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Abstract

When implanting the lead, the electrical connector that leads the
electrical impulses between the heart and the pacemaker, a severe
complication can occur. On rare occasions, the tip of the lead goes all
the way through the heart wall, perforating it fully. It is critical to
understand what factors control these perforations so that they can be
avoided. This thesis focuses on performing a full statistical analysis
of perforation test data on porcine heart tissue collected in 2007 by
Robin Hosselton, with some key questions in mind. Specifically it is
shown that a good model for the perforation data is the log-normal
distribution. This means that a logarithmic transformation of the data
is required when performing a statistical analysis of this type of data.
We also show that the relationship between the perforation force and
the lead tip diameter can be modeled using a linear function. Some
additional analyses show that the tissue is not homogeneous, i.e. that
it has stronger and weaker areas. Included is the definition of a corre-
lation coefficient that can be used to characterize the tissue and also a
demonstration of the use of a graphical visualization method. These
findings have implications both on how to perform perforation tests,
but also on the modeling of soft biological tissue. Any proper model
should show properties similar to those found in experiments such
as the one performed by Robin Hosselton, and this statistical analy-
sis makes it possible to incorporate the findings in useful perforation
models.
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Abstract 

When implanting the lead, the electrical connector that leads the electrical impulses between 
the heart and the pacemaker, a severe complication can occur. On rare occasions, the tip of 
the lead goes all the way through the heart wall, perforating it fully. It is critical to 
understand what factors control these perforations so that they can be avoided. In 2007, 
Robin Hosselton carried out a largely experimental work, performing about 1400 
perforations of porcine right ventricular cardiac tissue with the intention to understand the 
mechanisms of heart wall perforation better. 

This thesis focuses on performing a full statistical analysis of the extensive data material 
with some key questions in mind. Specifically we show that a good model for the 
perforation data is the log-normal distribution. This finding has important implications for 
everyone performing this type of perforation tests, as it requires a logarithmic 
transformation of the data in order to draw the correct conclusions from experiments. We 
also show that the relationship between the perforation force and the lead tip diameter can 
be modeled using a linear function. This has implications on using the tip pressure as a 
limiting value for lead design. A better parameter would be the force divided by the 
diameter, as this quotient does not so strongly depend on the diameter of the lead tip. 
Some additional analyses show that the tissue is not homogeneous, i.e. that it has stronger 
and weaker areas. Included is the definition of a correlation coefficient that can be used to 
characterize the tissue and also a demonstration of the use of a graphical visualization 
method. 

These findings have implications both on how to perform perforation tests, but also on the 
modeling of soft biological tissue. Any proper model should show properties similar to 
those found in experiments such as the one performed by Robin Hosselton, and this 
statistical analysis makes it possible to incorporate the findings in useful perforation 
models. 
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1 Introduction 

The pacemaker and the ICD (Implantable Cardioverter-Defibrillator) can save lives and 
improve the quality of life for heart patients all over the world. However, when implanting 
the lead, the electrical connector that leads the electrical impulses between the heart and 
the pacemaker, there is a rare, but severe complication that may occur. This is when the tip 
of the lead goes all the way through the heart wall, instead of attaching to the surface of the 
heart as intended. Leads are designed with focus to reduce the risk of such heart wall 
perforations and physicians use procedures intended to avoid the risk. The knowledge to 
why these perforations occur is still very limited. 

In 2007, Robin Hosselton performed a novel and extensive experimental work as part of 
his Master Thesis [2]. He performed about 1400 quasi-static perforations on 14 porcine 
cardiac tissue samples with the intention of investigating how the perforation force 
depended on such properties as the diameter and the shape of the tip of the lead. His thesis 
from 2008 included the analysis of more than 1000 perforations from 12 tissue samples. 
While being extensive the work did not include a full statistical analysis of the data material. 
The intention of this thesis is to remedy this and to use statistical methods to get as much 
information out of the available data as possible. Extra important is to see if the results are 
statistically significant. For the reader who is new to the subject Chapter 2 is recommended 
for a comprehensive background on pacemakers, implantation and heart wall perforations, 
and in Chapters 4 and 5 the performed perforation tests and the available data material are 
presented in more detail. 

Before the analysis begins, we define a set of key questions in Chapter 3. These are 
questions of both practical and statistical importance. Some questions are in line with the 
intention of Hosselton’s original work, while answers to other questions are required to be 
able to utilize the data material fully. Examples of key questions are if the tissue ages during 
the time it takes to perform the tests, if the tissue is homogeneous or has stronger and 
weaker areas, and how the perforation force is distributed. This later question has strong 
bearing on any statistical modeling of heart wall perforation, while the first questions could 
affect the perforation test design and the mechanical modeling of tissue strength. 

Specifically, in Section 6.2 we will see that the tissue does not exhibit any aging during the 
testing. This allows us to use all the data available in the full analysis, even though the 
experiments were not fully randomized in terms of perforation order, and we see that the 
log-normal distribution can be used to model the perforation force data with good results 
(Section 6.5). This important finding has implications for everyone performing this type of 
perforation tests. It shows that it is not enough to use the mean and the standard deviation 
for the original force data when drawing conclusions about the results of experiments, but 
that a logarithmic transformation of the data is required. 

Conclusions regarding how the perforation force depends on the diameter and the shape of 
the tip of the lead can be found in Sections 6.3 and 6.4. Here we see that using the pressure 
as a limiting factor for leads (as is common in lead development) is probably not the best 
choice as the pressure required to perforate the tissue is not independent of the lead 
diameter. A better parameter is the force divided by the diameter, as this quotient does not 
so strongly depend on the diameter of the lead tip. 
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As a bonus, we investigate a new way of characterizing the homogeneity of the tissue 
sample by defining a correlation coefficient for the tissue in a way that is analogous to 
Pearson’s sample correlation coefficient. To this method we add a graphical force mapping 
method so that the force distribution on the tissue can be viewed in 3D for easier 
inspection. This allows for visual identification of abnormal areas on the tissue. 

At the end of the thesis, a complete list of answers to the key questions can be found and 
also some proposals for future work (Chapter 7). 

2 Background 

In order to understand the experiments, the analysis of them and the conclusions some 
background information is needed. This Chapter gives a brief introduction to the 
pacemaker/ICD system (Section 2.1), heart physiology and implantation (Section 2.2), 
heart wall perforations (Section 2.3) and perforation testing (Sections 2.4 and 2.5). There is 
also a list of terminology and abbreviations to aid the reader (Section 2.6). 

2.1 The Pacemaker and the ICD 

The pacemaker and the ICD are both devices that are used when the patient’s heart is not 
functioning normally; however, they are aimed at different heart conditions. 

• The pacemaker takes on the function of maintaining a normal, even heart 
rhythm if the patient’s heart beats too slowly or not at all. It does so by 
supplying a low voltage pulse if it does not detect a normally paced heartbeat. 
The pulse triggers the heart into a normal heartbeat. 

• The ICD is aimed at preventing or breaking a too fast, often irregular heart 
rhythm, such as a flutter or a fibrillation in the right ventricle. These later are 
both conditions that can either reduce the hearts capacity to pump blood or 
prevent the blood flow completely. The latter condition is very dangerous and 
needs immediate treatment. In response to detecting such a condition, the ICD 
is designed to emit one or more high voltage pulses. The high voltage pulse 
“resets” the heart to normal operation and allows it to resume its normal 
rhythm. 

In order for the pacemaker or ICD (from here on called the device) to be able to treat the 
heart condition they need to be connected electrically to the heart. Since the device is too 
big to be implanted in the heart itself, it is instead connected to the heart using an electrical 
wire. This type of wire is called a lead (see Figure 2.1). 

At the proximal end of the lead (the end closest to the device) is a connector that connects 
securely to the device. At the distal end (the end furthest from the device), there is an 
electrode that is implanted in the heart and connects electrically to the heart. The tip may 
also have tines, fins or a helix that aids in attaching the lead to the heart wall. 

Two types of leads are used (see Figure 2.2): 

Passive leads: 

The lead is held in place by fins or tines that attach to the inner structure of the 
heart. This type of lead is mechanically simple, and usually has a soft, flexible tip. 
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Active leads: 

The lead is attached using a helix that is extended from the header at the distal end 
of the lead. This type of lead is mechanically more complex as it needs to house the 
helix mechanism, and a portion (10-20 mm) of the tip is usually rigid and cannot 
bend. 

More information on the pacemaker system can be found in [3]. 

 

Figure 2.1: A schematic overview of the simplest pacemaker system with only one lead. 
The pacemaker contains a battery and electronic circuitry, and is connected electrically to 
the heart via the lead. 

 

Figure 2.2: The figure shows a St. Jude Medical pacemaker with two leads attached; one 
with passive and one with active fixation. Active fixation using a helix requires the 
physician to extend the helix manually into the heart wall during the implantation. The 
passive lead often uses tines or fins to attach itself to the tissue inside the heart. 
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2.2 Heart Physiology and Pacemaker/ICD Implantation 

An overview of the human heart can be seen in the Figure 2.3. 

 

Figure 2.3: Overview of the human heart1. White arrows indicated direction of blood flow. 
The most common implantation of pacemaker and ICD leads is through Superior Vena 
Clava into the right atrium or right ventricle. Common implantation sites are the 
ventricular apex or the ventricular upper septum wall (white text in the figure). 

When a lead is implanted in the heart this is usually done through Superior Vena Clava. 
Most leads are implanted in the right atrium or the right ventricle. The procedure is 
performed under local anesthesia and typically takes less than one hour. Normally only one 

                                                 

1 The figure has been adapted from Wikipedia Commons:  
’Diagram_of_the_human_heart_(cropped).svg ’ . 
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incision is made both for the entry into the vein and for the placement of the device. The 
patient can leave the hospital the same day. 

 

Figure 2.4: The left figure2 shows where the device is placed and how the lead enters the 
heart through the vein. The right photograph3 shows the wound left after the implantation. 
The location of the pacemaker is just below the wound, just under the breast muscle. 

More information on heart physiology and implantation can be found in [3]. 

2.3 Perforation Risk 

For both passive and active leads, it is important that the lead tip has firm contact with the 
heart wall after the implantation and that it does not move. For an active lead, the helix 
needs to be fully attached to the heart wall (see Figure 2.5). If the helix is not fully attached, 
the lead may be dislodged later and the pacemaker will fail to stimulate the heart. 
Therefore, some force must be used during helix extension, but if too much force is 
applied, the lead may penetrate the heart wall and the tip will enter the myocardium. 
Continued application of force, or increased force level may eventually push the lead 
through the entire heart wall, resulting in a full perforation possibly even collapsing the 
lungs - a dangerous condition that requires immediate medical treatment. 

During implantation the physician cannot measure the strength of the tissue at the selected 
implantation site. Therefore, the risk of perforation is higher when he by chance chooses a 
weak position rather than a strong one. When analyzing tissue strength, extra attention 
should be given to the weaker parts of the tissue, as they will contribute more to the 
perforation risk than will the stronger parts. 

                                                 

2 The figure is copied from [3], page 171. 

3 The photo is taken from Wikipedia Commons: ’Pacemaker_Wound.jpg’. 
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Figure 2.5: The figure shows the heart wall with the three main layers: the inner 
endocardium, the myocardium and the outer epicardium. Also shown are different 
positions of the lead tip, including inadequate fixation, proper fixation and full perforation. 

2.4 Performing Perforation Tests 

In order to understand the mechanisms that are at work when implanting a lead and when 
the heart wall is perforated tests can be performed. Based on the description of lead 
implantation and perforation risk such tests should be performed in the right atrial or right 
ventricular tissue. The largest tissue sample is usually easiest to obtain from the outer right 
ventricular wall. 

In order to investigate the strength of the heart tissue, perforation tests can be performed. 
Different methods are possible. Method A in Figure 2.6 is a method that allows for 
performing several well-controlled perforation tests on the same piece of tissue. Method B 
is more similar to the perforation situation in the real heart, but is more difficult to control. 
Method A was the method used for the perforation tests that are analyzed in this thesis. 

Instead of using a full lead during these tests only the distal, rigid portion, of the lead is 
used. In some cases, it may not be possible to use a real lead at all and then a mechanical 
model that mimics the mechanical dimensions of the tip of the lead is manufactured. This 
is called a punch in this report. The punch can be more or less equal to the tip of a real lead. 
For instance, it may or may not have a helix and it may be shaped like a tube or like a solid 
cylinder. 
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Figure 2.6: The figures to the left show perforation using a fixture to hold the tissue during 
perforation. The figures to the right show the case where the tissue is only held at the edges 
and is allowed to flex freely in the middle. In both cases the upper figure (1) shows the 
punch before it comes into contact with the tissue, the middle figure (number 2) shows the 
punch when it is applying force to the tissue, but before full perforation and the lower 
figure (number 3) shows the punch after it has penetrated the tissue. 

The perforation itself is performed by moving the punch slowly, with constant speed in a 
quasi-static fashion, towards the tissue as shown in Figure 2.6 until the tissue has been fully 
perforated. During this motion, the opposing force that is sensed by the punch is 
measured. An example of such a force curve is shown in Figure 2.7, with the different 
positions 1, 2 and 3 indicated. 

2 

3 

Method A Method B 

1 
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Figure 2.7: The figure shows a typical perforation curve, where the measured force has 
plotted versus the distance travelled during a full perforation of porcine cardiac tissue. The 
numbers 1, 2 and 3 represent the same three positions of the punch as in Figure 2.6. 
During the first smooth portion of the curve no damage has yet occurred. Between the first 
damage and full perforation, the punch goes through first the endocardium, then the 
thicker myocardium and finally the epicardium. 

2.5 Use of Porcine Tissue 

Because of ethical reasons, it is not easy to perform tests on human heart tissue, even if this 
would be preferred from a scientific standpoint. Instead, alternatives are used. Porcine 
heart can be used as a substitute, and are often used in the testing of pacemaker leads. 
Hearts from pigs are also readily available. 
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2.6 Terminology and Abbreviations 

pacemaker Electrical device that can pace the heart artificially if the 
hearts own function for pacing is not adequate or fails 
completely. It is connected to the heart via a lead, an 
electrical cable. 

ICD Implantable Cardioverter-Defibrillator. A device that 
functions similarly to a pacemaker, but with additional 
capability to defibrillate the heart using a high voltage pulse 
to regain normal heart function if the heart is beating 
much to fast in an uncontrolled manner, a flutter or a 
fibrillation. 

the device A common name for either a pacemaker or an ICD. 

lead The electrical wire that connects the device with the heart. 

French Unit of measure for the diameter of the lead. Abbreviated 
F. 1F is approximately 1/3 mm, so a 6F lead is about 2 mm 
in diameter. 

distal end (of lead) The end furthest away from the device. This end contains 
the electrodes and is implanted in the heart. 

proximal end (of lead) The end closest to the device. This end has a connector 
that connects electrically and mechanically to the device. 

header The distal part of the lead. For active leads, the header 
houses the helix and helix mechanism. 

helix The helix is a spiral shaped wire that extends from the tip 
of the lead and that attaches the lead to the heart wall like a 
corkscrew. It also serves as an electrode, connecting the 
lead electrically to the heart. 

penetration In this context used when an object enters the heart wall 
but does not go completely through it. 

perforation In this context used when an object goes completely 
through the heart wall. 

quasi-static In this context, this means that the motion during the 
perforation is so slow that no dynamic effects occur. 

punch Device used to perform the perforations. Designed to 
resemble the lead tip or the entire header of the lead. 
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3 Key Questions 

Based on initial considerations regarding what knowledge might contribute to our 
understanding of heart wall perforations the following questions were identified as being 
most important to address in the analysis: 

No Question Details Relevance 

Q1 Is there a 
difference in 
force between 
different 
punches? 

What is the relationship between 
the force and the diameter? 
Does the hollow tube give a 
larger or smaller force than the 
solid cylinder? 
Does the helix increase or 
decrease the perforation force? 

The main purpose of the 
original thesis [2] was to 
answer these questions. Here 
they are addressed using 
statistical methods. 

Q2 What is the 
statistical 
distribution for 
the measured 
force values? 

Is it normally distributed or does 
some other distribution give a 
better fit? 

Important for building a 
statistical theory about the 
strength of heart tissue. Can 
help in understanding real 
perforation data. 

Q3 Is the tissue 
homogeneous? 

Are different positions 
independent of each other or are 
there stronger/weaker areas? 

May allow this test method to 
be used for mapping the 
strength of the heart. 
Important also to understand 
the results of the testing 
performed in [2]. 

Q4 Are different 
pieces of porcine 
tissue ”equal”? 

Do they have the same 
distribution (average, standard 
deviation, homogeneity etc)? 

This affects how much one 
should rely on test data coming 
from only a single piece of 
heart tissue. 

Q5 Does the tissue 
age during the 
test? 

Does the force increase or 
decrease during the test? 
Do adjacent holes affect the 
force for new perforations? 

If the tissue ages, extra care is 
needed when performing 
experiments so that the aging 
is not misinterpreted as a 
difference between punches. 

Table 3.1. The table summarizes the key questions that this thesis investigates. 

All of these questions are addressed in the next Chapters and the results have been 
summarized in Chapter 7. 
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4 The Performed Tests 

In this Chapter we briefly describe the specifics of the performed perforation tests (Section 
4.1), the tissue samples used (Section 4.2), the punch samples (Section 4.3) and the test 
equipment (Section 4.4). The information in this Chapter is described in more detail in [2]. 

4.1 Perforation Tests 

For the tests that are analyzed in this thesis method A according to Figure 2.6 is used, i.e. 
the tissue is supported by plates above and below it and the punch is guided through holes 
in the plates. In total 99 perforations were performed for each piece of tissue as defined by 
the holes in the supporting plates (se Figure 5.1 and Figure 5.2). During the testing, a 
protocol was used and hand-written notes were taken. These notes indicate if the 
perforation was correctly performed according the protocol or not. Examples of incorrect 
tests are when the test was not fully completed so that the end of the registered force curve 
is missing or when the punch by mistake hit the edge of the holes in the supporting plates.  
The notes were used to define which perforations to include in the analyzed data material. 
Based on the randomness of such mistakes it is believed that these missing data do not 
affect the conclusions drawn from the analyzed data material.  

4.2 Tissue Samples 

Porcine heart tissue was used for the tests. The hearts were delivered directly to the test site 
and were stored at about +5°C in saline solution until the tests. The tissue samples were 
cut from the outer right ventricular heart wall and the perforations were performed from 
the endocardium side (the inner side). The pieces of tissue were approximately 
8 cm x 8 cm. The tissue was stretched by about 12.8% in the longitudal direction and 8.4% 
in the transverse direction to mimic the strain in a normally function heart [1]. 

During testing the tissue samples were surrounded by Saline solution, a water based liquid 
with salt content matching that of the human body. The solution and the tissue were held 
at approximately 37°C throughout the testing. Data from 14 hearts are analyzed in this 
report. 

4.3 Punch Samples 

Three different types of punches were used, with different radius: 

• Solid punch: 3, 4, 5, 6, 7 and 8F. 

• Tubular punch: 4 and 6F. 

• Tubular punch with helix: 4 and 6F. 

Here F means “French” which is a measure of the diameter of a cardiac lead. For 
reference, 6F is approximately 2 mm. 

During the perforation tests focus was mainly on the solid and the tube-shaped punches, 
but some tests were also performed with the tube shaped punches with a helix. This last 
type is most similar to active leads with the helix extended, but because of limitations of the 
punch samples that were available during these tests, not too many tests could be 
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performed with these. Therefore, this analysis will mainly focus on comparing the solid and 
tube-shaped punches and looking into the effect of the diameter of the punch. 

 

Figure 4.1. Distal part of the punches used4. The punch with helix is most similar to the 
standard active lead with the helix extended, while the solid and tube shaped punches are 
similar to the lead with the helix retracted. 

4.4 Test Equipment 

 

Figure 4.2. Schematic drawing5 of the experimental device used to penetrate bi-axially 
stretched specimens of ventricular tissue. 

                                                 

4 Adapted from figure 3.4 in [2]. 

5 Copied from figure 3.2 in [2]. 

 

solid tube-shaped with helix 
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The test equipment was semi-automatic. Positioning of the punch was manual, but the 
penetration was performed automatically with a penetration speed of about 5 mm/minute. 
When moving this slow the perforation is considered quasi-static, i.e. no dynamic effects 
occur. One complete perforation took about 3-4 minutes to perform from positioning to 
full perforation of the tissue. During the perforation procedure, the force detected by the 
punch was continuously measured by a load cell and simultaneously the distance travelled 
was logged. The data for each perforation was stored to a separate file for later analysis. 

5 The Data Material 

This Chapter gives an overview of the analyzed data material (Section 5.1) and discusses 
the randomization used during testing (Section 5.2). The two analyzed parameters, the peak 
force and the force at first damage to the tissue, are defined (Section 5.3) and the method 
for extracting them from the raw data is described (Section 5.4). The specifics of manually 
identifying the point of first damage are documented to give the reader a better 
understanding for this parameter (Section 5.5). 

5.1 Overview 

Table 5.1 summarizes the available data. 

Punch Type, Size in French Tissue 
Sample Solid Tube Helix 

Comment 

ID 3 4 5 6 7 8 4 6 4 6  

P4RO 25 
(0) 

23 
(2) 

- - 24 
(1) 

24 
(0) 

- - - - Not randomized order. 

P5RO 22 
(3) 

23 
(2) 

- - 25 
(0) 

24 
(1) 

- - - - Not randomized order. 

P6RO 21 
(4) 

25 
(0) 

- - 25 
(0) 

20 
(4) 

- - - - Not randomized order. 

P7RO - - 23 
(2) 

25 
(0) 

- - 24 
(1) 

24 
(0) 

- - Not randomized order. 

P8RO - 24 
(1) 

- 25 
(0) 

- - 25 
(0) 

23 
(1) 

- - Not randomized order. 

P9RO - 25 
(0) 

- 25 
(0) 

- - 25 
(0) 

24 
(0) 

- - Not randomized order. 

P10RO - 25 
(0) 

- 25 
(0) 

- - 25 
(0) 

24 
(0) 

- - Not randomized order. 

P11RO - 25 
(0) 

- 25 
(0) 

- - 47 
(2) 

- - - Randomized order and position. 

P12RO - - - - - - 25 
(0) 

25 
(0) 

24 
(1) 

24 
(0) 

Randomized order and position. 

P13RO - - - - - - 49 
(1) 

- 49 
(0) 

- Randomized order and position. 
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Punch Type, Size in French Tissue 
Sample Solid Tube Helix 

Comment 

ID 3 4 5 6 7 8 4 6 4 6  

P14RO - - - - - - 48 
(1) 

- 47 
(3) 

- Randomized order and position. 

P15RO 22 
(3) 

24 
(1) 

- - 24 
(1) 

22 
(3) 

- - - - Randomized order and position. 

P17RO - 24 
(0) 

- 20 
(5) 

- - 25 
(0) 

23 
(2) 

- - Randomized order and position. 

P18RO 15 
(9) 

22 
(3) 

- - 20 
(5) 

21 
(4) 

- - - - Randomized order and position. 

Table 5.1. The table summarizes the available test data. The sample ID indicates that the 
sample is porcine (P) and that it has been cut from the outer side of the right ventricle 
(RO). In this report, usually only the tissue number will be used to reference the tissue 
sample. The table shows the number of valid tests that were performed for each 
combination of tissue and punch. The number in parentheses indicates how many tests 
that were excluded. Data was excluded if it was clear from notes made during testing that a 
mistake was made or if inspection of the data showed that the perforation was not 
completed. Inspection of the excluded data points does not indicate that the exclusion 
affects the statistical analysis or the conclusions. 

As can be seen the data has not been collected according to a balanced design. This means 
that F-tests within the scope of variance analysis may not be exact; and tests for any 
interaction between factors will require the selection of data sets that include all 
combinations of the factors. We will see examples of this in the analysis in Chapter 6. 

5.2 Order of Perforation and Randomization 

As indicated in Table 5.1 the first half of the test data was not collected in a randomized 
fashion. The perforation matrix for these tests can be seen in Figure 5.1. As can be seen 
punch A was used for the entire piece of tissue first (numbers 1-25), then punch B 
(numbers 26-50) and so on. This means that aging of the tissue (or other similar effects) 
could affect the collected data. 

A better way of performing the perforations is to randomize the order in which the 
punches are used. This method was used for the final tests and can be seen in Figure 5.2. 
This is a randomized perforation matrix in terms of the order in which the punches are 
used. The punches are well spread over the entire tissue. 

Note that for tissue sample 11 only three punches were used and for tissue samples 13 and 
14 only two punches were used. For these tissue samples, the same punch was used for two 
of the letters A-D in Figure 5.2 so that the total number of perforations was still 
approximately 99 for each tissue sample. Which of the punches that were used more than 
one time, can be seen by inspecting Table 5.1 for punches that were used more than 25 
times on a single piece of tissue. 
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Figure 5.1. Perforation matrix for tissue samples 4, 5, 6, 7, 8, 9 and 10. The letters A, B, C 
and D represent the different punches used. The numbers show the order in which the 
perforations were performed. The order of the punches is not randomized. 

 

Figure 5.2. Perforation matrix for tissue samples 11, 12, 13, 14, 15, 17 and 18. Here the 
order of the punches is also randomized. Note that for tissue samples 11, 13 and 14 not all 
of the positions (A, B, C and D) were used for different punches, but some of the 
positions were used with the same punch. 

1 26 2 27 3 28 4 29 5 

30 6 31 7 32 8 33 9 34 

10 35 11 36 12 37 13 38 14 

39 15 40 16 41 17 42 18 43 

19 44 20 45 21 46 22 47 23 

48 24 49 25 74 98 50 75 99 

69 94 70 95 71 96 72 97 73 

89 65 90 66 91 67 92 68 93 

60 85 61 86 62 87 63 88 64 

80 56 81 57 82 58 83 59 84 

51 76 52 77 53 78 54 79 55 

A A A A A B B B B 

A A A A B B B B B 

A A A A A B B B B 

C C C C C D D D D 

C C C C D D D D D 

C C C C C D D D D 

C C C C D D D D D 

C C C C C D D D D 

A A B B C C B D D 

A A A A A B B B B 

A A A A B B B B B 

1 26 2 27 3 28 4 29 5 

30 6 31 7 32 8 33 9 34 

10 35 11 36 12 37 13 38 14 

39 15 40 16 41 17 42 18 43 

19 44 20 45 21 46 22 47 23 

48 24 49 25 74 98 50 75 99 

69 94 70 95 71 96 72 97 73 

89 65 90 66 91 67 92 68 93 

60 85 61 86 62 87 63 88 64 

80 56 81 57 82 58 83 59 84 

51 76 52 77 53 78 54 79 55 

B B D A D D D C C 

B A C D A C C A D 

A A D A B D B A A 

B D C C C A A A D 

A D D D B A B C B 

B A C C A B A A C 

B A D C C D C B B 

B B D C B C C B A 

C C B C B C D D D 

A B C D A D C B C 

D A D D A B B B B 
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5.3 Extracted Parameters 

For each perforation a number of parameters were extracted or calculated from the raw 
data. For this thesis, two parameters were selected as most relevant: 

Fpeak The peak force (the highest force value obtained during the perforation). 

Ffd Force at first damage. The point where the curve first deviates from elastic 
deformation. 

The definition of these parameters can be seen in Figure 2.7 and more examples can be 
found in Figure 5.3 and Figure 5.4. 

5.4 Software for Extraction of Parameters 

In order to view the data more easily and to extract the parameters a program was written 
in Matlab. The program has a graphical interface that is shown Figure 5.3. This program 
was used to inspect the data to see if the perforation was completed, if there were any 
anomalies and finally to visually identify the position of the first damage. 

 

Figure 5.3. Sample view of the interface to the data viewer application. As can be seen 
several perforations can be selected at the same time facilitating easy comparison between 
different perforations. The example shows a solid 4F, 6F and 8F punch. 

5.5 Identification of the Point of First Damage 

The point of first damage is important as this allows us to perform a statistical analysis for 
how much force can be applied before irreversible damage occurs to the tissue. This has 
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clinical relevance since it is preferred not to inflict any damage, except when the helix 
attaches to the tissue. The definition of first damage that we use here is similar to the limit 
between the elastic deformation and the irreversible deformation as defined in [1]. This point of 
first damage could be possible to extract using some type of automatic computerized 
algorithm, but such an algorithm may be difficult to construct in practice. For this thesis, 
the identification of the point of first damage was done visually only. It was defined as the 
position where the curve visually deviates from the smooth elastic deformation curve. 
Figure 5.4 shows some typical examples. 

Regardless if the extraction is automatic or is purely visual, the point of first damage 
defined in this way has not been correlated with actual damage to the tissue. However, it is 
still relevant as a method to estimate at what force initial damage to the tissue can occur. 
This can help establish limits for the maximum force the lead is allowed to apply to the 
tissue. This is a better limit than just looking at the peak force, since it gives some margin 
to the force at which full perforation occurs. 

 

Figure 5.4. Identification of the point of first damage (vertical line) and peak force 
(triangle). a) Clear indication of perforation of endocardium (first damage) and also clear 
indication of peak force. b) Indication of deviation from elastic curve.  c) Deviation from 
elastic curve, and ignored early deviation from elastic curve (see arrow). d) Clear deviation 
from elastic curve. Note that in all of these examples the peak force is higher than the force 
at indication of first damage. In the full data material, in some cases they were the same, 
but the peak force can of course never be lower than the force at first damage. 

c) 

a) b) 

d) 

ignored 
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6 Statistical Analysis 

In this chapter, we analyze the data with the purpose of answering the key questions 
defined in Chapter 3. The analysis is done in several steps, not necessarily starting with the 
most important question. 

Here we start by looking at the individual pieces of tissue to see if they can be said to be 
homogeneous or not. We do this by defining a correlation coefficient that is analogous to 
Pearson’s correlation coefficient, but not identical with it. Using this correlation coefficient 
and graphical plotting of the standardized force we show that some of the tissue samples 
are heterogeneous, with stronger and weaker areas, and that in general the correlation 
coefficient is positive (Section 6.1). 

Since half of the data was not collected in a fully randomized fashion we also need to 
establish if all the data can be used in the analysis or if we need to exclude it or correct it in 
some way. We show that there is no indication of any aging effect for the tissue, or of any 
interaction between different perforation rounds, and that all data therefore can be used in 
the analysis (Section 6.2). 

We continue with a brief analysis of the limited data with and without a helix to show that 
in general the helix decreases the perforation force. We also see that there is an interaction 
between the tissue and punches with and without a helix (Section 6.3). 

We then arrive at the most important part of the analysis where we analyze all of the test 
data, excluding the helix data. We see that the median force is roughly linearly dependent 
on the diameter and that the tubular punch gives a higher force than the solid cylindrical 
punch. (Section 6.4). 

We complete the Chapter with a discussion regarding distributions, specifically the 
logarithmic transformation of data, which results in approximately normally distributed 
residuals (Section 6.5). 

6.1 Assessment of the Homogeneity of the Porcine Tissue 

We wish to establish if the tissue is homogeneous or if there are stronger or weaker areas in 
the tissue. Based on how heart tissue looks and feels we intuitively expect the tissue not to 
be homogeneous, but we would prefer to have a method to test this. Here we define such a 
method (Section 6.1.1) and apply it to the porcine data (Section 6.1.2) and, using statistical 
tests, we find out that the porcine tissue is indeed not homogeneous. This is illustrated 
graphically (Figure 6.3) for tissue sample 10 which is most heterogeneous according to this 
method. Finally, also other methods of assessing the homogeneity of the tissue are 
discussed (Section 6.1.3). 

6.1.1 Defining the Correlation Coefficient for the Tissue Samples 

We start the analysis by investigating the pieces of heart tissue individually. Specifically we 
address the question if the tissue can be said to be homogeneous or not, that is if the force 
is uniform over the tissue or if it is spatially correlated. In the following discussion, we will 
call each perforation position a node. We define a correlation coefficient in such a way that 
if the peak force measurements are randomly distributed over the nodes the correlation 
coefficient will be close to zero. 
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First, we need to take into account that each piece of tissue has been perforated by up to 
four different punches. We cannot expect these to have the same mean or the same 
standard deviation in terms of force. Therefore, we cannot set out to define a correlation 
coefficient based on the raw force data that we collected. We need to transform the data in 
some way. We can do this if we first make the following observation: Both for the 
randomized and the not fully randomized tests the punches are evenly spread over the 
tissue. We can expect them to “sample” the tissue in the same way. This leads us to the 
following important assumption: 

• Each punch spans the entire tissue in such a way that if the punches A, B, C, D had 
been identical they would have had the same expected mean force and the same 
expected variance. 

Using this assumption, we select the proper transformation to be a standardization of the 
data individually for each piece of tissue and punch. Typically, each group will consist of 
approximately 25 force values, and therefore mean force for the group will not be too 
sensitive to single deviating force values. 

We will call this new standardized force data set iz . Now we are ready to define the 

correlation coefficient for the tissue. 

We start with the familiar expression for Pearson’s sample correlation coefficient [4]: 
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In this special application, we need to do some adaptations. First, we perform a sum over 
all pairs of neighboring nodes. In this case, we define neighboring nodes to be the six 
closest nodes as shown in Figure 6.1. 

 

Figure 6.1. For each penetration position (node), we calculate the “correlation” with 
adjacent nodes. Here we only look at the six closest nodes and call these the neighbors of 
the selected node. At the edges or when data points are missing, some nodes will have 
fewer neighbors. To calculate the correlation coefficient for the tissue we perform this type 
of summation over all the nodes on the tissue. This is done in a way that is analogous to 
Pearson’s "sample correlation coefficient". 

We will work with what could be called a bi-directional relationship between nodes. This is 
an arbitrary, but logical choice, since there is no reason to prefer one node to another. This 
way of defining the summation will create a symmetrical equation, which simplifies the 
formulas and the calculations. The symmetry results in each node appearing in both the 

10 35 11 36 12 37 13 28 14 

39 15 40 16 41 17 42 18 43 

19 44 20 45 21 46 22 47 23 

89 65 90 66 91 67 92 68 93 

60 85 61 86 62 87 63 88 64 
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”x”-set and the ”y”-set in equation (6.1), making the two sets identical, except for the 
ordering of the nodes. 

Using our standardized data set iz , we arrive at the following expression for the correlation 

coefficient: 
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Here the used symbols are defined in the following way: 

N  
The total number of data points for 
a specific piece of tissue. 

If all perforations successfully resulted in 
a measured peak force then this is equal 
to 99, but in general it is less slightly less 
than 99 (se Table 5.1). 

ji zz &  

The standardized data points for a 
specific piece of tissue. The 
standardization is performed 
individually for each punch. 

i, j = 1, 2, ... ,N. 

ij ~  Each node j that is a neighbor of 
node i. 

Here we have defined the neighbors to 
be the six closest nodes in a geometrical 
fashion. At the edges, or where data 
points are missing, there may be fewer 
neighbors. Some nodes may completely 
lack neighbors if several data points are 
missing and will thus not be included in 
the summation. 
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1 The total number of neighboring nodes. 

Z  ∑ ∑
=

=
N

i ij
jz

N
Z

1 ~
~
1

 
Mean of all neighboring nodes and not 
identical to z , which is the mean of all 
data points for a piece of tissue. 
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The sample variance for the neighboring 
nodes, analogous to the sample variance 
we are familiar with from basic courses 
in statistics (se reference [4] for the 
normal definition of sample variance). 

Some additional algebra yields: 
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The actual calculation is computerized via programming in Matlab. The algorithm involves 
standardizing the data for each punch on a piece of tissue, and then performing the 
summations according to equation (6.3). We arrive at a single number for each piece of 
tissue that characterizes the tissue in terms of internal correlation of the force between 
neighboring nodes. 

To understand the correlation coefficient more intuitively we can start with equation (6.3). 
We see that the denominator is merely a measure of the variation in the data as a whole, so 

we ignore it. For standardized data we also see that 2~
ZN  will be close to zero, so we 

ignore it also. What remains is a sum over ji zz . Now it is easy to realize that if neigboring 

nodes are similar they will both be positive or both be negative. In both cases the product 
will positive and the numerator will tend to be positive, so the correlation coefficient will 

be positive. If neighboring nodes tend to have opposing values, then ji zz  will tend to be 

negative and so the correlation coefficient will be negative. Finally, if the neighbors are not 

correlated, then ji zz  will sometimes be positive and sometimes negative, resulting in a 

value close to zero for the correlation coefficient. 

6.1.2 Calculated and Simulated Values of the Correlation Coefficient 

The calculation defined above is performed separately for the peak force and for the force 
at first damage. 

Correlation coefficient, rz Tissue # 
for peak force for force at first 

damage 

4 0.125 0.010 
5 0.122 0.105 
6 0.070 0.090 
7 0.271 -0.031 
8 -0.056 0.055 
9 0.296 0.161 
10 0.469 0.324 
11 0.174 -0.002 
12 0.132 0.123 
13 0.100 -0.030 
14 0.093 0.024 
15 0.083 0.082 
17 0.386 0.077 
18 0.180 0.412 

Table 6.1: Calculated correlation coefficient rz for each piece of tissue using the algorithm 
described above. Calculations have been performed both for the peak force and for the 
force at first damage. By inspecting these values we see that in general they are positive, 
more so for the peak force than the force at first damage. This means that the correlation 
coefficient is in general positive, which could be an indication of heterogeneity in the 
tissue. The “worst” tissue samples are sample 10 for the peak force and sample 18 for the 
force at first damage. 

In order to understand if these numbers are high or low, extreme or as expected, we need 
something with which to compare them. We can do this by simulating randomly 
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distributed, uncorrelated tissue. Using Matlab, we generate random, independent force 
values for each node on the tissue. For simplicity, we use all the 99 available nodes. We 
then allow the previously described algorithm to calculate a “simulated” correlation 
coefficient for each such simulated piece of tissue. To make sure that the chosen 
distribution for the simulated data does not affect the result we simulate data from two 
different distributions, the normal distribution and the exponential distribution. Since the 
data is standardized in the algorithm performing the calculation of the correlation 
coefficient, we do not need to bother about exact parameters of the distributions – it is 
merely the shape of the distribution that affects the behavior of the correlation coefficient. 
For instance, for the normal distribution we simply select N(0, s2=1) distributed data. 

Using the algorithm described above we have simulated 100 000 tissue samples, which have 
then been plotted in a normal chart together with the real porcine tissue correlation 
coefficients. 

 

Figure 6.2. The triangles and squares correspond to actual correlation coefficients for the 
porcine tissue samples. These values can be compared with simulated tissue samples with 
simulated independent, random force data. The black dots (forming a black line) come 
from simulating from the normal distribution and the grey dots (forming a grey line) come 
from the exponential distribution. As can be seen the lines overlap over a great portion of 
the range, so the distribution of the individual force values does not greatly affect the 
distribution of the correlation coefficient when the individual data points are truly 
uncorrelated. As a contrast, it can be seen that the correlation coefficients for porcine data 
are shifted to more positive values. The dashed line indicates the correlation coefficient 
0.25 and is explained in the text. 

P(r>0.25) < 0.2% 
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From Figure 6.2 it can be seen that the porcine data is shifted towards higher correlation 
coefficients compared to the uncorrelated simulated data. It also appears that the peak 
force in general shows higher correlation coefficients than does the force at first damage. 
This can also be tested statistically; here we will use a nonparametric statistical method. 

We first investigate if the median correlation coefficient is significantly higher than zero. 
We do this as a one-sided test based on the reasoning that it is unlikely that our defined 
correlation coefficient could detect a negative correlation coefficient (see also Section 
6.1.3). Since we perform two tests for the two different measurements of force, we use 
Bonferroni correction when performing these tests at the simultaneous 5% level. We 
therefore end up with individual 2.5% levels for each of the tests. 

We use the Sign Test [4], since we cannot assume that the distribution for the correlation 
coefficient is symmetrical around zero, and arrive at the following results: 

Sign test of median =  0 versus > 0 
 
                    N  Below  Equal  Above       P   Median 
r(peak force)      14      1      0     13  0.0009   0.1300 
r(first damage)    14      3      0     11  0.0287   0.0797 

Table 6.2: Result of Sign Test for the correlation coefficients. 

From the analysis, we see that for the peak force we reject the hypothesis that the tissue is 
homogeneous, while for the force at first damage we cannot do this, at least not on the 
simultaneous 5% level. 

There is also a second test we can do and that is to investigate which of the tissue samples 
are heterogeneous on the simultaneous 5% level. We do this, again as a one-sided test, by 
comparing each individual r-coefficient with the simulated distribution for the correlation 
coefficient. Here we will perform a total of 28 comparisons and so use Bonferroni 
correction to arrive at the individual 5%/28 = 0.2% level. 

From the gray and black lines, we see that the probability to get a correlation coefficient 
that is larger than 0.25 is clearly less than 0.2%. We now see that six of the correlation 
coefficients are larger than this and conclude that in these six cases we can reject the null 
hypothesis that these are the product of homogeneous tissue. 

These tissue samples are: 

• Peak force: sample 7, 9, 10 and 17. 

• First damage: sample 10 and 18. 

As a continued analysis, it is interesting to see what causes the higher correlation 
coefficient. We do this for one tissue sample only, the one with the highest correlation 
coefficient, tissue 10. There are at least two alternatives for the cause of the higher 
correlation coefficient: 

• some smaller part of the tissue shows a higher or lower force than the rest of 
the tissue, 

• the tissue has some more general structure, e.g. the force gradually increasing 
from one side of the tissue to the other. 



27 

We will explore which alternative is correct for this tissue sample graphically. 

We use the same data that was used for the correlation coefficient (standardized per punch) 
and plot this in a shaded plot with spline functions between perforation points (black dots 
in the figure). The level of shading reflects the force level of that part of the tissue. 

From the plot, it can be seen that the higher correlation coefficient for sample 10 is caused 
mainly by an area of higher force level at the bottom of the tissue (as drawn in Figure 6.3). 
This means that it is a smaller area that deviates from the rest of the tissue. There does not 
seem to be any corresponding weaker areas, but this has not been fully explored in this 
thesis. Such weaker areas would be of interest, as they would directly affect the probability 
of perforation of the tissue in the clinical implantation situation. 

 

Figure 6.3. This is a graphical representation of the standardized force level for tissue 
sample 10 which has the highest correlation coefficient (rpeak = 0.47). Lighter and darker 
areas indicate a higher and lower standardized force, respectively. The scale can be found 
to the right in the figure. As it turns out the high correlation coefficient for tissue sample 
10 is mainly caused by a stronger area on one side of the tissue (the lower part in the 
figure). The black dots in the figure represent the positions of the actual measurements. 
The shading has been created by Matlab as a spline surface that goes through all of the 
actual standardized force values in the indicated measurement positions. This graph is best 
viewed in “3D”, which gives an intuitive feeling for the force distribution over the tissue 
when rotated in 3D in real time. For printing the camera angle has been selected to create a 
“flat” image, as this is the best format for print. 

higher force 

lower force 
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6.1.3 Other Possible Tests and Transformations 

Other ways of standardizing the data were also tested, like only subtracting the average, or 
subtracting the median instead of the average, but the correlation coefficients did not 
change much. In addition, a logarithmic transformation of the data was tested, in line with 
the transformation that is used later in this thesis, but this did also not affect the results 
much. The conclusions are the same and only the standardized data without any other 
transformation are used in this thesis. 

The sensitivity of the correlation coefficient to structures in the tissue was also tested. This 
is important since we want the correlation coefficient to deviate from zero if the tissue is 
not homogeneous. If it does not vary, or varies in an undesired way, it is not a good 
statistic to use when testing for the homogeneity of the tissue. Both negative and positive 
spatial correlations were tested. The negative correlation was created by assigning forces 
with opposite sign to adjacent rows. The resulting correlation coefficient was 
approximately -0.5. It is likely that the correlation coefficient cannot be much lower when 
defined with six neighbors as shown in Figure 6.1, since this makes the two axes, x and y, 
dependant of each other. This is not explored further in this thesis. Note however that a 
true negative correlation coefficient would still be difficult to detect for a real piece of 
tissue since it requires the alternating pattern of the tissue to match the spacing and the 
positions of the perforations. In addition, positive spatial correlations were tested, both a 
second-degree function and a linear function and both yielded values close to (but slightly 
below) +1, which is to be expected. Detecting positive correlation coefficients does not 
require a close match between the tissue and the perforation positions. 

This discussion shows that the defined correlation coefficient can be used to identify the 
existence of heterogeneity in the tissue samples, specifically when the heterogeneity 
consists of stronger and weaker areas in the tissue. Note that the size of such an area needs 
to be larger than the spacing between the perforation nodes in order to be detected. The 
test method cannot detect “micro structures” that are smaller than this spacing. This is 
analogous to sampling theory where similar limitations apply. 

There are other methods to investigate if the tissue is homogeneous or not. One obvious 
method is to view this as a two factor experiment (the x and y-position for each tissue 
sample individually). We can then use regression (first or higher order polynomial, or some 
other arbitrary function) to see if any of the coefficients in the function turn out to be 
significant. If they do turn out to be significant we can conclude that there is indeed a 
structure and that the tissue is not homogeneous. However, the selection of such a 
polynomial or function would be entirely arbitrary and without a better theory of what the 
structure of the tissue should be the correlation coefficient together with the spline 
function and the graphical plot are sufficient. 

6.1.4 Summary and Conclusions 

We have defined a correlation coefficient for this type of tissue tests. This coefficient can 
be used to test if the tissue is homogeneous or not and, together with a color-grading plot, 
we can also determine the nature of the heterogeneity if the tissue is not homogeneous. 

Using the calculated correlation coefficients and the color grading plot it was shown that 
the porcine tissue samples in general are heterogeneous having a median correlation 
coefficient for the peak force of about 0.13. Using statistical tests, we also specifically 
identified that four of the tissue samples are heterogeneous with respect to the peak force 
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and two with respect to the force at first damage. As an example, we saw that tissue sample 
10 has a stronger area at the lower part of the tissue as shown in Figure 6.3. 

One additional important conclusion regarding the positive correlation coefficient for the 
tissue samples is that this means that the individual perforation positions are not 
independent. This is briefly discussed in Section 7.2. 

6.2 Does the Tissue Exhibit any Aging Effect? 

We wish to use all the data that was collected in the perforation testing, but we know that 
not all of the data was collected in a randomized fashion (see Table 5.1). However if the 
tissue does not show any aging effect or similar, we can use data from the tests that were 
not randomized also, since then the order of perforation should not matter. 

First, we define a statistical model capable of detecting aging of the tissue (Section 6.2.1) 
and then we analyze three sets of data (Sections 6.2.2, 6.2.3 and 6.2.4) to show that there 
indeed is no indication of such an aging effect during these tests. This allows us to use all 
of the data in the continued analysis. 

6.2.1 Statistical Model 

The data will be analyzed using a linear model approach. We then typically want the data to 
fulfill the following three criteria: 

1) The error term should be normally distributed. 

2) The distribution of the error term should be independent of the values of the 
parameters. 

3) The individual data points should be independent. 

This may require a transformation of the data if the error term is not normally distributed 
or if it does depend on the data. Here, we will use a logarithmic transformation of the force 
values, and this transformation is further discussed in Section 6.5. 

We also note that the individual data points are not independent, since we found that the 
correlation coefficient for the tissue samples is in general positive (Section 6.1). We will 
ignore this in the continued statistical analysis, but note that the effect of this intrinsic 
tissue variation is added to the error term in the linear model. 

We start the analysis of possible tissue aging by looking at how the test was actually 
performed. Each tissue sample was perforated in four rounds, each round roughly covering 
the same area (see Figure 5.1 and Figure 5.2). Thus for each round it should be possible to 
assume that if the tissue does not age, each round should show the same average force. We 
can test for the significance of the factor round by defining a linear model and creating an 
ANOVA-table. Here we assign the round as a third factor in addition to the tissue and 
punch factors. 

However, we can only perform this test if the punches used for each tissue sample were 
randomized in order. This is true for the latter half of the samples (see Table 5.1 and Figure 
5.2). Also, note that this test cannot be performed for a single round because of the way 
the penetrations were performed, in an ordered fashion from one side of the tissue to the 
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other. Any structure in the tissue could then show as a false aging effect. This could 
otherwise have been a better approach. 

When performing this test we also need to check for any interaction between the different 
factors, as this might otherwise falsely show up as an effect of the round. By looking at the 
data as presented in Table 5.1, we see that we can perform this investigation, including any 
interaction effect, separately for the following three sets of data: 

Data Set Tissue Samples Punches Comment 

1 12, 13 and 14 tube 4F and helix 4F These are also the only tissue 
samples where the helix can be 
directly compared with the tubular 
punch.  Significant effect of helix 
may be possible to detect. 

2 11 and 17 solid 4F, 6F and tube 
4F 

Only a little variation in diameter, 
but can also compare solid and 
tube. 

3 15 and 18 solid 3F, 4F, 7F and 
8F 

Only solid punch, but large 
variation in diameter. Significant 
effect of diameter expected. 

Table 6.3. The table shows the three sets of data that will be used to test for aging of the 
tissue during the test. 

We see that although not being balanced, each data set includes all the different punches 
listed for each tissue sample, including replicates. The fact that the tests are not balanced 
means that the performed F-tests in some cases will not be exact. Because of the 
reasonably large sample size for each combination of tissue and punch and because the 
number of tests for each combination of tissue and punch are comparable the F-test 
should still be reasonably accurate and should give a clear indication if an effect is 
significant or not. 

For the analysis presented below the natural logarithm, ln(F), of the force was used instead 
of the original force, F. This is because the analysis itself and subsequent analyses show 
that this gives the best fit to the normal distribution for the residuals. This is further 
discussed in Section 6.5. 

Using Minitab the same general linear model analysis was performed for each data set, 
starting with the following full model including interactions: 

ijklijkjkikijkjiijklF εαβγβγαγαβγβαµ ++++++++= )()()()()ln(  (6.4) 



31 

The parameters are the usual for this type of model6: 

ijklF  The force l  is the index for the test within the 
group defined by a specific tissue, punch 
and round. The range for l  is therefore 
different for each such combination. 
Indices should have been used to 
indicate this, but were omitted because 
this is obvious from the description of 
the data set (Table 5.1). 

µ  The average of all data.  

ijklε  The standard error term. ),0(~ 2σε Nijkl  

iα  The effect of the tissue, random 
factor. 

),0(~ 2
ασα Ni  

jβ  The effect of the punch, a 
systematic factor. 

0=∑
j

jβ  

kγ  The effect of the round, a 
systematic factor (note that the 
order is not randomly chosen). 

0=∑
k

kγ  

4...1=k  (representing the four rounds) 

ij)(αβ  The interaction between tissue and 
punch, a random factor since tissue 
is a random factor. 

),0(~)( 2
αβσαβ Nij  

ik)(αγ  The interaction between tissue and 
round, a random factor tissue is a 
random factor. 

),0(~)( 2
αγσαγ Nik  

jk)(βγ  The interaction between punch and 
round, a systematic factor. 

0)()( ==∑∑
k

jk
j

jk βγβγ  

ijk)(αβγ  The interaction between tissue, 
punch and round, a random factor 
since the tissue is a random factor. 

),0(~)( 2
αβγσαβγ Nijk  

For now, we are mainly interested in looking at significance, a full analysis the magnitude of 
the effects will be done later. The significance test was performed for all three sets of data 
and the results are presented in the next Sections with a summary Section at the end. 

6.2.2 Analysis of Data Set 1 

As can be seen in Table 6.10 this data set only includes a single punch diameter and the 
only difference between the punches is therefore the helix. Any detected effect of punch 
can therefore be attributed to the effect of the helix. Our main purpose is however to 
investigate if the factor round has any significant effect on the peak perforation force. 

                                                 

6 Minitab does not require the sum of random factors over indices of fixed factors to be 
zero. This does affect some of the F-tests. This has not been further explored in this thesis. 
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We start with the full model according to equation (6.4) and the result of the variance 
analysis is shown in Table 6.4. This result indicates that round is not an important factor. 
However, it also indicates that none of the factors are statistically significant except for a 
possible interaction between tissue and punch. 

Inspection of the residuals shows that there are four large force values that deviate in terms 
of too large residuals. We perform the continued analysis without these four values and 
also remove the insignificant factors one by one. We end up with the result in Table 6.5.  

We see that for this data set, there is only an interaction effect between the two tissue 
samples and the punches. Since the only difference between the punches was the presence 
or absence of a helix we conclude that there may be an interaction between punches with 
and without a helix and the tissue sample used. However, we do not find any significant 
effect of the round. 

Analysis of Variance for log(Fpeak), using Adjusted SS for Tests 
 
Source             DF   Seq SS   Adj SS  Adj MS     F      P 
tissue              2  13.7896  13.9664  6.9832  6.46  0.141 x 
punch               1   2.6130   3.3261  3.3261  3.21  0.214 x 
tissue*punch        2   2.5944   2.1955  1.0977  6.35  0.033 x 
round               3   0.1132   0.1918  0.0639  0.42  0.748 x 
tissue*round        6   0.8877   0.9375  0.1563  0.90  0.548 
punch*round         3   0.6262   0.3421  0.1140  0.67  0.598 x 
tissue*punch*round  6   1.0390   1.0390  0.1732  1.46  0.193 
Error             218  25.8525  25.8525  0.1186 
Total             241  47.5156 
 
S = 0.344368   R-Sq = 45.59%   R-Sq(adj) = 39.85% 
 
x Not an exact F-test. 

Table 6.4. Analysis of variance for data set 1 using the full model for the peak force. 

Analysis of Variance for log(Fpeak), using Adjusted SS for Tests 
 
Source       DF   Seq SS   Adj SS  Adj MS      F      P 
tissue        2  11.0904  11.1686  5.5843   3.52  0.221 
punch         1   2.1927   2.8990  2.8990   1.93  0.298 x 
tissue*punch  2   3.1712   3.1712  1.5856  15.40  0.000 
Error       232  23.8897  23.8897  0.1030 
Total       237  40.3440 
 
S = 0.320894   R-Sq = 40.78%   R-Sq(adj) = 39.51% 
 
x Not an exact F-test. 

Table 6.5. Analysis of variance for data set 1 using the reduced model for the peak force, 
with four high force values removed. 

From the value of S, we can also calculate the random error to be approximately 40% 
(e0.32=0.38) of the estimated force, which is quite large and forces us to use a large sample 
size to see any difference between punches. 

An inspection of the residuals shows that, with the logarithmic transformation of the force, 
the resulting standard error is approximately normally distributed and seems to be 
independent of the fitted value; as is required by the linear model. 
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Figure 6.4. Residual plot for data set 1, for the reduced model for the peak force, with four 
high force values removed. 

The same method was then applied for the force at first damage, with exactly the same 
conclusion, that there is an interaction between tissue and punch, but no effect of the 
factor round. 

6.2.3 Analysis of Data Set 2 

As can be seen in Table 6.3 this data set only includes punches with similar radius 
(compared to the full span of the punches used in the tests). Based on the large random 
error seen from the analysis of data set 2 we expect that it might be difficult to see any 
effect of punch in these tests. 

We perform the analysis in the same way as for data set 1. Instead of showing all the steps, 
we only show the final model, with and without interaction with tissue and punch. As for 
data set 1, we have removed data points with a too high residual, in this case only one data 
point. 
 

Analysis of Variance for log(Fpeak), using Adjusted SS for Tests 
 
Source       DF   Seq SS   Adj SS  Adj MS      F      P 
tissue        1   0.4257   0.2876  0.2876   6.25  0.121 x 
punch         2   5.4138   5.2854  2.6427  58.81  0.017 
tissue*punch  2   0.0899   0.0899  0.0449   0.34  0.714 
Error       159  21.1935  21.1935  0.1333 
Total       164  27.1229 
 
S = 0.365093   R-Sq = 21.86%   R-Sq(adj) = 19.40% 
 
x Not an exact F-test. 

Table 6.6. Analysis of variance for data set 2 using the reduced model, with interaction. 
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Analysis of Variance for log(Fpeak), using Adjusted SS for Tests 
 
Source   DF   Seq SS   Adj SS  Adj MS      F      P 
tissue    1   0.4257   0.2841  0.2841   2.15  0.145 
punch     2   5.4138   5.4138  2.7069  20.48  0.000 
Error   161  21.2834  21.2834  0.1322 
Total   164  27.1229 
 
S = 0.363586   R-Sq = 21.53%   R-Sq(adj) = 20.07% 

Table 6.7. Analysis of variance for data set 2 using the reduced model, without interaction. 

 

Figure 6.5. Residual plot for data set 2, for the reduced model, without interaction. 

We see that only the punch shows any significant effect here (p=0.000 for punch and 
p=0.145 for tissue in Table 6.7), and in this case we can ignore the interaction between 
tissue and punch (p=0.714 for tissue*punch in Table 6.6). Quite contrary to the 
initial expectation, we see a clear effect of punch. 

Something important to note for this data set is that R2, the degree of determination, is 
only about 20%, which is quite low. However, this is not so surprising since the punches 
are quite similar, and in this case, by chance the tissue samples turned out to be similar also. 

The standard error is still approximately 40% (e0.36=0.43) of the estimated force, and once 
again, the residuals are approximately normally distributed. 

The same method was then applied for the force at first damage with the same result; that 
there is no effect of the factor round. 

6.2.4 Analysis of Data Set 3 

Finally, we turn to the last data set, which has four quite different diameters for the solid 
punches. Based on the previous results we expect to see a clear effect of punch, since the 
diameters differ so much. Using same procedure as before, with two data points removed, 
we get the following results (with and without interaction): 
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Analysis of Variance for log(Fpeak), using Adjusted SS for Tests 
 
Source       DF   Seq SS   Adj SS   Adj MS      F      P 
tissue        1   1.2228   0.6811   0.6811   5.27  0.104 x 
punch         3  37.6172  36.9963  12.3321  95.55  0.002 
tissue*punch  3   0.3872   0.3872   0.1291   0.77  0.511 
Error       160  26.7362  26.7362   0.1671 
Total       167  65.9634 
 
S = 0.408780   R-Sq = 59.47%   R-Sq(adj) = 57.69% 
 
x Not an exact F-test. 

Table 6.8. Analysis of variance for data set 3 using the reduced model, with interaction. 

Analysis of Variance for log(Fpeak), using Adjusted SS for Tests 
 
Source   DF   Seq SS   Adj SS   Adj MS      F      P 
tissue    1   1.2228   0.6926   0.6926   4.16  0.043 
punch     3  37.6172  37.6172  12.5391  75.35  0.000 
Error   163  27.1234  27.1234   0.1664 
Total   167  65.9634 
 
S = 0.407923   R-Sq = 58.88%   R-Sq(adj) = 57.87% 

Table 6.9. Analysis of variance for data set 3 using the reduced model, without interaction. 

Punch once again shows significant effect, just as we expected, but here we also see a 
significant effect of tissue. The larger degree of determination, close to 60%, is most likely 
caused by the larger span in the punch diameter. 

The standard error here is still of the same order as before, being approximately 50%. 

As before, the residuals are approximately normally distributed, but not as well as for the 
other data sets. It is however important to note that without the logarithmic transformation 
the residuals would be even less normally distributed than they are with the transformation. 

 

Figure 6.6. Residual plot for data set 3, for the reduced model, without interaction. 
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The same method was then applied to the force at first damage, with the same result, that 
there is no effect of round. 

6.2.5 Summary and Conclusions 

Each tissue was perforated in four test rounds, each round consisting of about 25 
perforations, where the entire tissue was covered by each round. Based on the analysis of 
the randomized tests no significant effect of the test round was found. We conclude that 
the test rounds do not differ significantly from each other and that it therefore does not 
matter if the test was randomized between rounds or not. Therefore, in the following the 
non-randomized test data will be included in the analysis without any correction for tissue 
aging. 

The standard error is approximately 40-50% in these tests, which is quite large and requires 
a large sample size to show a significant difference between punches that closely resemble 
each other. 

For the helix there seems to be an interaction effect between the tissue and the punch. This 
will be further investigated in Section 6.3, but with limited data from punches with helix, 
(see Table 5.1) the possibilities for a more advanced analysis are small. 

Observations of residual plots show that the logarithmic transformation results in the 
residuals being close to normally distributed. This means that the log-normal distribution 
could be a good approximation for the force distribution of the force measurements. The 
use of the logarithmic transformation also indicates that when comparing different tissue 
samples or punches, we should not look at the absolute difference between the force 
values, rather we should look at the relative difference between them (e.g. by dividing them 
with each other). This is what we do when we look at absolute differences between the 
logarithms of force values. In the following, we will present most results on a relative scale, 
relating the different punches to each other. 

6.3 The Effect of the Helix 

We have already seen that there is an effect of the helix and that that there seems to be an 
interaction effect with the tissue (see Section 6.2.2). We now want to quantify the effect of 
the helix and see how this effect varies with different tissue samples. We perform this 
analysis by comparing individual force values for each combination of tissue sample and 
punch, and show that the helix in general reduces both the peak perforation force and the 
force at first damage (Section 6.3.1). 

6.3.1 Statistical Analysis 

We continue the analysis of the effect of the helix, by including all data where a punch with 
helix was tested. 
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Punch Type 
Size in French 

Tube Helix 

Sample 
ID 

4 6 4 6 

P12 25 
(0) 

25 
(0) 

24 
(1) 

24 
(0) 

P13 49 
(1) 

- 49 
(0) 

- 

P14 48 
(1) 

- 47 
(3) 

- 

Table 6.10. Data that allows for a comparison of the effect with and without a helix. 

The previous investigation has already shown that there may be an interaction effect 
between the tissue and the punch with and without a helix. Because of the limited data 
available for the helix and the interaction effect, the analysis in this case will be limited to 
just plotting the mean of the logarithm of the force for the different combinations of 
punch and tissue. 

In addition, 95% two-sided error bars have been plotted in the figure. The approximate 
95% CI estimated standard error for each average has been calculated as 

n

SE
SEaverage 96.1=  (6.5) 

where n is the number of tests in the average, and SE is the standard error from the 
analysis of variance. Here we assume it to be 40%, based on the previous analysis in 
Section 6.2. The number 1.96 comes from the 95% two-sided confidence interval for a 
normal distribution with known standard deviation. The data has been plotted in Figure 6.7 
(peak force) and Figure 6.8 (force at first damage). 

In addition, the relative difference in force with and without a helix has been calculated. 
We will use the data to perform significance testing and since we have four different 
combinations of punch and tissue, using a simultaneous 95% confidence interval, each 
individual two-sided confidence interval has to be approximately 99% (1-p/n, with p=0.05 
and n=4, using Bonferroni correction). 

For the peak force (Figure 6.7), two of the tests groups show a significantly lower force 
with a helix than without helix at the simultaneous confidence level of 95%. We can see 
that the data is not completely conclusive as two of the test groups do not show a 
significant deviation from zero, and so could be identical. However, there is no indication 
that the helix would increase the perforation force. 

For the force at first damage (Figure 6.8), we see that, while the absolute values are 
significantly lower than for the peak force, the relative differences are very similar. This 
time the P12RO/6F test also shows a significant difference with and without a helix. 

If we wish to have a rule of thumb based on these tests, we could say that using a helix 
lowers the peak force with 20% on an average. 
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Figure 6.7. Average peak force with individual 95% CI (upper chart) and relative 
difference between force for tubular punch without helix and force for tubular punch with 
helix with simultaneous 95% CI, so each interval corresponds to approximately 99% (lower 
chart). 
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Figure 6.8. Average force at first damage with individual 95% CI (upper chart) and 
relative difference between force for tubular punch without helix and force for tubular 
punch with helix with simultaneous 95% CI, so each interval corresponds to approximately 
99% (lower chart). 
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6.3.2 Summary and Conclusions 

The helix tends to reduce the force by approximately 20% on an average when compared 
to a tubular punch without a helix. The result is not entirely conclusive, as there seems to 
be an interaction between tissue and punch, with some tissue samples not showing any 
effect of the helix. Assuming that the tests were performed identically for the different 
tissue samples, it could be that the structure or composition of the tissue interacts with 
how the helix grips the tissue and this in turn could affect if the helix affects the force or 
not. 

The result of this extended analysis is similar to that in [2] where it was concluded that the 
helix tends to reduce the force, at least for the peak force. Here we see that the same is in 
fact also true for the force at first damage. 

6.4 Statistical Analysis of Solid and Tubular Punches 

We now turn to the full analysis that includes a possible effect of punch type and punch 
diameter. We start by presenting the linear model (Section 6.4.1) and then analyze the data 
first showing that there are interactions effects between the factors, but that they can be 
ignored creating a simplified model with only the main effects. The difference between the 
main effects is plotted graphically (Section 6.4.2). Finally, the relationship between the 
force and the diameter is investigated, together with a discussion regarding an alternative 
limiting parameter for the design of the lead tip (Section 6.4.3). 

6.4.1 The Linear Model 

Similar to the analysis of a possible effect of tissue aging (Section 6.2) we will use the linear 
model approach for the analysis of the data. Based on the previous findings we will exclude 
the factor round. We will also exclude all the helix data, since we have seen an interaction 
between this type of punch and the tissue, and because there is only limited data for that 
type of punch. 

For this analysis, we will also split the factor punch into its two properties, the type (solid 
or tubular) and the diameter (3, 4, 5, 6, 7 or 8F). We thus still have three factors, and tissue 
is still the random factor. We will also use the logarithmic transformation of the force data 
as before (see Section 6.5 for a justification). 

The complete statistical model, with interactions, now looks like this: 

ijklijkjkikijkjiijklF εαβγβγαγαβγβαµ ++++++++= )()()()()ln(  (6.6) 
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The parameters are defined like this7: 

ijklF  The force l  is the index for the test within the 
group defined by a specific tissue, punch 
and round. The range for l  is therefore 
different for each such combination. 
Indices should have been used to 
indicate this, but were omitted because 
this is obvious from the description of 
the data set (Table 5.1). 

µ  The average of all data.  

ijklε  The standard error term.  ),0(~ 2σε Nijkl  

iα  The effect of the tissue, random 
factor. 

),0(~ 2
ασα Ni  

jβ  The effect of the punch type, a 
systematic factor. 

0=∑
j

jβ  (only two types so 21 ββ −= ) 

kγ  The effect of the punch diameter, a 
systematic factor (note that the 
order is not randomly chosen). 

0=∑
k

kγ  

6...1=k  (six different diameters) 

ij)(αβ  The interaction between tissue and 
punch type, a random factor since 
tissue is a random factor. 

),0(~)( 2
αβσαβ Nij  

ik)(αγ  The interaction between tissue and 
punch diameter, a random factor 
tissue is a random factor. 

),0(~)( 2
αγσαγ Nik  

jk)(βγ  The interaction between punch type 
and diameter, a systematic factor. 

0)()( ==∑∑
k

jk
j

jk βγβγ  

ijk)(αβγ  The interaction between tissue, 
punch type and punch diameter; a 
random factor since the tissue is a 
random factor. 

),0(~)( 2
αβγσαβγ Nijk  

To be able to test for the interactions we inspect the data and find that we can assess all the 
interaction effects using the following data set: 

Data Set Tissue Samples Punches Comment 

1 8, 9, 10 and 17 solid and tube 
4 and 6F 

A nice 2x2 test for the factors 
punch type and punch diameter. 

Table 6.11. The table shows the data set that will be used to test for interaction effects. 

                                                 

7 Minitab does not require the sum of random factors over indices of fixed factors to be 
zero. This does affect some of the F-tests. This has not been further explored in this thesis. 
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We see that although not being balanced, the data set includes all the different 
combinations of punch type and diameter listed for each tissue sample, thus forming a 
complete test matrix with replicates. As before, the fact that the tests are not balanced 
means that the performed F-tests in some cases will not be exact. Because of the 
reasonably large sample size for each combination of tissue and punch and because the 
number of perforations for each combination of tissue and punch are comparable the F-
test should still be reasonably accurate and should give a clear indication if an effect is 
significant or not. 

6.4.2 Analysis of the Data 

We start the analysis by investigating if there is an interaction effect. Without giving all the 
details, the procedure is as before. Using Minitab, we use the full model according to 
equation (6.6) to create an ANOVA table and then remove factors or interaction when 
they are not statistically significant. During the analysis, we also find four residuals that are 
too high and we therefore exclude the corresponding data points from the analysis. All of 
these are from tissue sample P10, which we previously saw has an area with deviating 
strength. For this analysis of the possible interactions, we also accept the removal of a 
single data point with a very high negative residual. The resulting analysis is shown in Table 
6.12 and Table 6.13. 

The analysis shows that there are statistically significant interaction effects. For 
completeness, we should build a model where some interactions are included. However, we 
can also see that the interaction effects are smaller than the main effects, so maybe we can 
exclude them. As a test, we perform the same analysis without the interactions to see what 
happens to the value of R2. The resulting analysis is shown in Table 6.14 and Table 6.15. 

Analysis of Variance for log(Fpeak), using Adjusted SS for Tests 
 
Source         DF   Seq SS   Adj SS   Adj MS       F      P 
ptype           1   1.4837   1.7230   1.7230   14.43  0.000 
pdiam           1  24.3486  23.3088  23.3088  117.10  0.002 x 
tissue          3   9.2604   9.3662   3.1221   15.68  0.024 
ptype*pdiam     1   0.4000   0.4251   0.4251    3.56  0.060 
pdiam*tissue    3   0.5972   0.5972   0.1991    1.67  0.174 
Error         372  44.4158  44.4158   0.1194 
Total         381  80.5057 
 
S = 0.345539   R-Sq = 44.83%   R-Sq(adj) = 43.49% 
 
x Not an exact F-test. 

Table 6.12: Analysis if variance for the peak force, using a reduced model. We have 
retained the interaction between punch diameter and tissue, although it is not significant, 
for comparison with the force at first damage, where it is significant. 
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Analysis of Variance for log(Ffd) using Adjusted SS for Tests 
 
Source         DF   Seq SS   Adj SS   Adj MS      F      P 
ptype           1   4.6773   5.2268   5.2268  52.71  0.000 
pdiam           1  32.5551  31.1218  31.1218  76.21  0.003 x 
tissue          3  10.6866  10.9527   3.6509   8.94  0.053 
ptype*pdiam     1   1.1930   1.2523   1.2523  12.63  0.000 
pdiam*tissue    3   1.2253   1.2253   0.4084   4.12  0.007 
Error         372  36.8901  36.8901   0.0992 
Total         381  87.2275 
 
S = 0.314908   R-Sq = 57.71%   R-Sq(adj) = 56.68% 
 
x Not an exact F-test. 

Table 6.13: Analysis if variance for the force at first damage, using a reduced model. We 
can see that some of the interaction effects are significant. However, we can also see that 
the mean sum of squares is smallest for the two interaction effects. 

Analysis of Variance for log(Fpeak), using Adjusted SS for Tests 
 
Source   DF   Seq SS   Adj SS   Adj MS       F      P 
ptype     1   1.4837   1.6735   1.6735   13.86  0.000 
pdiam     1  24.3486  23.4952  23.4952  194.53  0.000 
tissue    3   9.2604   9.2604   3.0868   25.56  0.000 
Error   376  45.4131  45.4131   0.1208 
Total   381  80.5057 
 
S = 0.347533   R-Sq = 43.59%   R-Sq(adj) = 42.84% 

Table 6.14: Analysis if variance for the peak force, ignoring the interactions. 

Analysis of Variance for log(Ffd), using Adjusted SS for Tests 
 
Source   DF   Seq SS   Adj SS   Adj MS       F      P 
ptype     1   4.6773   5.0842   5.0842   48.63  0.000 
pdiam     1  32.5551  31.4474  31.4474  300.81  0.000 
tissue    3  10.6866  10.6866   3.5622   34.07  0.000 
Error   376  39.3084  39.3084   0.1045 
Total   381  87.2275 
 
S = 0.323332   R-Sq = 54.94%   R-Sq(adj) = 54.34% 

Table 6.15: Analysis if variance for the force at first damage, ignoring the interactions. 

We can see that the R2 values are only slightly reduced by the exclusion of the interactions. 
Here we are not interested in any minor effects of the interactions and also in order to 
work with a simple model we will ignore the interactions in the full analysis of the data. 
This also allows us to use all the available test data. However, we chose to exclude the helix 
data, since this analysis was already completed in Section 6.3. Because there is some weak 
interaction between the factors, the analysis will be approximate. The result of the analysis 
is shown in Table 6.16 and Table 6.17 with the corresponding residual plots in Figure 6.9 
and Figure 6.10. 
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Analysis of Variance for log(Fpeak), using Adjusted SS for Tests 
 
Source    DF   Seq SS   Adj SS  Adj MS       F      P 
ptype      1    0.004    3.200   3.200   24.67  0.000 
pdiam      5  152.416  130.326  26.065  200.99  0.000 
tissue    13   39.954   39.954   3.073   23.70  0.000 
Error   1157  150.047  150.047   0.130 
Total   1176  342.422 
 
S = 0.360120   R-Sq = 56.18%   R-Sq(adj) = 55.46% 
Variance Components, using Adjusted SS 
 
        Estimated 
Source      Value 
tissue    0.03880 
Error     0.12969 
Least Squares Means for log(Fpeak) 
 
ptype    Mean 
tube    1.925 
solid   1.770 
pdiam 
3       1.178 
4       1.515 
5       1.921 
6       2.000 
7       2.085 
8       2.385 

Table 6.16: Result of analysis of variance for the peak force, using all data (except helix). 
Variance terms and least square means have been included for further processing. No data 
points have  been excluded for this analysis. 

 

Figure 6.9. Residual plot for the peak force, all data (except helix). A deviation from 
normal residuals can be seen at the high end indicating a longer tail at the high end. In 
addition, in the residuals versus observation order it can be seen that extreme residuals tend 
to belong to specific pieces of tissue. 
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Analysis of Variance for log(Ffd), using Adjusted SS for Tests 
 
Source    DF   Seq SS   Adj SS  Adj MS       F      P 
ptype      1    2.514    9.999   9.999   79.23  0.000 
pdiam      5  156.662  142.381  28.476  225.63  0.000 
tissue    13   36.808   36.808   2.831   22.43  0.000 
Error   1154  145.641  145.641   0.126 
Total   1173  341.625 
 
S = 0.355254   R-Sq = 57.37%   R-Sq(adj) = 56.67% 
Variance Components, using Adjusted SS 
 
        Estimated 
Source      Value 
tissue    0.03576 
Error     0.12621 
Least Squares Means for log(Ffd) 
 
ptype     Mean 
tube    1.4324 
solid   1.1593 
pdiam 
3       0.6483 
4       0.9650 
5       1.2337 
6       1.5155 
7       1.5405 
8       1.8723 

Table 6.17: Result of analysis of variance for the force at first damage, using all data 
(except helix). Variance terms and least square means have been included for further 
processing. Three data points have  been excluded for this analysis. 

 

Figure 6.10. Residual plot for the force at first damage, all data (except helix). A deviation 
from normal residuals can be seen at the high and low end indicating a wider distribution 
than the normal distribution. 
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We see that the standard error is still approximately 40% [e0.35=1.40]. This is in line with the 
previous results from Sections 6.2 and 6.3, where 40% was used as a “default” standard 
error. 

We can also see that the variance for the logarithm of the peak force is approximately the 
same as the variance for the logarithm of the force at first damage. This indicates that the 
relative error is the same for both the peak force and the force at first damage. 

The variation between tissue samples seems to correspond to about 20% and the standard 
error to about 80% of the total variance. This means that the variation within a single tissue 
sample is larger than the variation between different tissue samples. Note that this 
conclusion is only valid for porcine tissue from healthy pigs as the ones used in this test. 

Since this is not a balanced test design estimating the error terms exactly is not possible, 
but we will use an approximation. First, we will plot the least square means for the punch 
diameter, ignoring the effect of punch type. The approximate individual 95% confidence 
intervals are calculated using the following error term for the means: 

mn
SEmean

22

96.1 ασσ +=  (6.7) 

The variance terms are as defined in the statistical model (6.6) and can be found in the 
results of the analysis (Table 6.16 and Table 6.17), n  is the number of data points for the 
specific diameter, and m  is the number of tissue samples for the specific diameter. 

We plot the least square means for the individual diameters in Figure 6.11 and the least 
square means for the tubular and solid punches in Figure 6.12. 

As can be seen the force is lower for the solid punch, a little surprising as it can be assumed 
that the “force” should be higher fore the tubular punch and that it should therefore go 
through the tissue easier. This is not the case, indicating that the shape of the tip is 
important and that the outer diameter is not the only contributing factor. We can also 
calculate the difference between the two punches. We now need to combine the two error 
terms for the two punch types. Since these two punches have been tested on largely the 
same tissue samples, we will assume that we can ignore the tissue part of the error. The 
result is shown in Figure 6.13. 

We see that the peak perforation force is about 15% lower and the force at first damage 
about 25% lower for the solid punch compared to the tubular. The result is statistically 
significant and is surprising when thinking about the contact area between the punch and 
the tissue and also considering the sharper edges on the tubular punch. It is clear that the 
contacting surface area is not the only important factor, but that the actual shape of the 
punch is important. 
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Figure 6.11: Least square means of the force for the punch diameter with approximate 
individual 95% confidence intervals. Note that these are the individual confidence 
intervals, and cannot be used directly to compare different data points, since the different 
points are partly correlated. For instance, some of the points originate from almost the 
same tissue samples, while others come mainly from different tissue samples. The large 
uncertainty for the diameter 5F punch is because this data comes from only one tissue 
sample. The increasing errors towards higher diameters/levels of force come from the 
logarithmic transformation. The errors are (approximately) equal for the mean of the 
logarithmic data, and so become unequal when the data is transformed back to linear scale. 

 

Figure 6.12: Mean force for the two different punches, with approximate individual 95% 
confidence intervals. 
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Figure 6.13: Difference between tubular and solid punches. Here the effect of tissue has 
been ignored. 

6.4.3 Force as a Function of the Diameter 

We now return to how the force depends on the diameter. From Figure 6.11 we see 
something that looks like a linear relationship between the force and the diameter. 
Performing a statistically correct linear regression on these data would have to take into 
account the different confidence interval for the different diameters. However, it gets even 
more complicated as the force values for the different data points are correlated (as 
described in the figure text). To simplify the calculations we will ignore the difference  in 
confidence interval and perform an un-weighted linear regression as shown in Figure 6.14. 

 

Figure 6.14: Linear fit for the force for different punch diameters. There is nothing in this 
fit that indicates that a non-linear relationship would be more appropriate. 
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Sometimes the tip pressure is used as a limiting parameter in the design of leads. Here the 
tip pressure is usually defined as the force divided by the area of the lead tip (calculated 
using the “projected” outer diameter). The perforation forces in Figure 6.14 can be re-
calculated to a pressure using the outer diameter of the punches. The same can be done for 
the fitted lines. Often the area of the lead tip has been considered as a more important 
parameter than the diameter, so we perform the plotting of the pressure versus the punch 
area in Figure 6.15. 

 

Figure 6.15: Punch pressure as a function of punch tip area. The chart shows the pressure 
when the punch perforates the tissue and the power-fit lines serve the same purpose as the 
linear-fit lines in Figure 6.14. The dashed horizontal line at the bottom of the chart shows 
the typical limiting pressure during lead design. The lead is designed to bend at forces 
exceeding this pressure. As can be seen there is a margin to the “mean” pressure levels 
measured for the porcine cardiac tissue. However in order to assess the risk of perforation 
the actual distribution of real cardiac tissue must be taken into account together with the 
actual distribution of the stress applied during implantation and within a few weeks of 
implantation. 

As can be seen from the figure the pressure is not constant with the diameter. Rather the 
pressure decreases with the diameter. Therefore, the pressure may not be a good limiting 
parameter, as it should be adjusted for each lead tip diameter. Figure 6.16 instead shows the 
perforation force divided with the diameter. As can be seen this new parameter is much 
less dependent on the diameter than the force itself or the pressure. It may be that the 
quotient between tip force and tip diameter would be a better limiting parameter than a 
pressure value. However, this needs to be investigated further as this analysis has been for 
the “mean” force only and the perforations in real life occur as combination of the strength 
distribution of actual cardiac tissue with the stress distribution of real leads. 
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Figure 6.16: The quotient between the force (in N) and the diameter (in mm) as a function 
of diameter. It can be seen that this quotient is almost constant over this range of punch 
diameters. 

6.4.4 Summary and Conclusions 

This section describes the analysis of variance for all of the perforation data, excluding only 
the helix data that was analyzed earlier (see Section 6.3). 

The analysis starts by showing that there are interaction effects between the three factors 
punch type (solid or tubular) the punch diameter and the tissue. However, it is also shown 
that this effect is small compared to the main effects, and the effect is therefore dropped 
from the remaining analysis. This allows for an ANOVA analysis of the complete data set 
with only the main effects present. 

From this analysis, several things can be concluded: 

• The force at first damage is about 40% lower than the peak force (Figure 6.11). 
This is not surprising as the force at first damage by definition must always be 
lower than, or possibly equal to, the peak force. More interesting is that the overall 
behavior of the force at first damage behaves qualitatively in the same way as the 
peak force. 

• The solid punch shows a lower perforation force than the tubular punch. This is 
surprising since they have the same outer area and the first thought would lead one 
to believe that the sharper outer edge of the tube would cut more easily through the 
tissue. The failure modes of soft biological tissue are discussed in [1] (mode-I and 
mode-II failures) and this may be part of the explanation for the higher force for 
the tubular punch. The mode-I failure mode is a “splitting” failure mode while 
mode-II is a cutting failure mode. Maybe the sharper edge grips the tissue and 
increases the forces needed for the splitting mode-I failure mode, while not being 
sharp enough to create the mode-II failure mode. 
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• The perforation force is approximately a linear function of punch diameter. Section 
6.4.3 discusses the usefulness of using a fixed pressure as a limiting parameter for 
lead tip design and proposes that the quotient between the force and the diameter 
might be a better choice. This quotient does not depend strongly on the diameter 
and therefore a single limiting value could be used for different diameters. The 
pressure on the other hand does depend on the diameter, with lower forces for 
larger diameters (see also [1] for similar results). 

6.5 Discussion Regarding the Logarithmic Transformation 

6.5.1 Introduction 

In this report, the logarithmic transformation has been used for the force data. In this 
section, the usefulness of a transformation is discussed (Section 6.5.2) and a justification 
for the logarithmic transformation is presented (Section 6.5.3). 

6.5.2 Why a Transformation at all? 

When applying the linear model we assume that the data (or rather the residuals) are 
normally distributed. However, for the force measurements we know that it is not possible 
to measure a negative force so the idea of normally distributed residuals can only be an 
approximation. If the standard deviation of the residuals were small, the normal 
distribution would be a good approximation as the probability would be very small of large 
negative residuals. However, in this case the relative standard error is about 40% (see 
Section 6.4.2) so the normal distribution is no longer a good approximation. 

Another reason for some kind of transformation is the observation that there seems to be 
many “deviating” high force values. This can be an indication of outliers, but it can also be 
an indication that the normal distribution is not the best choice. This can also be illustrated 
by performing the full analysis of Section 6.4, but without the logarithmic transformation. 
Here we will only look at the residuals. 

 

Figure 6.17: Residuals for the peak force and the force at first damage, without the 
logarithmic transformation of the force. 
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We observe several things in these graphs: 

• The curve in the normal probability plot is far from normal. 

• The variance of the residuals looks larger for larger fitted values. 

• The lower two figures indicate a large number of  potential “outliers” for large 
positive residuals. 

Finally, one might expect that tougher tissue samples (higher perforation force) will also 
exhibit a higher standard deviation. As a first approach, one could assume that the standard 
deviation is directly proportional to the average perforation force. 

All of these observations lead us towards the need for some type of transformation of the 
original data before we can perform any statistical analysis of the data. 

6.5.3 Choosing the transformation 

One often used distribution function is the log-normal distribution [5]. It has the property 
of only being defined for positive values of the random variable and it allows for a long tail 
towards higher values. It can be modeled to resemble a normal distribution by choosing a 
small dispersion (corresponding to the standard deviation for the normal distribution). 

In simple terms, if we have a variable X and the logarithm of X is normally distributed, 
then we say that X is log-normally distributed. 

In our case, we have indications that this could be a good transformation. One of the most 
important indications is that taking the logarithm transforms the increasing variance of the 
residual into a constant variance, by the properties of the logarithm; e.g. log(a/b) = log(a)-
log(b). 

We can test this by performing the same analysis as in Figure 6.17 once more, but this time 
with the logarithmic transformation. In fact we have already done this in Section 6.4.2 
already, see Figure 6.9. Inspection of this figure shows that: 

• The normal distribution plot now shows a much better fit. 

• The dependence of the variance of the residuals on the fitted value is reduced. 

• The number of positive potential outliers is reduced. 

There are still deviations from the normal distribution, but mainly for high perforation 
force values. Since we are mainly interested in the lower force values, the log-normal 
distribution would be a good first choice for the distribution of the perforation force. The 
same conclusion is valid for both the peak force and for the force at first damage. 

This justifies the use of the logarithmic transformation throughout this thesis. 

6.5.4 Summary and Conclusions 

We show that the log-normal distribution is a good first choice as an approximation for the 
distribution of the collected force data, both for the peak force and for the force at first 
damage. This distribution has the properties that we expect from the force distribution, 
one of them being that the random variable is limited to positive numbers. By inspecting 
the residuals we also see that the logarithmic transformation results in close to normally 
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distributed residuals with only very little dependence on the fitted variable. This justifies the 
use of the logarithmic transformation throughout this thesis. 

7 Summary and Conclusions 

In this chapter, we start by answering the key questions from Chapter 3 (Section 7.1), we 
continue with emphasizing the most important findings in the thesis (Section 7.2) and 
finish by giving recommendations for possible future work (Section 7.3). 

7.1 Answers to Key Questions 

We now revisit our original key questions from Section 3 to see if we have managed to 
answer all of them. 

No Question Answer 

Q1 Is there a 
difference  in 
force between 
different 
punches? 

There is a difference between the different punches, with the main results 
being: 
• The helix tends to reduce the perforation force, but does show an 

interaction with the tissue. The average reduction in perforation force is 
estimated to be 20% compared to the tubular punch (Section 6.3.1). 

• The solid perforator shows a 15% (peak) and 25% (first damage) lower 
force than the tubular punch (Section 6.4.2). 

• The relationship between perforation force and diameter seems linear. 
This is surprising since often the lead tip pressure is used to characterize 
the lead instead of the force, and the pressure does not show a linear 
relationship with the diameter, nor with the tip area. In fact, the pressure 
required to perforate the tissue decreases as the diameter increases 

(Section 6.4.3). Results from [1] provide insight to why this is the case 
and is probably related to the properties of crack formation in the 
ventricular tissue. 

• From this analysis, it is also shown that the quotient between the force 
and the diameter might be a better parameter than the pressure (Section 
6.4.3). 

Q2 What is the 
statistical 
distribution for 
the measured 
force values? 

The analysis shows that the log-normal distribution can be used to model 
the force data. This is valid for both the peak force and the force at first 
damage (Section 6.5). Therefore throughout the thesis the force was 
transformed using the logarithm before being analyzed using e.g. ANOVA. 

Q3 Is the tissue 
homogeneous? 

The tissue is heterogeneous. Specifically at least one tissue sample was 
shown to have an area that was stronger than other parts of the tissue, but 
also the tissue samples as a group show heterogeneous properties. The peak 
force shows a stronger heterogeneity than does the force at first damage. 
The analysis also resulted in the definition of a correlation coefficient that 
can be used to characterize the tissue in terms of how homogeneous or 
heterogeneous it is (Section 6.1). 
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No Question Answer 

Q4 Are different 
pieces of 
porcine tissue 
”equal”? 

Different porcine tissue samples are not equal. It was seen in the 
investigation of the homogeneity of the tissue samples that some of them 
stand out from the others (Section 6.1). Of the total variance, the 
contribution from the tissue samples is about 20%. This means that the 
variation within a tissue sample is still larger than between the different 
tissue samples (Section 6.4.2). Because the correlation coefficient defined is 
so different for different tissue samples, one should not rely on the results 
from testing on only a single piece of tissue. 

Q5 Does the tissue 
age during the 
test? 

No indication of tissue aging was found in the analysis (Section 6.2). This 
allows the use of test data that was not fully randomized in terms of order 
of the punches. 

Table 7.1. The table summarizes the answers to the key questions from Section 3. 

7.2 Final Conclusions 

Finally, we summarize the most important conclusions of this thesis: 

• The tissue does not age during testing, so randomizing the order of the perforations 
is not required (although it may be recommended). 

• The tissue is not homogeneous, but has stronger and weaker areas. This means that 
one should not rely on tests performed on a single piece of tissue for more general 
conclusions. This work also leads to the definition of a correlation coefficient that 
can be used to characterize the level of homogeneity of the tissue. It is important to 
note that since the tissue is not homogeneous there is also a correlation between 
perforations performed in proximity to each other. This means that the 
requirement of different measurements being independent in the linear model is 
not fulfilled. This intrinsic tissue variation becomes part of the residual error term 
in the linear model, when not taken care of in any other way. 

• The log-normal distribution can be used to model the perforation force data. This 
implies that the average and the standard deviation of the force data should not be 
used, since they will be biased by the skewed distribution. This finding has 
implications on other perforation tests being performed where it has not been 
shown that the gathered data is normally distributed. 

• The perforation force is approximately linearly proportional to the diameter. 
Actually, the quotient between the force and the diameter is close to being a fixed 
number that does not depend on the diameter. This could be a better definition for 
a limiting value for the lead tip than is the lead tip pressure, which is sometimes 
used as a characteristic. 

7.3 Recommendations for Future Work 

This thesis was based on porcine tissue from presumably healthy pigs. Continued work that 
relates these results with those for a much more diversified human heart patient population 
is needed. This work could be both of a practical nature (perforation tests and other 
mechanical test) or analytical (building a statistical model based on already available 
knowledge). 
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For future testing, it is recommended to create balanced test designs. Such a design of 
experiments will allow for easier analysis of the data including the possible interactions 
between factors. Such testing should also investigate what the best balance between 
number of tested tissue samples and the number of perforations per tissue sample is. With 
the variation seen between tissue samples it could be beneficial to increase the number of 
tissue samples. Such tests could also include mapping the strength for different parts of the 
heart, for instance comparing the septum with the apex and with the outer ventricular wall. 
The key question could be if these are identical in terms of perforation force. 

The effect of the shape of the tip should be more carefully investigated. For instance, does 
the “sharpness” of the edge of the punch affect the perforation force? Does a more 
rounded tip shape (like for passive leads) increase or decrease the perforation force? From 
these tests, the author would guess that it would decrease the force, but this would have to 
be investigated. 

In addition, the test method itself should be analyzed to see how it compares with 
perforations in a real heart. In this test equipment the backing plate, specifically the size of 
the holes in it, can be expected to affect the perforation force. This is especially valid for 
the peak perforation force, while the force at first damage might be less affected by it, since 
this initial perforation occurs when the perforator still has some distance to go to the 
bottom plate. 

Finally, other statistical tests are still possible to perform on this data set. An example 
would be to compare the distribution of the force at first damage with a force at a random 
position during the passage through the myocardium. This would give an indication if the 
endocardium or the tissue close to the endocardium is stronger or weaker than the average 
strength of the myocardium tissue. 
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