
Kandidatuppsats i matematisk statistik
Bachelor Thesis in Mathematical Statistics

Acquisition of grammatical gender and
number agreement in Italian as a
second language
- A statistical analysis

Magnus Gudmundson



Matematiska institutionen

Kandidatuppsats 2014:2

Matematisk statistik

Maj 2014

www.math.su.se

Matematisk statistik

Matematiska institutionen

Stockholms universitet

106 91 Stockholm



Mathematical Statistics
Stockholm University
Bachelor Thesis 2014:2

http://www.math.su.se

Acquisition of grammatical gender and number

agreement in Italian as a second language - A

statistical analysis

Magnus Gudmundson∗

Oktober 2014

Abstract

In this bachelor thesis we aim to achieve knowledge of which factors

that can explain the difficulties with correct use of number and gender

agreement while learning Italian as a second language. Previous studies

has looked at different factors, such as measures of lexical diversity and

the availability and reliability measures, in an univariable way. Aim

of this thesis is to investigate these factors in a joint statistical model

to answer a given number of hypothesis directly related to the con-

sidered factors. The collected data are the binary outcomes of correct

or incorrect use of number and gender agreement in transcribed inter-

views of Swedish students studying Italian at the university. Due to

the way data has been collected it possess an unbalanced nested struc-

ture which in combination with the binary outcome suggests a rather

complex hierarchical modelling approach. But the question whether it

is even possible to fit complex model using maximum likelihood esti-

mation arises from the fact that the majority of outcomes are cases of

correct use why we most likely will face the numerical problem of sep-

aration. In the analysis we thereby adopt the strategy of fitting a less

complex base model to investigate the limits of a maximum likelihood

approach and to get an idea of which covariates to include in a more

complex model. The results of the final base model in terms of the

hypothesis are presented but the interpretation of the results should

be cautious due to the violation of the model assumption of indepen-

dent samples. From the fitting of the base model we can conclude that

we are not able to proceed with a extended analysis using maximum

likelihood estimation. Ideas and suggestions for further analysis based

on Bayesian inference are discussed but not explicitly presented.
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1 Introduction

Difficulties in language acquisition differ between learner and learner, but
some difficulties are due to the characteristics of the specific language. All
languages have some degree of an intricate unique semantic structure in
terms of irregularities of the way words are connected to form, what one
intuitively would like to call, well formed sentences. These irregularities
could be considered problematic for any learner and even in some cases
problematic for the experienced user. In this bachelor thesis we will conduct
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a statistical analysis by taking a closer look at the the specific problem of
number and gender agreement in learning Italian as a second language. This
field of studies in language acquisition is relatively unexplored in terms of
thorough statistical methods why a statistical analysis is of special interest.
In writing this thesis we used knitr (Xie et al., 2013) for dynamic report
generation in R (R Core Team, 2013) with output language LATEX.
We will in this section start by in section 1.1 taking a look at some basic
Italian grammar and in section 1.2 we explain the two concepts types and
tokens. We end by, in section 1.3, introducing the theory of the Competition
Model.

1.1 Grammatical gender and number agreement in Italian

To be able to grasp the notion of number and gender agreement in Italian
we give here a short repetition of grammatical fundamentals such as noun,
adjective, number and gender. Those who are familiar with the basics of
Italian grammar can skip this part.

1.1.1 Some grammar

A noun is a class of words that normally represent an object, abstract or
concrete, such as ”car”, ”city, ”mother”, ”thought” or ”math department”.
The adjective on the other hand describes the specific object by naming
some characteristics such as ”blue”, ”tall”, ”hungry” or ”impossible”. With
the two classes together we get things like ”tall mother”, ”blue car” and
”impossible thoughts”.
The last example where the noun ending ”s” was used gave us information
about that it is not just one impossible thought but several of them. This
introduces the concept of number that is whether the noun denotes one
(singular) or several (plural) objects.
As a final step we need the gender. In some languages, including Italian,
the nouns are classified as being either masculine or feminine. Just as
information about number, information about gender is concealed within
the noun and normally in terms of a specific ending. The difficulties of
learning how to interpret and use this information while learning Italian as
a second language is the main concern of this thesis.

1.1.2 Italian grammar

In this thesis the data consists of transcribed interviews of students studying
Italian. The main interest is in trying to find factors which help explain
the difficulties of learning how to correctly use number and gender when
combining an adjective with a certain noun.
Let’s take a look at some basic examples to get an idea of the problem at
hand. The sentences ”dear brother”, ”dear sister”, ”dear brothers”, ”dear
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sisters” translates respectively into Italian as ”caro fratello”, ”cara sorella”,
”cari fratelli” and ”care sorelle”. In ”caro fratello” the noun ”fratello” means
brother and the adjective ”caro” translates as ”dear”. Obviously ”fratello” is
being classified as masculine and, here as in the other examples, we can see
that the adjective ending in ”caro” inherits the noun ending which in this
case is ”o” and thereby also carrying the information masculine singular.
When the information in the noun and adjective agree, that is being used
correctly, a speaker achieve number and gender agreement. In ”care sorelle”
translated as ”dear sisters” where the noun carries the information feminine
plural the ending ”e” indicates that this might be the right interpretation.
The above examples are pretty straight forward in the sense that the gender
of the objects under consideration is obvious. In general this is not the case
and no strict rules are available to guide the learner. For example in ”lavoro
dificile” translated as ”hard work” the noun ”lavoro” indicates masculine
singular but the adjective ”dificile” seems to carry the information feminine
plural. Of course this is not a case of non agreement. In fact the ending ”e”
in ”dificile” is the same for both feminine and masculine in singular. These
types of agreements cause troubles for the new learner and in could in some
sense be considered as general problems.

1.2 Types and tokens

Two other concepts, types and tokens, will occur frequently. As an expla-
nation consider the set {0, 1, 1, 0, 1, 3}. In this set we have the three types
0, 1 and 3 and six tokens. That is the digits represent tokens and the types
represent the specific number of the digit. Another example, consider the
sentence ”I studied and I studied”. Here ”I”, ”studied” and ”and” are the
three types but we have a total of five tokens.

1.3 The Competition Model (CM)

The main questions and hypothesis considered in this thesis, presented in
the next section 1.4, have their origin in a specific theoretical background.
Here a short presentation is given of the theory to elucidate and motivate the
questions asked. For a comprehensive presentation see MacWhinney (2005).
The theory of the Competition Model (CM) is partly built upon the idea
that language can be described as a distributional system where different
forms and functions are mapped to one another in terms of a probabilistic
network. A function can be considered as the meaning of a specific expres-
sion where the expression is the actual form. Different forms/expressions
may be used to express the same function/meaning and different functions
may be used to interpret a specific form. When there are multiple choices of
forms and functions we say that these ”compete” with one another in terms
of our probabilistic network.
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So in the spirit of CM language acquisition can be thought of as building a
probabilistic system where the building process partly consists of updating
our network given a linguistic input. As a consequence frequencies and reg-
ularities of such input are of importance. These frequencies and regularities
the CM linguistics tries to summarize as frequency measures such as avail-
ability and reliability (see section 2.1.4).
The idea of competition in terms of probabilistic network have its origin
within the area of psycho-linguistics and cognitive science.

1.4 Aims of the analysis

In previous studies on number and gender agreement in learning Italian as
second language the distributional characteristics under consideration have
been investigated using mainly descriptive methods. In those studies where
statistical methods have been used the factors of interest, such as availability
and reliability, have been considered in a univariable way. The main aim
of this thesis is to consider all factors in a joint statistical model and under
this model answer the following four hypothesis.

• Singular agreement will have higher rates of correct use than plural
and masculine agreement will have higher rates of correct use than
feminine. This is motivated by the fact that singular and masculine
has higher frequency rates in the language input.

• Higher values of the frequency measures availability and reliability,
defined in section 2.1.4, will have a positive effect on correct use in
terms of number and gender agreement.

• That learners of Italian with a higher linguistic level have higher rates
of correct use. The VOCD measure introduced in section 2.1.3 will be
used as a measure of linguistic level.

• That learners of Italian as a second language get better on using num-
ber and gender agreement over time.

2 Data of the InterIta corpus

The data used in this thesis has been extracted from the corpus InterIta
created at the Department of French, Italian and Classical languages at
Stockholm University, see Bardel (2004).
InterIta is composed of 71 transcribed recorded interviews in which Swedish
students, studying Italian at different levels at Stockholm University, have
been asked to talk in Italian about things such as their family, Italy and
future projects. Thus the interviews are conducted as natural dialogues.
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All 25 students who signed up for the project did so without any sort of
compensation and participated only out of interest.
Some of the individuals has been interviewed just once while others has
been interviewed five or six times, see table 1 for a summary of interview
frequencies. The dates of the recordings have been chosen in terms of the
availability of the participants and hence does not follow a specific pattern.
Each interview have a recording length of approximately 25 minutes.

no interviews 1 2 3 4 5 6

no stud 5 7 4 6 2 1

Table 1: Number of students in each interview frequency

2.1 The variables

The data under consideration in this thesis is the extraction of all noun ad-
jective combinations extracted from the interviews in InterIta . This was
done in Gudmundson (2012). For examples on noun adjectives combinations
see section 1.1. The process of extracting was done by first letting a com-
puter program run through the entire data set and tag each word with it’s
grammatical characteristics. In the next part of the extraction a Perl Script
was created to extract the noun adjective combinations and organize them
accordingly. As a last step all combinations were run trough manually and
classified as either correct or incorrect use in terms of number and gender
agreement.
The resulting structure of data is as as follows. We have a total of 25 stu-
dents which have been interviewed a different number of times as presented
in table 1. From each of these 71 interviews all noun adjective combinations
where extracted. The number of extracted combinations differ of course
from interview to interview but the total number sums up to 3177. What
we end up with is a unbalanced nested structure with noun adjective com-
binations nested within interviews and interviews nested within students.
The available data on the students, the interviews and the noun adjective
combinations leads to the definition of the following set of variables which
we will use as the base of the statistical analysis.

2.1.1 Outcome

The outcome, that is whether the speaker manages to combine the noun and
the adjective in a correct way in terms of number and gender, we define as
the binary variable corr.use. So corr.use takes value 1 if correct use and 0
otherwise.
To emphasize the nested structure we consider it here in terms of corr.use
where we enumerate a specific outcome as yj,k,l, j = {1, .., 25}, k = {1, .., nj},
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l = {1, ..., nj,k}, where j refers to the level of students, k refers to the level
of interviews and l refers to the level of noun adjective combinations.
In the following sections we define the rest of the variables following the
hierarchical structure as we move our way up the three levels.

2.1.2 Student based variables

We start by introducing the variables denoting the characteristics of the
students. The name (not the real name), and sex of the 25 student we
define as the nominal variable name and the binary variable sex.

The students age in years at the time of the first recording occasion will
be represented by the ordinal variable age.first with possible values in Z+.
Each student has spent a different amount of time measured in months in
Italy at the time first interview this time we define as the continuous variable
ital.time taking values in R+.
Number of semesters spent studying Italian at some university we define as
the ordinal variable univ.time with values in {0, 1, 2, 3}. An other factor
of interest is the number of Roman based languages the students to some
degree can speak. Roman based languages are similar in structure and
use and knowing one will probably make it easier to learn a new one. To
the family of Roman languages counts for example French, Spanish and
Portuguese. The number of Roman languages the student know as a second
language at the time of the first interview we define as the ordinal variable
roman with values in {0, 1, 2, 3}.

2.1.3 Interview based variables

The interview number in terms of order we define as the ordinal variable
int.numb with possible values in int.numb ∈ {1, ..., 6}
The date of the recorded interview will be represented by the variable
rec.date with values such as ”2001-09-21”. Using these dates we define one
additional variable which gives the time, measured in months, since the first
interview for a specific student and interview occasion. In notation we will
represent this variable as months.rec.

VOCD (MacWhinney, 2000) is a measure of lexical diversity which can
be described as the range and diversity of the vocabulary of a specific text.
This metric will be used as information about the level of speech of a tran-
scribed interview where higher values indicates higher levels. A more basic
measure of the same kind is the Type Token Ratio where the number of
types is divided by the number of tokens. The Type Token Ratio exempli-
fies the main problem with these kinds of measures namely that as soon as
the length of a text increases, in other words the number of tokens increases,
the ratio drops in value. This problem is supposed to be dealt with by using
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the VOCD measure which under the right circumstances is supposed to be
more or less independent of the total number of tokens in the text under
consideration. VOCD we define as the continuous variable vocd with value
domain R+

The total number of spoken tokens during the approximately 25 min long
interview we define as the ordinal variable token.freq with value domain Z+.

2.1.4 Adjective noun combination based variables

Finally we consider those variables with information on the noun adjective
combinations.
The ending of the noun and the ending of the adjective in the combination
we define respectively as the nominal variables noun.end and adj.end where

noun.end =



a if ends in “a”
A if ends in “à”
c if ends in “consonant”
e if ends in “e”
i if ends in “i”
o in ends in “o”

adj.end =


a if ends in a
c if ends in “consonant”
e if ends in “e”
i if ends in “i”
o in ends in “o”

When the noun and the adjective in the combination have the same end-
ing, as in care sorelle (dear sisters) where both end in e, there is assonance.
One can say that the noun and adjective more or less rhymes under these
circumstances. Assonance we define as the binary variable asso.

Next we take a look at the measures availability and reliability. The pur-
pose of the two is to describe how common or unique a specific class of nouns
is in relation to other classes within a specific language. The classification
is defined by noun ending, gender and number. As a representation of the
Italian language the corpus LIP created by De Mauro et al. (1993) have been
used. It’s a summary of numerous discussions taking place in four different
Italian cities over a two year period. In other words transcribed discussions
of Italians speaking Italian. The frequencies of the noun classes in LIP are
then used as representations of the actual frequencies in the Italian language.
By these frequencies one calculate the availability as below where the rather
sloppy notation {nounending, gender, number} is to be interpreted as the
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class of all nouns with a specific noun ending, specific gender and a specific
number.

#{nounending, gender, number}
#{gender, number}

That is how common is this noun ending given the specific gender and
number. Reliability is calculated as

#{nounending, gender, number}
#{nounending}

.

Here the ratio is instead being expressed with the total number of oc-
currences of the specific noun ending in the denominator. This can be in-
terpreted as how common the gender and number combination is given the
the specific noun ending. Intuitively these measures might explain difficul-
ties with the learning process of number and gender agreement in terms of
how common one ending is or how unique it is. So the availability and the
reliability of the noun in a specific noun adjective combination we define as
the two continuous variables noun.reliab and noun.avail taking there values
on the interval [0, 1].
Another measure of interest is the validity which is defined as the product of
the availability and the reliability, that is the interaction between the two.
The validity we define as the continuous variable noun.valid which of course
also takes its value on the interval [0, 1].
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2.1.5 Variable summary

The variables described in the previous text we summarize in the following
table.

Level Abbreviation Description Type Values

Student

name Student Name Nominal {Alice, Ulla, ...}
age.first Student Age Ordinal Z+

female.male Student Sex Binary {female,male}
ital.time Time in Italy Continuous R+

univ.time Semesters Ordinal {0, ..., 3}
Roman Languages Spoken Ordinal {0, ..., 3}

Interview

int.numb Interview Number Ordinal {1, ..., 6}
rec.date Recording Date Ordinal {2001-09-21,...}
vocd VOCD Continuous R+

token.freq Token Frequency Ordinal Z+

months.rec Months since first Interview Continuous R+

Noun

Adjective numb Number Binary {sing, plur}
Combination gend Gender Binary {fem, masc}

noun.end Noun Ending Nominal {a, A, c, e,i,o}
adj.end Adjective Ending Nominal {a, c, e, i, o}
asso Assonance Binary {0,1}
noun.reliab Noun Reliability Continuous [0, 1]

noun.avail Noun Availability Continuous [0, 1]

noun.valid Noun Validity Continuous [0, 1]

Outcome

corr.use Correct Incorrect use Binary {0,1}
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3 Descriptive analysis

In this section we will examine the distributional characteristics of each vari-
able included in the data set. We will try when possible to implement the
nested structure into the descriptives but most of the variables character-
istics will be examined just on its specific level. To get an overview of the
available data and variables described in the previous section, table 2 shows
the first five rows in the of the data set.

name age.first sex int.numb rec.date vocd token.freq

1 Alice 19 f 1 2001-09-21 33.220 1070
2 Alice 19 f 1 2001-09-21 33.220 1070
3 Alice 19 f 1 2001-09-21 33.220 1070
4 Alice 19 f 1 2001-09-21 33.220 1070
5 Alice 19 f 1 2001-09-21 33.220 1070

numb gend noun.end adj.end asso noun.reliab noun.avail

1 sg f a c 0 0.946 0.642
2 sg f a a 1 0.946 0.642
3 sg f a a 1 0.946 0.642
4 sg f a a 1 0.946 0.642
5 sg m c c 0 0.897 0.016

noun.valid corr.use error ital.time univ.time roman

1 0.608 1 c 0.5 1 1
2 0.608 1 c 0.5 1 1
3 0.608 1 c 0.5 1 1
4 0.608 1 c 0.5 1 1
5 0.015 1 c 0.5 1 1

Table 2: First five rows of the data set.

We now proceed by examine the data, variable by variable and just as
in section 2 following the levels of the hierarchical structure.

3.1 Student descriptives

Figure 1 contains a barplot of the ages of students at their first recording
occasion and their sex. The median age is 25 years. We also notice that
only 5 out of 25 students are males.

Looking at figure 2 we have corr.use from the first interviews plotted
against ital.time the time spent in Italy. This type of plot will be used
frequently through out the descriptive analysis. In this plot the size of
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Figure 1: Age and Sex distribution of the 25 interviewed persons.

the circles are proportional to the frequency of observations in that specific
point. The LOESS curve, Cleveland (1979), is a non parametric regression
method which here is used strictly as a descriptive tool as an indicator of
trends. Now looking at figure 2 once again we see an indication of that those
students who spent more time in Italy performed better at the time of the
first interview.

The number of Roman languages the student know as a second language,
which we see in table 3, seems to have a negative effect on the rate of correct
use. This might seem counter intuitive but from the view that being able
to speak a number of similar languages makes things more ambiguous, it’s
not.

0 1 2 3

0.94 0.90 0.89 0.84

Table 3: The mean rate of correct use given number of Roman languages
spoken by the student.

In figure 3 the mean rate of corr.use per interview is plotted against the
time between each interview occasion for each participant with more than
one interview. The plot is divided in to four separate plots to easier get an
overview of the respective students. The lack of incorrect uses is apparent,
that is the majority of the recorded students have been performing to well.
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Figure 2: Descriptive illustration of the association between time spent in
Italy at the time of first interview an the outcome. Observations are shown
as circles proportional the frequency. Furthermore, the average per time
unit and a LOESS curve are shown.

Only 292 of the 3177 outcomes are incorrect which might be a problem
for the construction of a joint model. One can see that there is a huge
variation in individuals in terms of initial values and their development over
time. Few students shows indication of improvement and no overall trend is
apparent. This might be explained by the fact that most students seem to be
already on really high linguistic level. Nonetheless they still have problems
of getting the noun and gender agreement right and what factors that are
of significance in explaining those problems is of interest.
There is one obvious outlier with an initial value of approximately 0.1 in the
lower left plot. A closer examination of the student reveals that the person
does not fulfill certain criteria to be considered a suitable representative of
the population under consideration. The student is removed from the data
set and will not be considered in the further analysis. Before proceeding we
make sure that the rest of the student sample fulfill the population criteria.

Those students with only one interview we can see in table 4. The values
are extremely high but not extreme in relation to what we see in figure 3.

Cecilia David Frank Kristina Sandra

Mean of corr.use 0.905 0.971 0.967 0.981 0.924

Table 4: Mean of correct use for students with just one interview.
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Figure 3: Time since first interview of those students with more than one
interview occasion.

3.2 Interview descriptives

VOCD which we in section 2.1.3 introduced as a measure of lexical diver-
sity with the purpose to serve as an representation of the level of speech.
We would then expect that an increase in VOCD suggests a higher rate in
correct use. If we look at figure 4 there is some indication of an increase
of correct use with higher values of VOCD. For values larger than 80 the
variance show signs of being stable compared with values below 80 where
the variance is greater and more unstable.
Looking at the rate of correct use against token frequency figure 5 tells us
than an increase in frequency means higher rates of correctness. The vari-
ance follows a similar pattern by decreasing with higher values. If we with
higher levels of speech mean higher rates in correct use it seems like the
number of uttered tokens during the 25 min interview might be a better
measure.
The plot in figure 6 indicates some positive correlation between token fre-
quency and VOCD.
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Figure 4: Correct use against VOCD measure.
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Figure 5: Correct use against token frequency.

3.3 Number and gender descriptives

Now let us follow the line of the token frequency as an indicator of level of
speech. Splitting the data given the binary variables number, gender and
assonance respectively we plot once again correct use against token frequency
but this time given the binary variables. This will show us how the token
frequency and the binary variables are confounded but more importantly it
will show how they affect the mean rate of correctness within each interview
and thereby reveal an eventual general pattern.
Looking at the token frequency given gender in figure 7 we see that given
masculine the mean rate of correct use is overall higher than given feminine.
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Figure 6: Token frequency against VOCD.

For higher frequencies feminine seems to stable around 0.9 and masculine
around 0.96 indicating that feminine gender is the harder gender to master
in terms number and gender agreement. The marginalized relation between
gender and correct use presented in table 5 tell us as expected that the
rate of correct use is higher in cases of masculine gender. A Chi-Square
test generates a p-value of 0 indicating dependence on this general level not
considering confounding factors. The Chi-Square test implemented in this
way is the statistical method used in previous studies.
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Figure 7: Correct use against the token frequency given feminine and mas-
culine gender respectively.

The token frequency given number tells a similar story as in the case of
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Gender
f m

Correct Percent All Percent All

0 11.5 179 6.558 101
1 88.5 1377 93.442 1439

Table 5: 2× 2 table over gender and correct use with column proportions.

gender. We see in figure 8 that token freq given singular seems easier to
master than plural which overall have a lower rate of correct use. Variance
is also greatly reduced given singular compared to given plural. In table
6 the results are again as expected with a higher rate of correct use given
singular. The Chi-Square test generates a p-value of 0 telling us that there
is dependence between number and correct use under the marginalized dis-
tribution. The previous results of gender and number are both consistent
with hypothesis one stated in section 1.4.

500 1000 1500 2000 2500

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

token.freq given numb=sg

co
rr

.u
se

Mean corr.use
corr.use
LOESS

5 observations
25 observations
75 observations

500 1000 1500 2000 2500

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

token.freq given numb=pl

co
rr

.u
se

Mean corr.use
corr.use
LOESS

5 observations
25 observations
75 observations

Figure 8: Correct use against the token frequency given singular and plural
number respectively.

When there is assonance, that is whether the noun and adjective have the
same ending, we intuitively would say simplifies the learning process. Figure
9 verify this assumption to some extent. There is an overall difference but
for higher values of token frequency the partial distributions does not show
much difference. One big difference we can see in that for values larger than
1500 there is almost no variance given there is assonance which overall have
a smaller variance compared to when there is none. The 2× 2 contingency
table of the marginalized distribution in table 7 gives us with a p-value,
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Number
pl sg

Correct Percent All Percent All

0 14.61 168 5.755 112
1 85.39 982 94.245 1834

Table 6: 2× 2 table over number and correct use with column proportions.

generated by the Chi-Square test, of 0.003 telling us there is dependence
between correct use and assonance.
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Figure 9: Correct use against the token frequency given assonance and not
assonance respectively.

Assonance
0 1

Correct Percent All Percent All

0 11.43 109 7.983 171
1 88.57 845 92.017 1971

Table 7: 2×2 table over assonance and correct use with column proportions.

Recalling hypothesis two from section 1.4 we are interested in the ratio
of correct use in relation to the frequency measures noun reliability and
noun availability. In figure 10 correct use is plotted against the two. Noun
reliability show signs of improvement for higher with an increase in value
and is more or less linear in shape. This is consistent with the hypothesis
which states that higher values of reliability means higher rates of correct
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use. Noun availability show no signs of linearity and the LOESS curve takes
values outside the range of the response. We could have used a GAM curve
with a binary response instead to avoid this problem.
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Figure 10: Correct use against noun-reliability and noun-availability respec-
tively.

Something intuitively important when looking at number and gender
agreement are the different endings of the nouns and the adjectives. From
a CM perspective (see section 1.3) the frequencies of the different endings
in the Italian should be if interest. No such frequencies are available in the
data but we can consider the classification due to the endings them self. In
table 8 we see that the different noun endings show signs of big differences
in both frequency of use and proportion of successes. These differences
indicate a dependence between the rate of correct use and the noun endings.
We observe a similar relation of dependence between correct use and the
adjective endings looking at table 9.
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Correct
0 1

Noun Percent All Percent All

a 6.343 51 93.66 753
A 5.814 5 94.19 81
c 5.714 4 94.29 66
e 14.815 120 85.19 690
i 12.804 79 87.20 538
o 2.962 21 97.04 688

Table 8: 6× 2 table over noun ending and and correct use with row propor-
tions.

Correct
0 1

Adjective Percent All Percent All

a 8.9947 68 91.01 688
c 0.8547 1 99.15 116
e 7.9365 65 92.06 754
i 14.8668 106 85.13 607
o 5.7887 40 94.21 651

Table 9: 6 × 2 table over adjective ending and and correct use with row
proportions.

4 Statistical modeling

As mentioned in section 3.1 there is an overall high ratio of the response vari-
able ”correct use” being equal to one. As a consequence we will most likely
face difficulties if aiming to fit a model with some degree of complexity due
to problem of separation among the observations and hence non-convergence
of the IRLS (iterated re-weighted least square) algorithm. Because of these
difficulties our modeling strategy will follow the line of fitting a base model
in which we assume no difference between students but still to some degree
adjust for differences between interviews by considering one or two interview
based covariates. One can then try to expand the model structure by fitting
a model in which we consider the whole nested structure of data possibly
including a random effect on the level of students. This will be discussed
briefly in section 5. The purpose of the base model is to establish an idea of
which covariates to include in a more complex model. Another purpose is to
see whether its even possible to fit a model at this simpler level due to the
lack of non-correct outcomes in the response. But before we start modeling
a short presentation of the model structure will be given in section 4.1 fol-
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lowed in section 4.1.2 by a formal definition of complete and quasi-complete
separation. The reason for including the section dedicated to separation is
because it is of importance when it comes to understand the problem of
fitting a logistic regression model using maximum likelihood based inference
when facing the type of data used in this thesis.

4.1 Logistic regression modeling

The response variable ”correct use” is assumed to be independent realiza-
tions of Bernoulli distributed variables, i.e Yj,k,l ∼ B(πj,k,l). The sub-
scripts {j, k, l} are defined according to the nested structure as j = 1, .., 25,
k = 1, .., nj , l = 1, ..., nj,k, where j refers to a specific student , k refers
to a specific interview of student j and l refers to a specific noun adjective
combination in this interview. To avoid this cumbersome but informative
subscript notation we will from now on in this section use the single subscript
i such that the response now can be written as Yi ∼ B(πi) where i = 1, ..., n
and n is the total number of realizations. A standard approach for modeling
binary data is the logistic regression model (Agresti, 2013), which is part
of the family of generalized linear models. The logistic regression model
structure can be written as

logit(E(Yi)) = logit(πi) = xtiβ

where βt = (β0, ..., βp) is the vector of unknown parameters and xti is the
i’th row of the design matrix X of the model with dimension n × (p + 1)
where row xti corresponds to the relevant covariates of observation yi. Since
the logit-link is just the log odds ratio, that is

logit(πi) = log

(
πi

1− πi

)
we get that the probability of correct use evaluated in the i’th realization is
given by

E(Yi) = πi =
exp(xtiβ)

1 + exp(xtiβ)
. (1)

4.1.1 Parameter inference based on the log likelihood

Consider the binary variable Y conditioned on the vector xt = (x0, ..., xp)
where x ∈ Rp+1 represent an encoding of continuous and discrete covaritates.
Now, given the logit link from (1) we have that

P (Y = 1|x) =
exp(βtx)

1 + exp(βtx)
=

1

1 + exp(−βtx)
,

and hence
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P (Y = 0|x) =
1

1 + exp(βtx)
.

Given our n observations we define the two sets H1 = {i : Yi = 1},
H0 = {i : Yi = 0} where i = 1, ..., n. We may now write the log likelihood
function as

l(β; y,X) =
∑
i∈H1

log

(
1

1 + exp(−βtxi)

)
+
∑
i∈H0

log

(
1

1 + exp(βtxi)

)
. (2)

Using the method of maximum likelihood for inference of the parameter
estimates β̂ we need to locate the point β which maximizes the log likeli-
hood function. For logistic regression models in general, due the non linear
relationship between the linear predictor Xβ and E(Y ) this has to be done
by implementing iterative numerical methods such as the IRLS algorithm
(see Wood, 2006). By ”existence” of the maximum likelihood estimate we
mean finitness and uniqueness. Under some circumstances due to structural
properties of the design matrix of the model the estimate does not exist and
hence the IRLS algorithm does not converge. We will now take a closer look
at these properties and define the concept of complete and quasi complete
separation. The reason for this detour is because in literature like Agresti
(2013); Hosmer and Lemeshow (2000) the focus is mainly on complete sep-
aration caused by continuous covariates. The question of ”what kind of
separation one may encounter if adding discrete covariates that considered
one at a time does not generate any kind of separation?” is not addressed.
The question is of importance when it comes to understand the problem we
are facing when modeling the type of data considered in this thesis.

4.1.2 Complete and quasi-complete separation

The following definitions and theorems will just consider the case of separa-
tion in an arbitrary logit model with a binary outcome, which is a special
case of the general definition given in Albert and Anderson (1984) and which
we will follow in notation in this section. First we define a classification rule
with which we can classify each row xi of the design matrix X into two
separate classes G1 and G0. We say that xi is allocated in group G1 iff

βtx ≥ 0 (3)

and in group G0 iff

βtx ≤ 0. (4)

To clarify the above we can understand the classification rule as if
logit−1(βtxi) ≥ 0.5 the row vector xi will be allocated in G1 and if
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logit−1(βtxi) ≤ 0.5 the vector xi will be allocated in G0. In case of equality
the vector will be allocated in both G1 and G0, that is xi ∈ G1 ∩G0. Now
we can proceed with the definition.

Definition 1 If there exists a vector β ∈ Rp+1 such that
∀i ∈ H1, i = 1, ..., n

βtxi > 0, (5)

and ∀i ∈ H0

βtxi < 0 (6)

there is complete separation of the sample points.

As a consequence H1 = {i : xi ∈ G1} and H0 = {i : xi ∈ G0} and
since H1 ∩ H0 = ∅ it follows that G1 ∩ G0 = ∅ and why we say there is
complete separation. We can interpret the result as if the parameter vector
β correctly allocates all xi to the actual realizations of the Yi. Given the
existence of a vector β we see that the results holds for all vectors kβ where
k ∈ R+ and that ∀i ∈ H1

0 < kβtxi →∞, when k →∞ (7)

and ∀i ∈ H0

0 > kβtxi → −∞ when k →∞. (8)

Now if we evaluate (2) in kβ

∑
i∈H1

log

(
1

1 + exp(−kβtxi)

)
+
∑
i∈H0

log

(
1

1 + exp(kβtxi)

)
. (9)

it directly follows from (7) and (8) that

l(kβ; y,X)→ 0 when k →∞. (10)

That is given complete separation we get that 0 is the maximum of
the log likelihood and that the estimate β̂ is given by a point on the infinite
boundary of the parameter space and why we can conclude that no maximum
likelihood estimate exist. This result we state as a theorem.

Theorem 1 If there exists a parameter vector β ∈ Rp+1 which completely
separates the set of data points, the maximum likelihood estimator β̂ does
not exist, and max

β∈Rp+1
l(β; y,X) = 0.
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An interesting interpretation of complete separation is that given the
”non” existing estimate the model correctly predicts all outcomes of the
response. This is related to the saturated model which given the definition
is a special case of complete separation. Now let us define quasi-complete
separation.

Definition 1 If there exists a vector β ∈ Rp+1 such that
∀i ∈ H1, i = 1, ..., n

βtxi ≥ 0, (11)

and ∀i ∈ H0

βtxi ≤ 0 (12)

with equality for at least one (i), there is quasi-complete separation of
the sample points.

The definition implies that G1 and G0 completely separates the sample
points except for at least one i such that xi ∈ G1 ∩ G0 why we say there
is quasi-complete separation. For the quasi-complete case we have a similar
result as the one for complete separation here stated without the proof (see
Albert and Anderson, 1984). The proof is similar to the proof of theorem
1 and shows that the maximum is reached at the infinite boundary of the
parameter space.

Theorem 2 If there exists a parameter vector β ∈ Rp+1 which quasi-completely
separates the set of data points, the maximum likelihood estimator β̂ does
not exist, and max

β∈Rp+1
l(β; y,X) < 0.

When fitting the logistic regression model we will do so by calling the
standard glm function while using R. As an extra step of precaution we will
use the ”safeBinaryRegression” package developed by Konis (2013) which
before calling the glm function implements linear programming algorithms
to test for separation.

4.1.3 Examples of separation

To get an idea of the consequences of the definitions when working with
simple binary covariates let us take a look at a few simple examples. Assume
a binary outcome y and the two binary covariates x1,x2.

y =


1
1
0
0
0

 ,x1 =


0
0
1
1
1

 ,x2 =


1
1
0
0
1

 .
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To test for separation for x1 we get to solve the linear inequalities given
by Xβ and check whether there exist a β that separates the rows of X
according to y.

y =


1
1
0
0
0

 ,


1 0
1 0
1 1
1 1
1 1


(
β0
β1

)
=⇒

β0 > 0
β1 < 0
β0 < −β1

.

The reason for keeping the vector y is to show how we are suppose to
split the rows of the design matrix. We see that all vectors β ∈ R2 satisfying
the inequalities to the right completely separates the outcome. For x2 we
get

y =


1
1
0
0
0

 ,


1 1
1 1
1 0
1 0
1 1


(
β0
β1

)
=⇒

β0 + β1 ≥ 0
β0 ≤ 0

β0 + β1 ≤ 0
.

We see that the only solution here is all β such that β0 + β1 = 0 and
β0 < 0. These β generate quasi-complete separation of the sample points.
These two examples are equivalent to all 2× 2 tables of the form

x1 ≡
∣∣∣∣a 0
0 c

∣∣∣∣ ,x2 ≡
∣∣∣∣a b
0 c

∣∣∣∣
where (a, b, c) ∈ N3

+. So if we in our univariate analysis encounters
such tables they imply complete and quasi-complete separation, respectively.
Now consider the following three covariates

x3 =


0
1
1
1
0

 ,x4 =


1
0
1
0
0

 .x5 =


0
1
1
0
0

 ,

of which none implies separation when used separately. First consider
the model including x3 and then we add the covariate x4 which generates
the following linear inequalities.

y =


1
1
0
0
0

 ,


1 0 1
1 1 0
1 1 1
1 1 0
1 0 0


 β0

β1
β2

 =⇒

β0 + β2 ≥ 0
β0 + β1 ≥ 0

β0 + β1 + β2 ≤ 0
β0 + β1 ≤ 0

β0 ≤ 0

,
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which implies

β0 = 0
β2 ≥ 0
β1 ≥ 0

β1 + β2 ≤ 0
β1 ≤ 0

=⇒

β0 = 0
β1 = 0
β2 ≥ 0
β2 ≤ 0

=⇒
β0 = 0
β1 = 0
β2 = 0

.

The only solution is the null vector why we can conclude there is no
separation. Now finally, let us put x3,x5 in the same model.

y =


1
1
0
0
0

 ,


1 0 0
1 1 1
1 1 1
1 1 0
1 0 0


 β0

β1
β2

 =⇒

β0 ≥ 0
β0 + β1 + β2 ≥ 0
β0 + β1 + β2 ≤ 0

β0 + β1 ≤ 0
β0 ≤ 0

,

which implies

β0 = 0
β1 + β2 ≥ 0
β1 + β2 ≤ 0

β1 ≤ 0

=⇒
β0 = 0
β1 = −β2
β1 < 0

.

We see that all vectors β ∈ R3 satisfying the inequalities to the right
generates quasi-complete separation. That is, even though the two covari-
ates does not imply separation when treated separately the combination of
the two does. This kind of separation we cannot expect to discover using
univariate analysis alone. As a further result, when in this case considering
all possible binary covariates that doesn’t imply separation on their own
and then combining them with x3 four out of ten possible combinations
implied quasi-complete separation and none complete separation. So when
facing non convergence of the IRLS algorithm due to separation of the sam-
ple points and working with discrete covariates we are most likely facing
quasi-complete separation.

4.2 Model-building

Now we are ready for some modeling. When adding new covariates we
will use a forward selection strategy combined with the likelihood ratio test
statistic. As proposed by Hosmer and Lemeshow (2000) a 15% level of sig-
nificance for introduction and a 20% level of significance for excluding will
be implemented. Which variable to include at each step is the one which
generates the smallest p-value in terms of the likelihood ratio statistic.
Since the goal of this thesis is to answer the hypothesis in section 1.4 we
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will when fitting the base model just consider the subset of variables that
are of relevance for this purpose. The selected variables are summarized in
the following table.

Level Abbreviation Description Type Values

Interview

vocd VOCD Continuous R+

months.rec Time in months since first interview Ordinal R+

Noun

Adjective numb Number Binary {sing, plur}
Combination gend Gender Binary {fem, masc}

noun.reliab Noun Reliability Continuous [0, 1]

noun.avail Noun Availability Continuous [0, 1]

noun.valid Noun Validity Continuous [0, 1]

4.2.1 Selection of variables

In the initial step of the model building process we conducted a stepwise
forward selection. At each step we test for separation. The summary of
the likelihood ratio square tests from each step are summarized in table
11 and the model specifications can be found in table 10. At each step
no variable was up for exclusion and the only variable not included was
months.rec generating a p-value > 0.15 corresponding to mod6 in table 11.
The resulting multivariable model mod5 is summarized in table 12. Variable
numb is modeled using plural as the level of reference and gend as using
feminine as reference.

Model name Predictor

mod0 1
mod1 1 + noun.reliab
mod2 1 + noun.reliab + vocd
mod3 1 + noun.reliab + vocd + numb
mod4 1 + noun.reliab + vocd + numb + gend
mod5 1 + noun.reliab + vocd + numb + gend + noun.avail
mod6 1 + noun.reliab + vocd + numb + gend + noun.avail + months.rec

Table 10: The seven investigated logit models and their linear predictor.

In table 13 we have the results of fitting a univariate logistic regression
model to each of the included variables. Comparing these results with the
multivariate results in table 12 we can see that noun.avail show signs of
weaker association with the outcome, with a p-value = 0, 067 of the Wald
statistic, when combined with the other variables included. Looking at the
estimate for vocd we see almost no change in both the estimate and the
estimate standard error indicating independence.
So far there are three continuous variables vocd, noun.reliab and noun.avail
in the model. In the univariate analysis none of these exhibited an apparent
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Resid. Df Resid. Dev Df Deviance Pr(>Chi)

mod0 3095 1879.60
mod1 3094 1772.47 1 107.13 0.0000
mod2 3093 1745.17 1 27.30 0.0000
mod3 3092 1727.43 1 17.74 0.0000
mod4 3091 1722.22 1 5.21 0.0225
mod5 3090 1719.02 1 3.21 0.0734
mod6 3089 1717.21 1 1.81 0.1784

Table 11: The succescive likelihood ratio tests of the stepwise forward selec-
tion procedure.

Estimate Std. Error z value Pr(>|z|)
(Intercept) -0.6905 0.3172 -2.18 0.0295
noun.reliab 0.9222 0.4039 2.28 0.0224

vocd 0.0152 0.0030 5.12 0.0000
numbsg 0.9455 0.2388 3.96 0.0001
gendm 0.3632 0.1427 2.54 0.0109

noun.avail 0.7448 0.4060 1.83 0.0666

Table 12: Summary table for the log-odds ratio parameter estimates of
mod5.

linear association with the rate of correct use. We now take a look at these
variables on the logit scale to see whether linearity is justified and if not,
if there exists some reasonable transformation that still admits understand-
able interpretation. As proposed by Hosmer and Lemeshow (2000) we start
with the continuous variable with the lowest p-value of the Wald statistic
and then work our way up the p-values. This means, vocd then noun.reliab
and then noun.avail.
We start by plotting the LOESS curve of corr.use against vocd but now
transformed to the logit scale. The plot in figure 11 does not look to promis-
ing. The curve seems to follow a sine wave and why there seem to be a prob-
lem of linearity in the logit scale. At the same time one should be aware of
that the scale on the y-axis somewhat exaggerates the curvature. To what
extent it is not linear is another question which needs to be answered using
further methods which here follows. Let us investigate the two tails of the
logit by using a design variable which we define by splitting the values of
vocd in to relevant intervals of interest and consider these intervals as levels
of a factorial variable. We then refit the model replacing vocd with its fac-
torial correspondent. By using all covariates the interactions with the other
variables in the model are taken into account. We then plot the different
coefficients of the levels on the mid points of their intervals to get a picture
of how the slope of the variable changes over the intervals. Why we do this
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Estimate Std. Error OR 2.5% 97.5% G p

noun.reliab 2.040 0.1969 7.69 5.24 11.34 107.13 0.000
vocd 0.016 0.0029 1.02 1.01 1.02 29.95 0.000

numbsg 1.030 0.1282 2.80 2.18 3.61 66.17 0.000
gendm 0.616 0.1300 1.85 1.44 2.40 23.30 0.000

noun.avail 0.696 0.2178 2.01 1.30 3.06 9.79 0.002
months.rec 0.029 0.0114 1.03 1.01 1.05 7.44 0.006

Table 13: Results of univariate logistic regression models for all variables
where OR is the estimated odds ratio, a 95% highest likelhood confidence
for the odds ratio, G the likelihood ratio statistic and p the corresponding
p-value.

is to investigate whether the tails just might be the result of numerical prop-
erties of the LOESS curve. The results of the design variable are presented
in table 14 and the corresponding plot in figure 12. The trend is similar
to the plot in figure 11 with a decrease in both tails. The 95% confidence
intervals in table 14 all include 0 why none of the factorial levels are signif-
icantly different from 0, which doesn’t agree with the fact that vocd being
significant in mod5. All confidence intervals for the parameters overlap and
thereby indicating that the change with increasing values of VOCD is small
relative to the scale.
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Figure 11: Transformed LOESS curve on logit scale between response and
VOCD.

As a final step we use the method of fractional polynomials as presented
in Hosmer and Lemeshow (2000). This method tests, given the set ℘ =
{−2,−1,−0.5, 0, 0.5, 1, 2, 3} of powers, if there exists a transformation of the
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Figure 12: The coefficients of the log odds ratios from table 14 against the
mid points of their intervals.

Interval Number Coeff. 2.5% 97.5%

Group 1 0-28 43 0
Group 2 28-53 232 -0.355 -1.64 0.68
Group 3 53-84 1232 -0.373 -1.61 0.58
Group 4 84-101 866 0.342 -0.91 1.33
Group 5 101-120 723 0.262 -0.99 1.25

Table 14: The design variable of the VOCD measure from the multivariable
model mod5 presented in table 12.

continuous covariate given by a single or a dual combination of the powers
℘ that better fits the data under influence of the model. We test this by
running trough all J = 1 single transforms given by ℘ and all J = 2 dual
combinations of transforms given by ℘. We then compare the best J = 2
model, the one with the largest likelihood, with the original model and check
if there is a significant improvement of the likelihood at the 5% level. If the
test is not significant we keep the covariate as linear in the logit. Otherwise
we compare the best J = 2 with the best J = 1 model and test if the J = 2
model is significantly better than the J = 1 model. If the model J = 1 is
significantly better we use the J = 2 model with the given transform and if
not we choose model J = 1. The method thereby tests for linearity on the
logit scale and if there is proof of non linearity it suggests a transformation.
What needs to be added is that by the power 0 we mean the log()̇ transform.

The results of applying the method on vocd is summarized in table 15.
The reason for the value 0 of the likelihood ratio statistic between the best
model J = 1 and the original model is because the best power chosen is 1
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which is just the linear form identical to the original model. The p-value
0.059 for J = 2 is not significant at the 5% level why the fractional polyno-
mial test approves of treating vocd as linear. Due to this last result we end
up treating vocd as linear in the logit.

df Deviance G P-value Powers

Linear 0 1719.016 1
J=1 1 1719.016 0 1 1
J=2 3 1711.558 7.457 0.059 -2, -1

Table 15: Summary of the fractional polynomials method for VOCD. G is
the likelihood ratio statistic between the linear model and the fractional
polynomial.

We now proceed with noun reliability using the same methods as we did
with VOCD. In figure 13 we can see that there is a slight dip in the right
tail. The p-values from the method of fractional polynomials in table 16
indicate that it’s preferable to treat noun.reliab as linear in the logit why
we choose to do so.
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Figure 13: Transformed LOESS curve on logit scale between response and
noun reliability.

df Deviance G P-value Powers

Linear 0 1719.016 1
J=1 1 1714.992 4.024 0.045 log(.)
J=2 3 1714.353 4.663 0.198 -1,-1

Table 16: Summary of the fractional polynomials method for noun reliability.
The log(.) in the power column represent log() transformation.
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Finally we take a look at noun availability. As written in section 3 this
covariate showed signs of strange behavior where the LOESS curve took
values outside the interval [0, 1] (see figure 10). To be able to generate a
plot in the logit scale we have to increase smoothness of the LOESS function
which will generate a curve more linear in shape making the logit transform
possible. The result we have in figure 14 where we can see that even though
the LOESS curve has a higher degree of smoothness it still exhibits non
linearity on the logit scale.
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Figure 14: Transformed LOESS curve on logit scale between response and
noun availability.

Now we examine the linearity using the method of design variables. We
split noun.avail according to the quartiles but due to the uneven distribution
of noun.avail we choose to split the interval of the first quartile in two. We
see in figure 15 and in table 17 the corresponding estimates of the coefficients
of the log odds ratio of each interval. As expected the plot do not show
signs of linearity and given the 95% confidence intervals in table 17 there is
strong evidence of non linearity since none of them contains 0. A possible
transformation suggested by these results is treating noun availability as a
categorical variable dividing it according to the intervals in table 17 but
merging the last two intervals together since the estimates of these are very
similar and the corresponding interval greatly overlap.

The result of the likelihood ratio statistic between the model mod7 in
which we use a 4-level categorical version of noun availability and mod4,
the model without noun availability, we have in table 18. Comparing the
resulting p-value close to 0 with the original p-value of 0.073 given in table
11 we see that we get a model which is significantly better than the model
in which we keep noun availability as linear in the logit.

As a final step we use the method of fractional polynomials. The results
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Figure 15: The coefficients of the log odds ratios from table 17 against the
mid points of their intervals.

Interval Number Coeff. 2.5% 97.5%

Group 1 0-0.26 558 0
Group 2 0.26-0.64 774 -1.42 -3 -0.12
Group 3 0.64-0.75 478 0.681 0.01 1.32
Group 4 0.75-0.77 711 -2.516 -4.67 -0.73
Group 5 0.77-1 575 -2.544 -4.93 -0.53

Table 17: The estimated effects of the categorical version of noun availability
in model mod5 presented in table 12.

in table 19 propose that we treat noun availability as non linear but com-
paring the deviance of the model with J= 2 and the deviance of the model
mod7 in which we treat noun availability as categorical we see that the later
mod7 is the better choice.

To sum up we ended up by treating noun availability as categorical with
four levels and we will define it as the variable avail. In table 20 we have
the resulting model which we labeled mod7. We can see that the estimate
of the coefficient of number no longer is significant and both gender and
noun reliability are now highly significant. Treating noun availability as
categorical thereby had some major effects.

Looking at the definition of noun availability in section 2.1.4 we can see
that we could expect some interaction between noun availability and gender
and noun availability number since this measure is defined in terms of gender
and number. Controlling for interactions between noun availability and
gender and number respectively, we in both cases get separation. That is, no
maximum likelihood estimate exists of the parameters given that we expand
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Resid. Df Resid. Dev Df Deviance Pr(>Chi)

mod4 3091 1722.22
mod7 3088 1692.59 3 29.63 0.0000

Table 18: The likelihood squre test of comparing the model where we use
the categorical rescaling of availability to mod4.

df Deviance G P-value Powers

Linear 0 1719.016 1
J=1 1 1718.146 0.87 0.351 -2
J=2 3 1699.627 19.389 0 0.5, 0.5

Table 19: Summary of the fractional polynomials method for noun avail-
ability.

the model with one of the interactions. We could say that we somewhat
reached a dead end using the method of maximum likelihood estimation
and thereby we consider mod7 as our final base model. The discussion
contains ideas concerning the further analysis. Lets check the fit of mod7
before we interpret some of its model parameters.

4.2.2 Model checking of the final model

When dealing with binary outcomes the deviance between the saturated
model and a given model of the binary outcome can not be considered
asymptotically chi-square distributed since the number of parameters in the
saturated model are not fixed. We here use instead the Hosmer-Lemesow
goodness of fit test dividing the fitted values into 10 batches since we have
a total of 8 parameters in mod7.

The test generates a p-value of 0.241 indicating no lack of fit at a 5%
level of significance. The binary response makes ordinary model checking
quite difficult but here we use a parametric bootstrap approach creating an
R function by using and improving code written by Wood (2006). The func-
tion is used in two ways. First it creates a 95% bootstrap envelope for the
cumulative distribution of the residuals under the hypothesis that the given
model is correct. Secondly it uses the same bootstrap samples to calculate
the number of runs of each sample, that is the number of runs of indepen-
dent observations given the fitted model. Using the runs of each sample
and the number of runs of the observed data it generates an approximate
p-value under the hypothesis of independence. In figure 16 to the left the
empirical CDF with the 95% bootstrap interval indicating that our distribu-
tional assumptions are sensible. To the right we have the simulated runs of
a total of 200 samples confirming the p-value of 0 under the null hypothesis
of independence in the residuals. This is not surprising since we are under
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Estimate Std. Error z value Pr(>|z|)
(Intercept) -1.8449 0.4050 -4.56 0.0000

avail2 -1.4101 0.7215 -1.95 0.0507
avail3 0.6940 0.2824 2.46 0.0140
avail4 -2.5079 0.9966 -2.52 0.0118

noun.reliab 4.5999 1.2174 3.78 0.0002
numbsg 0.4635 0.2851 1.63 0.1040
gendm 1.4748 0.3367 4.38 0.0000

vocd 0.0152 0.0030 5.05 0.0000

Table 20: Coefficient summary table for the log odds ratios in mod7.
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Figure 16: Left: The empirical CDF of residual with 95% bootstrap enve-
lope. Right: Histogram of simulated runs with the observed runs represented
as a point.

the base model assuming no difference between students which of course is
rather naive. The high dependence of the residuals suggests that we need
to consider those differences that is considering the whole nested structure.
Another possible cause for the lack of independence is the absence of rele-
vant variables we do not have access to.

4.2.3 Parameter interpretation of the final model

In this section we will give a short interpretation and presentation of the
results of the final model mod7 and the way they relate to the hypothesis.
A summary of the estimates of the final model mod7 including the odds
ratios and their respective 95% highest likelihood confidence intervals can
be found in table 21.
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Estimate Std.Err z P>|z| OR 2.5% 97.5%

(Intercept) -1.84 0.40 -4.56 0.00 0.16 0.07 0.34
avail2 -1.41 0.72 -1.95 0.05 0.24 0.05 0.88
avail3 0.69 0.28 2.46 0.01 2.00 1.13 3.44
avail4 -2.51 1.00 -2.52 0.01 0.08 0.01 0.48

noun.reliab 4.60 1.22 3.78 0.00 99.48 11.37 1331.78
numbsg 0.46 0.29 1.63 0.10 1.59 0.90 2.75
gendm 1.47 0.34 4.38 0.00 4.37 2.31 8.66

vocd 0.02 0.00 5.05 0.00 1.02 1.01 1.02

Table 21: The estimated coefficients including the estimates of the odds
ratios (OR) and thier corresponding 95% highest likelihood intervals.

We first consider the hypothesis that the rate of correct use will increase
with higher values of VOCD. Due to size of the estimated OR we will give
the estimate on the scale where one unit represent 1 standard deviation of
VOCD. The odds ratio is telling us that the odds of correct use increase with
a factor of 1.38 for each standard deviation increase in VOCD. Suggested
by the confidence intervals this change can be small as 1.22 or large as 1.57
with a 95% confidence. The change is overall small but still confirms the
hypothesis of an increase in the rate of correct use given an increase in
VOCD.
Now looking at the hypothesis that higher values of noun reliability and
noun availability will have a positive effect on the outcome we can tell from
the estimates of the levels of avail that the model does not support this
assumption in the case of noun availability. Under the influence of the other
covariates it actually have a negative effect why we under mod7 need to
reject the hypothesis that noun availability has a positive effect. Now if
we consider noun reliability we have an odds-ratio estimate of 99.48. This
ratio is quite hard to interpret since noun reliability is bounded on the
closed interval [0, 1] why we choose to give the odds ratio for a 0.1 point
one increase in noun reliability. For each increase in noun reliability of 0.1
the odds of correct use multiply with a factor of 1.58 with a 95% confidence
interval (1.28, 2.05). This confirms the hypothesis that higher values of noun
reliability have a positive effect on the outcome.
That masculine agreement means higher rates of correct use we can see by
looking at the corresponding estimate of the odds-ratio. When considering
masculine gender the odds multiply by a factor of 4.37. The 95% highest
likelihood intervals indicate that this change can be as small as 2.307 or
as large as 8.665. This confirm the hypothesis that masculine gender will
have higher rates of correct use. Looking at number agreement we have a
point estimate 1.59 of the odds ratio when considering singular agreement.
The confidence interval (0.898, 2.753) contains the value 1 why we cannot
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confirm the hypothesis of a strictly positive effect.
Finally we look at the last hypothesis that learners of Italian as a second
language get better on using number and gender agreement over time. This
hypothesis we need to reject since the variable months.rec was not included
in the final model. The reasons why months.rec did not end up in model
the will be addressed in the discussion.

5 Discussion

The aim of this thesis was to answer the hypothesis given in section 1.4 by a
statistical analysis. Due to the sparse number of incorrect outcomes of the
response we faced the numerical issue of separation when fitting the relevant
logistic regression model. This in combination with the nested structure of
data led to the strategy of first trying to fit a base model considering the co-
variates at the level of noun gender combinations and some covariates at the
level of interview. The purpose of this strategy was to get an idea of which
covariates to include in a more complex model considering the whole nested
structure. Another purpose was to see whether it was even possible to fit a
simple base model. As a result we ended up with a final base model which
we named mod7 presented in table 21. When trying to extend the model by
introducing interactions between the categorical version avail of noun avail-
ability and number and gender we immediately faced separation. We thereby
were not able to proceed with a more extended analysis at least not when
using maximum likelihood inference. In a analysis taking the whole nested
structure into account it appears advantageous to use Bayesian inference.
Two reasons for this are that if necessary we can add a minimal amount
of information within the prior distributions of the parameters and that it
is in some sense more natural to build hierarchical models using Bayesian
inference (Carlin and Louis, 2009). Another reason for a bayesian approach
is that when we have defined the model structure the inference can then be
carried out by using statistical softwares such as Jags (Plummer, 2003).
When fitting the hierarchical model it might be a good a idea to consider
variations in the students by including this into the model using random
effects. Hence the student effects are nuisance parameters This is moti-
vated by the fact that we are not primarily interested in specific differences
between students but rather interested in some general linguistic character-
istics concerning number and gender agreement. Another random effect of
interest is one that tries to model the way students are included in relation
to there learning phase. We could see in figure 3 that a majority of students
showed no signs of improvement. This is most likely caused by the fact that
most student already reached a significant level of Italian speech and thereby
show no signs of improvement. This might explain why months.rec did not
end up in the base model.

38



In the base model we ended up with a categorical re-scaling of the the con-
tinuous variable noun availability. There are good reasons to be skeptic of
noun availability being a proper continuous predictor due to the way it is
defined. Looking again at the definition in section 2.1.4 we can see that
the measure defines how common a specific noun ending is conditioned on
a specific number gender combination. That is, for the measure to have
some general application the different groupings in terms of the number
and gender combinations need to be independent. From its distributional
characteristics we can conclude that this is not case. The noun availability
measure thereby just makes sense by considering it within the respective
groups. Intuitively the measure is a good idea and its behavior tells us that
the different groupings are of importance but the results are hard to inter-
pret with respect to the intuition behind the measure. Noun reliability has
a similar problem but exhibits signs of independence. The only problem
was the u-shaped part in the right tail. The cause of the u-shape is due to
the fact that in the right tail we have a large number of different number
and gender combinations that are unique within their specific noun-ending
group and they thereby get a high reliability even though they are quite
uncommon. In further studies a good idea would be be to define more gen-
eral frequency measures not conditioned on different groupings. Questions
about different groupings can then, within a model context, be examined by
introducing the relevant interactions.
While fitting the model we encountered two major problems in this thesis:
First the problem of separation to which we dedicated a number pages in
order to get a better understanding of the actual problem. At each step of
the model building we then checked for separation using the the ”safeBina-
ryRegression” package developed by Konis (2013) in R. The second problem
was checking the model fit and residual diagnostics when dealing with bi-
nary data. For the model fit we used the Hosmer-Lemeshov test statistic
that showed no signs of a overall lack of fit. To deal with the residuals we
implemented a parametric bootstrap creating an R function by using and
improving code given in Wood (2006). The distribution of the residuals were
well contained within 95% envelope thereby confirming our distributional as-
sumptions but the test for independence showed great lack of independence.
Thereby our conclusions given by the model interpretations in section 4.2.3
should be cautious.
To sum up we can see that there are several reasons why to consider consult-
ing a statistician when dealing with these kind of linguistic studies. First of
all the structure and distributional characteristics of data are of a complex
nature which cannot be ignored if one aims for good model fit. Separation
and hierarchical modeling with random effects are modeling issues that pre-
suppose a great extent of mathematical knowledge that can be provided by
the statistician. Secondly, as was mentioned above, the statistician can be
helpful when defining variables such as the frequency measures to make sure
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they are interpretable within model context. The linguist and statistician
can then together interpret and discuss the results of the statistical analysis.
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