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Abstract

From commuting literature we know that the distribution of dis-

tance to spatial choices often is unimodally distributed with skew to

the right; often the distribution is close to a Gamma distribution. The

pattern appears robust. This paper constructs a mathematical statis-

tical choice model to account for this fact. The key idea is that there

is a tension between costs increasing with distance parallel with the

number of offers per radial segment increasing with distance. The first

effect induces short-distance choices whereas the second gives incen-

tives to choose options located far away. We show by simulation that

these two effects are likely to give rise to Gamma distributed choice

patterns under a wide array of distributional assumptions. After this,

a more general theory for stochastic optimization in space is outlined

where offers of random value are distributed randomly in space. Ap-

proximations are made using extreme value theory, and under these

approximations, the result is proved analytically for exponentially dis-

tributed offers. The ergodicity of extreme value distributions suggests

why observed patterns seem robust.
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1 Introduction

This paper concerns spatial choice processes and proposes a model that ex-
plains stylized facts of travel distance distributions.

Spatial choice processes abound in everyday life: we have to choose how
far away from our work we should live; we have to decide how far to go
for a restaurant or how far away to make friends. Spatial choice processes
also appear in nature, where animals have to make decisions on how far to
forage. There are countless examples. A proper understanding of how these
processes work is important for many applications. In social network theory,
all agents are embedded in space and how their linkage behavior depends
on distance is crucial for the shape of the network. In environmental and
planning policy decisions it is important to know how travel decisions are
affected by changes in oil prices and infrastructure.

These processes also provide an interesting research topic given that there
are clear stylized facts to be explored. In particular, it has been noted that
the distribution of choice distances often is unimodally distributed with a
skew to the right; a Gamma or lognormal distribution has been proposed as
a description of the pattern. In this paper I also perform an empirical study
of school commutes in Sweden which reveals a similar pattern.

Stable empirical relations over time, space and different applications call
for a clear theory. A Gamma distribution has been derived through search
theory or discrete choice theory by economists, but this paper aims for
reducing the number of restricting assumptions to a minimum to explain
observed patterns. The basic idea of my theory is that the distribution
emerges through the tension between two different forces: that cost and
area per radial segment both increase with distance. Simulations show that
this is sufficient to give a Gamma distribution under linear costs for a wide
array of distributional assumptions. We develop a theory to study this type
of process analytically and prove convergence under some approximations
in the case of exponentially distributed offers. The proof suggests that the
method might be extended to other cases.

2 Relation to Previous Theory

The standard theory in economics for explaining spatial choices is discrete
choice theory. The theory posits an additive disturbance term in the val-
uation of all alternatives and then derives the probability distribution over
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different choices. The workhorse model is the conditional multinomial logit
(see for example McFadden and Manski [2]), which says that an alternative
with properties x has value

Ui(x) = V (x;β) + εi

where β is a parameter vector to be estimated, and the error terms εi are
independent and identically distributed according to a Gumbel distribution.
Under this model the distribution of final choices given that choices have
characteristics {xi}is given by:

P (i|xi) =
eV (xi;β)∑
j e

V (xj ;β)

Our final model will be equivalent to the multinomial model when the in-
trinsic valuation of choosing an option at distance r away is

V (r;β) = −cr + log r

Nevertheless, our model will be us a different methodologically. We will
not postulate a Gumbel distribution of our disturbance term. Instead, we
will postulate a random distribution of offers in space with a general dis-
turbance term. When my disturbance term is exponential, the multinomial
logit model will be the limiting distribution, but our modeling framework
allows for a greater heterogeneity in parameters and models, which makes
the model easier to fit to data.

3 Empirical Patterns

It is an observed empirical fact that commuting distributions, a typical ex-
ample of spatial link formation, often are unimodally distributed with skew
to the right. A Gamma distribution or lognormal distribution are posited
as good explanations of this pattern. Given this observation there have also
been attempts in the economic literature to explain this. Rouwendal and
Rietveld [4] showed that a Gamma distribution could be the result if we used
a search theoretic approach and assumed that wage offers are exponentially
distributed. Van Ommeren [3] showed that it is possible to get a unimodal
distribution if we assume two-dimensional space and heterogeneity in jobs..

To get different examples than the labor market we have also looked how
far Swedish school children commute. We use the unique database PLACE
which contains the coordinates of all work, school and living positions in
Sweden. From this, we look at 255,169 Swedish students who have a com-
mute shorter than 7 km to school.
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The data clearly exhibits the characteristic structure of a unimodal dis-
tribution with skew to the right. Another interesting question is whether
school commutes follows a Gamma distribution as has been observed for
job commuting. Figure 1 shows a Gamma curve fitted by hand over the
distribution,which seems to produce a good fit for students traveling up to
3000 meters: a population of above 200,000 children, whereas the tail is too
heavy afterwards.

Figure 1: Distribution of short school travel distances
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4 Sketch Theory and Simulation

There is a relatively stable empirical pattern, and our hypothesis is that this
should arise from two counteracting tendencies. First, costs are increasing
with distance, which provides an incentive to choose options close to us.
On the other hand, if we consider an interval [r, r + δ], we note that this
interval has an approximate population of n ≈ 2πρrδ, where ρ is population
density. Therefore, the number of offers per distance element, and therefore
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the probability of receiving a good offer, increases with distance. Given that
people do not commute an unbounded distance, the cost tendency should
overcome the increasing population per radial element tendency in the limit.
However, very few people commute extremely short distances, so the effect
of increasing population per radial segment also seems to affect the qualita-
tive structure of the outcome.

We explore the consequences of this simple setup by simulation. We make
three assumptions:

• Offers have a random value and the number of offers per radial segment
increases linearly in radius

• There is a linear cost cr of overcoming distance r

• We select the alternative which, net of transport costs, offers us the
highest payoff

We simulate the choice distance as follows:

1. Generate i.i.d random variables {X(r)
i : r ∈ {1, 2, ..., 1000}, 1 ≤ i ≤ r}

from distribution F

2. Define Mr = −cr + max1≤i≤r{X(r)
i } where c is a cost parameter.

3. Return j such that Mj ≥Mk for all k ∈ {1, 2, ...., 1000}.

Some notes. Firstly, we decide to generate r random variables for distance
r. This corresponds to the special case ρ = 1/(2π) but can be generalized;
the key is that our strategy captures that the number of offers per distance
element increases linearly with radius. Secondly, as long as F is an abso-
lutely continuous probability distribution, the probability of a tie is zero and
therefore the third step almost surely will return a unique element.

This simulation is performed for c = 0.01 and for the following choices
of F : Normal, chi-square, lognormal, Weibull and uniform. Histograms, in-
spection and simple moment fitting showed that a Gamma-distribution is a
reasonable approximation for all distributions of X. The results are shown
in the figure. A Kolmogorov-Smirnov test failed to reject the null hypothesis
that DF was Gamma distributed with the parameters implied by a simple
fitting of moments for all distributions except for the normal distribution.

1

1An additional study of the normal distribution shows that the rejection of a gamma
distribution can be an artifact of the construction of the simulation. We include a theoret-
ical and empirical distribution curve for the normal case in Figure 3 and it appears that
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To sum up, we conclude that under the model of utility maximization under
linear cost, a wide array of offer distribution functions give rise to a choice
distance distribution which is Gamma distributed.

Figure 2: Simulations and theoretical choice distance distributions for a
number of different distributions F
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5 General Theory

The robustness of the results in the simulations seems to suggest that there
should be a theoretical reason for why this occurs. However, in order to
prove analytical results, we have to state the problem more precisely. Our
problem is to construct a continuous random variable D that captures at
what distance our preferred choice will be located. We build a model where

the spacing of r by 1 which by design gives rise to the error for small values, and means
that the Kolmogorov-Smirnov test statistic is larger than could be expected by chance.
Therefore, we cannot guarantee that the rejection is not due to the particular design of
our simulation. The exact nature of how the normal offer distribution and the Gamma
distribution relate is a point of further research.
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Figure 3: Theoretical (black) and empirical (red) distribution functions for
normally distributed F
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we first define in general terms what is meant by a continuous random choice
process. The key concept in this section will be the ”max-measure” which
defines how we make choices over a finite number of disjoint intervals when
valuations are random. We show how a continuous random choice variable
can be seen as an induced measure of this max measure.

In the second section we give the problem more structure by assuming that
the (random) value of an interval can be seen as a maximization of prim-
itives called ”offers”. We give a formal definition of what an offer is and
what our model is for their spatial distribution.

5.1 The Max Measure

Definition 1. Let I = {[a, b) : [a, b) ⊂ [0, T ]} and let X : I → L1, where
L1 is the space of integrable random variables. We call X a max measure if
the following five properties hold:
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• The max measures of disjoint intervals are independent

• If I = A ∪B we have X(I) = max{X(A), X(B)}

• X(I) is absolutely continuous for all intervals I

• If A1 ⊃ A2..., and µ(An)→ 0, where µ is the Lebesgue measure, then
X(An)→ −∞ in probability.

• X(∅) = −∞

Remark 2. The second requirement is meaningful as it defines the limit of
a non-decreasing sequence of random variables. The third requirement is a
technical requirement to ensure that ties only occur with probability 0.

Lemma 3. Let AT be the class of finite unions of disjoint subintervals
of [0, T ] and suppose we have a max measure X with the property that
P (X([0, T ]) > −∞) = 1. Consider the set function F defined by on AT

F (A) = P (X(A) ≥ X([0, T ]))

This set function extends to a unique measure on the positive real line, which
is called an arg-max measure.

Proof. It is immediate that AT is a ring on [0, T ]. Furthermore we have
that F (A) ∈ [0, 1] and F ([0, T ]) = 1. If we can prove countable additivity
we can use Carathéodory’s extension theorem to conclude that we have a
unique measure on [0, T ].

The first step is to establish that F is finitely additive on AT . I.e. if
A = ∪ni=1Ai, where the Ai’s are disjoint, we have

F (A) =
n∑
i=1

F (Ai)

The easiest way to show this is by equating events in the probability space.

{X(∪nk=1Ak) ≥ X([0, T ])} = ∪nk=1{X(Ak) ≥ X([0, T ])}

where the elements on the right-hand side are disjoint. Indeed, the defi-
nition of the max measure gives us X(∪nk=1Ak) = maxkX(Ak). Therefore
we know that if the max measure of a union is larger than or equal to the
maximum over the whole interval, it is equivalent to the max measure of one
its components being larger than or equal to the maximum over the whole
interval.

We deduce disjointness by noting that

X([0, T ]) = max{X(Ai), X([0, T ] \Ai)} ≥ X(Ai)
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From the observation above, we note that

{X(Ai) ≥ X([0, T ])} ⇒ X(Ai) = X([0, T ])

Hence, if we are on the intersection of {X(Ai) ≥ X([0, T ])} and {X(Aj) ≥
X([0, T ])} we have X(Ai) = X(Aj). But X(Ai) and X(Aj) are both in-
dependent and absolutely continuous and therefore their difference is also
absolutely continuous. Therefore, their difference will be zero with probabil-
ity zero. Hence, the sets sets {X(Ai) ≥ X([0, T ])} and {X(Aj) ≥ X([0, T ])}
are disjoint with probability 1, and we can use additivity of probability
measures to conclude that:

F (∪ni=1Ai) = P[X(∪ni=1Ai) ≥ X([0, T ])] =
n∑
i=1

P(X(Ai) ≥ X([0, T ]) =
n∑
i=1

F (Ai)

Therefore, we know that F is a fintely additive set function on AT . To prove
countable additivity we have to show that if we have a decreasing chain of
subsets

A1 ⊃ A2 ⊃ A3....

such that ∩nAn = ∅, then F (An) → 0. The technical assumptions we have
made on the max measure X make the result simple. Indeed, if ∩nAn = ∅,
we have that µ(An)→ 0 there µ is the Lebesgue measure. This means that

X(An)→ −∞

in probability. But by definition X([0, T ]) > −∞ with probability 1, and
hence

F (An) = P (X(An) ≥ X([0, T ]))→ 0

as n→∞ which completes the proof.

5.2 Random Offers and their Spatial Distribution

The previous section defined a max measure which assigns a random vari-
able to each interval and a corresponding max measure measure. In this
section we introduce a more basic random variable called offer, which can
be used to derive a particular argmax measure. The offers are located in
space as a homogenous Poisson process, and the value of the offer is a ran-
dom component minus the cost of reaching it, which is linear in the distance
required to reach the offer.

We begin by defining the distribution of offers on the real line. Consider

N(x) ∼ PP (πρx2)
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where this means that N(x) is an inhomogenous Poisson process on the
positive real line with local intensity 2πρx. This is simply the radial version
of a homogenous Poisson process with intensity ρ on the plane. We denote
the corresponding jump process {Jn}, and connect this Poisson process with
offers by considering a sequence of random variable pairs

(Jn, On)

where On = −cJn+εn, and where the εn are absolutely continuous, indepen-
dent and identically distributed random variables with common probability
distribution F .

These two definitions give us the tool to define our max measure. Let
A ⊂ [0, T ] be a finite interval. Then we can define an arg-max measure
by the following rule:

X(A) = max{On : Jn ∈ A}

and X(A) = −∞ if {Jn : Jn ∈ A} is empty. This means that the random
value of an interval A is simply the value of the best offer available in that
interval, if there is an offer available. This is a max measure. Indeed, if A and
B are disjoint, X(A) and X(B) will be independent as the Poisson process
has independent increments and the random components in the offers are
independent. Absolute continuity follows from the corresponding property
of the εi’s and if the measure of An tends to 0, the probability that the
interval will be empty, and therefore have value −∞, tends to 1. It is clear
that X(A ∪B) = max{X(A), X(B)}.2

6 Approximations of Theory

The model outlined in the section above gives us a theoretical base for ex-
ploring questions about the continuous distribution of choices. The Poisson
structure means that one strategy could be to solve for the choice random
variable directly by simply conditioning on the number of offers and derive
the probability distribution of the maximum offer directly by using the fact
that the jumps of a Poisson process are uniformly distributed conditioned
on the number of jumps.

2To apply Lemma 4 we also need that X([0, T ]) > −∞ a.s.. In the original formulation
this is not true as there might be 0 jumps in [0, T ]. To be very formal, this can most likely
be solved by defining a limit X(R+) ≡ limt→∞X([0, t)) which exists almost surely. On
this we have one jump almost surely and we can translate the theory to this setting.
Alternatively we can introduce an extra offer which is randomly distributed and make
sure that the theory is not hurt by the degree of interdependence introduced by this extra
offer.
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However, there are some drawbacks to this strategy. Firstly, the tractability
of the problem would depend to a large extent on the distribution F of the
random terms in the offers. Secondly, the conditioning procedure and inte-
grating over possible locations of the maximum offer is not straightforward.
We will therefore use another integration strategy. Using a succession of
simplifying assumptions, we will derive approximate probabilities of choos-
ing an alternative from a small interval [r, r + δ].Thereafter, we can use the
additivity of choice probabilities of disjoint sets to get an integral approxi-
mation of the probability of choosing an alternative in a particular interval.

6.1 A Primer on Extreme Value Theory

Our approximations will depend a lot on the property of extreme value
distributions. Extreme value distribution theory describes the asymptotic
behavior of maxima of collections of independent random variables. The
benefit of extreme value theory is its ergodicity properties: in the limit,
the distribution of the maximum has a very weak dependence on the initial
distribution. This robustness makes them a useful tool in stochastic opti-
mization applications. Extreme value theory has been used previously in
discrete choice theory, but this paper takes a somewhat different approach
from that literature: an extreme value distribution is not postulated, but
derived as a consequence of more basic assumptions. The main result from
extreme value theorem that we will use is the following:

Theorem 4 (Fisher-Tippet-Gnedenko Theorem (Extreme Value Theorem)).
Let {Xn} be a sequence of independent and identically distributed random
variables and let Mn = max{X1, X2, ..., Xn}. If there exist sequences {an}
and {bn} with an > 0 such that:

lim
n→∞

P

(
Mn − bn

an
≤ x

)
= H(x)

then H(x) belongs to either the Gumbel, the Frechét, or the Weibull family.
[1]

Remark 5. Under a wide range of distributions of Xn, convergence does
occur, and for most common distributions the convergence is to the Gumbel
distribution, which has the form Gumbel(x) = exp

(
− exp(−x−µ

β )
)

for some
parameters µ, β.

6.2 Small Interval Approximation

We now turn to approximation. First, we use a mean value approximation
of the number of offers in a particular interval. Neglecting quadratic terms
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in δ, we can approximate the number of offers in an interval [r, r + δ] with
2πrρδ. The value of an interval is the best of these different offers, and we
can approximate this applying extreme value theory to the disturbance term
εi.

Suppose that Mn = max{X1, ..., Xn} where the X ′is are identically and
independently distributed according to F . We assume that F belongs to a
class of distributions such that there exist sequences µn(F ) and βn(F ) where

P
(
Mn ≤

x− µn(F )
βn(F )

)
→ Gumbel(x; 0, 1)

where

Gumbel(x;µ, β) = exp
(
− exp

(
−x− µ

β

))
is the Gumbel distribution. We note that this means that for large n, we
have

P (Mn ≤ x) ≈ F (x;µn(F ), βn(F ))

We write µn(F ) and βn(F ) to denote that the form of convergence depends
on the original probability distribution.

The problem of applying this theory to our case is that our mean value
approximation often means that we have a non-integer number of random
variables in a particular interval, 2πρrδ namely. However, in many cases,
µn(F ) and βn(F ) has a functional form such as a+b log(n) for large n. This
means that we get a clear interpretation of taking the maximum over a non-
integer number of random variables. If we neglect the variation in cost over
small intervals, this leads us to the following definition of our mean-value,
extreme value approximation.

Definition 6 (Mean-value/Extreme-value approximation). Let Jn be the
jump process of an inhomogenous Poisson process with local intensity 2πrρ
and let On = −cJn+εn be a sequence of random variables where the εi are ab-
solutely continuous, independent random variables distributed according to a
common probability distribution F . If we define X(A) = max{On : Jn ∈ A}
and F belongs to the class of probability distribution whose extreme value
statistic converges to the Gumbel distribution for some normalizing sequences
µn(F ) and βn(F ) which have an asymptotic functional form mF (n) and
bF (n) respectively, then we make the following approximation for small in-
tervals:

X([r, r + δ]) = −cr +Gr

where Gr ∼ Gumbel(mF (2πρrδ), bF (2πρrδ))

11



6.3 Exponential Distribution – Simplifying the Approxima-
tion

The approximation above gives us a strong tool to derive the arg-max mea-
sure for many initial distributions F . For simplicity, we will restrict our
attention in this paper to the exponential distribution as the limiting pa-
rameter functions mF and bF take a particularly simple form under the
exponential distribution. Under the exponential distribution, we will be
able to show explicitly that the continuous choice process is a Gamma dis-
tribution.

Lemma 7. Let Xi ∼ Exp(1), and Mn = max{X1, ..., Xn}. Then EMn =
H(n), where H(n) is the harmonic function.

Proof. We to note that if X ∼ Exp(1), F (X) = 1 − e−X ∼ U [0, 1]. The
density of the maximum random variable Mn is ne−x(1− e−x)n−1. Hence

EMn =
∫ ∞

0
nx(1− e−x)n−1e−xdx

=nE
(
X(1− e−X)n−1

)
= −nE

(
log (1− U)Un−1

)
where U ∼ [0, 1]. We then note that:

EMn =− n
∫ 1

0
log(1− x)xn−1ds

=− n
∫ 1

0

(
−x− x2

2
− x3

3
...

)
xn−1dx

=n
∫ 1

0

(
xn +

xn+1

2
+
xn+2

3
+ ...

)
dx

=
∞∑
k=1

n

k(n+ k)

=
∞∑
k=1

1
k
− 1
n+ k

=
n∑
k=1

1
k

=H(n)

Furthermore, for large n we have that:

VarMn ≈
π2

6
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For a general exponential variable with rate λ the corresponding quantities
are H(n)

λ and π2

6λ2 . We know the first and second moments of the Gumbel
disttribution. If G ∼Gumbel(µ, β) we have

EG = µ+ βγ

Var(G) =
β2π2

6

where γ is Euler’s constant. Using that H(n)−log(n)
λ → γ

λ , we get βn ≈ 1
λ and

µn ≈ log(n)
λ . Therefore, using our mean-value/extreme-value approximation

from the previous section, we define a small interval approximation of our
arg-max measure as

X[r, r + δ] ≈ −cr +Gr

where Gr ∼ Gumbel( log(2πρrδ)
λ , 1

λ). The property of the Gumbel distribution
means that we have that

y +Gumbel(µ, β) = Gumbel(y + µ, β)
a×Gumbel(0, β) = Gumbel(0, aβ)

This means that

Gr =
log(2πρδ)

λ
+

log(r)
λ

+
1
λ
×G′r

where G′r ∼ Gumbel(0, 1). Identical, positive, affine shifts of collections of
random variables do not change the max operation. Therefore, if we only
compare intervals of the same length δ, we can simplify the problem to a
standard form by the following affine transformation:

f : x 7→ λx− log(2πρδ)⇔ f(X[r, r + δ]) = −λcr + log(r) +G′r = G∗r

where G∗r ∼ Gumbel(−c′r + log(r), 1) where c′ = λc is a rescaled cost pa-
rameter.

Once all the primes and stars are dropped, we have reduced the problem
in case of an exponential distribution to that small intervals [r, r + δ] have
valuation

Gr ∼ Gumbel(−cr + log(r), 1)

6.4 Exponential Offer Distribution and Gamma Choice Vari-
able

The key result of this section is that if we have an exponential disturbance
term on the offers, and therefore get the simplification above, the resulting
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choice random variable (defined in Remark 5) is Gamma distributed. In
the derivation we will assume that the Gumbel approximation holds even as
the interval length becomes arbitrarily small. This is clearly unrealistic as
the number of offers within each interval will decrease to the point where
extreme value approximations are no longer feasible. Hence, the answer
will be valid when the population density is sufficiently high so that we can
apply extreme value theory to intervals small enough to make an integral
approximation valid

Proposition 8. Suppose that for all r ≥ 0, X[r, r + δ] ∼ Gumbel(−cr +
log(r), 1), X(A ∪ B) = max{X(A), X(B)} and disjoint intervals are in-
dependent. Then for all intervals A ⊂ [0, T ] and all T > 0 we have
P [X(A) ≥ X([0, T ))] = P (G∈A)

P (G∈[0,T ) where G ∼ Gamma(2, c)

Proof of Proposition. Let Rδ = {t0, t1, .., tn+1} be a partition of [0, T ], with
0 = t0 < t1 < ... < tn+1 = T and ti+1− ti = δ for all i. Let r′ ∈ R and write
fr and Fr for the density and distribution functions of Gumbel(log(r)−cr, 1).
We will consistently write Xr to mean X([r, r + δ)).Then:

P(max
r∈Rδ

Xr = Xr′) =
∫ ∞

0
fr′(x)P(max

r∈Rδ
Xr = Xr′ |Xr′ = x)dx

=
∫ ∞

0
fr′(x)

∏
r∈Rδ,r 6=r′

P(Xr ≤ x)dx

=
∫ ∞

0
fr′(x)

∏
r∈Rδ,r 6=r′

Fr(x)dx

We now note that:

fr(x) =
dFr(x)
dx

=
d

dx

(
e−e

−(x−log(r)+cr)
)

=e−(x−log(r)+cr)Fr(x)

Putting this result back in our previous expression gives us:

P(max
r∈Rδ

Xr = Xr′) =
∫ ∞

0
fr′(x)

∏
r∈Rδ,r 6=r′

Fr(x)dx

=
∫ ∞

0
e−(x−log(r′)+cr′)

∏
r∈Rδ

Fr(x)dx

=r′e−cr
′
∫ ∞

0
e−x

∏
r∈Rδ

Fr(x)dx
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The important part of this result is that the expression within the integral
sign is independent of r′. Therefore, the only dependence on r′ is through
r′e−cr

′
. From the fact that we have a probability distribution summing to

1 we get:

P(max
r∈Rδ

Xr = Xr′) =
r′e−cr

′∑
r∈Rδ re

−cr

Now let us consider an interval A ⊂ [0, T ] and a sequence of partitions Rδn
such that δn tends to 0. By assumption, the Gumbel-assumption should be
true for all δn.

P( max
r∈Rδn

Xr ∈ A) =

∑
r′∈A∩Rδn

r′e−cr
′∑

r∈Rδn
re−cr

=

∑
r′∈A∩Rδn

c2r′e−cr
′
δn∑

r∈Rδn
c2re−crδn

→
∫
A c

2r′e−cr
′
dr′∫ T

0 c2re−crdr

=
P(G ∈ A)

P(G ∈ [0, T ])

where the convergence comes from the definition of the Riemann integral.
Hence, we obtain the required result

7 Simulation Validation of Theoretical Results

A lot of assumptions were made to derive the final result. The key assump-
tion is that there is a sufficiently high population density so that we can
apply extreme value theory, and it is interesting to see whether they are
reasonable for the degree of population density observed in cities. We test
this by simulation. We make a very crude approximation and note that
median travel distance to work in Sweden is about 3km. If offers are dis-
tributed as Exp(1) this corresponds to a travel cost parameter of c ≈ 0.5
(using the theoretical result that the travel distance should be distributed
as Gamma(2, c)). If we look at Stockholm a web crawler can find 22, 000
job openings right now, so we consider a simple model where 50, 000 offers
with exponential disturbance terms are randomly distributed in a disk of
radius 20km. We repeated the experiment 1, 000 times and the result is
presented in Figure 4 together with the predicted distribution. This shows
that with a scaling leading to a median theoretical travel distance of 3km,
we know that 50, 000 offers are enough to ensure that our approximations
work (Kolmogorov-Smirnov p-value: 0.9269).
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Figure 4:

Simulated distribution of choice
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8 Conclusion and Further Developments

This paper shows that the simple idea of tension between area per radial
segment and cost goes a long way of explaining observed stylized facts in
spatial choice processes. The simulations showed that we could expect a
Gamma distribution from a lot of offer distributions, and we managed to
prove it theoretically for the exponential case. The paper also shows that
a Gumbel distribution does not have to be postulated for discrete choice
processes, but that it can arise naturally from limiting considerations.

There are a number of future developments that can be considered. Firstly,
given the extremely close fit to a Gamma distribution for all simulations,
it seems like we should be able to prove convergence for more distributions
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than the exponential distribution. The problem with other distributions is
that the dispersion parameter in the Gumbel distribution depends on the
sample size in the limit. Simulation results suggest that this does not af-
fect the results significantly, but it means that it is impossible to separate
out r-dependence in the integral, which was a crucial step in the proof of
Proposition 9. However, we can provide some simplification by observing
that even if the dispersion parameter does depend on the sample size. the
density function of a Gumbel distribution can be written as:

fr(x) = a(r) exp(−b(r)x)× Fr(x)

where Fr(x) is the distribution function. In our proof of Proposition 9 we
considered the special case of a(r) = r exp(−cr) and b(r) = 1. Consider a
partition R and let X = maxr∈RXr. Using a similar method to the one we
used in the proof, and using integration by parts, we get that:

P (max
r∈R

Xr = Xs) =a(s)×
∫ ∞

0
e−b(s)xFX(x)dx

=a(s)/b(s) ∗
∫ ∞

0
e−b(s)∗xfX(x)dx

=a(s)/b(s) ∗ LX(b(s))

where LX is the Laplace transform of X. In the particular case of an ex-
ponential offer distribution, b(s) is independent of s and the density is pro-
portional to r exp(−cr). In the case of a more general distribution, we can
use the fact that X is a maximum of Gumbel distributions to approximate
it by a which can also be approximated by a Gumbel distribution. This
method provides an indication for how one can provide numerical bounds
for how the distribution will behave under different offer distributions. For
example if changes in b(s) are much smaller than changes in a(s) we will
approximately get a Gamma distribution.

Another improvement of the theory would be to introduce multidimension-
ality. Some empirical facts such as school choice are not likely to be the
outcome of a single optimizing procedure. Instead, it is probably the result
of a multidimensional optimizing procedure over job, residence, school and
other amenities. If we look at the cross-section of school it has the unimodal
distribution with skew to the right, and it would be good to see that in the
joint distribution resulting from the multidimensional optimization proce-
dure, the marginal distributions have the right properties.

In conclusion, this paper offers a highly general theory to account for styl-
ized facts in spatial choice processes. Simulations give strong results, of
which some can be proved analytically by verifiably reasonable assump-
tions. Lastly, there are numerous potential developments which means that
the theory is unlikely to have reached its full potential.
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