4 Calculation of Poincaré-Betti series

To enter and calculate the denominator polynomial of the Poincaré-Betti series
of a monomial ring, you will want to use the commands add monomial and
denominator. First, if you are already in a session where you have calculated
with monomial ideals, you may want to run clear to reset the program to avoid
interference from the earlier calculations. Then enter a list of monomials on a
line that starts with the command add monomial, and make sure that your
polynomials have each multiplication written out using the * sign. Finally, once
all monomials are entered, perform the calculation with denominator. This
may take a while to finish.

There are examples where the results depend on the chosen field characteristic.
One such example, the real projective plane, is small enough for the complexity
issues of the current implementation to not play an all too large role. For the
projective plane, the denominator polynomial depends on whether the charac-
teristic is equal to 2 or not. The field characteristic can be set with the char
command.

A.5 Calculation of simplicial homology

For calculation of simplicial homology, you need to enter the simplices with
add simplex, similar to add monomial for monomial ideals. Again, the com-
mand clear resets the internal storage for simplicial complexes and for mono-
mial ideals so that you can start from scratch. Each call to add simplex will
only accept squarefree monomial expressions — i.e. variable names delimited by
* — with the expressions separated by whitespace. The program will internally
list all subsimplices of a given simplex and include all of them, so it is only
necessary to enter the maximal faces.

34

List of commands
35

Example A.1 A simple monomial ideal calculation

% poincare

Welcome to the Poincaré calculator. You can use this program to
calculate simplicial homology over prime fields and to calculate
the denominator polynomial of the Poincaré-Betti series of monomial
rings.

(c) 2004 Mikael Johansson

This program is released under the MIT License

> add monomial a”3 a*b~2 b3 bxc”2 c”3 c*xa”2

> denominator

1 - a"3%ZZ"2 - axb"2%xZZ"2 - b"3%ZZ"2 - a"2%c*xZZ"2 - b*c"2%xZZ"2 -
C™3%ZZ"2 - a"3*%b"2*xZZ"3 - axb"3*%ZZ"3 - a"3%c*ZZ"3 - a"2xb"2*c*ZZ"3 -
a"2%bxc"2%ZZ"3 - axb"2xc"2xZZ"3 — b"3%c"2*ZZ"3 - a"2%c"3*ZZ"3 -
b*c"3*%ZZ"3 - a"3xb72*c*ZZ"4 - a"2xb"2%c"2*%ZZ"4 - axb~3xc"2xZZ"4 -
a"2xbxc~3*xZZ"4

> quit

Thanks for visiting.

Homology calculations are initiated by the homology command. Again, since
homology may depend on the field characteristic, the char command can be used
to capture such variations. Furthermore, please observe that as all calculations
take place with field coefficients, torsion over Z may only be discovered by
calculating homology over the proper finite field.

Please note that, when duplicating the examples here given, each commands
need to be given on a single line. Should you want to break up the entry of
simplicial complexes or for that matter of monomial ideals on several lines, make
sure each line starts with the relevant command — i.e. either add monomial or
add simplex.

A.6 List of commands

add monomial add monomial takes a space separated list of monomial ex-
pressions, where each monomial expression is a * separated list of variable strings
with an optional ~ and integer exponent postponed. The program will upon
reading this command parse the given list of monomials into a squarefree inter-
nal storage form using the Weyman-Fréberg method, and add the monomials
with valid syntax to the internal monomial ideal. Note that any string not
containing any of the characters? _+x-/-,. is a valid variable string. Thus
add monomial ’*=%’’ would be a valid command.

2where . denotes a space

35

List of commands
36

Example A.2 The denominator polynomial for the Stanley-Reisner ring of the
6-point triangulation of RP?

% poincare

Welcome to the Poincaré calculator. You can use this program to
calculate simplicial homology over prime fields and to calculate
the denominator polynomial of the Poincaré-Betti series of monomial
rings.

(c) 2004 Mikael Johansson

This program is released under the MIT License

> add monomial ax*b*c axbxe axc*f akxd*e axdxf

> add monomial b*c*d bxdxf b¥exf ckd*e cxexf

> denominator

1 - axb*c*xZZ"2 - axbxe*xZZ 2 - axc*xf*ZZ"2 - bxexf*xZZ"2 -

cxexf*ZZ"2 — bkxckd*ZZ"2 - axd*e*ZZ"2 - ckxd*e*ZZ"2 - a*xd*xf*xZZ"2 -
bxd*xf*ZZ"2 - a*b*c*exZZ"3 - axbkxcxf*xZZ"3 - axbkxexf*ZZ"3 -
axcxexf*xZZ"3 - bkckexf*ZZ"3 - axb*c*d*ZZ"3 - axbxd*e*xZZ"3 -
akxcxdxe*xZZ"3 - bkxckdkxe*xZZ"3 - axb*d*fxZZ"3 - axcxdxf*xZZ"3 -
bxcxd*f*ZZ"3 - axdkxexf*ZZ"3 - b*xdxe*f*xZZ"3 - ckxd*xexf*ZZ"3 -
axbxcxexf*xZZ"4 - axbxckxd*exZZ"4 — axbxcxd*f*xZZ"4 - axbxdxexf*xZZ"4 -
axckdxexf*xZZ"4 - bkxckxdxexf*xZZ"4

> char 2

New characteristic: 2

> denominator

1 - axb*c*ZZ"2 - axb*e*xZZ"2 - axc*xf*ZZ"2 - bxexf*xZZ"2 -

ckexf*xZZ"2 — b*cxd*ZZ"2 - a*xdxe*ZZ"2 - ckxdxe*ZZ"2 - axd*xf*ZZ"2 -
bxd*xf*ZZ"2 - axb*c*exZZ"3 - axb¥cxf*xZZ"3 - axbkexf*xZZ"3 -
axcxexf*xZZ"3 - bkxckexf*ZZ"3 - axb*c*d*ZZ"3 - axbxd*xe*xZZ"3 -
a*xcxdxe*xZZ"3 - bkxckdxe*xZZ"3 - axb*xd*fxZZ"3 - axcxdxf*xZZ"3 -
bxcxd*f*ZZ"3 - a*xd*exf*ZZ"3 - bxdxexf*ZZ"3 - ckxd*xexf*ZZ"3 -
axbxcxexf*ZZ~4 - axb*ckxdxexZZ"4 - axbxckxd*f*ZZ"4 - axbxdxexf*xZZ"4 -
axcxdxexf*xZZ~4 - bkckd*exfxZZ"4 - axbxckxdxexf*ZZ~4 - axbxcxdxexf*xZZ"5
> quit

Thanks for visiting.

36

List of commands
37

add simplex As with add monomial, the command add simplex takes
a space separated list of monomial expressions. The main difference is
that in add simplex, use of the integer exponent is forbidden. Similar to
add monomial, this command takes the space separated list of thus formed
squarefree monomial expressions and inserts the corresponding abstract sim-
plices into the internally represented simplicial complex as well as all subsim-
plices of the simplex entered.

char char sets the characteristic of the field from which the coefficients for
homology calculations is taken. Valid values are 0 and any prime p, and the
default is 0.

clear clear will clear out all internally stored data — i.e. the monomial ideal,
the simplicial complex and the lookuptable of stored variables. Apart from the
characteristic setting, this returns the program to the state it starts up in.

denominator denominator will start the calculation of the denominator
polynomial for the monomial ideal entered thus far. Beware that for large
examples, this may take quite some time as well as use up large amounts of
memory. If the program is run with the -v flag, it will report on the number of
latticepoints spanned by the monomial generators and will run a progress meter
printing a row of points in 10 point intervals, 50 to a line and with a numeric
counter every 500 points. The point is printed before the calculations at that
particular point take place. The output is a multigraded Poincaré-Betti series
denominator in a format that will allow you to input it by copy-and-paste to
most mainstream computer algebra packages.

help help will return a list of available commands together with a summary
of their function. By calling help <command> for various commands, a more
detailed description of calling syntax and function will be delivered.

homology homology will start the calculation of the Hilbert series of the
homology groups of the simplicial complex currently entered. For very large
examples, this can potentially be time- and memory-consuming.

print print will output a large information dump printing out all monomials
in the monomial lattice and all simplices in the simplicial complex, one on each
line, in a binary representation induced by the internal storage of the monomial
expressions entered. Furthermore, it will print the sizes of the simplicial complex
and the monomial lattice and the current characteristic. Beware that for even
modestly large examples this function will print a lot of data.

37

Known quirks and problems
38

quit Exits the program. Synonyms include exit, q, Q, bye, stop and STOP.
Sending an End-Of-File character (~D) will also work.

var When outputting Hilbert polynomials and Poincaré-Betti denominator
polynomials, one variable string is reserved for the non-squarefree variable. De-
fault is ZZ, and by calling var <string> the variable string can be changed to
any other string.

A.7 Known quirks and problems

There are several things that could work better with the software. As always,
better interaction with the surrounding world would be nice.

The program as it is now has several complexity issues outlined earlier. Most
notable is the excessive memory consumption. Reasonably large computations
generate so large complexes that a single differential will outgrow the allocated
Pari stack. This problem may be remedied in the future by constructing a linear
algebra package streamlined for this particular application, or by finding a more
suitable linear package written.

Furthermore, the calculations are very processor intensive. Analysis of other
formulations of the formula for calculating the denominator polynomial as well
as an analysis of the possibility to find homology of subcomplexes of a given
complex without recalculating everything each time would be valuable.

38

Appendix B

Programmers reference

B.0.1 Introduction

The poincare calculator implements a formula given by Alexander Berglund

in 2004 to find the denominator polynomial b(x,t) to the Poincaré-Betti series
R _ IO(1tzt

P(x,t) = _g(x,i))

These references try to provide the reader with adequate information about the

design and programming of the poincare calculator, in order to enable interested

parties to adapt the source code — or other source code — to take advantage of

the contents. In particular, emphasis lies on giving additional information about

the various classes, members and functions defined in the source code package.

B.0.2 Installation

To build and use the program, position yourself in the directory containing the
source distribution. Make sure you have Pari v2.2.x as well as Readline, GMP
and libstdc++ installed (the compilation step will tell you if you don’t). Then
run make to start the build.

If you have several versions of Pari installed, you will need to make sure your
$LD_LIBRARY PATH contains the path to the directory where the library files for
Pari 2.2.x are stored. Then place the executable poincare in a standard binary
directory (such as /usr/bin, /usr/local/bin or ~/bin) for access regardless
of your own location within the directory tree. Should you have problems with
setting the correct $LD_LIBRARY PATH, use the included poincare.sh and edit
it to reflect the storage path of poincare.

39

Monomial Class Reference
40

B.1 Monomial Class Reference
Monomial implements monomials/simplices with sufficient framework for the
calculations at hand.

#include <homology.h>

Public Methods

e Monomial ()

Standard constructor.

e Monomial (const Monomial &m)

Copy constructor.

e Monomial (const std::string s)

Constructor parsing user inputted data.

e Monomial (const t_-monomial m, unsigned long d=0)

Constructor setting zdegree to d.

¢ ~Monomial ()

Standard destructor.

e bool operator== (const Monomial m) const

Test for equality of bitmask and zdegree.

e bool operator< (const Monomial m) const

Test for this.zdegree< m.zdegree or this.bitmask< m.bitmask as GMP
integers.

e Monomial & operator= (const Monomial &m)

Sets this to a copy of the argument.

e Monomial & operator *= (const unsigned long c)

Multiply with the variable indezed by c.

e Monomial operator * (const Monomial &m) const

lem of the monomials; with summed zdegrees.

e Monomial ged (const Monomial m) const

Returns a new Monomial with bitmasks anded.

e Monomial lem (const Monomial m) const

Returns a new Monomial with bitmasks ored.

40

41

Monomial Class Reference

void setged (const Monomial m)

Sets this.bitmask to the same anded with m.bitmask (i.e.,
this.bitmask&=m.bitmask).

void setlem (const Monomial m)

Sets this.bitmask ored with m.bitmask.

bool is_relprime (const Monomial m) const

Returns true if no variable divides both this and m. This is equivalent to the
bitmasks anded being equal to 0.

bool divides (const unsigned long idx) const
Checks whether the bit indezed by idx is set.

unsigned long next_index (const unsigned long idx) const

Returns next indez after idx with bit set.

long int dim () const

Returns degree()-1, which represents topological dimension of an abstract
simplex with degree() (p.41) elements.

unsigned long int degree () const

Returns number of set bits, which is equivalent to the algebraic degree of a
corresponding monomial.

unsigned long int nvars () const

Returns number of allocated string->index relations from variable_index.

std::string tostring (const bool do_add_-multiply=false) const
Prettyprinting of the Monomial.

void getrepresentation (t_monomial &m) const

Allocates memory and returns a copy of the raw bitmask.

Static Public Methods

e unsigned long get_variable_index (std::string s)

Returns i such that variable_index[string]=i.

e std::string get_variable_name (unsigned long 1)

Returns string such that variable_index [string]=i.

e void clear ()

Clears variable_index.

41

Monomial Class Reference
B.1.1 Detailed Description 42

Public Attributes

e long zdegree

Support for a free, non-squarefree variable.

Protected Attributes

e t_monomial bitmask

The raw bitstring - a GMP integer.

Static Protected Attributes

e varmapT variable_index

A global lookuptable for user inputted variable names.

B.1.1 Detailed Description

Monomial implements monomials/simplices with sufficient framework for the
calculations at hand.

Monomial implements squarefree monomials as bitstrings. The class may be
used to represent squarefree monomials, or subsets of a set, or abstract simplices.

Internal representation is a GMP integer (accessible through the mpz_x family
of functions) together with a global lookuptable for mapping variable strings
given by the user to bit indices in the GMP integer, thus using it as a variable
sized bitmap.

Furthermore, the member zdegree captures a single non-squarefree variable
available, for instance for formation of multigraded Hilbert-series and similar

exercises.

Definition at line 99 of file homology.h.

B.1.2 Constructor & Destructor Documentation
B.1.2.1 Monomial::Monomial (const std::string s)

Constructor parsing user inputted data.

42

Monomial Class Reference
43 B.1.3 Member Function Documentation

Parameters:
s The code expects this to be a set of variable expressions, separated by
"x’, where each variable expression is a string avoiding whitespace and
"+x/ /-’ followed by optionally * and an integer If the power expression
(" and integer) is present, the code performs Weyman-Froberg auto-
matically, i.e. allocates several indices for the same variable string.

Definition at line 114 of file homology.c.

References bitmask, get_variable_index(), Tokenize(), and zdegree.

B.1.3 Member Function Documentation

B.1.3.1 unsigned long Monomial::get_variable_index (std::string s)
[static]

Returns i such that variable_index [string]=i.

Given a string (supposedly a variable), return an index for representation in
monomials. If the variable is seen for the first time, allocate a new index.

Definition at line 237 of file homology.c.
References z_var_str().

Referenced by Monomial().

B.1.3.2 std::string Monomial::get_variable_name (unsigned long [)
[static]

Returns string such that variable_index[string]=i.

Given an index, return the variable name allocated there, removing the
Weyman-Fréberg distinguishing strings. If the variable is unknown, return the
empty string.

Definition at line 255 of file homology.c.

References variable_index, and z_var_str().

Referenced by tostring().

43

Monomial Class Reference
B.1.3 Member Function Documentation 44

B.1.3.3 void Monomial::getrepresentation (t_monomial & m) const

Allocates memory and returns a copy of the raw bitmask.
WARNING: Use with caution. Free memory on your own. Allocates memory

and then fills the argument t_monomial with the raw representation data in the
internals of the class.

Parameters:

m The GMP integer to be allocated and filled with content.
Definition at line 370 of file homology.c.
References bitmask.

Referenced by SimplicialComplex::add_simplex(), operator<<(), and
Monomialldeal::simplicialseries().

B.1.3.4 Monomial Monomial::operator * (const Monomial & m)
const

lem of the monomials; with summed zdegrees.

For ”proper” multiplications in squarefree rings, check for relative primality first
— the product of two monomials in Q[t]/ (%, ...,22) will vanish precisely if there
is a nontrivial common divisor to the two monomials. Thus the product will
only survive if this.is relprime(m)

Definition at line 225 of file homology.c.

References bitmask, and zdegree.

B.1.3.5 Monomial & Monomial::operator x= (const unsigned long

c)

Multiply with the variable indexed by c.
In practice this sets the bit indexed by c.
Definition at line 211 of file homology.c.

References bitmask, and zdegree.

44

Monomial Class Reference
45 B.1.3 Member Function Documentation

B.1.3.6 std::string Monomial::tostring (const bool do_add_multiply
= false) const

Prettyprinting of the Monomial.

Parameters:
do_add_multiply If true, a ’x’ character is prepended for easy printing of
coefficients.

Definition at line 338 of file homology.c.
References divides(), get-variable_name(), nvars(), z_var_str(), and zdegree.

The documentation for this class was generated from the following files:

¢ homology.h
¢ homology.c

45

Monomialldeal Class Reference
46

B.2 Monomialldeal Class Reference

Implements monomial ideals and handles the generator lcm lattice, gcd graph
and wrappers for calculating the Poincaré-Betti series denominator polynomial.

#include <homology.h>

Public Methods

¢ Monomialldeal ()

Default constructor.

e Monomialldeal (const Monomialldeal &mi)

Copy constructor.

¢ ~Monomialldeal ()

Default destructor.

e Monomialldeal & operator+= (const Monomial m)

Add a new generator to the Monomial (p.40) unless it already is present.

e void clear ()

Reset the object completely.

e void print () const
Output a mainly debugging-friendly infodump of the ideal to std::cout.

e Squarefree denominator () const

Calculates the denominator polynomial and returns it as a Squarefree
(p-53).

Protected Methods

e Squarefree denominatorfactor (const Monomial latticepoint) const

Wrapper function between denominator and simplicialseries.

e Squarefree simplicialseries (const Moonomial &latticepoint) const

Calculates the proper index shifted Hilbert series for po(x,t) as described in
Berglund, 2004.

e bool is_connected (const std::vector< Monomial > &M, const mpz._t
&setmask) const

Returns true if the subgraph indexed by the bitmask of the GMP integer in
the argument is connected as a subgraph of the GCD graph.

46

Monomialldeal Class Reference
47 B.2.1 Detailed Description

Protected Attributes

e std::set< Monomial > generators
Monomial (p.40) generators for the LCM lattice.

e std::set< Momnomial > lattice
The LCM lattice.

B.2.1 Detailed Description

Implements monomial ideals and handles the generator lem lattice, gcd graph
and wrappers for calculating the Poincaré-Betti series denominator polynomial.

Definition at line 170 of file homology.h.

B.2.2 Member Function Documentation
B.2.2.1 Squarefree Monomialldeal::denominator () const

Calculates the denominator polynomial and returns it as a Squarefree (p.53).
the degree of the lecm of all monomial generators. By Alexander Berglunds
results, p(t) = [],c, (1 — Ipar, (t)) where L is the monomial lattice and pay, (t) is
calculated in Monomialldeal::simplicialseries (p. 46)

Definition at line 435 of file homology.c.

References denominatorfactor(), generators, and lattice.

Referenced by cmd_den().

B.2.2.2 Squarefree Monomialldeal::denominatorfactor (const
Monomial latticepoint) const [protected]

Wrapper function between denominator and simplicialseries.

Returns (1 — Ipyy, (t) for the latticepoint |

Parameters:
latticepoint Corresponds to 1 in (1 — Ip(t)).

Definition at line 465 of file homology.c.

47

Monomialldeal Class Reference
B.2.2 Member Function Documentation 48

References simplicialseries().

Referenced by denominator().

B.2.2.3 bool Monomialldeal::is_connected (const std::vector<
Monomial > & M, const mpz t & setmask) const
[protected]

Returns true if the subgraph indexed by the bitmask of the GMP integer in the
argument is connected as a subgraph of the GCD graph.

Parameters:
M A list of Monomials.

setmask An GMP integer such that the bitmask has a 1 at the indices of
M that indicate Monomials included in the set.

Definition at line 577 of file homology.c.
Referenced by simplicialseries().

The documentation for this class was generated from the following files:

¢ homology.h
e homology.c

48

Simplicial Complex Class Reference
49

B.3 SimplicialComplex Class Reference

Implements handling of simplicial complexes and calculation of their homology.

#include <homology.h>

Public Methods

e SimplicialComplex ()

Default constructor.

e SimplicialComplex (const SimplicialComplex &sc)

Copy constructor.

¢ ~SimplicialComplex ()
Default destructor.

e void add_simplex (Monomial m, bool subs=true)

Adds a simplex to the simplicial complex.

e void add_simplex (t_simplex s, bool subs=true)

Adds a simplex to the simplicial complez.

e std::vector< long > homology ranks (unsigned long chr)

Calculates the sequence of homology ranks of the current simplicial complex.

e bool is_empty () const

Returns true if the simplicial complex is empty.

e void clear ()

Resets the simplicial complez, erasing all stored content.

e void print () const

Prints a debugging dump to std::cout.

Protected Attributes

e std::vector< unsigned long > kerrank

Caching of kernel ranks.

e std::vector< unsigned long > imrank

Caching of image ranks.

49

Simplicial Complex Class Reference
B.3.1 Detailed Description 50

o std::set< Monomial > simplices

The set of simplices in the complex.

e unsigned long calculated

Holds the characteristic for which the results are cached.

B.3.1 Detailed Description

Implements handling of simplicial complexes and calculation of their homology.
Internally, the results are cached by storing the calculated image and kernel
ranks in imrank and kerrank and the characteristic for which homology was
calculated in calculated. Upon modification of the simplices or upon calculat-
ing homology for another characteristic, kerrank and imrank are recalculated,
but when no such modifications have been made, the stored result is returned.

Definition at line 216 of file homology.h.

B.3.2 Member Function Documentation

B.3.2.1 void SimplicialComplex::add simplex (t_simplex s, bool
subs = true)

Adds a simplex to the simplicial complex.

Parameters:
8 The simplex to be added.

subs If false, then no subsimplices are added. The responsibility to add all
relevant subsets is delegated to the programmer.

Definition at line 638 of file homology.c.

References calculated, and simplices.

B.3.2.2 void SimplicialComplex::add simplex (Monomial m, bool
subs = true)

Adds a simplex to the simplicial complex.

50

Simplicial Complex Class Reference
51 B.3.3 Member Data Documentation

Parameters:
m The simplex to be added, encapsulated in a Monomial (p.40) object.
Calls add_simplex with the internal GMP integer, and cleans up af-
terwards.

subs If false, then no subsimplices are added. The responsibility to add all
relevant subsets is delegated to the programmer.

Definition at line 630 of file homology.c.
References calculated, and Monomial::getrepresentation().
Referenced by clear(), cmd_add(), SimplicialComplex(), and Monomial-

Ideal::simplicialseries().

B.3.2.3 std::vector< long > Simplicial Complex::homology ranks
(unsigned long chr)

Calculates the sequence of homology ranks of the current simplicial complex.
Takes the characteristic to calculate over, and returns the successive ranks of the
homology modules as a vector of type int. Please note that the ranks will be re-
turned with an index shift — dimy, H;(A) is given in homology ranks (chr) [i+1]
Definition at line 676 of file homology.c.

References calculated, chr, imrank, kerrank, MAX, and simplices.

Referenced by cmd_hom(), and Monomialldeal::simplicialseries().

B.3.3 Member Data Documentation

B.3.3.1 unsigned long SimplicialComplex::calculated [protected]

Holds the characteristic for which the results are cached.

Within the implementation in homology.c, calculated takes on the special
value of 1 to signify the non-calculated state, since 1 never is a valid character-
istic.

Definition at line 226 of file homology.h.

Referenced by add-simplex(), clear(), homology ranks(), and Simplicial-
Complex().

The documentation for this class was generated from the following files:

51

Simplicial Complex Class Reference
B.3.3 Member Data Documentation

52

¢ homology.h
e homology.c

52

Squarefree Class Reference
53

B.4 Squarefree Class Reference

Implements a polynomial class modulo the ideal generated by all variable
squares.

#include <homology.h>

Public Methods

e Squarefree ()

Default constructor.

e Squarefree (const Squarefree &p)

Copy constructor.

e Squarefree (const Monomial &m)

Initiates the polynomial 1xm.

e ~Squarefree ()

Default destructor.

e bool operator== (const Squarefree p) const

Test for this.monomials==p.monomials.

e Squarefree & operator= (const Squarefree &p)

Set this. monomials=p. monomials.

e Squarefree & operator+= (const std::pair< Monomial, long > &m)

Set this.monomials[m.first]+=m.second.

e Squarefree & operator+= (const Squarefree &p)

Performs termwise addition of p to this.

e Squarefree & operator *= (const Squarefree &p)

Performs a basic multiplication algorithm of p onto this.

e Squarefree & operator x= (const long 1)

Multiplies each coefficient in this by 1.

e const std::map< Monomial, long > getmonomials () const

Returns the map monomials containing the coefficients of the polynomial.

53

Squarefree Class Reference
B.4.1 Detailed Description 54

Protected Methods

e void clearzeroes ()

Prunes off unnecessary zero monomials from the map.

Protected Attributes

e std::map< Monomial, long > monomials

Stores the coefficients of the terms of the polynomial as a map from Mono-
mial ¢o long.

B.4.1 Detailed Description

Implements a polynomial class modulo the ideal generated by all variable
squares.

Be cautioned that this means that the only Monomials to survive a multiplica-
tion are those that are relatively prime.

Definition at line 271 of file homology.h.

B.4.2 Member Data Documentation

B.4.2.1 std::map<Monomial,long> Squarefree::monomials
[protected]

Stores the coefficients of the terms of the polynomial as a map from Monomial
to long.

Thus the coefficients of a Monomial (p.40) m in the polynomial may be ac-
cessed using monomials [m]

Definition at line 276 of file homology.h.

Referenced by clearzeroes(), getmonomials(), operator *=(), operator+=(), op-
erator=(), operator==(), and Squarefree().

The documentation for this class was generated from the following files:

¢ homology.h
¢ homology.c

54

homology.c File Reference
55

B.5 homology.c File Reference

Contains code implementing the definitions given in homology.h.
#include <cstdlib>

#include <ctype.h>

#include <climits>

#include <sstream>

#include <iostream>

#include <stdexcept>

#include <deque>

#include "homology.h"

#include "main.h"

Functions

e std:string z_var_str ("Z7”)

The variable containing the output representation of the free variable in power
series and polynomials.

e void Tokenize (const std::string &str, std::vector< std::string > &tokens,
const std::string &delimiters)

Helper function to split a string into a vector of substrings across a set of
delimiter characters.

e std::ostream & operator<< (std::ostream &in, Monomial const &m)

Owerloaded ostream operator<< preamble for stream printing of a Mono-
mial.

e std::ostream & operator<< (std::ostream &in, Squarefree const &p)

Owerloaded ostream operator<< preamble for stream printing of a Square-
free.

Variables

e unsigned long chr = 0

Global variable controlling the field characteristic.

55

homology.c File Reference
B.5.1 Detailed Description 56

B.5.1 Detailed Description

Contains code implementing the definitions given in homology.h.

More precisely, this file contains tools, functions and handling of:

e Simplicial complexes
e Squarefree monomials
e Homology calculations

Definition in file homology.c.

B.5.2 Function Documentation

B.5.2.1 std::ostream& operator<< (std::ostream & in, Monomial
const & m)

Overloaded ostream operator<< preamble for stream printing of a Mlonomial.

Outputs the internal representation of the monomial as one bitstring with the
state, followed by space and the zdegree field.

Todo:
Finding faces of simplices/generators of lattices and output only those,
possibly in more legible form

Definition at line 196 of file homology.c.

B.5.2.2 void Tokenize (const std::string & str, std::vector<
std::string > & tokens, const std::string & delimiters)

Helper function to split a string into a vector of substrings across a set of
delimiter characters.

This function was taken from

http://www.faqgs.org/docs/Linux-HOWTO/C++Programming-HOWTO.html

Parameters:
str The string to tokenize

96

homology.c File Reference
57 B.5.2 Function Documentation

tokens A std::vector of tokens

delimiters A string of characters, at which the boundary of tokens lie.

Definition at line 67 of file homology.c.

Referenced by Monomial::Monomial(), and parse_eval().

57

homology.h File Reference
58

B.6 homology.h File Reference

Contains declarations and definitions used for homology calculations.
#include <pari.h>

#include <gmp.h>

#include <vector>

#include <set>

#include <map>

#include <string>

#include <iostream>

Compounds

e class Monomial

Monomial implements monomials/simplices with sufficient framework for the
calculations at hand.

e class Monomialldeal

Implements monomial ideals and handles the generator lem lattice, ged graph
and wrappers for calculating the Poincaré-Betti series denominator polyno-
mial.

e class Simplicial Complex

Implements handling of simplicial complezes and calculation of their homol-
09y.

e class Squarefree

Implements a polynomial class modulo the ideal generated by all variable
squares.

Defines

o #define MAX(a, b) (((a)<(b))?(b):(a))

Returns the mazimum of the two elements. Evaluates each element twice.

o #define MIN(a, b) (((a)>(b))?(b):(a))

Returns the minimum of the two elements. Evaluates each element twice.

58

homology.h File Reference
59 B.6.1 Detailed Description

Functions

e void Tokenize (const std::string &str, std::vector< std::string > &tokens,
const std::string &delimiters="")

Helper function to split a string into a vector of substrings across a set of
delimiter characters.

o std::ostream & operator<< (std:ostream &in, Monomial const &m)

Overloaded ostream operator<< preamble for stream printing of a Mono-
mial.

e std::ostream & operator<< (std::ostream &in, Squarefree const &p)

Owerloaded ostream operator<< preamble for stream printing of a Square-
free.

Variables
e std:string z_var_str

A string containing the output form of the free variable of the power series.

e unsigned long stacktop

Handling of memory management with Pari.

e unsigned long chr

Global variable controlling the field characteristic.

B.6.1 Detailed Description

Contains declarations and definitions used for homology calculations.

Defines datatypes for manipulations on monomials and polynomials in
k[z1, ..., xr, 2]/ (22,23, ..., 22), for calculation of denominator polynomials for the
Poincaré-Betti series, for simplicial homology calculations.

Depends on: PARI, GMP, standard libraries

Definition in file homology.h.

59

homology.h File Reference
B.6.2 Function Documentation 60

B.6.2 Function Documentation

B.6.2.1 std::ostream& operator<< (std::ostream & in, Monomial
const & m)

Overloaded ostream operator<< preamble for stream printing of a Mlonomial.

Outputs the internal representation of the monomial as one bitstring with the
state, followed by space and the zdegree field.

Todo:
Finding faces of simplices/generators of lattices and output only those,
possibly in more legible form

Definition at line 196 of file homology.c.
References Monomial::getrepresentation(), Monomial::nvars(), and Mono-

mial::zdegree.

B.6.2.2 void Tokenize (const std::string & str, std::vector<
std::string > & tokens, const std::string & delimiters)

Helper function to split a string into a vector of substrings across a set of
delimiter characters.

This function was taken from

http://www.faqgs.org/docs/Linux-HOWTO/C++Programming-HOWTO.html

Parameters:
str The string to tokenize

tokens A std::vector of tokens

delimiters A string of characters, at which the boundary of tokens lie.

Definition at line 67 of file homology.c.

Referenced by Monomial::Monomial(), and parse_eval().

60

main.c File Reference
61

B.7 main.c File Reference

Main program file - herein is contained the actual executable code.
#include <iostream>

#include <cstdlib>

#include <sys/types.h>
#include <sys/errno.h>
#include <unistd.h>

#include <getopt.h>

#include <sstream>

#include <readline/readline.h>
#include <readline/history.h>
#include <pari.h>

#include "main.h"

#include "ui.h"

#include "homology.h"

Global variables

e unsigned long PARI_STACKSIZE = 10000000

Pari stacksize allocation in bytes.

unsigned long PARI_ MAXPRIME = 10000000

Number of primes Pari precalculates.

bool VERBOSE = false
Output control.

bool DEBUG = false
Output control.

int done = 0
Loop breaking for the REPL loop.

61

main.c File Reference
B.7.1 Detailed Description

62

Functions

e void initialization ()

Initialises the readline, history and Pari libraries.

e int main (int argc, char xxargv)

Starting point for program execution.

B.7.1 Detailed Description

Main program file - herein is contained the actual executable code.

Definition in file main.c.

B.7.2 Function Documentation
B.7.2.1 int main (int arge, char *x argv)

Starting point for program execution.
Parses command line arguments and starts the REPL-loop.

Definition at line 80 of file main.c.

References DEBUG, done, initialization(), PARI.MAXPRIME, PARI.-

STACKSIZE, parse_eval(), strip_whitespace(), and VERBOSE.

62

main.h File Reference
63

B.8 main.h File Reference

Header for the main program.

Output control variables

By command line flags, the user can vary the degree of output wanted from the
program.

The flags set global booleans that are defined here.

e bool VERBOSE
Output control.

e bool DEBUG
Output control.

B.8.1 Detailed Description

Header for the main program.

Definition in file main.h.

63

ui.c File Reference
64

B.9 ui.c File Reference

User Interface implementation.
#include <iostream>
#include <cstdlib>
#include <string>
#include <ctype.h>
#include <exception>
#include "homology.h"

#include "ui.h"

Callbacks
The parse loop uses several specific functions to handle different tasks.
e int cmd_quit (std::vector< std::string > t)

Quits the program.

e void emd_char (std::vector< std::string > t)
Sets the field characteristic.

e void emd_add (std::vector< std::string > t)

Adds either a set of monomial to mi or a set of simplices to sc.

¢ void emd_help (std::vector< std::string > t)

Prints out various help texts. A rather basic help system.

e void emd_hom (std::vector< std::string > t)

Initiates calculation of homology ranks for the simplicial complez in sc.

e void emd_den (std::vector< std:string > t)

Initiates calculation of the denominator polynomial of the monomial ideal
specified in mi.

e void emd_clear (std::vector< std::string > t)

Clears all previous work from memory.

¢ void cmd_print (std::vector< std::string > t)

64

ui.c File Reference
65 B.9.1 Detailed Description

Gives a large information dump with all simplices and all monomials in a
raw bitstring form.

e void emd_var (std::vector< std::string > t)

Set or view the name of the free variable.

Global objects

This is the instances of Monomialldeal and Simplicial Complex in which all
userdriven calculations take place.

¢ Monomialldeal mi
e SimplicialComplex sc

Functions

¢ void init_stack ()

Initializes data for facilitating garbage collection with Pari.
e std:string strip_whitespace (std::string &1)
Utility function to strip whitespace from the beginning and the end of the

string 1.

e int parse_eval (std::string s)
The parse and evaluate parts of the REPL loop.

Variables

e unsigned long stacktop

Handling of memory management with Pari.

B.9.1 Detailed Description

User Interface implementation.

Implements the functions defined in ui.h More specifically contains the parse
and evaluate parts of the REPL loop and its callback functions

Definition in file ui.c.

65

ui.c File Reference
B.9.2 Function Documentation 66

B.9.2 Function Documentation

B.9.2.1 int parse_eval (std::string [)

The parse and evaluate parts of the REPL loop.

Parameters:
l The latest line read from user input.

Definition at line 251 of file ui.c.

References cmd-add(), cmd_char(), cmd_clear(), cmd_den(), cmd_help(), cmd.-
hom(), emd_print(), cmd_quit(), cmd_var(), and Tokenize().

Referenced by main().

66

67

ui.h File Reference

B.10 ui.h File Reference

Header file for the UI code for the Poincaré command line calculator.

#include <string>

Help texts

The help texts for Poincaré are stored in constant string variables.

Functions

const std:
const std:
const std:
const std:
acteristic:
const std::
const std:
const std:
const std:
const std:
const std:
const std:
const std:
const std:

:string WELCOME

:string COMMANDLINE_HELP

:string ADD_HELP

:string CHAR_HELP = ”Usage: char <coefficient field char-

prime number or zero>"
string MONOMIAL HELP

:string SIMPLEX _HELP

:string HOMOLOGY _HELP

:;string DENOMINATOR _HELP

string HELP_HELP

:string VAR_HELP

:string BAD_COMMAND = ”Unknown command: ”
:string TOO_FEW_VAR = "Too few arguments.”
:string HELP

e int parse_eval (std::string 1)
The parse and evaluate parts of the REPL loop.

e std::string strip_whitespace (std::string &1)

Utility function to strip whitespace from the beginning and the end of the
string 1.

¢ void init_stack ()

Initializes data for facilitating garbage collection with Pari.

B.10.1 Detailed Description

Header file for the UI code for the Poincaré command line calculator.

Definition in file ui.h.

67

ui.h File Reference
B.10.2 Function Documentation 68

B.10.2 Function Documentation

B.10.2.1 int parse_eval (std::string l)

The parse and evaluate parts of the REPL loop.

Parameters:
l The latest line read from user input.

Definition at line 251 of file ui.c.

References cmd_add(), cmd_char(), cmd_clear(), cmd_den(), cmd_help(), cmd-_-
hom(), emd_print(), cmd_quit(), cmd_var(), and Tokenize().

Referenced by main().

B.10.3 Variable Documentation

B.10.3.1 const std::string ADD_HELP

Initial value:

"Usage:

add monomial <monomial-list>
or

add simplex <simplex-list>\n"

Definition at line 64 of file ui.h.

B.10.3.2 const std::string COMMANDLINE HELP

Initial value:

"Valid commandline options for the Poincaré calculator are:

-s <size> Sets the stack size of Pari to <size> bytes
-p <size> Tells Pari to precalculate <size> primes
-h Displays this text.\n"

Definition at line 58 of file ui.h.

68

ui.h File Reference
69 B.10.3 Variable Documentation

B.10.3.3 const std::string DENOMINATOR_HELP

Initial value:

"Syntax: denominator

Denominator returns the denominator polynomial for the generating
function for the Poincare-Betti series of a field of given characteristic
over the monomial ring defined by the entered monomials.\n"

Definition at line 87 of file ui.h.

B.10.3.4 const std::string HELP

Initial value:

"Command syntax for the Poincaré calculator:

help - bring up this text

quit - end program execution

char - set the characteristic to work with

add monomial - add monomials to the ideal generators

add simplex - add simplices to the simplicial complex

homology - return the homology rank function of the complex

denominator - return the denominator polynomial of the monomial ring
Poincaré-Betti series

clear - reset the working copies of monomials and simplices

var - set the homology variable string

print - print out the current working environment

Definition at line 105 of file ui.h.

B.10.3.5 const std::string HELP_HELP

Initial value:

"Syntax: help [command]
Help returns either a list of available commands or more information about
a specific command.\n"

Definition at line 92 of file ui.h.

B.10.3.6 const std::string HOMOLOGY_HELP

Initial value:

69

ui.h File Reference
B.10.3 Variable Documentation 70

"Syntax: homology

Homology returns the Hilbert series for simplicial homology of

the simplex generated by the added simplices, taken with coefficients
within a field of prime or zero characteristic (set characteristic of the
field by means of char)\n"

Definition at line 81 of file ui.h.

B.10.3.7 const std::string MONOMIAL_HELP

Initial value:

"Syntax: add monomial <monomial-list>

Add monomial is used for adding any number of space separated
monomials as generators for a monomial ideal for

calculation of denominator polynomials.\n"

Definition at line 71 of file ui.h.

B.10.3.8 const std::string SIMPLEX HELP

Initial value:

"Syntax: add simplex <simplex-list>

Add simplex is used for adding any number of space separated

simplices (i.e. squarefree monomials) as faces of a simplicial complex,
the homology of which may be calculated.\n"

Definition at line 76 of file ui.h.

B.10.3.9 const std::string VAR_HELP

Initial value:

"Syntax: var [string]

Var sets the variable used for the series variable used when printing
Poincare-Betti series denominator polynomials, or Hilbert polynomials
of simplicial complex homology.\n"

Definition at line 96 of file ui.h.

70

ui.h File Reference
71 B.10.3 Variable Documentation

B.10.3.10 const std::string WELCOME

Initial value:

"Welcome to the Poincaré calculator. You can use this program to
calculate simplicial homology over prime fields and to calculate
the denominator polynomial of the Poincaré-Betti series of monomial
rings.

(c) 2004 Mikael Johansson

This program is released under the MIT License\n"

Definition at line 50 of file ui.h.

71

Bibliography

[Armstrong, 1983] Armstrong, M. A. (1983). Basic Topology. Undergraduate
Texts in Mathematics. Springer Verlag.

[Avramov, 2002] Avramov, L. L. (2002). Homotopy Lie algebras and Poincaré
series of algebras with monomial relations. Homology Homotopy Appl.,
4(2):17-27. The Roos Festschrift, vol. 1.

[Backelin, 1982] Backelin, J. (1982). Les anneaux locaux & relations monomiales
ont des séries de Poincaré-Betti rationelles. Comptes Rendus de I’Académie
des Sciences, Paris, 295:607—610.

[Backelin and Froberg, 1985] Backelin, J. and Froberg, R. (1985). Poincaré se-
ries of short Artinian rings. Journal of Algebra, 96(2):495-498.

[Berglund, 2003] Berglund, A. (2003). Degree bounds for Poincaré series de-
nominators of monomial rings with few relations. Master’s thesis, Stockholms
Universitet.

[Berglund, 2004] Berglund, A. (2004). Personal communication.

[Birmingham, 1995] Birmingham, D. (1995). Lens spaces in the Regge calculus
approach to quantum cosmology. Physical Review, D 52(10):5760-5772.

[Bredon, 1993] Bredon, G. E. (1993). Topology and Geometry. Number 139 in
Graduate Texts in Mathematics. Springer Verlag.

[Doxygen, 2004] Doxygen (2004). Doxygen documentation generator.
http://www.stack.nl/~“dimitri/doxygen/index.html.

[Froberg, 1982] Froberg, R. (1982). A study of graded extremal rings and of
monomial rings. Mathematica Scandinavica, 51:22-34.

[Gratzer, 1998] Gritzer, G. (1998). General Lattice Theory. Birkhiuser, second
edition.

[Hatcher, 2002] Hatcher, A. (2002). Algebraic Topology. Cambridge University
Press, http://wuw.math.cornell.edu/ hatcher.

[Hilton and Stammbach, 1970] Hilton, P. J. and Stammbach, U. (1970). A
Course in Homological Algebra. Number 4 in Graduate Texts in Mathematics.
Springer Verlag.

72

BIBLIOGRAPHY
73 BIBLIOGRAPHY

[Katzman, 2004] Katzman, M. (2004). Characteristic-independence of Betti
numbers of graph ideals. arXiv:math.AC/0408016v1.

[MacLane, 1963] MacLane, S. (1963). Homology. Number 114 in Die
Grundlehren der mathematischen Wissenschaften. Springer Verlag.

[Stanley, 1997] Stanley, R. P. (1997). Enumerative Combinatorics, volume 1 of
Cambridge Studies in Advanced Mathematics. Cambridge University Press.

[Taylor, 1966] Taylor, D. (1966). Ideals generated by monomials in an R-
sequence. PhD thesis, Chicago.

[Taylor, 2004] Taylor, P. (2004). Commutative diagrams in TEX (version 3.90).
http://www.dcs.gmw.ac.uk/ “pt/diagrams/.

73

