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Abstract

In this thesis, we extend the mathematical framework of the gener-
alized linear model to encompass the negative binomial distribution.
Models based on the negative binomial distribution is needed when
data doesn’t fit a Poisson distribution due to overdispersion. We put
theory into practice by analysing the inuence of weather and time
on the daily number of ringed Eurasian Robins (Erithacus rubecula
) in Falsterbo, Sweden. We find that increasing wind speed lowers
the expected number of Robins, while drops in mean day tempera-
ture, increasing share of side wind, increasing yearly total of Robins
and proximity to the median migration date all increases the expected
number of Robins. These results are partly in accordance with pre-
vious studies and the results deviating from previous knowledge es-
pecially are discussed. Further improvements of the fitted model are
also discussed.
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1 Abstract

In this thesis, we extend the mathematical framework of the generalized linear
model to encompass the negative binomial distribution. Models based on the
negative binomial distribution is needed when data doesn't �t a Poisson dis-
tribution due to overdispersion. We put theory into practice by analysing the
in�uence of weather and time on the daily number of ringed Eurasian Robins
(Erithacus rubecula) in Falsterbo, Sweden. We �nd that increasing wind speed
lowers the expected number of Robins, while drops in mean day temperature,
increasing share of side wind, increasing yearly total of Robins and proximity to
the median migration date all increases the expected number of Robins. These
results are partly in accordance with previous studies and the results deviating
from previous knowledge especially are discussed. Further improvements of the
�tted model are also discussed.
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2 Introduction

There is quite an abundance of unanalysed bird population monitoring data in
Sweden in general and at Falsterbo Bird Observatory in particular. However,
such data is often high variance count data, far from ordinary multiple regression
on continuous data. Thus, the number of analyses performed is usually held back
by a shortage of people with appropriate skills among researchers and amateurs
collecting and owning this data.
In this thesis, we will take advantage of the surplus of data and look at the daily
number of ringed Eurasian Robins in Falsterbo, trying to predict it through a
function of local weather and time.
The daily number of Robins is typical bird population monitoring data in the
sense that it �ts an overdispersed Poisson distribution. In order to account for
the higher variance, we will extend the framework of generalized linear models
(GLMs) to encompass the negative binomial distribution, which is of great use
when dealing with data �tting an overdispersed Poisson distribution.

The �rst chapter presents the data from Falsterbo Bird Observatory and the
Swedish Institute for Meteorology and Hydrology. Some transformations of
these data are also presented and motivated. We also discuss the collinearity
issues in the weather data, including how one can deal with it.

In the second chapter of this thesis we present the theory of GLMs and expand
it to encompass the exponential dispersion family, which the negative binomial
distribution belongs to.

Thereafter comes, in chapter three, a presentation of the �tted models. We
compare the models through measures of �t and their plausibility, with regard
to previous research and possible causal relationships.

In the fourth chapter, the conclusions of the comparison of models is presented,
along with a discussion of further improvements of the model(s).

Hopefully, the methods of analysis presented in this thesis can somewhat aid
ecologists and ornithologists studying similar relationships in other datasets.
The R-script I have developed alongside the analysis is almost entirely general-
ized and thus applicable on other species and weather data sets. It is available
by contacting me through email.

A basic understanding of calculus, algebra, probability theory and mathematical
statistics is expected from the reader.
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3 Material

3.1 Background

At Falsterbo Bird Observatory, data collection for bird population monitoring
has been the primary task since 1980. Species are monitored through various
methods; breeding bird surveys, roosting bird surveys, counting diurnal migrat-
ing birds and ringing migrating passerines. The common goal for these time
series is to detect long-term trends, primarily in population size and migration
timing.
However, it can and should be questioned whether data actually is possible to
use for such purposes. In order to verify the value of this data it is impor-
tant to know what in�uences it. We will try to do this through modelling the
daily number of ringed Eurasian Robins (Erithacus rubecula), henceforth called
Robins, as a function of weather and time factors.

3.1.1 The standardized ringing

Nocturnally migrating passerines, such as the Robin, are at Falsterbo mainly
monitored through standardized ringing. Birds are trapped using mistnets in
�xed locations during a �xed time of the day, during a �xed interval of dates.
Only weather in�uences the number of mistnets used each day; nets are only
active when wind speed is su�ciently low and there is no heavier precipitation.
This is in order to assure the safety of the birds, as they may su�er from getting
caught during such circumstances. It may however also be a strong cause of
variation in the collected data. The details of the standardized ringing scheme
is presented in Roos and Karlsson (1981) and has, naturally, been unchanged
since the �rst implementation.

3.1.2 The Eurasian Robin

Choosing the Eurasian Robin for this analysis has several statistical and scien-
ti�c advantages. It is typical in the sense that it is the population that migrates
past Falsterbo that gets monitored, which is the case for most species. There is
plenty of previous research concerning the Robins migration, which could pro-
vide clues to what may in�uence it's presence at Falsterbo.
Also, being a nocturnal migrant, there is further research covering this migra-
tion strategy at large. The migration period during autumn is also fully covered
by the ringing season for this species (Figure 3 and 4). It is a numerous species;
averaging 2378 ringed birds per autumn provides a generous amount of days
with ringed Robins, which hopefully mitigates some zero in�ation.
The Robin is a distinct species morphologically, minimizing the risk of variation
caused by species wise misidenti�cation. It is also easy to determine the age of
a Robin, separating �rst calendar year (1cy) birds from adult (2cy+) birds is

5



1980 1983 1986 1989 1992 1995 1998 2001 2004 2007 2010

Year

P
er

ce
nt

ag
e

0
40

80

Figure 1: Percentage of �rst calendar year Robins

almost always possible and thus we can easily analyse age categories separately,
if we have reason to believe there is a di�erence between them. The percentage
of 1cy birds is almost constant over the years, which could indicate that there
is no di�erence in e�ect of external factors between age categories.
However, it is very di�cult to determine the sex of a Robin, especially during
the autumn. Thus we cannot separate males and females and analyse these
separately.

3.2 Response

The response data is, naturally, discrete. In it's original format it consist of the
number of ringed Robins each day during the so called autumn season, i.e. the
period of 21 july to the 10 november, for all years between and including 1980
and 2010. The distribution of daily totals is shown in Figure 2.

It is clear that data is heavily zero in�ated and quite tail heavy to the right in
it's original format. The heavy zero in�ation is partly due to the distribution
of Robins being heterogen over the ringing season, as is shown in Figure 3 and
Figure 4.

3.2.1 Determining the migration period

If we want to model the number of birds for all dates of the autumn season,
data follows the distribution shown in Figure 2. However, it would not make
sense to try and �nd the in�uence of weather on the number of Robins during
dates which has an expected number of Robins being close to zero.
Choosing a period of dates that can constitute the migration period of the Robin
would thus be bene�cial. It is also motivated by the abundance of structural
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Figure 2: Distribution of daily totals of Robins
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Figure 3: Mean number of Robins for each date of the autumn season, based
on daily totals from the years 1980-2010.
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Figure 4: Median number of Robins for each date of the autumn season, based
on daily totals from the years 1980-2010.

zeros in data, i.e. zeros that do not occur by chance. The days with zero Robins
stemming from days outside the migration period are as good as inevitable.
The zeros occurring on dates during the migration period should be considered
sampling zeros, since they appear due to random e�ects, and they should not
be excluded from our analysis.(Ridout, Demio, and Hinde, 1998)

Determining the migration period is somewhat arbitrary. One could take a
period of dates with a mean number of birds exceeding c birds, but how would
one determine the constant c?
A similar process could be revolving around the median number of birds. Again,
choosing c is quite arbitrary.

The perhaps most rigorous way of determining the migration period would be
to calculate between which dates a certain percentile of the migrating Robins
are ringed. This would account for the variation in migration timing between
years. However, what determines the percentile?
For each year, I calculated the dates on which 2.5 % and 97.5 % of the yearly
sum of Robins had been ringed. I then chose, for each year separately, the daily
totals of ringed Robins between and during these dates. The distribution of our
selected daily totals is presented in Figure 5.

The number of zeros is now lower and the ones remaining should be sampling
zeros.

3.2.2 Migrating and local populations

All Robins in our data has been categorized by age, they are either 1cy or 2cy+.
By grading the extent of postjuvenile moult (i.e. to what extent the bird has
lost it's juvenile plumage) among 1cy birds, locally bred birds may be separated

8
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Figure 5: Distribution of selected daily totals

Local birds Migrating birds
Score 0 1 2 3 4 5 6 NA
Count 9 10 3 10 459 14056 5090 48523

Percentage 0.01 0.01 <0.01 0.01 0.67 20.60 7.45 71.22

Table 1: Distribution of post juvenile moult among young Eurasian Robins
ringed at Falsterbo during the autumn.

from birds having been bred elsewhere and arrived at Falsterbo during migra-
tion. Birds graded 4 or more may be considered migrating and the distribution
of post juvenile moult is shown in Table 1.

An analogous criterion for separating migrating from local birds among adults
is the extent of secondary (a section of the wing) moult. In Table 2 the dis-
tribution of secondary moult is shown. Birds with a score of 27 or more can
de�nitely be regarded as migrating.

During days with more than 100 Robins, several measurements are excluded
due to time shortage. Therefore, the number of NAs is high. These days only
occur during the migration period. We know this since even the sum of all local
birds registered in our data is too small to force measurement exclusion if all
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Local birds Migrating birds
Score 0 9 24 25 26 27 28 29 30 NA
Count 6 1 4 3 3 36 143 136 1979 7166

Percentage 0.06 0.01 0.04 0.03 0.03 0.38 1.51 1.44 20.88 75.61

Table 2: Distribution of secondary moult among adult Eurasian Robins ringed
at Falsterbo during the fall.

were caught the same day.
The most important conclusion of Table 1.1 and Table 1.2 is that the absolute
majority of Robins ringed in Falsterbo belong to the migrating population. This
is the population of interest for our modelling.

3.3 Weather factors

Weather data has been downloaded from the open database at the Swedish In-
stitution of Meteorology and Hydrology. (SMHI, 2014) During the whole period
of standardised ringing, weather data has been collected at the very same loca-
tion that the ringing has been conducted at.
There are several weather factors to choose from, and most of them are mea-
sured several times a day. According to Zehnder et al. (2001), wind speed, wind
direction, air pressure and air pressure change accounted for 66 % of the vari-
ation in number of nocturnally migrating birds over Falsterbo. Temperature,
temperature change, humidity, dew point temperature, distance to cloud base
and amount of cloud cover had no signi�cant in�uence on the number of birds
observed. Precipitation was not included, due to it causing the equipment not
to register the number of birds correctly.

Using this knowledge, I chose to use data from the measurements presented in
Table 3 in some way. Air pressure data is not freely accessible, thus I could not
include this variable. However, change in air pressure is very strongly re�ected
in wind speed; the quicker the change of air pressure the stronger the wind
becomes.
These measures are taken 8 times daily, except for precipitation, which is taken
once per day. I chose to include temperature, having personal observations of
drops in temperature causing migratory movement among birds. Although I
have not observed this among Robins I cannot rule out there being a possible
correlation. Also, I �nd support for this in Alerstam et al. (1973), relating cold
front passages to migration movement.

Constituting a very small part of data, the instances of NAs will be omitted
in the analysis and thus we exclude the corresponding data for the number of
ringed Robins.
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Measurement Observations NAs NA %
Temperature 12736 9 0.07
Precipitation 1592 0 0
Wind direction 12736 16 0.13
Wind speed 12736 16 0.13

Table 3: Missing values (NAs) in weather data.

In Appendix 1, complete correlation matrices for the daily measurements of
temperature, side wind component, tail wind component and wind speed are
presented, along with the eigen-values of the matrices. The smallest eigen-
values are (rounded to two decimals) 0.02, 0.26, 0.08 and 0.08 respectively.
Being so close to zero, they all indicate severe to moderate collinearity, except
for sidewind component, which is acceptable. (Sundberg, 2002)

3.3.1 Temperature

The air temperature is measured in ◦C every third hour, starting at 00:00 UTC
(Coordinated Universal Time). The strong indications of collinearity signals
that we should be restrictive when selecting temperature variables for the initial
model. I will use the temperature at each time, the mean temperature based
on the 00:00 and 03:00 UTC and the change in this mean temperature between
days as possible predictors.
Temperature variables will be denoted "TEXX", where "XX" is replaced by
the UTC time of measurement, and the mean temperature will be denoted by
"mTE" or "mTEDIFF" if the change in temperature is used.

3.3.2 Precipitation

The precipitation is measured in kg/m2 during the 24h period between 06:00
UTC the day before the registered measurement and 06:00 UTC the day of
measure. I do not have any data on duration of precipitation nor when during
the day precipitation was received, making the measurement quite blunt.
The precipitation variable will be denoted "P".

3.3.3 Wind direction

The wind direction is de�ned as the direction from which the wind blows. Orig-
inally in data, wind direction was given in degrees, which is problematic for our
models. Wind from 10◦ is very similar to wind from 360◦, however our regres-
sion would interpret it as vastly separated. Also, no wind is noted with 0◦.
Considering the mean track direction of migrating birds (225◦) and that this
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was generally independent of wind direction (Zehnder et al., 2001) I chose to
split the wind direction in two components, side- and tailwind is denoted sw
and tw respectively. They were calculated according to

sw(d) =

∣∣∣∣sin( (d− 45)π

180

)∣∣∣∣ tw(d) = cos

(
(d− 45)π

180

)
where d is the wind direction in degrees. Nothing indicates that sidewind from
either right or left should be advantageous, thus the absolute value of this com-
ponent should be used. With the rotation I use, perfect tailwind yields tw = 1
and consequently, perfect headwind yields tw = −1. This split also helps miti-
gate collinearity. Interactions with wind speed will be investigated.
It should be noted that Sandberg, Pettersson, and Alerstam (1988) experi-
mentally found that Robins in Falsterbo during sunset and an hour thereafter
oriented with a mean heading of 273◦ and 332◦ with clear skies and simulated
covered skies respectively. If this is the actual heading of Robins during migra-
tion over Falsterbo, we should consider ignoring the absolute value of the side
wind component, as it might actually be the true tail wind component. Also,
we should take the absolute value of the current tail wind component in such
an alternative analysis.

salt(d) = |tw(d)| talt(d) = sin

(
(d− 45)π

180

)
The correlation between the number of birds aloft close to dawn and the number
of ringed birds the following morning (Zehnder and Karlsson, 2001) is probably
not an argument strong enough to exclude all observations of wind direction be-
sides 03:00 UTC and 06:00 UTC. However, when also considering the collinear-
ity, the need for excluding some measurements is prominent. We will do this in
various ways, such as taking means of several measurements.
Side wind component variables will be denoted "SWCXX", where "XX" is re-
placed by the UTC time of observation, and the mean side wind component will
be denoted "mSWC". Tail wind component will be denoted analogously with
"TWC".

3.3.4 Wind speed

The wind speed is measured in m/s. The magnitude of the collinearity problem
calls for variable selection and/or combining. Several measurements concern
wind speeds during a part of the day when neither migration nor ringing of
Robins occur, such as the wind speeds in the afternoon. These should be pos-
sible to exclude, while the remaining measurements can be combined into one
variable. All in all, the handling of these measurements will to great extent be
similar to the handling of the wind direction variables, with which interactions
should be investigated.

12



Wind speed variables will be denoted "WSXX", where "XX" is replaced by the
UTC time of observation, and mean wind speed will be denoted "mWS".

3.4 Time factors

Clearly, the number of Robins varies over time in several ways. There is variation
between years and over dates within years, which should re�ect �uctuations in
migration population and migration timing respectively. Ideally this variation
is measured perfectly, since it is strongly associated with the purpose of the
measurements; to detect long term trends in population size and migration
timing.

3.4.1 Year

One of the purposes of the ringing in Falsterbo is to monitor long term popu-
lation trends. For this it is assumed that the yearly totals is a sample of the
migrating population of Robins, albeit somewhat distorted. By using the yearly
total as an explanatory variable, we can investigate the relation between daily
totals and yearly totals. If the yearly total mostly is an e�ect of (or lack of)
singular days with extreme amounts of Robins, it should not explain the daily
totals of Robins in an e�ective way. Although, if the seasonal total is an e�ect
of the general amount of Robins, it should better explain the daily totals.
This variable will be denoted "Year".

3.5 Combined factors

In order to handle the collinearity problem for some data, I combined predictors
as is shown in Table 4. I also calculated the di�erence in mean temperature
between the day i and i − 1, in order to be able to investigate the e�ect of
temperature change.

3.5.1 Date

In order to investigate the in�uence of point in time during the annual migration
cycle, I created an explanatory variable dij based on dates. I calculated the
mean date d̄i· for a ringed Robin each year i and took the absolute value of the
number of days of di�erence between d̄i· and all other dates dij for all i .

dij = |d̄i· − dj |

If the migration is uniformly distributed over my chosen date intervals, this
factor should be insigni�cant. We will denote it "Date" in our models.

13



New predictor Combined predictors

Mean wind speed
Wind speed 00:00 UTC
Wind speed 03:00 UTC
Wind speed 06:00 UTC

Mean side wind component
Side wind component 00:00 UTC
Side wind component 03:00 UTC

Mean head wind component
Head wind component 00:00 UTC
Head wind component 03:00 UTC

Mean temperature
Temperature 00:00 UTC
Temperature 03:00 UTC

Table 4: Combination of predictor variables.

One could use date as an explanatory variable. I deem that suboptimal due to
the variation in migration timing between years. We want to investigate the
importance of where we are temporally in the migration cycle, not temporally
on the year. Albeit there is correlation between the two, the latter is an attempt
at constructing the former.

4 Methods

Unless stated otherwise, the information in this chapter is gathered from Agresti
(2013), mainly chapters 4 and 14, with some slight own additions to clarify re-
sults and relations.

4.1 Regression for count data

When performing statistical inference on categorical data, logistic regression
and loglinear models are common choices of method. These models are both
generalized linear models and in the special case of one integer valued response
variable, the models are even equivalent.
Count data, such as the number of birds present at a certain location, �ts the
special situation. A loglinear model with explanatory variables x is thus

log(µ(x)) = α+ β1x1 + ...+ βpxp

with α as the intercept and βi as the p model parameters. The intercept de-
scribes the logarithm of the expected number of birds being counted when all
explanatory variables are at their zero-level. The remaining model parameters
describe the in�uence of an explanatory variable on the outcome, through the
change in log odds ratio for a successful outcome induced by the level of the

14



explanatory variable. This is indeed the model structure we will use, i.e. we
will model the expected number of birds µ given x.
Commonly, a Possion distribution of the response is assumed for these situa-
tions. However, when assuming Poisson distribution, due to the de�ntion of
the Poisson distribution, one also assumes µ = E(Y ) = var(Y ). In our case,
the number of ringed Robins during one day is the response. Estimation yields
µ̂ = 46 and v̂ar(Y) = 9549. Clearly, assuming data is Poisson distributed is not
preferred.
When count data has the characteristic of µ < var(Y), it is said to be overdis-
persed.
Overdispersion is rather common, especially for data in the �eld of ecology,
and there are ways of compensating for the higher variance. Our choice will
be to instead assume a negative binomial distribution for our data and �t the
model accordingly. The negative binomial distribution allows for unequal mean
and variance, but it's parametrization is not entirely standardized. We let the
probability mass function for the negative binomial distribution be de�ned as

f(y|µ, γ) =
Γ(y + 1/γ)

Γ(1/γ)Γ(y + 1)

(
1/γ

µ+ 1/γ

)1/γ (
1− 1/γ

µ+ 1/γ

)y
where Γ is the gamma function. Although it may seem like a unnecessarily
complex de�nition, we get convenient expressions for the expected value and
the variance:

E(Y ) = µ, var(Y ) = µ+ γµ.

However, the switch from a distribution (such as the Poisson) in the natural
exponential family to a distribution in the exponential dispersion family has
some consequences for the generalized linear model framework. The dispersion
parameter γ has to be assumed �xed for a negative binomial regression model
to be a GLM. Also, the likelihood equations for maximum likelihood estimation
of the model parameters is a special case of those for an ordinary GLM. The re-
mainder of this chapter is mainly concerned with deriving the general likelihood
equations for a GLM for which the data distribution is assumed to be in the
exponential dispersion family. Once the likelihood equations are determined,
we can calculate maximum likelihood estimates of the model parameters.

4.2 Generalized linear models

The ordinary regression models can be extended to also allow for data with
certain other distributions within the exponential family than the normal dis-
tribution. Such models are classi�ed as generalized linear models, abbreviated
GLMs, and consists of three components:
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� The random component states the probability distribution of the response
variable Y .

� The systematic component speci�es explanatory variables β used in a
linear predictor function.

� The link function connects the random and systematic components by
specifying the function of E(Y ) that the model equates to the linear pre-
dictor.

4.3 The random component

The random component is the observed, independent values of the response
variable Y , i.e. the response vector y = (y1, ..., yN )T , from a distribution in
the natural exponential family. The probability mass function for a categorical
data point i takes the general form of

f(yi|θi) = a(θi)b(yi)exp (T (yi)Q(θi)) . (1)

In (1), a(θi) is the normalizing factor, b(yi) is a function of the observation yi,
T (yi) is a su�cient statistic of yi and Q(θi) is the natural parameter. (Liero
and Zwanzig, 2012)
When dealing with distributions in the exponential dispersion family, such as
the negative binomial, we have to extend the random component to

f(yi|θi, φ) = exp

(
yiθi − b(θi)

a(φ)
+ c(yi, φ)

)
. (2)

Here, θi denotes the natural parameter. One can identify the following parts
of (2), as elements of the probability mass function for a natural exponential
family:

� θi/a(φ) corresponds to Q(θi).

� exp (−b(θi)/a(φ)) corresponds to a(θi).

� exp (c(yi, φ)) corresponds to b(yi)

Also, we can let T (yi) be the observation yi itself, since it is a su�cient statistic.
When the dispersion parameter φ is known, (2) simpli�es to (1).

4.4 The systematic component

The systematic component relates the parameters η = g(µ) to the explanatory
variables in the model matrix X and the model parameter vector β through the
linear relation
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η = Xβ (3)

Each row i in the model matrix X contains the value of the explanatory vari-
ables x for observation i and each column contains the value of predictor j for
every observation. The values of the regression parameters are contained in β.
Thus, for a model with N observations and k predictor variables, X is a N × k
matrix. Having k predictor variables also renders β a k-dimensional column
vector and N observations renders η an N -dimensional column vector.

4.5 The link function

The function g, introduced above, is the link function. It relates the parameters
η to µ = E(Y) through

η = g(µ) = Xβ (4)

Since g is invertible, we can express

µ = g−1(Xβ). (5)

In our data, ˆE(Y)] = y since we only have one measurement per day and thus
η̂ = g(y).

4.6 Likelihood equations

The likelihood function L for the model parameter vector β is de�ned as

L(β|y) =
∏
i

P (Yi = yi). (6)

Let l(β|y) = log (L(β|y)) be the log likelihood, where log is the natural loga-
rithm. Remebering (2), the form of the log likelihood for an exponential disper-
sion family is

l(β|y) =
∑
i

yiθi − b(θi)
a(φ)

+
∑
i

c(yi, φ). (7)

As per usual, the maximum likelihood estimates are the solutions to the likeli-
hood equations, which are
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∂l(β)

∂βj
=
∑
i

∂li
∂βj

= 0 (8)

for all j. Di�erentiating (8) with the chain rule gives us

∂li
∂βj

=
∂li
∂θi

∂θi
∂µi

∂µi
∂ηi

∂ηi
∂βj

. (9)

If we can �nd expressions for each fraction in (9), we have explicit likelihood
equations for the exponential dispersion family. Starting from the right, we �nd
that ∂ηi/∂βj is the derivative of (3) with respect to βj and thus ∂ηi/∂βj = xij .
Next is ∂µi/∂ηi, i.e. inversion of the derivative of the link function g. We leave
this factor as it is since we are treating the general case and the link function is
dependant on distribution and choice.
In order to �nd expressions for the remaining factors, we have to di�erentiate l.

Let

li =
yiθi − b(θi)

a(φ)
+ c(yi, φ) (10)

be the contribution of observation yi to the log likelihood. Di�erentiation yields

∂li
∂θi

=
yi − b′(θi)
a(φ)

(11)

∂2li
∂θ2i

=
−b′′(θi)
a(φ)

(12)

where b′(θi) and b′′(θi) is the �rst and second derivative of b evaluated at θi.
We note that (11) replaces the �rst factor in (9). Since the regularity conditions
hold in the exponential dispersion family we have that

E

(
∂l

∂θ

)
= 0 =⇒ µi = E(Yi) = b′(θi) (13)

−E
(
∂2l

∂θ2

)
= E

(
∂l

∂θ

)2

=⇒ var(Yi) = b′′(θi)a(φ) (14)

Through (13) we �nd that ∂µi/∂θi = b′′(θi) and from (14) that b′′(θi) =
var(Yi)/a(φ). Since this is the inverse of the only factor we have not determined,
we conclude that ∂θi/∂µi = var(Yi)/a(φ). We get the likelihood equations
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0 =

N∑
i=1

yi − µi
a(φ)

a(φ)

var(Yi)

∂µi
∂ηi

xij =

N∑
i=1

(yi − µi)xij
var(Yi)

∂µi
∂ηi

(15)

for j = 0, 1, 2, ....

4.7 The negative binomial GLM

The likelihood equations in (16) depend on Yi only through the variance and
the mean, which are connected through

var(Yi) = v(µi). (16)

The function v, called the variance function, characterizes the distribution of
data. In our case we assume negative binomial distribution and due to our
parametrization (as is stated in XX)

v(µ) = µ+ γµ2 (17)

where γ is assumed to be constant.
For a negative binomial GLM with multiple predictor variables, the most com-
mon link function is the natural logarithm and that is what we will use in the
next chapter. Fixing the link function to the natural logarithm, we can express
the likelihood equations for a negative binomial GLM as

∂2l

∂βj∂γ
= −

∑
i

(yi − µi)xij
(1 + γµi)2g′(µi)

= 0 (18)

for each j. The solutions to these equations are the maximum likelihood esti-
mates of β.

4.8 Tools for model and variable selection

We will use R to �nd, compare and analyse models. The R-package MASS

(Venables and Ripley, 2002) has several useful tools, among which we will use
glm.nb for our negative binomial regression and stepAIC for AIC-based variable
elimination in �tted models.
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4.8.1 The Akaike information criterion

Let k denote the number of parameters in a model and let L denote the value
of the maximized likelihood function for the model. The Akaike information
criterion is then de�ned as

AIC = −2 (log(L)− k)

One use of AIC is to compare the loss of information between models. Suppose
we have a set of models M1, ...,MN among which Mk is the model with the
lowest AIC value AICmin. The most probable model to lower the estimated
information loss is then Mk. We can calculate how much less probable another
modelMi is to lower the estimated information loss. Denote the probability that
Mi lowers the estimated loss of information with P (Mi =⇒ Min. info. loss)
and let AICi be the AIC value of Mi. Then

P (Mi =⇒ Min. info. loss) = exp

(
AICmin −AICi

2

)
. (19)

Since we will be dealing with a surplus of possible predictor variables, the AIC
is a suitable measure of �t for our models. The AIC penalizes a model with
many predictor variables and thus we can single out more parsimonious model
with it, giving us a general understanding. Using the procedure stepAIC
we may perform variable elimination based on the AIC of the model, rather than
the degree of explanation R2, since it allows for comparison of nested models.
The stepAIC-procedure will be based on backwards elimination of variables in
our case, i.e. the algorithm tries to lower the AIC by removing insigni�cant
explanatory variables.

4.8.2 Variation in�ation factor

Let C denote the sample correlation matrix for the explanatory variables. The
variation in�ation factor (VIF) for a variable xi is de�ned as C−1ii . It indicates
how much the variance of the corresponding regression coe�cient is in�ated by
the presence of other, correlated variables. (Sundberg, 2002) It will be useful
for �nding collinearity problems in data.
As will the eigen-values ei of C. Let emin denote the smallest eigen-value of C.
Strong collinearity is indicated by emin < 0.05 and moderate by emin < 0.10.
(Sundberg, 2002)
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5 Results

For our selected data, the mean number of birds µ̂ = 46.1 and the variance
V̂ar(Yi) = 9548.97 . Using (16) and (17) we can estimate γ̂ = 4.47. With such
an overdispersion, the negative binomial GLM is preferred instead of the Pois-
son GLM.
Also, γ = exp(1/θ), where θ is the parameter of the negative binomial dis-
tribution possible to estimate (without numerical methods). In the regression
performed in R, θ is estimated according to above.

5.1 All predictors without interactions

In Appendix 2, the negative binomial GLM with all available predictor variables,
without interactions, is presented. Due to the heavy collinearity in data, p-values
are not really to be trusted. We should �t a model with less collinearity in data
before investigating how reasonable it is that certain variables have a signi�cant
e�ect or not.
Looking at some measures of �t, we �nd that AIC = 13403. This can be
compared to �tting a GLM with normal or Poisson distributions, which have
AIC = 18721 and AIC= 95468 respectively. The lower value for the negative
binomial model is an indication of our choice of distribution being appropriate.

Using stepAIC to eliminate variables lowers the AIC to 13380. The resulting
model, denoted Model 1, is presented in Appendix 3. The correlation matrix
for Model 1 has the smallest eigen-value (rounded to two decimals) 0.03, which
indicates strong collinearity. Alas, we did not eliminate collinearity by ordinary
variable exclusion and thus we still can not trust the parameter estimates as
much as we would like. At least, using (19) we �nd that it is <0.001 times as
probable for the model with all predictors to minimize the loss of information
compared to Model 1.

Some diagnostics plots are also presented in Appendix 3. The residuals are
loosely following a normal distribution and there is no observation with consid-
erable leverage.

Looking at the �tted values in Figure 6 we �nd that Model 1 has the maximum
�tted value of 390, compared to there being 25 observations exceeding 400 in
data (Figure 5). It has, also compared to data in Figure 5, too low frequency of
zeros, ones and twos. Otherwise, the distribution of the �tted values resembles
the distribution of data rather much.
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Figure 6: The �tted values of model 1

5.2 Combined predictors with interactions

5.2.1 Model speci�c results

In Appendix 4, the model with combined predictors is presented. The smallest
eigen-value of the correlation matrix for this data is (rounded to two decimals)
0.46, indicating that we have eliminated the collinearity problem. Also, the AIC
= 13377.49 is a bit lower than for Model 1.

Eliminating variables with stepAIC gives us the model in Appendix 5, denoted
Model 2. The smallest eigen-value of the correlation matrix for the remaining
data is (rounded to two decimals) 0.53, indicating no problematic collinearity.
The only explanatory variable remaining with a p-value > 0.03 is Tail Wind
component. Actually, we �nd that for Model 2 AIC = 13375.51 so there has
been a further decrease in AIC. Comparing the AIC values with (19) gives us
that it is 0.3717 times as probable for the model forming the basis for Model 2
to minimize the loss of information.

Some diagnostics plots are also presented in Appendix 4. Most important to
note is that the residuals are somewhat following a normal distribution and that
there is one observation (index 1477) that has quite some leverage. Looking into
the details of the observation, it shows a relatively high number of Robins (380)
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Figure 7: The �tted values of model 2

when only 20 previous had been ringed, thus making this the �rst selected date
of the year 2009. Usually some earlier dates with fewer Robins are selected,
that is the normal migration process, but this was an exception and presumably
therefore this observation provides leverage.

Looking at the �tted values of Model 2 in Figure 7 we �nd that the maximum
value is lower than for Model 1, at 273. The frequencies of zeros, ones and twos
are still a bit low compared to data (Figure 5), but at least two is the most
common value.

5.2.2 Variable speci�c results

Mean wind speed Estimated at −0.226 with a p-value close to zero, we �nd
that the mean wind speed has a highly signi�cant negative e�ect on the number
of Robins. This is in accordance with Zehnder et al. (2001) where the wind speed
has a signi�cant negative e�ect on the number of birds aloft over Falsterbo in
the autumn nights. The Pearson correlation between mean wind speed over the
selected dates for each year and the yearly total of Robins is −0.262, although
with a p-value of 0.153.
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Mean side wind component Estimated at 0.918 with a p-value close to
zero we �nd that the mean side wind component has a signi�cant positive e�ect
on the number of Robins. There were no particular expectations regarding this
parameter. Possible reasons for the high signi�cance is presented in discussion.
The Pearson correlation between mean side wind component over the selected
dates for each year and the yearly total of Robins is −0.146, with a p-value of
0.434.

Mean tail wind component Estimated at 0.142 with a p-value of 0.273, the
mean tail wind component has an insigni�cant positive e�ect on the number of
Robins. The tail wind component has a highly signi�cantly positive e�ect on
the number of birds in the airspace above Falsterbo. (Zehnder et al., 2001) This
does not seem to apply for Robins. Although the e�ect is positive, it is rather
insigni�cant. The Pearson correlation between mean tail wind component over
the selected dates for each year and the yearly total of Robins is 0.472, with a
p-value of 0.007.

Di�erence in mean temperature Estimated at −0.036 with a p-value of
0.026, the di�erence in mean temperature has a signi�cant negative e�ect on
the number of Robins. However, the variable is constructed with a drop in tem-
perature represented by negative values. Thus, a drop in temperature increases
the number of Robins. The result is in accordance with Alerstam et al. (1973);
drops in temperature spur migratory movement.

Date Estimated at −0.026 with a p-value close to zero, the temporal distance
from median migratory date has a signi�cant negative e�ect on the number of
Robins. In other words, the number of Robins is dependent on how temporally
close we are to peak migration. Figure 4 indicates that the migration of Robins
is not uniformly distributed over time, which is in accordance with this result.

Year Estimated at < 0.001 with a p-value close to zero, the yearly total of
Robins has a signi�cant positive e�ect on the daily number of Robins.

Side wind - wind speed interaction The interaction between side wind
component and wind speed has, with a p-value of 0.026, a signi�cantly negative
e�ect on the number of Robins and is estimated to −0.083. Although the side
wind component has a signi�cant positive e�ect, the wind speed is presumably
superior in the sense that even if side wind component is optimal, too high wind
speeds won't allow for migration and/or ringing. (Zehnder et al., 2001) (Roos
and Karlsson, 1981)
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Tail wind - wind speed interaction The interaction between side wind
component and wind speed has, with a p-value close to zero, a signi�cantly
positive e�ect on the number of Robins and is estimated to 0.111. It seems tail
wind is even more favorable if the wind speed is high.

Side wind - tail wind interaction The interaction between side wind com-
ponent and head wind component has, with a p-value of 0.030, a signi�cantly
negative e�ect on the number of Robins and is estimated to 0.111. Consider-
ing that the tail wind component is negative during headwind, this indicates a
positive e�ect of head wind. However, it is hard to interpret this variable.

6 Discussion

6.1 Zero in�ation

The number of predicted zeroes and ones should ideally be higher for Model 2, in
order to �t data even better. Achieving a higher frequency of zeros can be done
by �tting a zero in�ated negative binomial generalized linear model (ZINB).
Zero in�ated models are of the mixture model class and combines a count mass
and a point mass at zero. (Phang and Loh, 2013) Such model states that
P (Yi = 0) = qi and P (Yi has some distribution without zero in�ation) = 1−qi,
i.e. a binomial trial is conducted and either we get the response zero or a re-
sponse from a probability distribution. (Lord, Washington, and Ivan, 2004)
A natural way to implement zero in�ation would be to relate it to the number
of days that no attempt at ringing Robins was performed. The assumption be-
hind cancelling the ringing is that the weather is so extreme that very few or no
birds are possible to catch (Roos and Karlsson, 1981). Viewing these days as
results of binomial trials with a year speci�c probability of success would seem
appropriate.
It is important to note that we wish to �t a model representing the real chain
of events, not only �nd the best possible �t according to AIC (or something
equivalent). Since attempts at ringing Robins and other birds sometimes are
made in the same weather as ringing is cancelled in, we would represent the
randomness in the conducted ringing fairly well with a ZINB.

6.2 Wind direction

From the results in Zehnder et al. (2001) I expected the tail wind component to
be signi�cantly positive for the number of Robins, especially when interacting
with wind speed. The results in Sandberg, Pettersson, and Alerstam (1988) con-
cerned Robins taking o� in Falsterbo, their mean heading could be in�uenced
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by local factors such as city lights. The mean direction of movement for Robins
ringed in Falsterbo during autumn and recovered elsewhere later in the autumn
is southwestern (Karlsson, 2014). The direction coincides with the mean migra-
tory direction in Zehnder et al. (2001). However, the Robins need not have a
southwestern heading regionally over Falsterbo. In conclusion, there are uncer-
tainties as to how the (presumed) tail wind component a�ects the number of
Robins.
The signi�cant positive e�ect of the side wind component could be due to Robins
normally not migrating over Falsterbo drifting with the wind and ending up in
Falsterbo. The scenario would be similar to the results in Gezelius and Heden-
strom (1988) and could be further investigated similarly. It could also form
basis for an analysis of whether direction of the side wind component matters.

6.3 The Robin population

Investigating the relation between the number of Robins in Falsterbo and breed-
ing bird surveys such as the Swedish Bird Survey could provide insight into how
the number of Robins in Falsterbo is in�uenced by the population at large.
However, this would demand that we knew the general geographical origin of
the Robins ringed in Falsterbo, in order to know what population is supposedly
measured. This would then form the basis for �ltering data from the Swedish
Bird Survey.
Currently, adequate knowledge of where the ringed Robins originate geograph-
ically is unavailable, although it is most likely derivable from data of recovered
ringed Robins at Falsterbo Bird Observatory. Bird surveys is considered the
most e�cient way of measuring populations (Svensson, 1978), thus it would be
interesting to replace the "Year"-factor in our model with estimated popula-
tion sizes from these surveys in order to see if Falsterbo data re�ect population
changes at large.
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8 Appendices

8.1 Appendix 1 - correlation matrices

Correlation matrices of the daily wind speed measurements.

WS00 WS03 WS06 WS09 WS12 WS15 WS18 WS21
WS00 1 0.86 0.78 0.69 0.61 0.55 0.53 0.5
WS03 0.86 1 0.86 0.77 0.67 0.6 0.58 0.55
WS06 0.78 0.86 1 0.85 0.74 0.67 0.66 0.62
WS09 0.69 0.77 0.85 1 0.83 0.74 0.72 0.67
WS12 0.61 0.67 0.74 0.83 1 0.81 0.76 0.69
WS15 0.55 0.6 0.67 0.74 0.81 1 0.84 0.73
WS18 0.53 0.58 0.66 0.72 0.76 0.84 1 0.84
WS21 0.5 0.55 0.62 0.67 0.69 0.73 0.84 1

Eigen-values: (5.70, 1.18, 0.44, 0.22, 0.15, 0.12, 0.10, 0.08)

Correlation matrices of the daily side wind component measurements.

SWC00 SWC03 SWC06 SWC09 SWC12 SWC15 SWC18 SWC21
SWC00 1 0.68 0.55 0.39 0.26 0.22 0.21 0.21
SWC03 0.68 1 0.67 0.47 0.31 0.24 0.26 0.23
SWC06 0.55 0.67 1 0.61 0.42 0.33 0.29 0.29
SWC09 0.39 0.47 0.61 1 0.61 0.47 0.37 0.34
SWC12 0.26 0.31 0.42 0.61 1 0.65 0.48 0.38
SWC15 0.22 0.24 0.33 0.47 0.65 1 0.59 0.47
SWC18 0.21 0.26 0.29 0.37 0.48 0.59 1 0.67
SWC21 0.21 0.23 0.29 0.34 0.38 0.47 0.67 1

Eigen-values: (3.93, 1.52, 0.81, 0.50, 0.36, 0.31, 0.30, 0.26)

Correlation matrices of the daily head wind component measurements.

HWC00 HWC03 HWC06 HWC09 HWC12 HWC15 HWC18 HWC21
HWC00 1 0.89 0.81 0.73 0.63 0.56 0.56 0.52
HWC03 0.89 1 0.88 0.8 0.69 0.63 0.61 0.57
HWC06 0.81 0.88 1 0.88 0.77 0.69 0.68 0.64
HWC09 0.73 0.8 0.88 1 0.86 0.77 0.75 0.7
HWC12 0.63 0.69 0.77 0.86 1 0.85 0.8 0.73
HWC15 0.56 0.63 0.69 0.77 0.85 1 0.87 0.77
HWC18 0.56 0.61 0.68 0.75 0.8 0.87 1 0.88
HWC21 0.52 0.57 0.64 0.7 0.73 0.77 0.88 1
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Eigen-values: (6.15, 0.93, 0.32, 0.21, 0.14, 0.09, 0.09, 0.08)

Correlation matrices of the daily temperature measurements.

TE00 TE03 TE06 TE09 TE12 TE15 TE18 TE21
TE00 1.00 0.97 0.94 0.86 0.80 0.81 0.85 0.82
TE03 0.97 1.00 0.96 0.85 0.79 0.80 0.85 0.83
TE06 0.94 0.96 1.00 0.89 0.82 0.84 0.88 0.86
TE09 0.86 0.85 0.89 1.00 0.96 0.94 0.92 0.89
TE12 0.80 0.79 0.82 0.96 1.00 0.97 0.90 0.86
TE15 0.81 0.80 0.84 0.94 0.97 1.00 0.94 0.89
TE18 0.85 0.85 0.88 0.92 0.90 0.94 1.00 0.96
TE21 0.82 0.83 0.86 0.89 0.86 0.89 0.96 1.00

Eigen-values: (7.16, 0.46, 0.19, 0.07, 0.05, 0.03, 0.02, 0.02)
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8.2 Appendix 2 - basis for Model 1

##

## Call:

## glm.nb(formula = Robins ~ P + WS00 + WS03 + WS06 + WS09 + WS12 +

## WS15 + WS18 + WS21 + SWC00 + SWC03 + SWC06 + SWC09 + SWC12 +

## SWC15 + SWC18 + SWC21 + TWC00 + TWC03 + TWC06 + TWC09 + TWC12 +

## TWC15 + TWC18 + TWC21 + TE00 + TE03 + TE06 + TE09 + TE12 +

## TE15 + TE18 + TE21 + Year + Date, init.theta = 0.7233815393,

## link = log)

##

## Deviance Residuals:

## Min 1Q Median 3Q Max

## -2.760 -1.129 -0.532 0.109 4.950

##

## Coefficients:

## Estimate Std. Error z value Pr(>|z|)

## (Intercept) 4.132207 0.215791 19.15 < 2e-16 ***

## P 0.012416 0.008117 1.53 0.1261

## WS00 -0.027000 0.019851 -1.36 0.1738

## WS03 -0.175425 0.025039 -7.01 2.4e-12 ***

## WS06 -0.068691 0.024680 -2.78 0.0054 **

## WS09 -0.020742 0.023706 -0.87 0.3816

## WS12 -0.014338 0.022165 -0.65 0.5177

## WS15 -0.034752 0.020352 -1.71 0.0877 .

## WS18 0.001036 0.021257 0.05 0.9611

## WS21 0.052075 0.017517 2.97 0.0030 **

## SWC00 0.230313 0.140265 1.64 0.1006

## SWC03 0.501288 0.159961 3.13 0.0017 **

## SWC06 -0.194433 0.159141 -1.22 0.2218

## SWC09 0.180341 0.152073 1.19 0.2357

## SWC12 0.051928 0.153529 0.34 0.7352

## SWC15 0.076159 0.150906 0.50 0.6138

## SWC18 0.166010 0.153700 1.08 0.2801

## SWC21 -0.299266 0.142886 -2.09 0.0362 *

## TWC00 0.238254 0.101413 2.35 0.0188 *

## TWC03 0.319291 0.126484 2.52 0.0116 *

## TWC06 -0.074888 0.122735 -0.61 0.5418

## TWC09 -0.062725 0.127025 -0.49 0.6214

## TWC12 0.161849 0.119456 1.35 0.1755

## TWC15 0.032288 0.116931 0.28 0.7825

## TWC18 -0.164637 0.126038 -1.31 0.1915

## TWC21 0.127608 0.099586 1.28 0.2001

## TE00 0.027739 0.044596 0.62 0.5339

## TE03 0.031141 0.058974 0.53 0.5975
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## TE06 -0.095319 0.051134 -1.86 0.0623 .

## TE09 -0.028405 0.047837 -0.59 0.5527

## TE12 0.054493 0.045544 1.20 0.2315

## TE15 0.017923 0.049136 0.36 0.7153

## TE18 0.107624 0.056137 1.92 0.0552 .

## TE21 -0.115653 0.042857 -2.70 0.0070 **

## Year 0.000322 0.000037 8.68 < 2e-16 ***

## Date -0.029517 0.004003 -7.37 1.7e-13 ***

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## (Dispersion parameter for Negative Binomial(0.7234) family taken to be 1)

##

## Null deviance: 3232.0 on 1581 degrees of freedom

## Residual deviance: 1834.3 on 1546 degrees of freedom

## AIC: 13403

##

## Number of Fisher Scoring iterations: 1

##

##

## Theta: 0.7234

## Std. Err.: 0.0255

##

## 2 x log-likelihood: -13328.9800
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8.3 Appendix 3

8.3.1 Model 1

##

## Call:

## glm.nb(formula = Robins ~ P + WS03 + WS06 + WS15 + WS21 + SWC00 +

## SWC03 + SWC18 + SWC21 + TWC00 + TWC03 + TWC12 + TE06 + TE12 +

## TE18 + TE21 + Year + Date, init.theta = 0.7186111949, link = log)

##

## Deviance Residuals:

## Min 1Q Median 3Q Max

## -2.740 -1.131 -0.539 0.115 5.015

##

## Coefficients:

## Estimate Std. Error z value Pr(>|z|)

## (Intercept) 4.21e+00 2.09e-01 20.12 < 2e-16 ***

## P 1.29e-02 8.06e-03 1.60 0.10985

## WS03 -1.88e-01 1.85e-02 -10.20 < 2e-16 ***

## WS06 -9.99e-02 1.93e-02 -5.18 2.2e-07 ***

## WS15 -4.62e-02 1.50e-02 -3.09 0.00202 **

## WS21 4.79e-02 1.40e-02 3.41 0.00065 ***

## SWC00 2.53e-01 1.34e-01 1.89 0.05923 .

## SWC03 4.84e-01 1.38e-01 3.52 0.00043 ***

## SWC18 2.01e-01 1.37e-01 1.48 0.13998

## SWC21 -2.52e-01 1.38e-01 -1.82 0.06810 .

## TWC00 2.23e-01 9.61e-02 2.32 0.02009 *

## TWC03 2.46e-01 1.05e-01 2.34 0.01922 *

## TWC12 1.11e-01 6.95e-02 1.60 0.11017

## TE06 -5.07e-02 2.56e-02 -1.98 0.04739 *

## TE12 5.71e-02 2.49e-02 2.30 0.02160 *

## TE18 1.24e-01 4.71e-02 2.63 0.00849 **

## TE21 -1.34e-01 3.89e-02 -3.44 0.00059 ***

## Year 3.11e-04 3.69e-05 8.42 < 2e-16 ***

## Date -2.97e-02 3.98e-03 -7.47 8.3e-14 ***

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## (Dispersion parameter for Negative Binomial(0.7186) family taken to be 1)

##

## Null deviance: 3212.9 on 1581 degrees of freedom

## Residual deviance: 1834.8 on 1563 degrees of freedom

## AIC: 13380

##

## Number of Fisher Scoring iterations: 1
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##

##

## Theta: 0.7186

## Std. Err.: 0.0253

##

## 2 x log-likelihood: -13339.8790

8.3.2 Diagnostics plots for Model 1
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8.4 Appendix 4 - Basis for Model 2

##

## Call:

## glm.nb(formula = Robins ~ P + mWS * mSWC * mTWC + mTEDIFF + Date +

## Year, init.theta = 0.7127791292, link = log)

##

## Deviance Residuals:

## Min 1Q Median 3Q Max

## -2.698 -1.119 -0.538 0.132 6.293

##

## Coefficients:

## Estimate Std. Error z value Pr(>|z|)

## (Intercept) 4.31e+00 1.82e-01 23.68 < 2e-16 ***

## P 9.17e-03 8.04e-03 1.14 0.254

## mWS -2.22e-01 2.84e-02 -7.80 6.2e-15 ***

## mSWC 9.49e-01 2.41e-01 3.93 8.5e-05 ***

## mTWC -4.68e-02 2.16e-01 -0.22 0.828

## mTEDIFF -3.50e-02 1.60e-02 -2.18 0.029 *

## Date -2.60e-02 3.97e-03 -6.55 5.6e-11 ***

## Year 2.76e-04 3.67e-05 7.53 5.1e-14 ***

## mWS:mSWC -9.46e-02 4.01e-02 -2.36 0.018 *

## mWS:mTWC 1.44e-01 3.68e-02 3.91 9.3e-05 ***

## mSWC:mTWC -3.97e-02 4.43e-01 -0.09 0.929

## mWS:mSWC:mTWC -7.02e-02 6.74e-02 -1.04 0.298

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## (Dispersion parameter for Negative Binomial(0.7128) family taken to be 1)

##

## Null deviance: 3189.5 on 1581 degrees of freedom

## Residual deviance: 1833.7 on 1570 degrees of freedom

## AIC: 13377

##

## Number of Fisher Scoring iterations: 1

##

##

## Theta: 0.7128

## Std. Err.: 0.0251

##

## 2 x log-likelihood: -13351.4880
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8.5 Appendix 5

8.5.1 Model 2

##

## Call:

## glm.nb(formula = Robins ~ mWS + mSWC + mTWC + mTEDIFF + Date +

## Year + mWS:mSWC + mWS:mTWC + mSWC:mTWC, init.theta = 0.7120380614,

## link = log)

##

## Deviance Residuals:

## Min 1Q Median 3Q Max

## -2.663 -1.116 -0.555 0.134 6.297

##

## Coefficients:

## Estimate Std. Error z value Pr(>|z|)

## (Intercept) 4.31e+00 1.81e-01 23.82 < 2e-16 ***

## mWS -2.26e-01 2.68e-02 -8.45 < 2e-16 ***

## mSWC 9.18e-01 2.39e-01 3.85 0.00012 ***

## mTWC 1.42e-01 1.29e-01 1.10 0.27279

## mTEDIFF -3.56e-02 1.60e-02 -2.22 0.02614 *

## Date -2.55e-02 3.96e-03 -6.44 1.2e-10 ***

## Year 2.78e-04 3.66e-05 7.59 3.2e-14 ***

## mWS:mSWC -8.34e-02 3.75e-02 -2.22 0.02632 *

## mWS:mTWC 1.11e-01 1.77e-02 6.27 3.6e-10 ***

## mSWC:mTWC -4.61e-01 2.12e-01 -2.17 0.02986 *

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## (Dispersion parameter for Negative Binomial(0.712) family taken to be 1)

##

## Null deviance: 3186.5 on 1581 degrees of freedom

## Residual deviance: 1834.0 on 1572 degrees of freedom

## AIC: 13376

##

## Number of Fisher Scoring iterations: 1

##

##

## Theta: 0.7120

## Std. Err.: 0.0250

##

## 2 x log-likelihood: -13353.5080

8.5.2 Diagnostics plots for Model 2
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Cook's distance

0.5

1

Residuals vs Leverage

1477

349

188

36


