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Abstract

Markov chains describe stochastic transitions between states over
time and the observations are the sequence of states. The assump-
tion is that the state at the next step is dependent only on the current
state. In many applications these states are not observable and the ob-
servations are instead outputs from another stochastic process which
is dependent on the state of the unobservable process. These models
are called hidden markov models (HMMs). This paper will provide
a theoretical background for discrete-time, finite-state HMMs start-
ing in ordinary markov chains. It will also answer questions on how
to infer information about the hidden process and how to predict fu-
ture distributions. It ends with simulations and a real data example
where the covered material is put into use. Examples are also provided
throughout the paper. The simulations showed that local maxima of
the likelihood can be detected through assigning implausible starting
values for estimation algorithms and that the precision of global de-
coding increase with smaller overlapping of the density/mass of the
state dependent variables.

∗Postal address: Mathematical Statistics, Stockholm University, SE-106 91, Sweden.
E-mail:andre.inge@hotmail.com . Supervisor: Mehrdad Jafari Mamaghani.



Sammanfattning

Markovkedjor beskriver stokastiska overg̊angar mellan tillst̊and över
tid och observationerna motsvaras av en serie tillst̊and. Antagandet
är att tillst̊andet efter nästa steg enbart beror p̊a det nuvarande till-
st̊andet. I m̊anga fall kan dock dessa tillst̊and inte direkt observeras och
observationerna kommer istället fr̊an en annan stokastisk process vars
fördelning beror p̊a tillst̊andet i den för oss gömda processen. S̊adana
modeller kallas for Hidden Markov models (HMMs). Denna uppsats
tillhandah̊aller en teoretisk genomg̊ang for HMMs i diskret tid och
med ett begränsat antal tillst̊and och tar sin start vid teori för vanliga
Markovkedjor. Den kommer ocks̊a att svara p̊a fr̊agor om hur man kan
härleda fram information om den gömda processen och hur man kan
prediktera framtida fördelningar. Uppsatsen avslutas med simuleringar
och ett exempel med riktig data där vi använder teorin. Exempel finns
genomg̊aende i texten.

Simuleringarna visade att lokala maxpunkter av likelihoodfunktionen
kan upptäckas genom att tilldela mindre troliga startvärden till den
använda skattnings-algoritmen och att precisionen vid global dechiff-
rering ökar med minskat snitt av täthets/sannolikhets-funktionerna i
de tillst̊andsberoende variablerna.
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1 Introduction

A Markov chain is a stochastic process where the underlying mechanism is
transitions between states [3]. It is based on the assumption that the value
of the process (the state) at the next step is dependent only on the value at
the time (a formal definition will be given in chapter 2). It could be used
for modeling the future value of an asset, analyzing simple board games, or
simply the probability of a certain event occurring when to process moves
to the next stage.

In many situations though, even though one might be interested in what
state a Markov chain is in, that variable cannot be observed. Instead the
only observable information connected with that process is another stochas-
tic variable which distribution depends on the state of the hidden process.
Such models are called Hidden Markov models. The term hidden refers to
the fact that the Markov chain driving the process is not visible to the ob-
server, rather we observe emissions from a random variable connected with
the current state.

As an example to illustrate this principle, imagine that no records of the
historical weather were available. Suppose that the weather on a certain
day could be either rainy or sunny and that the weather on the next day
depends only on the weather on that particular day. You find a diary from a
person and in it you read that on this specific day this person enjoyed a cool
beverage at the beach. Even though the text mentions nothing about the
weather, a not too far fetched conclusion would be that in betting whether
it was a sunny or a rainy day the former would pay off better.

The state, here being sunny or rainy, is hidden from us in the sense that
we cannot for sure know what the true weather was. For simplicity, as-
sume that a person on a given day could either enjoy a cool beverage at
the beach or stay home and read a book. The emission variable here would
thus give one of the two as output. Given that we know that the person
did the first we are lead to believe that the most probable weather was sunny.

In a sense Hidden Markov models are thus a sort of a statistician detec-
tive’s work in that one draws conclusions about the most probable event
based on observable information closely connected to the event.

Hidden Markov models have over the last decades become a highly useful
tool for a growing number of engineering applications. One of the most
prominent is different kinds of recognition and it is widely used in such
for speech, writing etc. Chances are that when you use some sort of voice
control, a Hidden Markov model is behind the result. Other areas are bioin-
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formatics where it can be used for DNA decoding and in economics for
modeling financial time series [1].

This paper will only regard finite, discrete time Markov chains. The struc-
ture will closley follow the book Hidden Markov Models for Time Series
by Walter Zucchini and Iain L. MacDonlad and throughout we will borrow
noations and equations from it.
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2 Markov Chains

2.1 Definition and Chapman-Kolmogorovs Equations

This chapter will provide the necessary mathematics behind Markov chains
needed to properly define and analyzing Hidden Markov models. It will
emphasize properties associated with the type of Hidden Markov models
that this paper covers, leaving some features less connected to the same out.
We will end this chapter with an example where we put to use the covered
material. We begin by defining a discrete-time Markov chain. Let

{Ct : t ∈ N}

be a sequence of discrete random variables. It is said to be a discrete time
Markov chain if for all

t ∈ N P (Ct+1|Ct, ..., C1) = P (Ct+1|Ct)

This is called the Markov property. In words it says that the distribution at
time t + 1 depends on the history of the process only through the value at
time t. At each discrete time change, the process moves from one state to
another or stays in the same state. Describing these events are the so called
transition probabilities:

γij(1) = P (Cs+1 = j|Cs = i) for i, j=1,2,...,m and t ∈ N

These denotes the probability that the process will in the next step move to
state j from state i. For a chain consisting of m states these probabilities
can be summarized into the so called transition probability matrix which
has the form

Γ(1) =


γ11(1) γ12(1) ... γ1m(1)
.
.
.

γm1(1) γm2(1) ... γmm(1)


The argument one refers to that this is the matrix consisting of the one step
transition probabilities. Since the rows in Γ are probability distributions
they must all sum to 1

m∑
j=1

γij(1) = 1 for i=1,2...m

Expressed in terms of Γ this is equivalent to stating that the row vector 1′

is a right eigenvector of Γ with the eigenvalue 1 and we will henceforth use
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this notation for similar cases [1].

We now define the t-step transition probabilities

γij(t) = P (Cs+t = j|Cs = i) t ≥ 0, i, j = 1, 2, ...m

These describes the probability that the process in t-steps moves from state
i from state j. We can now extend the one step probability matrix Γ(1)
and let Γ(t) be the matrix consisting of the elements γij(t). Computation
of these probabilities are given by the Chapman-Kolmogorov equations:

Γ(t+ u) = Γ(t)Γ(u)

Which further implies that for all t ∈ N,

Γ(t) = Γ(1)t (1)

In words, matrix containing the t-step probabilities is attained through the
t th power of the one step probability matrix.

2.2 Basic Properties

We will here briefly cover some basic properties of Markov chains.

Communication of States
Two states i and j are said to communicate if it is possible to go from i to
j and j to i. Expressed in terms of the transition probabilities we formally
write this as γij(t) > 0 and γji(t) > 0 for some t ≥ 1.

Class
If two states communicate we say that they belong to the same class and fur-
ther if the Markov chain consists of only one class it is said to be irreducible.
In this paper we will only concern ourselves with irreducible Markov chains

Reccurent and Transient States
For state i let gi be the probability that the process will ever re-enter i given
that it started in i. If gi = 1 we call state i recurrent and else we call it tran-
sient. If state i is recurrent it follows fairly easy that given that the process
starts in that state it will reenter the same infinitly many times as t → ∞.
Similarly if state i is transient there will be a positiv probability (1 − gi)
that it will never again enter i when in that state. A reccurent state i is said
to be possitive reccurent if the expected time until the process returns to i
starting in i is finite and for a finite-state Markov chain all reccurent states
are positive reccurent. Reccurence is a class propterty which means that if
i is reccurent and communicates with j (i.e. they belong to the same class),
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then j is also reccurent. A convinent way to check if a state i is reccurent
is if [2]

∞∑
t=1

γii(t) =∞ (2)

and if the same sum is less than ∞ it is transient.

Periodicity
We call a state i periodic with period k if, starting in i it can only return
to i in multiples of k time steps. If the period of state i is 1 we call the
state aperiodic which implies that returns to i can occur at irregular times.
Periodicity is a class property which means that if state i has the period
k then all other states that communicates with i also has the period k. If
the Markov chain is irreducible this implies that all states share the same
period since all states communicates with one another.

Ergodic states
A state i is called ergodic if it is positive reccurent and aperiodic.

Uncontitional Probabilities
Before moving on to stationary distributions we shall define another impor-
tant feature. The unconditional probabilities, which describes the probabil-
ity of a Markov chain being in a certain state at a given time t. We denote
these P (Ct = j). For j = 1, 2...m we can then create the row vector

u(t) = (P (Ct = 1), ...P (Ct = m)), t ∈ N (3)

for t=1 we call u the initial distribution. If this i known we can now compute
the distrubtion at time t = 2 through u(2) = u(1)Γ and indeed the following
holds:

u(t+ 1) = u(t)Γ (4)

2.3 Stationary Distributions

Consider the transition probability matrix described in (1). What will hap-
pen to Γ(t) as t grows large? It holds that for an irreducible ergodic Markov
chain there exists a unique limit distribution equal to the rows in Γ(t) as t
grows large. This distribution is what we call the stationary distribution.
Formally we say that, for a Markov chain with the above stated properties,
the row vector δ is the stationary distribution if

δΓ = δ and δ1′ = 1 (5)

At the end of this chapter we will present an example of a Markov chain
and compute its stationary distribution.

From (5) we can then conclude that a Markov chain starting in its stationary
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distribution will at all subsequent time points have the same distribution
i.e. the stationary dito and we define such a process as a stationary Markov
chain. In other words de define a stationary Markov chain as having the
property that the initial distribution u(1) is indeed δ [1].

2.4 Estimation of the Transition Probabilities

There are a number of ways to estimate the transition probabilities and we
will only concern ourselves with one which is a very straight forward way
given a sequens of observations. This is also indeed the maximum likelihood
estimate [1].

Imagine that we want to model a phenomenon using a 2 state Markov chain.
We call the states 1 and 2. Typically a sequens of observations will have
the form (11121122211112111122) where each number corresponds to the
process being in either state 1 or 2 at different times and the vector being
ordered with respect to time (here from t=1 to t=20).
We can directly see that given a 1 another 1 followed in 9 cases. We donote
this number f11 and similarly we see that f12 = 4, f21= 3 and f22=3 and
we combine this into the matrix:

F =

(
9 4
3 3

)
The number of transitions from state 1 is the sum of the elements in row 1
and in the same way for the number of transitions from state 2 which is the
sum of the elements in row 2.
A natural way of estimating the transition probabilities if therefore:

γ̂ij =
fij∑m
j=1 fij

(6)

where m is the number of states.

2.5 An Illustrative Example

We will here give an example of a Markov chain. We will use most of the
definitions in previous sections to illustrate them however the example is
fictional and the data made up.

Assume that the value of an asset at the end of a trading day could be
either low, average or high. To model this with a Markov chain we assume
according to the Markov property that the value on a following day depends
only on the value at that certain day and not the value of all days leading
up to that. This will then be a 3 state Markov chain and we name the states
low, average and high, 1 2 and 3.
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The data will be collected and summarized into a vector consisting of the
numbers 1, 2 and 3 as in the example from the previous section. Using
(6) we estimated the transition probabilities and summarized them into the
transition probability matrix

Γ(1) =

0.67 0.22 0.11
0.50 0.30 0.20
0.09 0.31 0.60


Examining the above matrix we can directly see that all states communicate
and so the chain only has one class and is thus irreducible. Knowing that
we can use equation (2) and conclude that it is also reccurent (see element
(1,1) in stationary distribution below, the sum in (2) is here ∞) and since it
is a finite-state chain it also follows that it is positive reccurent. Since it is
possible to enter any state from any other state at all times we also conclude
that the chain is aperiodic. Thus our Markov chain is ergodic.

Assume now that the day we start (t = 1), the value is high. The initial
distribution (u(1)), is then (1,0,0). Using equation (4) we see that the
distribution for day 2 is given by

u(2) = u(1)Γ = (0.67, 0.22, 0.11)

and further

u(3) = u(2)Γ = (0.5688, 0.2475, 0.1837)

So the the probability of being in state 1 in 3 days is 0.5688. Now note that

Γ(2) =

0.5688 0.2475 0.1837
0.5030 0.2620 0.2350
0.2693 0.2988 0.4319


The distribution for day 3 given that we started in state 1 is the first row
in Γ(2). Had the initial distribution been (0,1,0) i.e. starting the process in
state 2 it would have instead being row 2 that gave the distribution for day
3.

Now what happens to the rows in Γ(t) as t grows? We have already referred
to the stationary distribution for convenience when stating that the chain
was reccurent however that could have been shown without knowing it but
we conclude that a stationary distribution must exist since the chain is
irreducible and ergodic. Using computer software we can calculate any power
of Γ(1) and by some computations we see that
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Γ(26) = Γ(27) =

0.4727825 0.2648016 0.2624159
0.4727825 0.2648016 0.2624159
0.4727825 0.2648016 0.2624159


The rows here form the stationary distribution which we called δ and we
can directly see that both conditions in (5) are satisfied.
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3 Hidden Markov Models

3.1 A General Approach

In the introductory chapter we mentioned some basics for Hidden Markov
models to give a sense of the structure. We will in this section, before mov-
ing on to defining the models mathematically, aim to give a more solid idea
through a general discussion. We will do so mainly using examples which
we will return to in later sections of this chapter and in later chapters.

Hidden Markov models are a form of Dynamic Bayesian Network which are
types of model used to describe conditional dependencies of a set of random
variables. More precisely, the prefix dynamic refers to Baysian networks for
sequences of variables i.e development over time.

Although Hidden Markov models and similar models go by different names
such as Hidden Markov Processes, Markov-dependent mixtures or Markov-
switching models, sometimes depending on the applications and sometimes
on the author, we will only refer to them as Hidden Markov models [1].

Hidden Markov models (HMM) are models where the distribution of the out-
put variables, or emission variables, are dependent on the state a Markov
process that cannot be observed directly. We will refer to these distribu-
tions as the state dependent distributions. As a first example consider a
2-state Markov chain described in the previous chapter. Whenever the pro-
cess enters a state we observe an outcome from a stochastic variable whose
distribution depends on whether the process is in state 1 or 2. Let the
output be either A or B for both states and let P1(A) and P1(B) be the
probability distribution when the process is in state 1 and P2(A) and P2(B)
be the same in state 2 and of course

∑2
i=1 Pj(i) = 1 for i = A,B and j = 1, 2

. The state dependent variables are here Bernoulli distributed with different
probabilities depending on the state in which the process is in. This could in
some sense be considered the simplest form of a Hidden Markov model and
we refer to it as a Bernoulli-HMM. A sequens of observations would then
typically have the appearance of a vector consisting of A and B for example
X = (AABAABA).

As a second example, consider a phenomenon that produces an output at
discrete times. We know from theory that this phenomenon over time moves
between periods of high and low activity such that in the former the output
results in high values and the latter low. We cannot observe in what state
(high or low) the process is in but rather just observe the output of the
process. A typical observation sequens could then look something like this
X = (23, 21, 24, 12, 11, 26, 24, 9, 9, 7). If we were to ignore that the process
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could be in different states we could calculate the mean of X (or whatever
information we are after) and be done with it. However given the theory we
could instead try to fit this into a model that takes into account that the
observations could belong to a period of high respective low activity which
would give us two sets from which we could calculate two different means
each belonging to each state. Further we could also be interested in the
transition probabilities describing the transitions between the two states.
If the state dependent variables in this example are Poisson distributed we
call this a Poisson-HMM and we shall later examine this model by simula-
tions.

There are numerous questions that emerges directly in regards to these two
examples. Given an observation sequence X:

• What state sequence is most likely to have produced X?

• What is the most probable state the process is in at time t given the
history up to t?

• What values of the transition probabilities and the parameters of the
emission variables fits the data best?

• Given estimates of the parameters, what can we say about future states
and distributions?

We shall try to answer these questions and illustrate them using simulated
data in the coming chapters. The following sections of this chapter will aim
at mathematically define and desribe the models as such.

3.2 Definition

For a Hidden Markov model {Xt : t ∈ N} we denote the history up to t with
X(t) and C(t). The first is the history of the observable variabels and the
second the unobservable Markov chain. This model can then be summarized
into the two parts:

P (Ct|C(t−1)) = P (Ct|Ct−1) t = 2, 3, ... (7)

P (Xt|X(t−1),C(t)) = P (Xt|Ct) t ∈ N (8)

The first expression describes a process satisfying the Markov property de-
scribed in chapter 2. This is the unobserved process. The second expression
describes the process {Xt : t = 1, 2, ...} and from it, it is clear that the distri-
bution of Xt depends solely on the current state Ct and is thus independent
of earlier observations and states. It is worth stating that a HMM itself is
not by necessity a Markov process [1] so in general

P (Xt|X(t−1)) 6= P (Xt|Xt−1)

14



Which can be proved with simple counter examples, the term Markov in
HMM simply refers to the unobserved process satisfying the Markov prop-
erty. A HMM consisting of m hidden states is refered to as an m-state
HMM. The structure of the model is illustrated in the graph below, a so
called Trellis Diagram.

We now introduce some notations. For a specific HMM Γ is the transition
probability matrix consisting of the elements γij for i, j = 1, 2...m describing
the transitions between states in the unobservable Markov chain.

The state dependent distributions we denote pi(x) = P (Xt = x|Ct = i)
for i = 1, ...,m in the discrete case. This is the probability mass function of
Xt when the process is in state i. If the state dependent variables are con-
tinous then pi(x) is the density function of Xt|Ct = i. We can conveniently
sum up these in matrix form as

P(x) =


p1(x) 0

.
.
.

0 pm(x)



At last we define ui(t) = P (Ct = i) as the probability that the Markov chain
at time t is in state i and we create the vector u(t) = (u1(t), ..., um(t)). For
t = 1, u is the initial distribution of the Markov chain and we will denote
this as δ.

Every unique HMM is hence determined by these three entities.

• The transition probability matrix Γ

• The state dependent distributions P(x)

• The initial distribution δ

15



3.3 The Joint Probability Mass Function and Likelihood

For a set of variables the joint probability mass function of (X1, ..., XT , C1, ..., CT )
= (X(T ),C(T )) is given by

P (X(T ),C(T )) = P (C1)P (X1|C1)
T∏
k=2

P (Ck|Ck−1)P (Xk|Ck) (9)

Using the notations from the previous section, the likelihood function in
matrix form is hence LT given by

LT = δP(x1)ΓP(x2)ΓP(x3) · · · ΓP(xT )1′ (10)

We will now give an example on how direct computation of the likelihood
can be used given a specified model and a set of two observations.

Example 3.1 Consider the following model.

Γ =

(
0.25 0.75
0.5 0.5

)
δ = (0.4, 0.6) pi(x) ∈ Po(2i) for i=1,2

δ is here the initial distribution as well as the stationary distribution. Using
(10), the likelihood would then be δP(x1)ΓP(x2)1

′. Which can be expressed
as

2∑
i=1

2∑
j=1

δipi(x1)γijpj(x2) (11)

Say now that we have the observations x1 = 1 and x2 = 5 and want to know
what state sequence maximizes the likelihood, that is what combination of
i and j maximizes the expression in the dubbel-sum in (11)? For i = 1 and

j = 1 we get that δ1 = 0.4, p1(1) = 2e−2, γ11 = 0.25, p1(5) = 25e−2

5! and the
product is 0.00098. The table below shows the computaions over all i:s and
j:s. and from it wee se that the answer to the question is the state sequence

i j δi pi(1) γij pj(5) product

1 1 0.4 0.271 0.25 0.036 0.00098
1 2 0.4 0.271 0.75 0.156 0.01268
2 1 0.6 0.073 0.5 0.036 0.00079
2 2 0.6 0.073 0.5 0.156 0.00342

(1,2). This should not come as a surprise given the transition probabilities
and the fact that P (p1(x) ≤ 4) = 0.9473 . What we did here was a so called
global decoding and we will return this in chapter 4.
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Looking at the table again we see that each of the 4 terms (the elements
last column) consists of 4 factors, in fact for a m-state HMM with T obser-
vations, computations of the likelihood will consist of a sum of mT terms
each with 2T factors.

3.4 The Forward and Backward probabilites

In chapter 4 we will discuss methods through which we can answer the
questions stated in the beginning on this chapter. Before we do so we must
introduce two more features, the forward and backward probabilities which
are used to estimate unknown parameters as well as for decoding.

Forward Probabilities
For a set of T observations we define the vector of forward probabilities αt

as
αt = δP(x1)ΓP(x2) · · · ΓP(xt) t = 1, 2, ..., T (12)

where δ is the initial distribution of the Markov chain. The elements in αt

are what we call the forward probabilities. If t = T then the sum of the
elements in αt is the likelihood.

It holds that the j th element in αt has the joint probability

αt(j) = P (X(t) = x(t), Ct = j) for j=1,...,m (13)

Backward Probabilities
For a set of T observations we define the vector of backward probabilities
β′t as

β′t = ΓP(xt+1)ΓP(xt+2) · · · ΓP(xT )1′ t=1,2,...,T (14)

It then holds for the j th element in β′t that

βt(j) = P (Xt+1 = xt+1, Xt+2 = xt+2, ..., XT = xT |Ct = j) (15)

While the forward probabilities are joint probailities the backward probabil-
ities are conditional ones, the conditional probability of X from t+1 up to T
given that we at time t are in state j. Obviously βT (j) = 1 for all j = 1, ...,m.

Combining the forward and backward probabilities we get the following
results which will be needed in the coming chapter. For a proof we refer to
Zucchini & MacDonald.

Proposition 1

• αt(j)βt(j) = P (X(T ) = x(T ), Ct = j) t = 1, ..., T
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• αtβ
′
t = P (X(T ) = x(T )) = LT

• P (Ct = j|X(T ) = x(T )) = αt(j)βt(j)/LT t = 1, ..., T

• P (Ct−1 = j, Ct = k|X(T ) = x(T )) = αt−1(j)γjkpk(xt)βt(k)/LT t=2,...,T

In short, the first says that the joint probability of X and C = j at time
t is attained through the product of the forward and backward probability
at time t. The second follows as a consequens of the first. The third and
fourth describe conditional probabilities of C given the history of X. For
more information about the properties of these equations we again refer to
Zucchini & MacDonald.

Example 3.2 Consider again the model in example (3.1). We will now
compute α2 and β2 when X = (2, 2, 4).

α2 =
(

0.4 0.6
)( 0.2707 0

0 0.1465

)(
0.25 0.75
0.5 0.5

)(
0.2707 0

0 0.1465

)

β′2 =

(
0.25 0.75
0.5 0.5

)(
0.0902 0

0 0.1954

)(
1
1

)
We get that α2 = (0.01922427, 0.01833889) and β2 = (0.1690810, 0.1427952)
from which we conclude that

P (X1 = 2, X2 = 2, X3 = 4, C2 = j) = (0.003250458, 0.002618705) for j = 1, 2
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4 Parameter Estimation and Inference

In this chapter we will discuss methods of estimating the parameters in a
HMM through the Baum Welch algorithm. We also discuss how to draw con-
clusions about the hidden state at various times and the full state sequence
of states given observations. We begin with an algorithm for estimating the
parameters based on the EM-algorithm called the Baum-Welch algorithm.

4.1 The EM and Baum-Welch Algorithm

The Baum-Welch algorithm, named after Leonard E. Baum and Lloyd R.
Welch, is one of the most common ways to estimate unknown parameters
in a HMM using only the observed data as training [1]. It is based on the
expectation maximization algorithm which is among other things can be
used for maximizing the likelihood when some data is missing which in the
case of HMMs corresponds to the hidden states of the Markov chain. It con-
sists of two steps. The E-step calculates the expectation of the missing data
given the observations and the current estimation of the parameters and
the M-step maximizes that function with respect to the parameters. This
procedure is repeated until the changes in the estimates are smaller than
some predetermined threshold. In the context of HMMs the expectation
maximization algorithm is knows as the Baum-Welch algorithm and it uses
the forward and backward probabilities described in the previous chapter [1].

When applying the EM-algorithm the log-likelihood function is referred to
as the incomplete log-likelihood. Incomplete since we are missing the values
of the Markov process. In contrast we call the complete log-likelihood the
log-likelihood of the data if we instead could see hidden data. The reason
is that the former could be somewhat hard to maximize [7]. We therefore
define the complete log-likelihood as

log
(
P (x(T ), c(T ))

)
= log

(
δc1

T∏
t=2

γct−1,ct

T∏
t=1

pct(xt)

)
(16)

Where δ is the initial distribution of C1. Since c1, ..., cT is missing we some-
how need to replace them. We therefore introduce the two variables:

• uj(t) = 1 iff ct = j otherwise 0 t = 2, ..., T

• vjk(t) = 1 iff ct−1 = j and ct = k otherwise 0 t = 1, ..., T

Exanding the expression in (16) we get

log
(
P (x(T ), c(T ))

)
= log δc1 +

T∑
t=2

log γct−1,ct +
T∑
t=1

log pct(xt) (17)
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and with our new variables we can express this as

m∑
j=1

uj(1) log δj +

m∑
j=1

m∑
k=1

(
T∑
t=2

vjk(t)

)
log γjk +

m∑
j=1

T∑
t=1

uj(t) log pj(xt)

(18)

The complete-data log-likelihood is thus made up of three terms where the
first depends only on the intial distribution, the second only on the tran-
sitions probabilities and the third only on the state dependet distributions
and each is maximized with respect to its parameters.

To do so we need an expression for uj(t) and vjk(t) which can be achived by
the E-step. We simply replace uj(t) and vjk(t) with their conditional expec-
tations given x(T ) which are the third and fourth equation in proposition 1
in chapter 3 so that

• ûj(t) = P (Ct = j|x(T )) = αt(j)βt(j)/LT

• v̂jk(t) = P (Ct−1 = j, Ct = k|x(T )) = αt−1(j)γjkpk(xt)βt(k)/LT

These estimates are based on the current parameter estimates. When this
step is done, (18) is maximized with respect to the three sets of parame-
ters that makes up a unique HMM, the initial disitribution δ, the transition
probability matrix Γ and the parameters of the state dependent distribu-
tions pj(x). The new parameter estimates are then used in the E-step again
and repetition of this procedure is done until desired convergence at which
point the value of the parameters will be at a stationary point of the like-
lihood of the observed data [1]. This point however is not a guaranteed
global maximum and there is no known way to ascertain such point. In the
next chapter we will simulate data and try different starting vaules for the
paramters to explore this. We will end this section with an example on how
to perform the maximization step for the parameters of the state conditional
distribution when these are distributed according to an exponential distri-
bution.

Example 4.1 Let pj(x) ∈ Exp(λj) so that pj(x) = 1
λj
exp(−xλj ). The third

term in (18),
∑m

j=1

∑T
t=1 uj(t) log pj(xt) then becomes for any j = 1, ...m

T∑
t=1

ûj(t) log

(
1

λj
e

−x
λj

)
= −

(
ûj(1)

x1
λj

+ ûj(1) log(λj) + ...+ ûj(T )
xT
λj

+ ûj(T ) log(λj)

)
which upon differentiation becomes(
ûj(1)x1
λ2j

+ ...+
ûj(T )xT

λ2j

)
−
(
ûj(1)

λj
+ ...+

ûj(T )

λj

)
=

1

λ2j

T∑
t=1

ûj(t)xt−
1

λj

T∑
t=1

ûj(t)
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and this expression set to zero yields

λ̂j =

∑T
t=1 ûj(t)x(t)∑T
t=1 ûj(t)

(19)

Also this expression has the limit zero as λj → ∞ but that is clearly not a
solution here.

4.2 Decoding

Given a model with estimated parameters and a sequence of observations we
shall now see how one can go about to infer information about the hidden
states. Although there are several questions that can be answered we will
only focus on two. The most likely state at a given time (local decoding) and
the most likely state sequence (global decoding) given a set of observations.

4.2.1 Local Decoding

The goal here is to for a given time t find the most likely state of the Markov
chain, that is we need P (Ct = i|X(T ) = x(T )). From the first and second
equation in Propostition 1 we had that P (X(T ) = x(T ), Ct = i) = αt(i)βt(i)
and P (X(T ) = x(T )) = LT . Using elementary probability theory we can
directly see that

P (Ct = i|X(T ) = x(T )) =
P (X(T ) = x(T ), Ct = i)

P (X(T ) = x(T ))
=
αt(i)βt(i)

LT
for i = 1, ...,m

(20)
So at time t, the most likely state i is the one that maximizes the above
expression.

Example 4.2
Using the model and the observations in example 3.1 we have that α2 =
(0.01922427, 0.01833889) and β2 = (0.1690810, 0.1427952). The full likeli-
hood of the observations L3 = α2β

′
2 is 0.005869163 which gives us

i P (C2 = i|X(T ) = x(T ))

1 0.5538197

2 0.4461803

and so we conclude that the most likely state at time t = 2 is 1.

4.2.2 Global Decoding

Often one is not merely interested in the state at one perticular time but
rather what sequence of states is most likely to have produced a sequence
of observations (this is the case in for example speech recognition [1] where
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the hidden states corresponds to the abstract syllable and the observations
to the spoken sound) . The task is to find the state sequence c1, ..., cT that
maximizes the conditional probability

P (C(T ) = c(T )|X(T ) = x(T )) (21)

This undertaking is called global decoding and even though the results are
often smiliar to local decoding they are not by necessity identical [1]. Re-
turning again to example 3.1 we saw an occurence of this. There we had
a model with 2 states and 2 observations. This gave us a sum of 4 terms
each with 4 factors and in general the computation of the likelihood over all
combination of states consists of a sum of mT terms each with 2T factors
and obviously this makes direct computations unfeasible [1]. The solution is
a case of dynamic programming algorithm known as The Viterbi Algoritm
[3]. Though we will use this in the next chapter we will not discuss the
detalis of this but instead refer to Zucchini & MacDonald or Stark & Woods
for a theoretical explanation.

4.3 Predicting Future States and Distributions

In many applications one might not only be interested in decoding past
states but rather make predictions about the future given the history of the
process. We will cover two aspects of this which we will use to predict the
future rate of inflation in Sweden. These two aspects are the most likely
state h steps after T and the distribution of X h steps after T .

4.3.1 Predicting Future States

The task is to find P (CT+h = i|X(T ) = x(T )). Consider first the case where
h = 1. Looking at (20) we see that when t = T the right hand side becomes
αT (i)
LT

since βT = 1. So the distribution of C at time T is

P (CT = i|X(T ) = x(T )) =
αT (i)

LT

Going back to the theory of Markov chains the distribution at the next step
is the above expression multiplied with the transition probability matrix.
We can write this as

P (CT+1 = i|X(T ) = x(T )) =
αTΓ(, i)

LT

where Γ(, i) is the i th column of Γ. Expanding this to h steps and we have
the following

P (CT+h = i|X(T ) = x(T )) =
αTΓh(, i)

LT
(22)
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As h→∞ the right hand side converges towards the stationary distribution
of the Markov chain indicating that if the initial distribution is in fact the
stationary the ride hand side of (22) is always the stationary distribution.
This is also clear if we interpret the stationary distribution as the percent
of time spent in each state in the long run.

4.3.2 Predicting Future Distributions of X, (Forecast)

In many cases one is more interested in the output variables rather than the
states themselves though the states are driving the evolution of the process.
For example one could model the volatility of stock returns and want to
predict the value at some point in the future where the states corresponds
to periods of high and low volatility [4]. One way to go about it would be
to predict the most probable state at that time and use the estimated state
dependent variable for that state. The downside to this is that the state
dependent variables could differ a lot. For example if we have two Gaussian
distributed variables with the same variance but the means 1 and 100 and
we predict that the most likely state is state 1 with probabiility 0.51 it is
not very reasonable to be use the mean 1 over the mean 100. Instead it
would be more wise to use a weighted average based on the distribution of
predicted states. Moreover if one were to only use the most probable state
one would not be using all information avaiable. Instead we calculate the
vector of probabilities for each state at time T +h and use those as weights.
We get

P (XT+h = x|X(T ) = x(T )) =
αTΓhP(x)1′

LT
(23)

Let
αT

αT1′
= φT

and we get
P (XT+h = x|X(T ) = x(T )) = φTΓhP(x)1′

The vector of weights for the h th step after T if then

φTΓh (24)

Equation 24 is the vector of probabilities of the Markov chain being in
different states at h steps after T so the idea is simply to use those as
weights on our state dependent variables to predict future distributions.

4.4 Choosing Model

As in many applications in statistics the range of possible models is vast.
In the case of HMM we have to decide how many states the Markov chain
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should have and what state conditional distributions fit the data best. One
problem that could easily arrise is overparameterization. In the case of a
multiple linear regression model for example, the R2 always increases with
the addition of another explanatory variable but at the cost of higher model
complexity. In the case of HMMs the fit of the model similarly increases with
the addition of another state but at the expense of a quadratic increase in
the number of parameters [1]. Of course in some applications we know from
theory the exact number of possible states but in many cases this number
is rather arbitrary. We could flip two unfair coins with a Markov chain
driving which coin to flip next and either pat our friend on the head or
pull his tail depending on whether we ended up with heads or tails. If our
friend (who cannot see the coin) would want to model this using a HMM
he would know that the only possible number of states is 2 (coin 1 and coin
2). In another case we could for example consider an economy and divide
its current condition into the states of boom and recession. However we
could also add a state called depression to distinguish periods of moderate
recession from periods of very high dito. We end up having to ask ourselves
what number of states is the optimal? Many suggestions have been made
and this question is by no mean settled [1]. We will in the coming chapter
for our simulations use the Akaike information criterion which is defined as

AIC = −2 logL+ 2p

and the Bayesian information criterion which is defined as

BIC = −2 logL+ p log T

Where logL is the log-likelihood of the fitted model and p the number of
parameters of the model. For both criterions, the ‘best’ model is the one that
minimizes the information criterion. Adding a state will increase the number
of parameters quadraticly with respect to the transition probabilities and
linearly with state dependent variables which is why the order of the models
with regards to the information criterion only depends on the former.
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5 Simulation

In this chapter we will simulate data from specified models. We will then
use a form of reverse engineering to try to fit this data into different models.
We will focus manily on

• Choosing models using the AIC and BIC

• Examining parameter estimations with different starting values (the
problem of local maximum of the likelihood)

• Decoding

We will always assume non-stationarity in our models. LL denotes the
log-likelihood of of the observations using the estimated parameters from
the Baum-Welch algoritm and n denotes the numbers of iterations before
convergence.

5.1 A Poisson-HMM

The Model
We will simulate 225 observations from the following model where δ is the
initial distribution.

Γ =


0.9 0.02 0.05 0.03
0.10 0.75 0.06 0.09
0.05 0.10 0.55 0.30
0.10 0.10 0.65 0.15

 P(x) =


p1(x) 0 0 0

0 p2(x) 0 0
0 0 p3(x) 0
0 0 0 p4(x)


p1(x) ∈ Po(5) p2(x) ∈ Po(10) p3(x) ∈ Po(15) p4(x) ∈ Po(20)

δ = (0.2, 0.4, 0.1, 0.3)

The simulated process is shown in the graph below.
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We will now try to fit this data into 4 different models with 2, 3, 4 and
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5 states. As initial values we will for the transition probability matrix use
uniformly distributed rows and. The starting values of λ (parameters of the
Poisson distributions) and the initial distribution we will allow to depend
on the number of states. In the estimated matrices ε is a number such that
0 < ε < 3.74 · 10−7. The reason for using this number instead of just round
of to 0 is that the latter would imply an impossibility of transitions from
that i to j whereas this allows for this but with a very low probability.

2 states
Starting values: λ = (5, 15)

Γ̂ =

(
0.8857 0.1143
0.1051 0.8949

)
, δ̂ = (1, 0), λ̂ = (5.0032, 14.3895), LL = −661.8274,

n = 15

3 states
Starting values: λ = (5, 10, 15).

Γ̂ =

0.9116 0.0229 0.0655
0.0393 0.8984 0.0623
0.0736 0.0673 0.8591

, δ̂ = (1, 0, 0), λ̂ = (4.6064, 9.3283, 17.0601),

LL = −630.2404, n = 27

4 states
Starting values: λ = (3, 9, 16, 21)

Γ̂ =


0.90368 0.01945 0.07687 ε
0.0358 0.9073 ε 0.0569
0.17462 0.05102 0.00001 0.77435

ε 0.07194 0.75248 0.17558


δ̂ = (1, 0, 0, 0), λ̂ = (4.5401, 9.3051, 15.3738, 18.4456), LL = −626.3862,
n = 99

5 states
Starting values: λ = (3, 8, 12, 16, 21)

Γ̂ =


ε 0.9292 0.0577 0.0131 ε

0.9015 ε ε 0.0985 ε
ε 0.0414 0.8931 ε 0.0655
ε 0.1658 0.0043 ε 0.8299
ε ε 0.1142 0.5655 0.3203


δ̂ = (0, 1, 0, 0, 0), λ̂ = (3.4838, 5.6538, 9.3633, 15.0641, 18.4124), LL = −618.4638,
n = 214
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To decide which model is preferable we summarize the results in the ta-
ble below.

m p -LL AIC BIC

2 4 661.827 1331.655 1345.318

3 9 630.2404 1278.481 1309.226

4 16 626.3862 1284.772 1339.43

5 25 618.4638 1286.928 1372.33

As expected we see that the likelihood increases with the number of states or
equivalent, the negative log-likelihood decreases. But, taking into account
the number of parameters, we find that both the AIC and BIC select the
model with 3 states. For this data we thus choose that model.
We cannot be sure however that the estimates in our model as well as in
the rejected models really correspond to a global maximum of the likelihood
function. One way to at least increase our confidence is to try different start-
ing values for the Baum-Welch algorithm but of course, given the number
of possible values this is absolutely no guarante. What is certain though is
that if two different set of starting values returns two different values of the
likelihood then the one with the smaller is not a global maximum. For this
simulation, different values were tried and all led to the same estimates.

Having chosen our model it could be interesting to determine som features
of the Hidden Markov chain based on the estimation.

Γ̂ =

0.9116 0.0229 0.0655
0.0393 0.8984 0.0623
0.0736 0.0673 0.8591


is obviously irreducible since all states communicate. Further it is aperiodic
since all states can be reached from all other states at all times. It has a
stationary distribution which we compute by

lim
t→+∞

Γ̂(t) =

0.3917604 0.2954757 0.3127639
0.3917604 0.2954757 0.3127639
0.3917604 0.2954757 0.3127639


and so we conclude that it is also positive reccurent and hence ergodic and
its stationary distribution is equal to rows in the above matrix.

For our model the graph below shows the most likely state sequens ac-
cording to the Viterbi algorithm where the red line is λi for state i.
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Conclusion

Though the data was simulated from a 4 state HMM we were led to choose
a model with 3 states given our four model-setups and the information cri-
terion . We found that our estimate of Γ was ergodic and we illustrated the
most likely state sequence using the Viterbi algorithm.

5.2 2 Gaussian HMMs

We will here use two different Gaussian HMMs. In the first one we will
explore the problem of local maximum of the likelihood function and in the
second we will simulate from a model with a small overlapping of the density
functions in the state dependent variables.

5.2.1 Model 1

For this simulation we will assume that we have reason to believe that a 2
state model is the only possible model and we will thus try to fit the data
into a model with two states. The simulation comes from the below specified
model and the plot shows the observations.

Γ =

(
0.8 0.20
0.25 0.75

)
, p1(x) ∈ N(0, 1), p2(x) ∈ N(0, 4), δ=(0.8,0.2)

We will now try out different values of parameters of the state dependent
variables for fixed transition and initial probabilities. We therefore let

Γ =

(
0.5 0.5
0.5 0.5

)
, δ = (0.25, 0.75)

We now assume that we have no knowledge of the model that generated
these observations except for the number of states and that the state de-
pendent variables are assumed to be normally distributed. If we relax that
for a moment one, from looking at the graph might want to suggest that
3 states with the means low, around zero and high, would result in a good
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fit. It looks as if once the process is in the high state it tends to quickly
move to the low state and once there quickly return to the high state and
occationally visit the zero state for a period of time. But since we know
that the number of states can only be 2 we should instead be led to be-
live that the low and high states are actually the same state and that the
quick transitions between them instead reflects a high variance of that very
same state. We should therefore believe that we are dealing with 2 variables
that differ in variance. As for the means we notice that the sample mean is
0.3101073 and it looks as though the high and low valued observations are
somewhat equally distributed around 0.

By this reasoning we choose as starting values µ = (−1, 1) and σ = (0.5, 2).
After 20 iterations the Baum-Welch algorithm returns the following esti-
mates:

Γ̂ =

(
0.7716 0.2284
0.1354 0.8646

)
, δ̂ = (0.9999999, 0.0000001)

µ̂ = (0.1344, 0.4162), σ̂ = (1.0255, 4.6851)

and LL=-521.4165768 and so the likelihood is 3.561705e-227.
Other values close to these where tried and all resulted in the same estimates.

Now let’s try a set of values for which there is no reason to belive to be
true based on the graph and the data. Let µ = (10, 1) and σ = (10, 10).
Running this through the Baum-Welch algorithm we get the following after
38 iterations:

Γ̂ =

(
0.8645 0.1355
0.2284 0.7716

)
, δ̂ = (0, 1)

µ̂ = (0.4164, 0.1341), σ̂ = (4.6856, 1.0260)

and LL=-521.4165773 and so the likelihood is 3.561703e-227.
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Looking at these two estimates it seems as if state 1 in the first corresponds
to state 2 in the second such that all elements in the estimated matrices and
vectors have changed place. The slight differences in the estimates comes
from the threshold for convergence. If that was set to a smaller quantity
the two models would be nearly identical since the order of the terms in the
likelihood function does not change its structure.

Now let’s try µ = (1, 1) and σ = (1, 0.05) as starting values which makes
no sense given a quick look at the graph. Convergence was reached after 32
iterations and the estimates are

Γ̂ =

(
0.9453 0.0547
0.9999 0.0001

)
, δ̂ = (1, 0)

µ̂ = (0.2781, 0.8973), σ̂ = (3.8535, 0.0914)

With a LL of -543.1396356 and thus the likelihood value 1.310549e-236 <
3.561705e-227 we conclude that this point is no global maximum of the like-
lihood function and so we discard these estimates.

We also identify another local maximum point with LL = −545.0098570
using the starting values µ = (−10, 10) and σ = (1, 10).

Even though we cannot guarantee a global maximum we strongly belive
that the first suggested model is the best and we therefore choose that
model. Based on this model the most likely state sequens as determined by
the Viterbi algorithm is shown below in the graph below. The black dots
represents the Viterbi path and the red line is the actual state
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We see that in 171 out of 200 cases the Viterbi algorithm suggested the
actual state of the Markov chain. Intuitively it seems reasonable to suggest
that the number of ‘correct’ states will increase with smaller overlapping of
the density functions of the state dependent variables. If the sample spaces
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are disjoint the Viterbi algorithm will always suggest the actual state and
further it will render the HMM a Markov process as defined by the Markov
property [1]. In this simulation the overlapping is not negligible, in the next
simulation we will use a model with a much smaller overlapping. The over-
lapping of the two density functions from which the data was simulated are
show in the figure below.
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Conclusion

We saw that using different starting values we reached different maximum
points of the likelihood function. We discarded all suggested models which
had a smaller value than any other. From our investigation it seemed the
best model came when assigning plausible starting values with respect to
the observed data as supposed to values that does not reflect the data. The
viterbi algorithm found the ‘correct’ state in 85.5 % of the cases.

5.2.2 Model 2

We will here make the same assumption of 2 states as in the previous simu-
lation. The data is simulated from the following model and the graph shows
the plotted data.

Γ =

(
0.95 0.05
0.10 0.90

)
, p1(x) ∈ N(5, 2), p2(x) ∈ N(−5, 2), δ=(0.10,0.90)

After careful investigation to find and discard local maxima we end up with
the following parameter estimations

Γ̂ =

(
0.9467 0.0533
0.1850 0.8150

)
, δ̂ = (0, 1)
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µ̂ = (4.9145,−4.8870), σ̂ = (2.0391, 1.9829)

We run the Viterbi algorithm with these parameters and we the results are
illustrated in the graph below with the red line again illustrating the actual
state.
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The Viterbi algorithm found the actual state in 199 out of 200 times. Obser-
vation 149 was 0.1906369, the actual state was 2 but the Viterbi algorithm
suggested state 1.
The figure below shows the overlapping of the density functions from which
this data was simulated. The overlapping is far smaller than in the case in
Model 1.
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Conclusion

This data was simulated from a model where the overlapping of the density
functions of the state dependent variables was far smaller than in the pre-
vious. As expected the Viterbi algorithm found the actual state more often
than in Model 1.
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6 Modeling Inflation

6.1 The Model and Analysis

We will here use historical data of the yearly inflation for Sweden from the
period 1831 - 2012. The data was collected from SCB. The goal is to make
a forecast of the inflation for the year 2013. For this we assume that the
inflation each year is normally distributed and further in accordance with
the assumptions for Hidden Markov models that the inflation the next year
is only dependent on the inflation the current year. The graph below shows
the inflation against time.
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Models with 2,3,4,5 and 6 states were tried and the AIC selected the model
with 5 states. After running the Baum-Welch algorithm we got the es-
timates shown below. The weights are calculated using the output values
from R where the elements with ε are their respective real value (i.e as before
very close to 0) but to make the reading lucid we replace these small values
with ε below. We also round off to 4 decimals in the text for the same reason.

Γ̂ =


0.4818 0.1586 0.3596 ε ε
0.0669 0.7307 0.1701 ε 0.0323
0.0317 0.2151 0.6642 0.0890 ε
ε 0.1199 0.0481 0.8320 ε

0.2310 ε ε ε 0.7690


µ̂=(−4.9851, 0.1966, 3.3749, 8.8025, 7.2510)

σ̂=(0.9761, 1.6408, 1.5138, 2.9868, 19.7776)

We calculate
φT =(ε, 0.7777, 0.2180, 0.0014, 0.0029)

We can now calculate the weights for any h by φTΓh. For h = 1 we get
the vector of weights (0.0596, 0.6153, 0.2772, 0.0206, 0.0273). This is also
the probabilities of the Markov chain being in the different states at 2013
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and we see that the most probable state is state 2 followed by 3 and a low
probability for the other 3.

Taking the scalar product between this vector and µ̂ we get the mean for our
2013 forecast distribution. Since the state dependent variables are assumed
to be independent the variance of our distribution is the scalar product of
the weight vector with its elements squared and σ̂2 (the vector of the esti-
mated variances). We get that the forecast distribution for the inflation for
year 2013 is N(1.1388, 1.2226). The graph below shows the central banks
own calculations for the expected inflation (years on the x-axis) and confi-
dence limits in color. The figure below was taken from www.riksbanken.se

Our forecast distribution is based on the yearly avarage and seems to be
slightly higher than the graph but still within a reasonably close range.

6.2 Discussion

Looking at the graph we see that one period which clearly distinguishes itself
from other periods. The years following World War 1 Sweden experienced
a period of very high inflation. This period is likely what caused the AIC
to suggest 5 states. The number of observations from that state is likely to
be small, causing the variance to be high which we can see in the estimates.
Shortly after the outbreak of World War 2 the inflation was again high dur-
ing a short period of time. During the 1970s Sweden again experienced high
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inflation. Periods of deflation occured often in the 19th century and later
became more rare. Since 1993 the Swedish central bank has a set out target
of holding the inflation at a rate of 2 ±1 [5]. The policies regarding inflation
has thus varied over time as economists have suggested different methods
for dealing with it. These changes in policies raises questions about whether
modeling such long time series with HMMs where much of the data reflects
changes in policies is really suitable. A perhaps better way would be to use
data starting at a later period in history. Particularly common feature of the
19th century with rapid changes between deflation and inflation is somewhat
exiled to history and it is very questionable if those changes should really
have impact on models for modern day inflation. One could also suggest
that removing outliers such as the period during World War 1.

The data used is yearly and we would probably benefit from instead using
quarterly or even monthly data since inflation often varies within a given
year. With yearly data we therefore risk to miss out on a lot of valuable
information. With smaller time intervals the observations would be more
recent with the same number of observations which also has its benefits.
Further the forecasts would be for a more near future instead of as now a
yearly average. Our model does not in any way consider other variables that
could have possible influence or work as an indicator. We are solely using
the rate of infaltion history to predict the future which is not the normal
case when predicting future rate of inflation. Further we assume a Gaussian
distribution which we have not motivated closer.

We assumed in accordance with the theory of Markov chains that the state
of inflation in the next year only depends on the state the current year.
This is somewhat of a sloppy assumption and maybe a higher order Markov
chain (where the next step depends on several previous steps) would be
preferable. But, since this paper is not mainly about modeling inflation but
rather cover the theoretical aspects of the models, a full investigation of the
different possibilities covered in this discussion will have to wait for another
time.
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7 Conclusion

In this paper we have discussed the mathematical theory behind ordinary
Markov chains and Hidden Markov models. We have provided examples
throughout and used simulated data to illustrate the main principle and
how the most common inference related issues are solved. Our simulations
were mainly focused on two problems. Choosing the best model given several
alternatives and the task of detecting local maxima of the likelihood where
we gave empirical examples of how these can occur when assigning implausi-
ble starting values for the estimation algorithm. We also showed empirically
that smaller overlapping of the density functions resulted in higher preci-
sion of the Viterbi algorithm. We ended with a real-data example where we
modeled the rate of inflation of Sweden to predict future distributions. In
our discussion section of that chapter we argued that due to the way the
data was constructed as well as the nature of the phenomena our model has
obvious flaws and we suggested possible ways to improve the model.

In our quest to detect local maxima we used different starting values of
the state dependent variables with the same starting values of the transition
probabilities and the initial distribution. Another possible approach would
be to vary all paramters simultaneously or the opposite, try different values
of the transition probabilities given the same state dependent parameter
values.

All our models state dependent variables followed the same distribution but
with different parameters. For future work it would be interesting to mix
distributions and find applications where that would be preferable. It would
also be interesting to further investigate the theoretical basis and extend to
higher level Markov chains and Markov chains in continuous time. This did
however not fit into the timeframe of this paper.
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