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Abstract

In this thesis work, data from a climatology study exploring the

effects of climate warming in northeastern Siberia is analysed. Thaw-

ing of the permafrost and subsequent release of greenhouse gases such

as carbon dioxide and methane is considered to be one of the most

powerful factors that could have a worsening effect on global warm-

ing. The study in question seeks to contribute to improving on the

current poor understanding of this situation through investigation of

the relative proportions of organic carbon from riverine, coastal ero-

sion and marine sources in surface sediments collected from the East

Siberian Sea, at four different sites along a 500 km transect of the

Kolyma paleoriver. To this end, a so-called linear mixing model can

be used. This type of model is used in many scientific applications

where the aim is to investigate the relative contributions of multiple

sources to a mixture. Statistical problems include how to estimate

uncertainty in the proportion estimates. This thesis work illustrates

the use of Bayesian methods to analyse this kind of data and differ-

ent models are compared. The results for the selected model indicate

that the marine organic carbon proportion increases with increased

distance from the river mouth, while the riverine or coastal erosion

or both decrease, and moreover that at the first measurement station,

the marine component is lower than both the riverine and the coastal

erosion component, while for the last measurement station, the ma-

rine proportion is similar to that of coastal erosion while the riverine

proportion is lower.
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Acknowledgements

I would like to express my gratitude to my supervisor Martin Sköld at the
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1 Introduction

A research question of interest in many areas is to estimate the relative
contributions of multiple sources to a mixture. Isotope analysis is com-
monly used for this purpose and examples include e.g. determination of
food sources in an animal’s diet, water sources used by plants and sources
of carbon dioxide efflux from forest floor respiration. Here, the application
is within climatology, where the aim is to estimate the proportions of dif-
ferent sources of organic carbon in samples obtained from the ocean floor
of the East Siberian Sea, to explore effects of climate warming in the Arc-
tic. So-called linear mixing models are often used to analyse this type of
data, and statistical challenges include how uncertainty in the proportion
estimates should be estimated. This thesis work presents an approach to
using Bayesian methods in a linear mixing model application.

2 Background

2.1 Effects of climate warming in Siberia

Since the early 20th century it has been observed that the temperature of
the lower atmosphere and oceans of the Earth has risen. This process is
expected to continue and it is referred to as global warming. The mean
surface temperature of the Earth increased by about 0.8 ◦C during the 20th
century (Intergovernmental Panel on Climate Change (IPCC) AR4 SYR
2007). In an assessment of the scientific literature made in 2007, the IPCC
reported that scientists were more than 90% certain that most of the global
average warming over the past 50 years is due to increasing concentrations
of greenhouse gases produced by human activities (IPCC AR4 SYR 2007).
In 2013, the IPCC stated that the evidence for human influence has grown
since the 2007 assessment (IPCC AR5 WG1 2013).

There are a number of factors that could have an aggravating effect
on the global warming, of which thawing of the permafrost in Siberia is
considered to be one of the most important. The permafrost has been intact
since the end of the ice age 10000 to 11000 years ago, but during the last years
there have been indications that the permafrost has already started to thaw
(Sazonova et al., 2004, Chudinova et al., 2006, Romanovsky et al., 2007). As
much as half of the global soil organic carbon is stored in the top few meters
of the Arctic permafrost (Tarnocai et al., 2009), and upon thawing of the
permafrost, organic material that have been frozen could become released
and degrade. In the degradation process, green house gases such as carbon
dioxide and methane could be released and would thus contribute to the
warming of the climate. This process could occur both on land and during
enhanced export to the Arctic Ocean. To gain more knowledge on the latter
process a study was carried out in the extensive coastal shelf environment of
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the East Siberian Arctic. In the study, which is described in more detail in
section 3.1, the proportions of organic carbon from different sources along a
500 km transect of the Kolyma River in the East Siberian Sea is investigated.

2.2 Linear mixing models

To estimate the proportions of two sources, a linear mixing model with one
isotope could be used. One approach to mixing models is to utilise the law
of conservation of mass to model data, and a reasonable model in many
applications is to assume the following mass-balance equations to hold:

XMixture = PAXA + PBXB

PA + PB = 1

where XA and XB represents the content of the isotope in source A and B
respectively, and XMixture is the content in the mixture, PA and PB are the
proportions of source A and B in the mixture.

For estimation of source proportions from three sources, two different
isotopes are required, the linear mixing model can then be formulated ac-
cording to

X1
Mixture = PAX

1
A + PBX

1
B + PCX

1
C

X2
Mixture = PAX

2
A + PBX

2
B + PCX

2
C

PA + PB + PC = 1

where X1 and X2 indicate the content of the two different isotopes in the
respective type of sample, and A, B and C subscripts refer to the sources
as above.

2.3 Bayesian data analysis

2.3.1 The Bayesian view and some concepts

The two main approaches used in statistical inference today could be con-
sidered to be the classical (frequentist) and the Bayesian. In the frequentist
view, a probability for an event corresponds to its relative frequency in a
large number of independent random trials. This is an example of an ob-
jective probability. Further, parameters are treated as fixed values, with no
probability distributions associated with them.

In the Bayesian approach, probabilities have a wider definition, and may
include subjective probabilities. Further, in the Bayesian approach one is
also willing to assign probability distributions to parameters. The basis for
Bayesian framework is Bayes’ theorem, published in 1763. Bayes’ theorem
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may be expressed as:

p(θ|y) =
f(y|θ)π(θ)

m(y)
,

m(y) =

∫
f(y|θ)π(θ)dθ

where

f(y|θ) is the sampling model specification (likelihood), Y |θ ∼ f(y|θ)
π(θ) is the prior probability specification
p(θ|y) is the posterior distribution
m(y) is the marginal density of the data y

The prior distribution reflects the information we have about the param-
eters before the data is collected, and this is then used together with the
likelihood to compute the conditional distribution of the parameters based
on the data (the posterior distribution). Thus, the knowledge that we have
about the parameters before the data is collected is updated based on the
data through the application of Bayes’ theorem. The support of the pos-
terior will be a subset of that of the prior. The prior could further have
parameters, these are then referred to as hyperparameters.

When prior information is available, e.g. as data from previous experi-
ments or as the subjective knowledge of an expert, this could be utilised to
construct an informative prior for the parameters. If no reliable prior infor-
mation is available, or if one wishes to base the inference solely on the data,
a so-called noninformative prior could be used. With “noninformative” it is
meant in this case to set the probabilities equal to all parameter values. An
example is when the parameter space is discrete and finite, Θ = {θ1, . . . , θn}.
By using the distribution

p(θi) = 1/n, i = 1, . . . , n,

one assigns equal probability to all possible parameter values.
If a prior distribution could be chosen such that a posterior distribution

in the same family as the prior is rendered, it is computationally advanta-
geous, as there is no requirement for numerical integration. This is referred
to as a conjugate prior.

Having specified the prior and applied Bayes’ theorem to obtain the
posterior distribution, this now contains all the current knowledge we have
about our parameter(s). There are a number of ways to present the results,
e.g. a graph of the distribution, or providing point estimates such as the
mean, median or mode. Interval estimation can also be carried out, this is
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usually referred to as a credible set or credible interval, but could also be
referred to as a Bayesian confidence interval. The definition is according to:
a 100× (1− α)% credible set for θ is a subset C of Θ such that

P (θ ∈ C|y) =

∫
C
p(θ|y)dθ ≥ 1− α

where integration is replaced by summation for discrete components of θ.
This definition enables statements in terms of probability according to:

”The probability that θ lies in C given the observed data y (and the prior) is

at least (1− α).”

The definition of the Bayesian credible set could be compared with an in-
terpretation of the frequentist confidence interval for a parameter θ, e.g.

”If the sampling were repeated a large number of times and a confidence inter-

val at the (1 − α) level constructed in each case, (1 − α) × 100% of them would

contain the true value of θ”.

This may be conceived as more difficult to understand and to explain, and
moreover, for a particular dataset, after that data have been collected, the
confidence interval either contains the true value of the parameter or not,
while in the Bayesian case, it is an actual probability statement. Practically,
the limits are often retrieved by taking the α/2 and the (1− α/2) quantiles
of the posterior as the 100× (1− α) credible set for θ.

2.3.2 Model selection

Several measures have been developed to aid in the statistical selection
among a collection of different models, e.g. Akaike information criterion
(AIC) and the Bayesian information criterion (BIC), sometimes called the
Schwarz criterion. Both AIC and BIC require specification of the number
of parameters in the model, which is problematic in the case of Bayesian
models since inclusion of a prior distribution induces a dependence between
parameters, that likely has the effect of reducing the effective dimensionality
(Spiegelhalter et al., 2002). As a solution to this problem, Spiegelhalter et
al. (2002) suggest a generalization of the AIC called the Deviance Infor-
mation Criterion, DIC, that is based on the posterior distribution of the
deviance statistic

D(θ) = −2logf(y|θ) + 2logh(y)

where f(y|θ) is the likelihood function for the observed data vector y given
the parameter vector θ and h(y) is some standardising function of the data
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alone, which thus does not impact in model selection. The posterior expec-
tation of the deviance D = Eθ|y[D(θ)] is a measure of the model fit where
larger values indicate worse fit. The complexity of the model is summarised
by the effective number of parameters pD,

pD = Eθ|y[D(θ)]−D(Eθ|y[θ])

The deviance information criterion (DIC) is defined as

DIC = D + pD = 2D −D(θ) (1)

The pD term compensates for that the posterior expectation of the deviance
will decrease as the number of parameter increases. Smaller values of DIC
indicate a better fit, however DIC values have no meaning in themselves and
it is only differences in DIC between models that are meaningful. In Carlin
and Louis (2009), it is said that differences should be at least between 3 to
5 to be considered interesting (p. 71), in another paragraph they state that
practitioners are often of the opinion that differences smaller than 10 may
not be relevant (p. 73).

DIC has been widely used in applied Bayesian work due to its generality
and that it is relatively easy to compute, however there are some issues that
have been raised, such as that DIC is not invariant to parametrisation, and
that pD can sometimes turn out to be negative in certain circumstances
where the posterior is clearly non-normal.

2.3.3 Bayesian computation

The determination of posterior distributions and summaries such as mo-
ments or quantiles often involve evaluation of complex and high-dimensional
integrals. In the early days, approaches to solve this problem included us-
ing asymptotic methods to obtain analytic approximations to the posterior
density, methods for numerical integration such as Gaussian quadrature and
the expectation-maximisation (EM) algorithm. All these methods have their
drawbacks however, e.g. the Gaussian approach only works for models of
low dimension and the EM algorithm is aimed more at finding the posterior
mode rather than the whole posterior distribution. These problems have
been resolved with the development of Monte Carlo integration methods,
which provide more complete information and are in comparison easier to
program, even for very high-dimensional models. Monte Carlo methods in-
clude both noniterative methods as well as iterative methods, the latter be-
ing more powerful. Examples of iterative methods are Metropolis-Hastings
algorithm and the Gibbs sampler. These methods generate a Markov chain,
which output corresponds to a correlated sample from the joint posterior
distribution, and are referred to as Markov chain Monte Carlo (MCMC)
methods.
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The Gibbs sampler is used in the JAGS software (see more on soft-
ware in subsection 2.3.4) and can be described in the following way: Sup-
pose there are k parameters in a model, θ = (θ1, . . . , θk). Assume that
samples can be generated from each of the full conditional distributions
{p(θi|θj 6=i,y), i = 1 . . . , k} either through direct or indirect sampling. In
either case, one can show that the collection of full conditional distribu-
tions uniquely determine the joint posterior distribution p(θ|y), and hence
all marginal posterior distributions p(θi|y). For an arbitrary set of starting

values {θ(0)2 , . . . θ
(0)
k } the algorithm works as follows:

Gibbs sampler: For (t = 1, . . . , T ), do:

Step 1: Draw θ
(t)
1 from p(θ1|θ(t−1)2 , θ

(t−1)
3 , . . . θ

(t−1)
k ,y)

Step 2: Draw θ
(t)
2 from p(θ2|θ(t)1 , θ

(t−1)
3 , . . . θ

(t−1)
k ,y)

.

.

.
Step k: Draw θ

(t)
k from p(θk|θ

(t)
1 , θ

(t)
2 , . . . θ

(t)
k−1,y)

It can be shown that the k-tuple θ(t) obtained at iteration t converges in
distribution to a draw from the true joint posterior distribution p(θ|y).
This means that for t sufficiently large, (say bigger than t0), {θ(t), t =
t0 + 1, . . . , T} is a correlated sample from the true posterior, from which
any posterior quantities of interest may be estimated. The posterior mean
may be estimated according to:

Ê(θi|y) =
1

T − t0

T∑
t=t0+1

θ
(t)
i (2)

The time from t = 0 to t = t0 is referred to as the burn-in period. If m
parallel chains are run, i.e. separate chains from different starting values,
the mean may be estimated according to:

Ê(θi|y) =
1

m(T − t0)

m∑
j=1

T∑
t=t0+1

θ
(t)
i,j

An estimate of the variance for the posterior mean can be calculated (and
hence, the standard error). Suppose that for a parameter of interest, λ,
we have available a single long chain of MCMC samples {λ(t)}Nt=1 which is
assumed to come from a stationary distribution of the Markov chain after
removal of the burn-in period. According to expression 2 above, an estimate
of E(λ|y) is then given by:

Ê(λ|y) = λ̂N =
1

N

N∑
t=1

λ(t)
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One approach to estimating the variance would be to use the sample vari-
ance, s2λ = 1

N−1
∑N

t=1(λ
(t) − λ̂N )2, divided by N , according to:

V̂ ar(λ̂N ) = s2λ/N =
1

N(N − 1)

N∑
t=1

(λ(t) − λ̂N )2

This estimate would however most likely be an underestimate of the variance
due to positive autocorrelation in the MCMC chain. A better alternative
is to use another estimate that utilises the concept of effective sample size,
ESS. ESS is defined as:

ESS = N/κ(λ)

where κ(λ) is the autocorrelation time for λ given by

κ(λ) = 1 + 2

∞∑
k=1

ρk(λ),

where ρk(λ) is the autocorrelation at lag k for the parameter of interest
λ. κ(λ) can be estimated using sample autocorrelations estimated from the
MCMC chain, summing up to where the autocorrelations drop to e.g. 0.1
in magnitude. The variance estimate for λ̂N is then

V̂ arESS(λ̂N ) = s2λ/ÊSS(λ) =
κ̂(λ)

N(N − 1)

N∑
t=1

(λ(t) − λ̂N )2

To fully explain why the Gibbs sampler works requires advanced Markov
chain theory, but in short it can be mentioned that the Markov chain needs
to be irreducible (for every set A with positive posterior probability, the
probability of the chain ever entering A is positive for every starting point
θ(0)) and aperiodic (the chain can move from any state to any other, there
can be no absorbing states from which there is no escape). Aperiodicity
ensures convergence of the chain to its stationary distribution (the true joint
posterior) and irreducibility ensures this stationary distribution is unique.

With the use of MCMC methods, it is necessary to make an assessment
of whether the Markov chain has converged. The chain can get stuck in one
part of the joint distribution, leading to high autocorrelation (”slow mix-
ing”) in the chain. One solution that has been proposed to this problem is
to retain only every mth iterate after convergence has been obtained, where
m is large enough so that the resulting samples are virtually uncorrelated.
This procedure is known as thinning. Assessment of convergence is usually
done by visual inspection of the chains in so-called trace plots and investi-
gating the autocorrelation structure. See figure 1 for an example of good
convergence and one example of less good convergence. Note however that
no diagnostic can prove the convergence of an MCMC chain, since it uses
only a finite realisation of the chain.
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Figure 1: Trace plots: the plot to the right shows an example of a situation
where there are problems with convergence (a), the plot to the left show an
example where the convergence is good (b). In the plot to the right, the
covariates in the linear model were not centred, whereas in the left plot,
they were centred and convergence was improved. This example is from
modelling the data in Exercise 2.7.12 in Carlin and Louis (2009).

2.3.4 Software

There are a number of different software available for carrying out Bayesian
analysis using MCMC. WinBUGS (Lunn et al., 2000) or OpenBUGS, an
open source version, is one commonly used software (BUGS stands for
Bayesian inference Using Gibbs Sampling), another one is JAGS (Plum-
mer, 2003), which stands for Just Another Gibbs Sampler, that aims for
compatibility with WinBugs/OpenBUGS through using a related version
of the same modelling language (BUGS), however no graphical user inter-
face for processing of the results is provided with JAGS, and thus another
software is required for this purpose. One possibility is to use the R pack-
age rjags to connect to JAGS. The main advantage of JAGS compared to
WinBUGS/OpenBUGS is its platform independence.
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3 Methods

3.1 Description of the current study and data

The data used in this thesis work comes from a study which aims to provide
insight in the effects of climate warming in northeastern Siberia through
investigation of the sources and degradation of terrestrial organic carbon
(OC) in the East Siberian Sea (ESS)(Vonk et al., 2010). Various types of
measurements are performed on surface sediment samples (obtained from
the ocean floor) and on surface water suspended particle samples. Here,
only one part of the measurements is considered, which is the isotope analy-
sis of organic carbon content in surface sediment samples. The objective of
this particular analysis is to investigate the proportions of the organic car-
bon content originating from riverine, coastal erosion and marine sources.
A key motivation is that climate warming is expected to increase the in-
put of organic carbon to the ESS from both riverine and coastal erosion
sources. The coastal component contains OC from soil-permafrost that is
very old, resulting from organic-rich sediments that accumulated during the
Pleistocene, a geological epoch which lasted from about 2588000 to 11700
years ago, whereas the riverine source contains more recent organic matter.

In the study, surface sediment samples were collected from the ESS con-
tinental shelf between the 3rd to the 5th of September in 2008 as part of a 50
day long international Siberian shelf study conducted on board a research
vessel. The samples were taken along a river mouth - midshelf transect
following the Kolyma paleoriver canyon, where the water depth is between
around 10-50m. This submarine valley was formed during glacial periods
when the sea level was lower and since inundation of the shelf, sediments
naturally accumulate in the canyon. The samples were collected from the
ocean floor at eight stations along a distance of ca 500km, see figure 2 for
an overview.

Since there are three sources, two different source markers are required
and here 13C and 14C are used. The measurements involve relating the
13C and 14C contents respectively to 12C content, and further relating to
carbon content in a reference sample, and measurements are expressed as
‘delta’: δ13C and ∆14C. For more detailed information on how these mea-
sures are defined, see Libes (1992) for δ13C and Woods Hole Oceanographic
Institution (2013) for ∆14C.

The total δ13C and ∆14C were measured for the surface sediment organic
carbon content by using isotope mass spectrometer analysis. For δ13C the
analysis was carried out for all stations, but for ∆14C, analyses were only
carried out for four of the eight stations. See table 1 for an overview of the
sampling locations and the available data.
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Figure 2: (a) The graph shows the distribution of a certain kind of
permafrost-soil that accumulated during the Pleistocene (b) Satellite im-
age taken on 24 August 2000, likely from ongoing erosion. (c) Map of the
southern East Siberian Sea showing the locations of the sampling stations
(red circles) following the Kolyma paleoriver canyon (figure taken from Vonk
et al., 2010)
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Table 1: Stations with the distances from the river mouth. Stations with
measurements for both δ13C and ∆14C are indicated with an ‘x’.

Station Distance to
river mouth
(km)

Measurement
for both δ13C
and ∆14C

YS-34B 46 x
YS-35 100 -
YS-36 174 x
YS-37 258 -
YS-38 334 x
YS-39 392 -
YS-40 443 x
YS-41 513 -

Measurements for the organic carbon content for the sources of interest
were collected from analyses reported in the literature or carried out prior
to the current study. Table 2 contains a list of the estimated means and
standard deviations for the respective measurements and the locations they
were sampled from as well as references.

Table 2: Estimated means and standard deviations for the sources, with
sampling location and literature references, retrieved from Vonk et al.
(2010).

Isotope Source Mean
(h)

Std
(h)

Location Reference

δ13C Riverine -29.3 1.7 Kolyma River McLelland et al., 2008
Erosion -25.8 1.7 Kolyma delta Dutta et al., 2006
Marine -21 1 High latitude ar-

eas, otherwise not
specified

Several references, e.g. Mey-
ers, 1997; Semiletov et
al.,2005

∆14C Riverine -296 68 Lena River Unpublished results
Erosion -788 201 Laptev Sea Sánchez-Garcia et al., 2010
Marine -21 25 Northern Pacific

Ocean
Key et al.,2004
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3.2 Statistical methods

The endmember mixing model can be formulated as

X13
Mixture[i] = PR[i]X13

R + PE [i]X13
E + PM [i]X13

M

X14
Mixture[i] = PR[i]X14

R + PE [i]X14
E + PM [i]X14

M

PR[i] + PE [i] + PM [i] = 1

where i indicates the station and equals in order the stations YS-34B, YS-
36, YS-38 and YS-40; X13

Mixture[i] is the total carbon content in the mix-
ture (ocean floor sediment sample) at station i, X13

R is the carbon content
originating from riverine sources, X13

E denotes the carbon content from the
coastal erosion source and X13

M denotes the carbon content from the marine
source, for the δ13C measurements. The variables for ∆14C are denoted
analogously. PR[i], PE [i] and PM [i] denote the proportions of the respective
source riverine, erosion and marine at station i.

The carbon contents for the sources are assumed to be normally dis-
tributed, according to

X13
R ∼ N(µ13R , (σ

13
R )2)

X13
E ∼ N(µ13E , (σ

13
E )2)

X13
M ∼ N(µ13M , (σ

13
M )2)

X14
R ∼ N(µ14R , (σ

14
R )2)

X14
E ∼ N(µ14E , (σ

14
E )2)

X14
M ∼ N(µ14M , (σ

14
M )2)

Given this assumption, and that the sources can be assumed to be inde-
pendent, it follows from known results for the Normal distribution (see e.g.
theorems 3.25 and 3.47 in Alm and Britton (2008)), that the mixtures will
have the following respective distributions

X13
Mixture[i]|PR[i], PE [i], PM [i] ∼ N(µ13Mixture[i], (σ

13
Mixture[i])

2) (3)

X14
Mixture[i]|PR[i], PE [i], PM [i] ∼ N(µ14Mixture[i], (σ

14
Mixture[i])

2) (4)

where

µ13Mixture[i] = PR[i]µ13R + PE [i]µ13E + PM [i]µ13M
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µ14Mixture[i] = PR[i]µ14R + PE [i]µ14E + PM [i]µ14M

and

(σ13Mixture[i])
2 = PR[i]2(σ13R )2 + PE [i]2(σ13E )2 + PM [i]2(σ13M )2

(σ14Mixture[i])
2 = PR[i]2(σ14R )2 + PE [i]2(σ14E )2 + PM [i]2(σ14M )2

Here, we use the values in table 2 for the true means and standard deviations
for the sources. There could potentially be a correlation between X13

Mixture

and X14
Mixture, however we choose not to take that into account here.

We apply three different models to the data, referred to as model 1, 2,
and 3. These are described in more detail below. In all the models, the
likelihoods are given by expression 3 for δ13C and 4 for ∆14C respectively.

Model 1
In this model we set Dirichlet priors for the proportions at all four sta-

tions, that are assumed to be independent between stations:

(PR[i], PE [i], PM [i]) ∼ Dirichlet(α),

with α = (1, 1, 1) for station i. When the elements of the parameter vector
in the Dirichlet distribution have the same value, it is symmetric in that
it does not favour one parameter over another. Further, when all elements
are equal to 1, the distribution is uniform over all points in its support.
Thus, this prior is noninformative, both with respect to the proportion val-
ues within stations, as well as with respect to the proportion relationships
between stations. The model specification in rjags is listed in figure 10 in
the appendix.

Model 2
Here we also use Dirichlet priors for the proportions with α = (1, 1, 1)

for all stations but with an order assumption according to:

PR[1] < PR[2] < PR[3] < PR[4]

PE [1] < PE [2] < PE [3] < PE [4]

PM [1] > PM [2] > PM [3] > PR[4]

That is, it is assumed that the proportions for the riverine and the coastal
sources decrease with increased distance from the river mouth, while the
marine contribution increases. This model was fitted in rjags by running
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model 1, and then selecting the iterations that fulfilled the above order cri-
teria.

Model 3

In this model, we set independent Dirichlet distributions with parameter
vector α = (1, 1, 1) for the proportions for the first and last station, and the
values for the stations inbetween are estimated using linear interpolation,
according to

p(s) = (p0(S − s) + p1s)/S

where p0 and p1 are the proportions at the first and last station respectively,
and s is the distance from the first station to the current station and S is
the distance between the first and last station. See figure 11 in the appendix
for the model specification in rjags.

Model 1 thus makes the least assumptions about the data in that there
are no assumptions regarding the relationship of proportions across stations.
In model 3, the order of the magnitudes of the proportions for stations 1
and 4 is not specified, but it is assumed that the values for stations 2 and 3
lie along a straight line between the values for stations 1 and 4. In model 2
an order relation is set for all proportion values between stations.

Convergence of the MCMC algorithm was assessed using trace and au-
tocorrelation function (acf) plots. To aid in the selection of the number of
sufficient iterations to use for inference, the standard errors of the means of
the respective posterior distributions were additionally consulted. The DIC
measure was calculated for all models to be used as guidance in statistical
model comparison. For model 1 and 3, DIC was calculated using the rjags
function dic.samples, and for model 2 it was calculated according to eq. 1.

The analyses were carried out using R version 3.0.2 and rjags version
3-11.

4 Results and Discussion

For an overview of the data, see figure 3 in which the distance to the river
mouth is plotted against the values for δ13C and ∆14C in the mixtures
(ocean floor sediment samples), respectively. Models 1 and 3 were run us-
ing three parallel chains, with 150000 iterations and the thinning parameter
set to 10. Adaptation was set to 1000 iterations. Starting values for the
proportions were set to (1/10, 3/10, 6/10), (4/10, 5/10, 1/10), (1/3, 1/3,
1/3) respectively for the three chains. Of the iterations, 10 % were removed
as burn-in and this left 40800 iterations in the respective samples in to-
tal. Model 2 was run using one chain for 107 iterations, with start values
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Figure 3: δ13C and ∆14C versus distance to river mouth.

(1/3,1/3,1/3), and of these there were 37106 iterations that followed the
order criteria as defined in section 3.2.

There appeared to be no issues with non-convergence, and the obtained
number of iterations appeared to be sufficient for all models. See the ap-
pendix for density, trace and acf plots, and a table with estimated means
for the proportion parameters and their associated standard errors, adjusted
for autocorrelation.

Graphs of the respective posterior distributions of the proportions from
the different models are additionally displayed in figures 4, 5 and 6.
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Figure 4: Posterior density distributions for the proportions for model 1.
Parameter values are displayed for each source for five randomly selected
iterations, indicated by circles. The values have been jittered along the
x-axis for visibility.

Figure 5: Posterior density distributions for the proportions for model 2.
Parameter values for each source are displayed for five randomly selected
iterations, indicated by circles. These have been joined with lines between
stations. The values have been jittered along the x-axis for visibility.
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Figure 6: Posterior density distributions for the proportions for model 3.
Parameter values are displayed for each source for five randomly selected
iterations, indicated by circles, and lines have been drawn between the values
of the first and the last station. The values have been jittered along the x-
axis for visibility.

20



In figure 7, the posterior distributions from all three models are over-
layed, per station and source. The posterior distributions for model 1 and 3
are quite similar for the first and the last station, while the posterior distri-
butions from model 2 and 3 are quite similar for the two stations inbetween.
Looking at the DIC values in table 3, there is a difference of 5.4 between

Figure 7: Posterior density distributions for the proportions from the three
models. Black - model 1, blue - model 2, red - model 3.

model 1 and 2 and 4.1 between model 1 and 3, thus there is some statistical
support in selecting model 2 above model 1 and perhaps also in selecting
model 3 over model 1. However, a DIC value of around 5 is not gaged as

Table 3: DIC values.

Model D pD DIC

Model 1 58.3 4.8 63.1
Model 2 55.3 2.4 57.7
Model 3 56.3 2.7 59.0

a very important difference according to Carlin and Louis (2009), and in
this situation one should perhaps place higher weight on which model is the
most plausible from a climatological and geological point of view. If model 2
is believed to be the most plausible, then the choice of model is quite clear.
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Based on the credible interval estimates, available in figures 8 (by source)
and 9 (by station) as well as in in table 4, one can conclude for model 2
that the marine proportion at station 1 is lower than from those of sta-
tion 3 and 4 (the estimate is (<0.01,0.16) for station 1 and (0.17,0.44) and
(0.32,0.60) for station 3 and 4 respectively). For the riverine and the coastal
source, the intervals do not separate, however, since the proportion of the
marine source increases with increased distance from the river mouth, then
either the riverine or the coastal erosion source, or both, must decrease.
Further, the interval estimates at station 1 indicate that the marine propor-
tion is lower than the proportions of riverine (0.18,0.51) and coastal erosion
(0.45,0.77). At the last station, the interval estimates are similar for the ma-
rine (0.32,0.60) and coastal erosion proportion (0.30,0.55) while the riverine
proportion (0.01,0.27) is lower.

Figure 8: Estimated medians and 95% credible intervals for the proportions
at the different stations for the three models, by source.
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Figure 9: Estimated medians and 95 % credible intervals for the proportions
at the different stations for the three models, by station. R - riverine, E -
coastal erosion, M - marine.

23



Table 4: Estimated medians and 95% credible intervals for the proportions
at the different stations for the three models.

Model Station Source Median Lower 95% Upper 95%

Model 1 YS-34B Riverine 0.37 0.04 0.62
Erosion 0.53 0.33 0.86
Marine 0.08 <0.01 0.26

YS-36 Riverine 0.26 0.02 0.56
Erosion 0.57 0.35 0.86
Marine 0.15 0.01 0.35

YS-38 Riverine 0.25 0.02 0.58
Erosion 0.49 0.29 0.81
Marine 0.24 0.03 0.44

YS-40 Riverine 0.13 0.01 0.40
Erosion 0.47 0.30 0.77
Marine 0.38 0.10 0.55

Model 2 YS-34B Riverine 0.35 0.18 0.51
Erosion 0.59 0.45 0.77
Marine 0.04 <0.01 0.16

YS-36 Riverine 0.28 0.12 0.45
Erosion 0.54 0.41 0.70
Marine 0.17 0.06 0.30

YS-38 Riverine 0.21 0.06 0.37
Erosion 0.48 0.37 0.63
Marine 0.31 0.17 0.44

YS-40 Riverine 0.11 0.01 0.27
Erosion 0.41 0.30 0.55
Marine 0.47 0.32 0.60

Model 3 YS-34B Riverine 0.38 0.06 0.61
Erosion 0.53 0.34 0.84
Marine 0.07 <0.01 0.23

YS-36 Riverine 0.28 0.10 0.43
Erosion 0.52 0.40 0.69
Marine 0.20 0.10 0.29

YS-38 Riverine 0.19 0.06 0.37
Erosion 0.50 0.36 0.69
Marine 0.31 0.15 0.43

YS-40 Riverine 0.15 0.01 0.38
Erosion 0.49 0.32 0.72
Marine 0.35 0.15 0.49
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6 Appendix

Figure 10: Model 1 specification in rjags.
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Figure 11: Model 3 specification in rjags.
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Figure 12: Plots of posterior densities model 1.
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Figure 13: Plots of posterior densities model 2.
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Figure 14: Plots of posterior densities model 3.
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Figure 15: Acf plot model 1, chain 1
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Figure 16: Acf plot model 1, chain 1
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Figure 17: Acf plot model 2
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Figure 18: Acf plot model 2
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Figure 19: Acf plot model 3, chain 1
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Figure 20: Acf plot model 3, chain 1
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Figure 21: Trace plot from model 1 (riverine component)
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Figure 22: Trace plot model 2 (riverine component)
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Figure 23: Trace plot model 2 (coastal erosion component)
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Figure 24: Trace plot model 2 (marine component)
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Figure 25: Trace plot from model 3 (riverine component)
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Table 5: Estimated means and standard errors (adjusted for autocorrela-
tion).

Model Station Source Mean SE

Model 1 YS-34B Riverine 0.36 0.0010
Erosion 0.55 0.0009
Marine 0.10 0.0005

YS-36 Riverine 0.27 0.0010
Erosion 0.58 0.0008
Marine 0.16 0.0007

YS-38 Riverine 0.26 0.0010
Erosion 0.51 0.0009
Marine 0.24 0.0007

YS-40 Riverine 0.15 0.0009
Erosion 0.49 0.0008
Marine 0.36 0.0007

Model 2 YS-34B Riverine 0.35 0.0009
Erosion 0.60 0.0009
Marine 0.05 0.0005

YS-36 Riverine 0.28 0.0010
Erosion 0.54 0.0008
Marine 0.17 0.0007

YS-38 Riverine 0.21 0.0009
Erosion 0.48 0.0008
Marine 0.31 0.0008

YS-40 Riverine 0.12 0.0008
Erosion 0.42 0.0007
Marine 0.47 0.0008

Model 3 YS-34B Riverine 0.36 0.0010
Erosion 0.55 0.0008
Marine 0.09 0.0005

YS-36 Riverine 0.28 0.0005
Erosion 0.53 0.0005
Marine 0.20 0.0003

YS-38 Riverine 0.19 0.0007
Erosion 0.50 0.0006
Marine 0.30 0.0004

YS-40 Riverine 0.16 0.0008
Erosion 0.49 0.0007
Marine 0.34 0.0005
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