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Abstract

The objective of this thesis is two-fold. The first is to find a predic-

tive model for the probability of a deposit account, held at a Swedish

bank, being closed or emptied within a year. The second is to de-

scribe how a change in the interest rate of the deposit account affects

this probability. The data consists of monthly observations of the

maximum account balance for each deposit account along with a set

of explanatory variables. We use the explanatory variables from the

first month in each year. The remaining months are used to deter-

mine whether the account stayed open or closed. When the data is

of this form we have approximately 200 000 yearly observations. We

use logistic regression along with a set of different algorithmic selec-

tion procedures. A number of model validation statistics are used and

the conclusion is that no model is completely satisfactory in regard to

predictive capabilities. Nevertheless, we find that the coefficient for

the interest rate is robust, i.e. does not change considerably, between

models. Together with the fact that the coefficients in a logistic regres-

sion model always are the log-odds ratios, even if the model does not

t the data, we find that the interest rate coefficient is interpretable.

Note that the data and results used and obtained in this thesis are

confidential and hence only an overview is presented.
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E-mail:felixwahl91@gmail.com . Supervisor: Tom Britton.



Preface

This paper constitutes a bachelor’s thesis of 15 ECTS in Mathematical
Statistics at the Department of Mathematics at Stockholm University. This
thesis has been carried out in collaboration with SBAB Bank AB.

I would like to thank my supervisor Tom Britton for all the help and
advice and also my external supervisor Peter Svensén, CRO at SBAB Bank
AB, for the opportunity to conduct this work. I would also like to thank all
the people at SBAB Bank AB who have helped me throughout this thesis,
especially Fredrik Lundgren.

ii



Contents

1 Introduction 1

2 Background 1
2.1 The Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
2.2 The Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

3 Theory 3
3.1 Logistic Regression . . . . . . . . . . . . . . . . . . . . . . . . 3

3.1.1 Interpretation of Coefficients . . . . . . . . . . . . . . 3
3.2 Model Selection . . . . . . . . . . . . . . . . . . . . . . . . . . 4
3.3 Interactions with Variable of Interest . . . . . . . . . . . . . . 5
3.4 Transforming Continuous Variables . . . . . . . . . . . . . . . 5
3.5 Multicollinearity . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.6 AIC and BIC . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.7 Validation & Predictive Power . . . . . . . . . . . . . . . . . 7

3.7.1 The Hosmer-Lemeshow Test, Ungrouped Data and Ef-
fects of Sample Size . . . . . . . . . . . . . . . . . . . 8

3.7.2 Classification Tables . . . . . . . . . . . . . . . . . . . 8
3.7.3 ROC curves . . . . . . . . . . . . . . . . . . . . . . . . 9
3.7.4 Brier Score . . . . . . . . . . . . . . . . . . . . . . . . 10
3.7.5 Generalized R-square . . . . . . . . . . . . . . . . . . 11
3.7.6 Validation Using Holdout Samples . . . . . . . . . . . 12
3.7.7 Plotting Estimated vs Observed Probabilities . . . . . 12
3.7.8 Robustness of Coefficients . . . . . . . . . . . . . . . . 13

4 Analysis 13
4.1 Multicollinearity . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.2 Transforming Continuous Covariates . . . . . . . . . . . . . . 14
4.3 Model Selection . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4.3.1 Forward Selection, Backward Elimination & Stepwise
Regression . . . . . . . . . . . . . . . . . . . . . . . . . 16

4.3.2 Purposeful Selection . . . . . . . . . . . . . . . . . . . 16
4.3.3 Minimizing AIC & BIC . . . . . . . . . . . . . . . . . 17

4.4 Validation & Predictive Power . . . . . . . . . . . . . . . . . 19
4.4.1 Validation Using Holdout Samples . . . . . . . . . . . 23

4.5 Interpretation of Coefficient . . . . . . . . . . . . . . . . . . . 24

5 Conclusions 25

6 Discussion 26

A Expected value and variance of the Brier Score 28

iii



1 Introduction

In 2007 SBAB Bank AB started utilizing deposit accounts. In recent years
they have grown their deposit volume quite a bit. The total volume now
amounts to about 50 billion SEK and is predominantly from private indi-
viduals. The strong increase in deposits is thought to come from SBAB
maintaining a significantly higher interest rate than competing banks com-
bined with advertisement. Now it is of interest to determine how sensitive
the current customers are to changes in the interest rate. It is hypothesized
that customers leaving the large banks, who generally have quite low inter-
est rates, go looking for a bank with high rates. Once they’ve changed bank
they might however not be that sensitive to rate changes.

We will in this thesis describe the steps taken to find a predictive model,
that is, a model that predicts the survival of deposit accounts on a yearly
basis. The effect of a change in the interest rate on the survival will also be
examined.

Note that the data on which this model building occurs is confidential
and thus also the results to some extent. Hence more weight is placed on
the steps up to finding a model rather then interpreting the results.

2 Background

2.1 The Problem

The objective of this thesis is two-fold. The first objective is to try to find a
model with acceptable forecasting abilities. That is, a model with which it is
possible to estimate, with good accuracy, future probabilities of an account
being closed within a year. The second objective is to estimate how a change
in the interest rate affects the survival of accounts.

2.2 The Data

The major part of this thesis has consisted of data processing, that is build-
ing the data set to be analyzed from several data sets consisting of only
one or two variables. Also, some variables have taken some time to collect
from sources outside of the data warehouse in the bank. In short, a data
warehouse is a central database where data from different departments are
stored, often uploaded automatically.

The data consists of monthly observations of the maximum account bal-
ance for each deposit account together with a set of explanatory variables
x1-x24. The values of all explanatory variables are either from the month
of the observation or backwards in time, this is since we cannot use future
data to predict the future, obviously. We cannot disclose what variables
have been used, but the response variable is account status over intervals
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of one year. Hence only the first month in each year for the account of the
monthly observations are used, meaning not always January but the first
month from opening of the account. The other months are used to deter-
mine whether the account ”survived”. When the data is of this form we
have approximately 200 000 observations. Note that if an account did not
close the first year our sample will contain more than one observation from
that same account. For example, if an account closed on its third year, there
will be three observations corresponding to that account.

The status of the account is defined as closed/inactive if the maximum
balance is below a certain cut off value during three consecutive months.
This is so that we do not count accounts that are still in use, but might
not receive deposits for a short period of time, as closed/inactive. Without
this time period we might overestimate the true probability of an account
closing.

The cut off value is defined by two criteria, firstly it is a set value c and
secondly it is the maximum balance during the year times the interest rate
and taxes. This is since an individual might remove all money from the
account but then receive an interest payment (minus taxes) resulting in an
account balance greater than the set value c.

Some variables are inherently bad to use for forecasting future events,
especially variables that have an inherent need for extrapolation to predict
future events. One example of such a variable is time, or more specifically
time since SBAB started using deposit accounts. Every year, when trying
to predict the next year, one would have to enter a value into the model
that it has not been built upon. Hence, the model has inherent issues with
extrapolation. Therefore, variables with the need to extrapolate will be left
out of the model building (variables x5, x10 and x15).

As mentioned, we look at accounts on a yearly basis starting at day
one for each account. This is so that we use accounts from their opening
day to minimize the bias resulting from truncation. We also make sure
that all accounts in the later time intervals are such that they have had the
possibility to be open for a year, otherwise we would have a problem with
censoring and hence overestimate the probability of an account closing.

Note that when referring to the interest rate from now on we are actually
talking about the difference between the interest rate at SBAB compared to
the maximum interest rate of four competing banks. These four banks also
hold a significantly higher interest rate than the market average.
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3 Theory

In this section we will describe the theory needed and used to perform the
modeling.

We will show and discuss tools used in conjunction with the logistic re-
gression model, such as the model selection procedures and model validation.

3.1 Logistic Regression

Let Y be a binary response variable and x1, x2, ..., xn be explanatory vari-
ables. Define π(x) = P (Y = 1|X = x) = 1−P (Y = 0| X = x). The logistic
regression model is then defined as (Agresti, 2013, p. 163)

π(x) =
exp(α+

∑n
i=1 βixi)

1 + exp(α+
∑n

i=1 βixi)
=

expβX

1 + expβX
,

where β1, ..., βn are the regression coefficients. This yields the linear rela-
tionship in the logit

logit[π(x)] = log
π(x)

1− π(x)
= βX. (1)

The regression coefficients are usually estimated using maximum like-
lihood estimation. The null hypothesis H0 : βi = β0 is tested for each
coefficient using a Wald test, which is of the form

(β̂ − β0)2√
V ar(β̂)

.

It is compared to a chi-squared distribution with 1 degree of freedom. For
our test we set each β0 to zero.

3.1.1 Interpretation of Coefficients

The explanatory variables in a logistic regression model are linear in the
logit (1). By exponentiating (1) we see that the odds ratio is an exponential
function of the explanatory variables. Assume we have a logistic regression
model with one explanatory variable x. The odds ratio at x+ ∆x is

π(x+ ∆x)

1− π(x+ ∆x)
= eα+β(x+∆x) = eβ∆x π(x)

1− π(x)
.

That is, for an increase (or decrease) ∆x the odds ratio multiplies by eβ∆x.
Or simply, for each unit increase of x the odds ratio multiplies by eβ.
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3.2 Model Selection

When dealing with many explanatory variables it is unreasonable to expect
that every possible model be tested. If we have k explanatory variables, not
considering interactions, then we have 2k possible models. For example, if
k = 10 then we have 210 = 1024 possible models. Hence, when dealing with
more than a few explanatory variables we use different algorithmic methods
to either find a good model according to certain criteria or to limit the model
space to more manageable sizes.

For model selection we will use a number of algorithmic methods to find
candidate models: Forward selection, Backward elimination, Stepwise re-
gression and Purposeful selection. We will also look for models that minimize
certain information criteria (AIC and BIC), but these will be introduced in
section 3.6.

Backward elimination starts with all variables and then, sequentially,
removes the variable that is least significant and stops at a prespecified
confidence level (according to the Wald test). Forward selection starts with
only the intercept and then, sequentially, adds variables that are significant
at the prespecified confidence level. Stepwise regression works like Forward
selection but at each step checks if the variables currently in the model are
still significant, if not, they are removed. Purposeful selection (Hosmer &
Lemeshow, 2013 p.90-93) takes, in short (see reference for full description)
the following steps:

Step 1: Identify variables with a p-value less than 0.25 in a univariate analysis
for each independent variable. The rationale behind the high signifi-
cance level is that we do not want to throw away important variables
that, while not significant alone, might be when other variables are in
the model.

Step 2: Fit a multivariate model with all variables identified for inclusion at
Step 1 and then assess the importance of each variable using the Wald
statistic. Variables not significant at traditional levels of significance
are eliminated in a stepwise fashion, much like Backward elimination.

Step 3: The coefficients in this reduced model are compared to those of the
model containing all variables identified in Step 1. If any coefficient
changed its value by more than 20% we have an indication that one
or more of the removed variables are important in that they provide
a (perhaps) needed adjustment of the estimated effects of the other
variables. Hence, if this is the case we add such variables back into the
model until we are satisfied that we have a model containing important
variables.

Step 4: Now we add each variable not selected in Step 1 to the current model,
one at a time, and check its significance by using the Wald statistic.
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This is done by the same rationale as for the 0.25 significance level in
step 1.

Step 5: Before starting selection procedures we should have a list of variables
that might interact. Now we add these, one at a time, to the model we
got at the end of Step 4 and then examine the significance using the
Wald statistic. We then add each significant interaction to the model
at the same time, removing, sequentially, interactions not significant
at traditional levels. No main effects are considered for removal in this
step.

Step 7: We now assess the models fit to the data. This is of course not some-
thing special for Purposeful selection and must be done after fitting
any model.

Bursac et al. (2008) showed via simulations that Purposeful selection iden-
tifies and retains confounders correctly at a larger rate than other selection
procedures. Although they do note that this is generally for smaller data
sets (≈ 240− 600 observations) and that for larger data sets (≈ 1000 obser-
vations) all selection procedures except Forward selection converge to the
same model.

3.3 Interactions with Variable of Interest

Since the interest rate is the variable of interest, we want to be able to
interpret the effect it has on the outcome easily. Hence we will try to keep
interaction terms between this variable and other variables out of the models.
If we think such interactions should be in the model we will try to use them
when finding a model with a good forecasting ability, but we will try to keep
these away when finding models that we want to use for interpretation of
the interest rates effect on the outcome.

3.4 Transforming Continuous Variables

In a logistic regression model, the covariates are assumed to be linear in
the logit, see equation (1). Hence we need to check if the variables actually
fulfill this. We do this by sorting each independent variable by rank and
then dividing these into a number of equally sized groups. In these groups
we can estimate the probability as the proportion of observations that ended
in ”deaths”. Using this we can estimate the logit by calculating equation
(1). Then we plot the average of the independent variable in each group
against the estimated logit. This should yield a linear relationship if the
assumption of linearity in the logit holds. If it does not, then we have to
think of possible transformations, such as power or log transformations of
the independent variables. We will also linearize relationships using linear
splines, or rather several linear segments.
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3.5 Multicollinearity

In logistic regression models, as in linear regression models, multicollinearity
is a problem. Multicollinearity means that there exists a linear dependence
between explanatory variables. It is a problem because when two or more
variables are highly correlated with one another it can be difficult to get
reliable estimates of their effects. It does not bias the maximum likelihood
estimates of the coefficients, but the standard errors may get large and
unstable (Allison, 1999, p. 48) since it is difficult to determine distinct
effects of the collinear variables.

To see if multicollinearity exists it is often proposed that one examines
the pairwise (Pearson) correlation coefficient between the explanatory vari-
ables. This is not optimal since two variables might not be highly correlated
with one another, but together with all the other explanatory variables we
might have a (approximate) linear dependence. Hence we will also examine
the variance inflation factors.

Let R2
j be the coefficient of determination for a linear regression model

with xj as the response variable and the remaining explanatory variables as
regressors in the linear model. The variance inflation factor for the explana-
tory variable xj is defined as

VIFj =
1

1−R2
j

.

We see that as the coefficient of determination increases towards 1 the vari-
ance inflation factor goes to infinity. Standard cutoff points often proposed
is a variance inflation factor greater than 5 or 10. If any variable has a
variance inflation factor that is deemed too large, than we might have to
think about removing one of the problematic variables from our analysis.

We also examine the correlation coefficients between variables and con-
clude that if two variables have a correlations coefficient greater than 60%
then one of them should be excluded from the analysis. This is a somewhat
arbitrarily chosen cutoff point.

3.6 AIC and BIC

The Akaike information criterion (AIC) is a measure we can use when com-
paring models. It is based on the value of the likelihood function for a model
but is adjusted by the number of parameters in the model. It can be said
that AIC penalizes models with more parameters and thus prefers simpler
models. AIC is defined as (Agresti, 2013, p. 212)

AIC = −2(maximised log likelihood− number of parameters in model).

It is important to note that the AIC value does in no way indicate how well
a model fits the data, but rather how well it fits the data compared to other
models.
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The Baysian information criterion (BIC), also called the Schwarz cri-
terion (SC), is another measure we can use when comparing models. It is
defined as

BIC = −2·maximised log likelihood+ln(n)·number of parameters in model.

As can be seen, it penalizes complex models greater than does AIC. It is
based on a Baysian argument for finding the model with the highest posterior
probability among a set of models (Agresti, 2013, p.212-213).

We will use both AIC and BIC in the model selection, favoring BIC when
they disagree. This is because we would rather have a simple model than a
complex one. We will not however fit all possible models and then choose the
one with the smallest AIC/BIC, this would not be feasible with the amount
of variables and data we have. Rather we will use them in determining if
dropping or adding a certain variable or interaction from or to the model
leads to a better model.

We will also do a Backwards elimination procedure including all vari-
ables and possible interactions, setting the threshold p-value for dropping a
variable to zero. Then we will plot the steps in the procedure vs AIC and
BIC at each step. This way we can find a model, from this new subset of all
models, that is the simplest possible in the range of models with the lowest
AIC or BIC.

3.7 Validation & Predictive Power

Any model must always be validated before it can be used or trusted. Here
we will validate our models by utilizing a collection of tools.

Note that we want to find a model that is well calibrated to the data,
that is a model for which the predicted probabilities correspond to the actual
probabilities of events. Also, we would like to find models that discriminate
well, that is a model that generally assigns larger probabilities to events and
smaller probabilities to non-events. For instance, The Hosmer-Lemeshow
test is used for calibration while the classification tables are used for dis-
crimination as one will note in the sections below.

This section is concerned with finding a model that has good forecast-
ing abilities. When it comes to interpretation of effects, most importantly
how the interest rate affects the probability of an account getting closed,
calibration is not important. To cite Hosmer and Lemeshow (2013, p. 186)

When the focus of the study is on the β̂’s (or odds ratios),
calibration is not important. It is important when the estimated
probabilities are meaningful and of interest to the investigator.

The coefficients of a logistic regression analysis are always
the log-odds ratios — whether the model fits or not. However, if
the study’s objective is to estimate the Pr(y = 1) then we need
to assess calibration and discrimination.
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3.7.1 The Hosmer-Lemeshow Test, Ungrouped Data and Effects
of Sample Size

Since we have ungrouped data, it is not possible to use the regular Pearson
chi-square and deviance statistics (which is the reason they are not described
in this thesis). One possible goodness of fit test for ungrouped data is the
Hosmer-Lemeshow test. It is a chi-square test formed by sorting the data
by estimated probabilities and then dividing these into a number of approx-
imately equally sized groups. Usually one forms 10 such groups and from
this one can create a Pearson statistic comparing observed and fitted counts.
The problem is that the power (the probability of rejecting a false model)
of a chi-square test increases with sample size. Usually one is interested in
finding an acceptable model, if such a model exists, but when the sample
size is very large and the number of variables are small in comparison this
can be problematic since the model has to be very well fitting to be ”ac-
cepted” by the Hosmer-Lemeshow test. Paul et al. (2013) studied methods
for specifying the number of groups so that the power would equal what one
would have for a sample of size 1000 and 10 groups. They concluded that
they do not recommend this kind of test for sample sizes exceeding 25,000,
which we have. We will still use the Hosmer-Lemeshow statistic, but we are
aware of the fact that even a model that is considered significantly differ-
ent from the data according to the Hosmer-Lemeshow statistic might be a
reasonable model, unless of course the chi-square value is very large.

One way around the problem of the Hosmer-Lemeshow test is to cat-
egorize continuous covariates, then one can use for example the deviance
measure. This however has its fair share of problems. We will discuss this
further in section 6.

3.7.2 Classification Tables

Assume that we have a model that we use for predicting future values. Some-
times it might be of use to classify individuals with an estimated probability
above a certain threshold value into a high-risk group and the rest into a
low-risk group. This is what we do in a classification table.

Let the prediction for observation k be ŷ = 1 when π̂k > π0 and ŷ = 0
when π̂k ≤ π0, for some cutoff probability π0. By application of the ”leave-
one-out” cross validation approach we estimate π̂i based on the model fitted
to the other n− 1 observations.

Now we define the quantities sensitivity (ability to predict survival cor-
rectly) and specificity (ability to predict death correctly) as

sensitivity = P (ŷ = 1|y = 1) and specificity = P (ŷ = 0| y = 0). (2)

Predictive power can now be summarized as the proportion of correct clas-

8



sifications:

P (correct classifications) = P (y = 1 and ŷ = 1) + P (y = 0 and ŷ = 0)

= P (ŷ = 1|y = 1)P (y = 1) + P (ŷ = 0| y = 0)P (y = 0).

For this and more, see Agresti (2013, p.223).

3.7.3 ROC curves

A receiver operating characteristic (ROC) curve is a plot of sensitivity as a
function of (1 - specificity) for all possible π0, see equation (2). The ROC
curve hence sums up the classification table in a way such that we get an
overall view of predictive power for all possible π0. For any given specificity,
the higher sensitivity we have the better the predictions, and the other way
around. This means that the larger the area under the ROC curve the better
the predictive power (Agresti, 2013, p. 224).

It can be shown that the area under the ROC curve is equal to the
probability that the model will rank a randomly chosen event higher than a
non-event. (Hosmer & Lemeshow, 2013, p.177)

In Figure 1 an example of a ROC curve, from utilizing SAS software on
a simulated dataset, can be seen.

Figure 1: Example of a ROC curve. It is from a simulated dataset for
illustration purposes.
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3.7.4 Brier Score

The Brier score, proposed by Brier (1950), is defined as

BS =
1

N

N∑
t=1

(ft − ot)2,

where ft is the predicted probability and ot is the observed outcome. Hence
a small Brier score correspond to a good calibration of predictions. As a
reference, pure guessing would yield

BS =
1

N

N∑
t=1

(
1

2
− ot

)2

=
1

4
.

The Brier Score can be decomposed into three parts (Murphy, 1973)

BS = Reliability− Resolution + Uncertainty

where

Reliability =
1

N

K∑
k=1

nk(ft − ōk)2,

Resolution =
1

N

K∑
k=1

nk(ōk − ō)2,

Uncertainty = ō(1− ō).

Here K is the number of unique forecasts, ō is the frequency of outcomes in
the total sample, ōk is the frequency of outcomes in the k:th sample of unique
forecasts and nk is the sample size of the k:th sample of unique forecasts.

Since we have ungrouped data with a lot of single unique forecasts, we
will sort the estimated probabilities by rank and then split them into a
number of groups of equal size, as done in the Hosmer-Lemeshow test. Then
we will use these groups as groups of unique forecasts. This is done simply
so that we can calculate the Reliability, the Resolution and the Uncertainty.

A short explanation of the three quantities is warranted. The Reliability
measures the distance between outcome and estimated probabilities. We
do of course want this quantity to be as small as possible. The Resolution
measures the distance between the frequencies of the outcomes from the
K ”unique” forecasted probabilities and the frequency in the whole sam-
ple. A large Resolution corresponds to a greater inherent ability to discern
situations where the event is likely to happen from those where the event
is unlikely to happen. The Uncertainty measures the inherent uncertainty
in the system. With these quantities, the Brier score is more informative.
This can be seen by thinking about two different situations and models.
First we think of coin tossing where the probability of success (heads) is
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50%. A perfect model would always predict 50% chance of success, this
would yield a Brier score the same as pure guessing (as shown above), that
is BS = 0.25. The other example is a deterministic situation where the
success event always happens given a certain condition, a perfect model
would always predict 100% chance of success given this condition or 0% if
the condition is unfulfilled. This model would yield BS = 0. Hence, two
”perfect” models yield two quite different Brier scores. This is of course
because of the different problems the examples above present. For example,
the Uncertainty in the two examples are 0.25 and 0, respectively. That is,
we would expect a larger Brier score in the first example simply because the
coin tossing presents a greater uncertainty than the zero uncertainty of the
always success example.

We can also construct a test for testing whether the forecasted prob-
abilities are equal to the real probabilities. Under the null hypothesis
H0 : ft = pt, where pt is the true probability of trial t, the expected value
and variance of the Brier score are (see Appendix A for derivation)

E[BS] =
1

N

N∑
t=1

ft(1− ft),

V ar(BS) =
1

N2

N∑
t=1

ft(1− ft)(1− 2ft)
2.

Using this we can create the z-statistic

z =
BSObs − E[BS]√

V ar(BS)
.

Hence we can test the null hypothesis by calculating the p-value correspond-
ing to the observed z using the standard normal distribution.

3.7.5 Generalized R-square

The coefficient of determination, R2, is something everyone familiar with
linear regression has utilized. It would hence be nice to have a similar
measure when building logistic regression models. We define the generalized
coefficient of determination as

R2 = 1−

(
L(0)

L(β̂)

) 2
n

where L(0) is the likelihood of the intercept-only model, L(β̂) is the like-
lihood of the model in question and n is the sample size. The generalized
coefficient of determination R2 does not achieve its maximum at 1 for dis-
crete models, but rather at R2

max = 1−L(0)2/n. Since most people think of
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R2 as lying between 0 and 1 we might want to make an adjustment to it.
Instead a rescaled coefficient, ranging from 0 to 1, is defined as

R̃2 =
R2

R2
max

.

For this and more see SAS/STAT® 9.3 User’s Guide (2011, p.4115)
We include this description of the Generalized R2 simply for complete-

ness sake. Hosmer and Lemeshow explain why quite well (Hosmer & Lemeshow,
2013, p. 186)

In general, these measures [R2] are based on various compar-
isons of the predicted values from the fitted model to those from
model(0), the no data or intercept only model and, as a result,
do not assess goodness of fit. We think that a true measure of
fit is one based strictly on a comparison of observed to expected
values from the fitted model.

3.7.6 Validation Using Holdout Samples

When dealing with a very large data set, it is of no problem to split it into a
training and validation set. That is, we develop a model using the training
set and then we evaluate the model using the validation set. This can be
done by either a random sampling or choosing the data for the last year as
the validation set (since we most often want to predict the future using our
model). We will mainly consider the last one.

When evaluating models on the validation set we can examine statistics
such as the Hosmer-Lemeshow statistic, area under the ROC curve and the
Brier score. For instance, a greatly lower area under the ROC curve for the
validation set compared to the training set would indicate bad prediction
power.

One also often fits separate models, containing the same variables, on the
training and validation set in order to examine whether the coefficients are
approximately the same between the two. This is a problem when dealing
with data sets that lie separately in time. As an example, the interest
rate does not vary that greatly over a year and hence the estimate for its
coefficient would presumably differ by quite a bit compared to previous
years. This would probably not be because of a difference in effect, but
because of the scarcity of variation.

3.7.7 Plotting Estimated vs Observed Probabilities

To assess the models fit we can plot estimated vs observed probabilities. If
the model performs well we should get a 45 degree line through the origin.
One of the advantages this plot has is that it gives us an indication of where
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a badly performing model fails. A model might generally perform well, but
is badly calibrated for very low or high probabilities, for instance.

Obviously we cannot plot estimated vs observed probabilities for each
observation in the data set, we will have to estimate the observed probabil-
ities by sorting the estimated probabilities by rank and then dividing these
into a number of equally sized groups in which we can calculate the observed
probabilities as the proportion of ”deaths”. The estimated probabilities in
this graph will then be the mean of the estimated probabilities from the
model.

3.7.8 Robustness of Coefficients

When we are interested in how one or more variables affect the probability of
survival, in order to be able to rely on the estimates to be close to the truth,
we would like the coefficient to be robust to changes between models. If we
for instance have four models, two from minimizing AIC and BIC, one from
Purposeful selection and one univariate model, all containing the variable of
interest, we would like the coefficient of interest to be approximately equal
in all models. Otherwise it gets a bit more difficult to determine which
coefficient to trust, if any.

This will mainly be done for the interest rate. Since this is the main
variable we want to say something about, especially if we cannot find a
model with an acceptable forecasting ability.

4 Analysis

In this section we will provide an overview of the analysis and the results,
sadly nothing too specific since both the data and the results are confidential.

In our problem we have a binary response variable. That is, the account
either became inactive (died) or it continued being used (survived). This is
a situation where logistic regression is commonly used. We will hence let
π(x) in equation (3.1) be the probability of an account getting closed within
one year.

It should be mentioned that one of the assumptions of the logistic regres-
sion model is independent observations. This obviously does not hold in our
data set since we firstly have dependency between the same account over
different years and secondly a dependency between two or more accounts
that have at least one account holder in common. During this analysis we
will assume independent observations.

4.1 Multicollinearity

We start by examining multicollinearity utilizing the variance inflation fac-
tors and the Pearson correlation coefficient between the explanatory vari-
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ables. Doing this we see that there are variables with a high variance in-
flation factor (at least greater than 5). Removing one of them at a time,
recalculating the variance inflation factors at each step and only removing
variables that still have a high VIF, results in removal of four variables.

When choosing which variable of collinear variables to remove we con-
sider several factors. Firstly, which has the best fit in a univariate logistic
regression model. Secondly, linearity in the logit. One variable might be
linear in the logit while another has a horrendous looking relationship that
is hard to find a tranformation for. Thirdly, we also consider which variable
is actually most reasonable to keep in the model.

After removing variables using VIF we examine the pairwise correlation
coefficient of the remaining variables. If any correlation is above 60% we
consider removal of one of the variables. Here we consider the same reasons
for removal as above. This results in us removing two additional variables.

Note that we are now down to 18 explanatory variables.

4.2 Transforming Continuous Covariates

Next we examine the scale of the continuous covariates as discussed in section
3.4. In Figure 2 we can see one of the explanatory variables, x1, plotted
against the estimated logit using 80 groups. We can see that we have three
approximately linear parts, one before the point c, one after the point k and
one in between. We therefore construct a transformation that yields four
new variables, three continuous variables

x1,1 =


x1 if x1 ≤ c,
0 if c < x1 < k,

0 if k ≤ x1,

x1,2 =


0 if x1 ≤ c,
x1 if c < x1 < k,

0 if k ≤ x1,

x1,3 =


0 if x1 ≤ c,
0 if c < x1 < k,

x1 if k ≤ x1,

and one categorical

x1,4 =


0 if x1 ≤ c,
1 if c < x1 < k,

2 if k ≤ x1,

that works as the intercept for the continuous variables above.
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Now it should be noted that we have chosen the points c and k somewhat
arbitrarily. These points could, and should, be estimated properly, but this
is out of the scope for this thesis. We should not be too worried though
since during this analysis the plot in Figure 2, which is based on the whole
dataset, has also been plotted for random subsets of the data and for each
year, yielding very similar relationships. Hence we can feel confident that
the points are close to where they would be estimated to be. This holds
at least for the point c, it is a little more difficult to determine where the
point k should actually be. Nevertheless, we have tried to slightly adjust
the positions of k and c which yielded approximately the same fit. Hence we
can feel confident that the result is robust to slight errors in the positions
of k and c.

Figure 2: Plot of estimated logit against the value of one of the explanatory
variables, x1.

Another example can be seen in Figure 3 where explanatory variable
x2 is plotted against the estimated logit. Variables with this pattern in the
logit will be treated as if they were linear, but with an awfully large variance,
since this is the only thing we can really assume.

15



Figure 3: Plot of estimated logit against x2.

4.3 Model Selection

Next we start building our logistic regression models. We will use Forward
selection, Backward elimination, Stepwise regression, Purposeful selection
and a procedure to find a model that is in the vicinity of the lowest AIC/BIC.

4.3.1 Forward Selection, Backward Elimination & Stepwise Re-
gression

We begin by utilizing Forward selection, Backward elimination and Stepwise
regression as is quite standard. This results in models containing almost
all variables and interactions, regardless of how small a threshold value we
choose for the p-value (0.05, 0.01 and 0.0001). This is because we are working
with large amounts of data, hence almost any effect can be found significant.
Therefore we conclude that we might need other methods to build sensible
models. Note that a model can contain a lot of variables and interactions
and still be sensible.

4.3.2 Purposeful Selection

First we build univariate logistic regression models for each explanatory
variable. Since we have a lot of data, it is not surprising that every variable
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except one is significant at a level below 0.001, the majority being below
0.0001. The one not significant has a p-value of 0.4422. Hence we go on and
construct a multivariate model containing all variables except the one that
was not significant in the univariate analysis.

In the multivariate model, some variables get large p-values. We remove
these in a stepwise fashion resulting in a model with only significant vari-
ables, at least at the 0.001 level. This yields the removal of three variables
of which two are part of linear spline transformations mentioned above. Af-
ter this we investigate whether any coefficients changed considerably (more
than 20%), which none did.

We then add the variable that was not significant in the univariate anal-
ysis to the model, still yielding a coefficient not significantly different from
zero, although with a much smaller p-value this time. Hence, it is not kept.
Adding this variable also yields a higher AIC and BIC.

We now see that one variable barely has any effect at all, hence we try
to remove it in spite of its significant Wald-test. Removal yields a lower BIC
and a higher AIC. This with the fact that it barely had any effect leads to
its removal.

Now we create a list of possible pairs of variables that might interact with
each other. Note that these interactions are included in the other selection
procedures. There must be a reasonable reason for the interaction to exist in
order for us to consider it. Then we add each interaction, one at a time, to
the current model. The interactions that are significant at traditional levels
are then added to the model all at the same time, actually all interactions
either have a very low or a very high p-value so we really do not have to
worry about what is an appropriate significance level. As before, removal
occurs in a stepwise fashion if the interaction is not significant. Only one,
with a p-value equal to 0.7395, is removed.

Before moving on to checking the models fit, we take some time to con-
sider whether the variables have a clinically significant effect or if their ef-
fect can be reasonably explained. Some variables might be significant but
there are no possible ways of explaining why it would have the effect it has.
We remove these variables and then examine whether this yields a lower
AIC/BIC. If it does, we can feel confident in our suspicion that the variable
should have been removed. We remove one variable that had a low effect,
yielding a lower BIC, but not a lower AIC. Since it resulted in a lower BIC
together with it barely having any effect we remove it.

4.3.3 Minimizing AIC & BIC

We now build two models based on minimizing AIC and BIC. Checking the
AIC and BIC of every possible model is not reasonable. As mentioned in
section 3.2, if we have k explanatory variables, not considering interactions,
then we have 2k possible models. Since we have slightly fewer than 20
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variables we conclude that another method is needed.
What we do is a Backward elimination with a threshold p-value of 0. At

each step we get a value for AIC and BIC which we can plot against the
steps. Note that the last step corresponds to the intercept only model and
the first step to the one containing all variables and interactions. This can
be seen in Figure 4 and 5.

Figure 4: Plot of steps in the Backward elimination with threshold p-value
of 0 against the AIC at each step.
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Figure 5: Plot of steps in the Backward elimination with threshold p-value
of 0 against the BIC at each step.

The AIC is minimized at step 9 and the BIC at step 17. Note that we
do not actually use the plots to visually find the minimal AIC/BIC, instead
we check the actual values in a table.

4.4 Validation & Predictive Power

Now we have a few models to work with, the one from Purposeful selection
and the two from minimizing AIC & BIC. In Table 1 and 2 the results can
be seen.
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Table 1: AIC, BIC, area under ROC curve (AUC), generalized coefficent of

determination R2 and max-rescaled coefficient of determination R̃2, Brier
score (BS) and significance test of null hypothesis H0 : fk = pk for the
different models.

XXXXXXXXXXXStatistic
Model

Purposeful selection Minimzed AIC Minimized BIC

AIC 156256.32 156100.82 156206.40
BIC 156551.87 156518.66 156450.99
AUC 0.679 0.680 0.679
R2 0.0516 0.0525 0.0518

R̃2 0.0904 0.0919 0.0907
HL 235.6434 140.4707 152.6350

BS 0.12004 0.11997 0.12007
E[BS] 0.12040 0.12021 0.12032

Var(BS) [10−7] 2.62180 2.61839 2.62347
z-statistic -0.7131 -0.4680 -0.4948

Two-sided p-value 0.4758 0.6398 0.6207

Table 2: Brier score and its decomposition for the different models. Note
that the Brier score here is different from the one in Table 1, this is since
this Brier score is based on the grouping of estimated probabilities. This is
done so that we can calculate the Reliability, Resolution and Uncertainty.

XXXXXXXXXXXStatistic
Model

Purposeful selection Minimzed AIC Minimized BIC

Brier score 0.12035 0.12021 0.12032
Reliability 0.00011 0.00007 0.00007
Resolution 0.00730 0.00739 0.00728
Uncertainty 0.12754 0.12754 0.12754

We see that all models are significantly different from the data according
to the Hosmer-Lemeshow test. Note that the statistic is approximately chi-
squared with 8 degrees of freedom. The area under the ROC curve is quite
small for all models so we do not expect to be able to discriminate well
with these models. To illustrate, Figure 6 shows the ROC curve for the
minimized BIC model. The max-rescaled coefficients of determination are
all incredibly small.
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Figure 6: ROC curve for the minimized BIC model.

We do however note that the Brier score looks quite good and that we
cannot reject the null hypothesis that the predicted probabilities are equal to
the real probabilities. Note that the main contribution to the Brier score here
is the Uncertainty. We have both small values for Reliability and Resolution.
Hence our models have estimated probabilities close to the outcome but the
spread of the probabilities are small. Our models are hence probably quite
well calibrated but would perform poorly if used to discriminate.

In Figures 7, 8 and 9 we have plotted estimated probabilities against
observed probabilities by grouping the estimated probabilities by rank and
then calculating the observed probabilities as the proportion of deaths. It
looks like the Purposeful selection model performs worse than the other two
for higher probabilities, although they all seem to deviate slightly. We do
note however that it seems as if the models perform quite well for lower
probabilities.
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Figure 7: Estimated vs observed probabilities (calculated by 80 groups) for
the Purposeful selection model.

Figure 8: Estimated vs observed probabilities (calculated by 80 groups) for
the minimized AIC model.
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Figure 9: Estimated vs observed probabilities (calculated by 80 groups) for
the minimized BIC model.

To conclude, the minimized AIC model has the lowest AIC, a BIC close
to the minimized BIC model, the highest AUC and R̃2 and also the lowest
Brier score. Although none of these quantities are much different from the
ones for the other models, this model would probably be the one to call the
”best”.

4.4.1 Validation Using Holdout Samples

Now we try to fit the models to a sample containing years 2007 to 2011 and
then we calculate the model validation statistics on the data from year 2012.
This will quantify the forecasting capabilities of our models. The results are
seen in Table 3.
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Table 3: Area under ROC curve (AUC), Hosmer-Lemeshow test statistic,
Brier score (BS) and significance test of null hypothesis H0 : fk = pk for the
different models. The upper value of each row is the value for the sample
containing years 2007 to 2011 (which the models are fitted to) and the lower
value is the value for the sample containing year 2012.

XXXXXXXXXXXStatistic
Model

Purposeful selection Minimzed AIC Minimized BIC

AUC 0.673 0.674 0.673
0.668 0.668 0.671

HL 211.4271 204.7158 181.0521
1242.4887 392.8128 1078.8727

BS 0.13042 0.13010 0.13056
0.09590 0.09357 0.09517

z-statistic -0.8999 -0.9217 -0.7957
-34.0143 -18.2906 -31.9937

Two-sided p-value 0.3682 0.3567 0.4262
≈ 0 ≈ 0 ≈ 0

As can be seen, all models have a lower AUC in the holdout sample,
although they do not differ by a lot. The Hosmer-Lemeshow test statistic
increases a lot for all models, although the minimized AIC model increases
by a lot less. The Brier score is lower than expected for all models. That is,
the mean squared error is quite small compared to what we would expect.
Hence we reject the null that the estimated probabilities are equal to the
real probabilities but we do note that the change is in the negative direction.

We conclude that if we had to choose a model for prediction it would
probably be the minimized AIC model.

4.5 Interpretation of Coefficient

We now have four models, the three previously mentioned and a univariate
model, that we can use to examine whether the coefficient for the interest
rate is robust. That is, whether the coefficient has approximately the same
value between models. And indeed, this seems to be the case.

Closer inspection tells us that the 95% confidence intervals for the co-
efficients in the Purposeful selection, minimized AIC and minimized BIC
models, all overlap. The coefficient for the univariate model is slightly lower
than the others and the 95% confidence interval only overlaps the confidence
interval for the coefficient in the minimized AIC model. If we construct 99%
confidence intervals, they all overlap.
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Exponentiation of the 95% confidence intervals yields confidence inter-
vals for the odds ratio. All confidence intervals upper bounds lie below 1
and hence there is a statistically significant association between the interest
rate and customers leaving/staying. We also examine each model without
the interest rate. That is, we remove the interest rate from each model and
examine what this results in. These results can be seen in Table 4.

Table 4: Area under ROC curve (AUC), Brier score (BS) and significance
test of null hypothesis H0 : fk = pk for the different models with the interest
rate excluded from the explanatory variables.

XXXXXXXXXXXStatistic
Model

Purposeful selection Minimzed AIC Minimized BIC

AUC 0.677 0.679 0.678
BS 0.12020 0.12003 0.12022

z-statistic -0.6920 -0.5673 -0.4765
Two-sided p-value 0.4889 0.5705 0.6337

We see that for each model we get a higher Brier score and a lower
AUC. Even if the changes are minuscule, we conclude that the interest rate
probably does have a small positive effect on the predictive power of the
models. This together with the robustness of the coefficient tells us that the
interest rate is important and can safely be interpreted. Since the estimate
has been determined to be robust and we this far have considered the min-
imized AIC model as the ”best” we will use the coefficient estimate for the
interest rate from that model. Unfortunately we will not further look at the
interpretation of this estimate since the results of this thesis are confidential.

5 Conclusions

The purpose of this study was twofold: Investigate whether it was possible to
find a logistic regression model with good forecasting abilities and investigate
how the interest rate affects the accounts survival over one year intervals.
We conclude that the model that (locally) minimizes AIC was the best model
both in terms of forecasting abilities, but also in terms of fitting the data.
We are however not fully confident in the forecasting abilities of any model
presented, this because of the rather large Hosmer-Lemeshow test statistics.
Nevertheless, the Brier score and also plots of estimated against observed
probabilities seem to indicate that the models are satisfactory, at least in
the sense of fitting the data. It could be that the models actually fit quite
well, but the large sample size gives the Hosmer-Lemeshow test such power
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that any non-perfect model will be discarded.
When investigating how the interest rate affects survival we first noted

that the coefficient seemed robust. That is, it was approximately the same
over all constructed models. Hence we feel quite sure that the estimated
coefficient corresponds well with reality. Since the minimized AIC model
was deemed the ”best”, the coefficient from this model will be used for
further interpretation, not discussed in this thesis.

6 Discussion

The biggest time consumer during this thesis has been data management.
Before starting, it would have been a good idea to learn how, for instance,
PROC SQL in SAS software works. This would have saved some time and
probably made it possible to do a more thorough analysis, such as build-
ing models that take into account the dependency structure of the data
or properly estimating the cut points for the linear spline transformations.
Nevertheless, this has been a great opportunity to learn about how to as-
semble a data set and people at SBAB have been very helpful, which I am
greatly thankful of. Another thing that has taken some time is actually
getting hold of data that was outside of the data warehouse of the bank.

In hindsight it might have been better to model the account balances
or perhaps the overall flow of deposits using multivariate linear regression,
instead of modeling survival of accounts. Such models might be of more use
to the bank since they can be used to calculate the expected loss or gain from
increasing or decreasing the interest rate. With a model only considering
survival it is more difficult to determine the actual money at stake, and also
we have no indication of the flow of new customers and/or money.

In the banking sector, especially in credit scoring, it is not unusual that
continuous variables are categorized This is both for ease of interpretation
and implementation. Categorizing continuous variables has its share of prob-
lems, see Royston et al. (2005) for more information. For instance, the
categories are often quite arbitrary and we might have a loss of informa-
tion. Methods have been developed to estimate ”optimal” cut points when
categorizing, but these lead to a severe bias, especially the type I error rate
will be very high. This might not be a problem since we are dealing with
a large sample, hence the power to find well behaving categories should be
quite high. Even though categorization might be a solution, we have not
implemented it in this report since it is associated, as mentioned, with a
bunch of problems.

The biggest problem during this thesis has been figuring out how to
decide whether a model has a good fit and forecasting abilities. Remember
that we want a model that, while not necessarily perfect, is acceptable. The
Hosmer-Lemeshow test discards all models and the question then becomes:
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Is this because of the sample size and hence the large power or the possible
fact that the models simply cannot predict events in an acceptable fashion.
On the other hand, according to the created test using the Brier score, we
cannot discard the null hypothesis that the estimated probabilities are equal
to the real probabilities. We also have a quite low area under the ROC curve
and hence discriminating events from non-events is difficult. As we can see
from the decomposition of the Brier score, this probably stems from the fact
that there is not a lot of variation in the estimated probabilities. This only
means that discrimination is bad, not calibration. We also have the fact that
the plots of estimated vs observed probabilities seem to indicate quite good
fitting models. If we set aside the Hosmer-Lemeshow test and blame the
significance on the large sample size, it does seem as if the models are quite
good. On the other hand, when trying to predict later time intervals using
models built on earlier time intervals the results are a bit disconcerting.
With all of the above we feel that it is difficult to determine whether the
models should be used to predict future events.

We should note that it is not really surprising that the models have such
a hard time when forecasting. Our set of explanatory variables are quite
crude, so to speak, and hence we know very little about the customers and
accounts. For instance two of the explanatory variables are age and sex.
We cannot really expect these two to explain a whole lot of the variation
in the data. It would be nice to have variables such as the customer’s
salary, what interest rate they had at their previous bank and if they are
customers at other banks. It could also be possible to ask customers why
they chose SBAB as their bank and then see whether this is a variable that
has predictive power. If a customer chose SBAB because of their interest
rate they might be more sensitive to price changes than a customer who
chose SBAB because they also have a loan there.
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A Expected value and variance of the Brier Score

The Brier score is

BS =
1

N

N∑
t=1

(ft − ot)2 =
1

N

N∑
t=1

(
f2
t − 2ftot + o2

t

)
where N is the sample size, ft is the estimated probability of event t and ot
is the outcome of trial t. Under the null hypothesis H0 : ft = pt, where pt is
the true probability of event t, the expected value of the Brier score is (note
that ot ∼ Bin(1, ft))

E[BS] =
1

N

N∑
t=1

(
f2
t − 2ftE[ot] + E[o2

t ]
)

=
1

N

N∑
t=1

(
f2
t − 2f2

t + ft
)

=
1

N

N∑
t=1

ft (1− ft) ,

and the variance of the Brier score is
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The second equality of the variance calculations comes from the fact that
we assume independent observations in a logistic regression model.
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