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Abstract

In gene mapping of complex traits, classical association approaches,
including the standard chi-squared statistics or logistic regression meth-
ods, have been used to find susceptibility genes with modest effects.
A novel statistical method, recursive partitioning, has recently been
introduced in association studies. We use this new method to as-
sess association between the human leukocyte antigen system (HLA)
and an autoimmune disease, multiple sclerosis (MS). In particular, we
model the association between HLA class II loci and MS using recur-
sive partitioning and then model the association between HLA class I
loci and MS, controlling for class II loci, using logistic regression. We
have access to genotype data on 3174 MS patients and healthy con-
trols from the Swedish and Norwegian populations. Our results differ
slightly from previous studies that use logistic regression exclusively
on the same data.
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1  Background 
 

 

1.1 HLA-region 

 

 
1.1.1  The HLA system and autoimmune diseases 
 

The human leukocyte antigen system (HLA) is the name of the major histocompatibility 

complex (MHC) in humans. The major histocompatibility complex (MHC) is a large genomic 

region or gene family found in most vertebrates. It is the most gene-dense region of the 

mammalian genome and plays an important role in the immune system, autoimmunity, and 

reproductive success. The human MHC is called the HLA (Human Leukocyte Antigen) 

system because antigens were first identified and characterized using alloantibodies against 

leukocytes.  

 

The HLA system has been well known as transplantation antigens, encode cell-surface 

antigen-presenting proteins and many other genes. But the primary biological role of HLA 

molecules is the regulation of immune response. 

 

Autoimmune diseases arise from an overactive immune response of the body against 

substances and tissues normally present in the body. In other words, the body attacks its own 

cells. Autoimmune diseases are a major cause of immune-mediated diseases, and are 

commonly referred to as Autoimmune and Inflammatory Diseases (AIID). Women tend to be 

affected more often by autoimmune disorders; nearly 79% of autoimmune disease patients in 

the USA are women. Also they tend to appear during or shortly after puberty. It is not known 

why this is the case, although hormone levels have been shown to affect the severity of some 

autoimmune diseases such as multiple sclerosis. Other causes may include the presence of 

fetal cells in the maternal bloodstream (wikipedia).  

 

1.1.2 Genomic organization of the HLA system and encoding function  

 

The human MHC map to the short arm of chromosome 6 (6p21) and spans approximately 

3,600 kilobases of DNA. The human MHC is divided into three regions (Figure 1) 

 

 

 
Figure1.1  The human MHC on the short arm of chromosome 6. The class I region contains 

A,B,C genes; The HLA-DR, DP,and DQ regions constitute  class II, TNF (tumor necrossis 

factors), C’ (complement genes) are class III genes (Sung et al. 2007). 

 

The class I region contains the HLA-A, HLA-B and HLA-C genes which present peptides 

from inside the cell (including viral peptides if present). These peptides are produced from 
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digested proteins that are broken down in the lysozomes. The peptides are generally small 

polymers, about 9 amino acids in length. Foreign antigens attract killer T-cells (also called 

CD8 positive cells) that destroy cells. 

 

The class II region consists of a series of subregions. The DR gene family consists of a single 

DRA gene and up to nine DRB genes (DRB1 to DRB9).  The DQA1 and DQB1 gene 

products associate to form DQ molecules, the DPA1 and DPB1 products from DP molecules.     

HLA class II antigens present antigens from outside the cell to T-lymphocytes. These 

particular antigens stimulate T-helper cells to reproduce and these T-helper cells then 

stimulate antibody producing B-cells, self-antigens are suppressed by suppressor T-cells. 

The class III region does not encode HLA molecules, but contains gene for complement 

components (C2, C4, factor B), tumor necrosis factors (TNFs), and some others. 

 

In the HLA locus, there are also many of multiple-allele markers identified in the HLA-A and 

HLA-C genes in class I and the HLA-DRB1 genes in class II.  

 

1.1.3 HLA haplotype and molecular typing of HLA alleles 

 
Recombination  

 

During cell meiosis, the process that leads to the formation of new gene combinations on 

chromosomes is called recombination.  

 
Figure 1.1 Recombination in meiosis process. The gamete Ab, aB are new gene combinations 

on chromosomes. 

 

Haplotype 

 

A sequence of alleles from different loci received from the same parents is called a haplotype.  

Figure 1.2 is a pedigree of HLA haplotypes, showing no recombination.  
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Figure 1.2  Haplotypes in the pedigree. The paternal HLA haplotypes are A1, B8, DR17 (a) 

and A3, B7 and DR15 (b); and the maternal HLA haplotypes are A2, B44, DR4(c) and A29, 

B44, DR7(d).  (Sung 2007) 

 

Linkage disequilibrium (LD) 

 

Linkage disequilibrium is a phenomenon where alleles at two loci in a population appear at 

the same time more often than what would be expected by chance. The rationale for this is 

that nearby loci must have correlated inheritance patterns, because crossover occurs between 

the two loci with low probability. Genes that lie on the same chromosome tend to be inherited 

as a group, a tendency that declines with increasing distance between the loci. As a result, 

haplotype frequency may deviate from expectation based on allele frequencies, the 

phenomenon called linkage disequilibrium.  

 

Linkage disequilibrium may lead to some marker alleles being over represented among 

affected individuals. For example, HLA-A1, B8, DR17 is the most common HLA haplotype 

among Caucasians, with a frequency of 5%. Haplotype of an ancient disease founder is left 

intact through many generations in a chromosomal region surrounding the disease locus. This 

theory underlies association analysis, one uses the fact that markers in close vicinity of a 

disease locus might be in linkage disequilibrium with the disease locus. (Almgren et al. 2003). 

 

Molecular typing of HLA alleles 

 

Genotyping refers to the process of determining the genotype of an individual by the use of 

biological assays. Current methods of doing this include PCR, DNA sequencing, ASO probes, 

and hybridization to DNA microarrays or beads. The technology is important in clinical 

research for the investigation of disease-associated genes. 

 

SNPs 

 

A single nucleotide polymorphism (SNP, pronounced snip) is a DNA sequence variation 

occurring when a single nucleotide - A, T, C, or G - in the genome differs between members 

of a species. For example, two sequenced DNA fragments from different individuals, 
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AAGCCTA to AAGCTTA, contain a difference in a single nucleotide. In this case we say 

that there are two alleles : C and T. Almost all common SNPs have only two alleles 

(Wikepedia). SNPs are the most common type of genetic variation. A SNP is a single base 

pair mutation at a specific locus. Because SNPs are evolutionarily conserved, they have been 

proposed as markers for use in association studies.  

 

 

 1.2 MS 
 
 

 1.2.1 Clinical aspects of MS 
 

Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system 

(CNS), affecting the brain, optic nerves and spinal cord, resulting in relapsing or progressive 

demyelination in CNS. It may cause various neurological symptoms and signs. The course 

and severity of MS differ greatly between patients. It makes its appearance most frequently 

between the age of 20-40, while the onset of MS is rare before 15 and after 60 years. MS is 

more common in woman than in men (about 2:1). There is no diagnostic laboratory test for 

MS, and clinical criteria, therefore, have to be used (Poser et al.1983). However, the 

phenotype (clinical manifestation) is well defined in MS, particularly since the development 

of diagnostic techniques such as cerebrospinal fluid analysis and magnetic resonance 

scanning (MRI). 

 

1.2.2 Epidemiology 
 

Multiple sclerosis, as a modern clinical entity, was first described in the second half of the 

19
th

 century. The etiology of MS, however, is still poorly understood. Epidemiology surveys 

may ideally offer important information to find clues, but are methodologically difficult to 

carry out. In particular, it has long been debated whether genetic or environmental factors are 

most critical in causing MS. 

 

MS is a disease with an uneven world-wide distribution. High prevalence (>30/100,000) is 

seen in northern Europe, southern Canada, northern US and some part of New Zealand and 

Australia, while areas of Asia and Africa consistently show low prevalence (<5/100,000). The 

highest prevalence rate of MS is seen in northern Europe, about 100/100,000 (Kurzke 1983).  

The very high rate is found in the Orkney and Shetland Islands situated to the north of the 

Scottish mainland with 309 and 184/100,000 respectively (Poskanzer et al. 1980). All high-

risk areas are among predominantly white populations, whereas Blacks and Orientals and 

possibly Indians in US have much lower rates. Thus, the high-risk rate (for instance a 

prevalence over 50/100,000) in individuals of Northern European decent clearly makes MS a 

common disease in this particular population group. 

 

1.2.3 Autoimmune mechanism in MS 
 

The pathological characteristic of MS is inflammatory cell infiltration and focal loss of 

myelin sheath scattered in white matter of the CNS, while axons and nerve cell bodies are 

relatively preserved. Autoimmunity to the self myelin protein is the commonly assumed 

model for MS pathogenesis, classifying MS as an autoimmune disease. However, the 

alternative possibility, that these immune responses are secondary events, cannot be excluded 
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easily. Indeed, increasing evidence supports MS as a T cell mediated autoimmune disease by 

the following lines:  

 

1) Histopathological features with restricted organ-specific inflammation and selective 

myelin destruction in which macrophages, T cells and antibodies may be engaged 

(Lassman et al.1991); 

 

2) An increase of myelin antigen-reactive T cells in peripheral blood as well as in 

cerebrospinal fluid (CSF), which are specific for various myelin proteins including 

myelin basic protein(MBP) (Olsson 1990), proteolipid protein (PLP) (Sun et al.1991a), 

myelin associated glycoprotein (MAG) (Link et al. 1992) and myelin oligodendrocyte 

glycoprotein (MOG)(Sun et al.1991b). 

 

 

3)  Pronounced B cell responses within the CNS, reflected in the CSF by presence of 

oligoclonal immunoglobulin (Ig) bands in the CNS, elevated levels of intrathecal 

antibody synthesis (Link et al. 1971), autoantibodies to MBP, PLP, MAG, MOG, 

(Möller et al.1989; Warren et al.1994; Xiao et al.1991), and further higher numbers of 

myelin protein-specific antibody producing B cells (Olsson et al. 1990; Sun et 

al.1991b). 

 

4) Identification of the human leukocyte antigen (HLA) class II genes, immune response 

genes, as associated with an increased risk of MS (Jersild et al. 1973; Olerup and 

Hillert 1991). 

 

1.2.4 Genetic aspect in MS 
 

The study of genetic factors influencing the development of MS is not a new topic, it was 

proposed almost a century ago. Nobody disputes the involvement of genes in monogenic 

disorders that consistently show simple Mendelian inheritance patterns. However, with non-

Mendelian disease (complex traits), it is necessary to prove claims of genetic determination. 

Several approaches can be used to evaluate familial aggregation including familial recurrence 

rate with population comparison, twin studies, adoption studies and genealogy. Genetic 

mapping by linkage or association analysis can finally determine whether genetic factors are 

involved in a trait.  

 

 

1.3 Relationship between HLA and MS 

 
 

The candidate gene approach has successfully established the importance of HLA class II 

genes in MS by simple case-control association studies (Jersild et al. 1973; Olerup and 

Hillert1991), which was later confirmed by linkage studies (Tienari et al. 1993; Fogdell et al. 

1997).  Furthermore, these finding were also confirmed by four genome search studies (Ebers 

et al. 1996; Sawcer et al. 1996; The Multiple Sclerosis Genetic group 1996; Kuokkanen et 

al.1997).  

 

Recently HLA class I alleles that increase and decrease the genetic susceptibility to MS were 

identified in 200 Swedish MS patients and 210 Swedish healthy controls (Fogdell-Hahn et al. 

2000). In this report, the HLA-A*031(class I) allele increases the risk of MS (odds ratio =2.1) 
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independently of DRB1*15 (classII) and DQB1*06(classII); HLA-A*021(classI) decrease the 

overall risk (odds ratio =0.52). 

 

Later research found that the combination of HLA-A (class I) and HLA-DRB1 (class II) 

alleles, represented by HLA-A*02 and HLA-DRB1*15 increase the risk of MS 23-fold and 

the influence is independent of other variation (B. Brynedal et al. 2007). However HLA-C*05 

(classI) association with MS was reported by conditioning on DRB1*01 (class II) absence 

(Yeo  et al. 2007). 

 

These later findings suggest that genes in HLA class I family influence MS. Is this due to 

linkage disequilibrium between HLA class I and HLA class II gene? Is the MS association 

with class I genes independent of other effect? 
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Figure 1.3 Relationship between HLA genes and multiple sclerosis (MS). The influence of 

HLA class II gene on MS is known as well as the presence of LD between class I and class II 

regions. The influence of HLA class I gene on MS susceptibility is our research aim. 
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2  Recursive partitioning method 

 

 
2.1 What is recursive partitioning? 

 
 

Recursive partitioning (RP) can be viewed as a tree based conditional gene finding approach. 

The basic statistical motive is to divide a data set into parts where the objects in the parts are 

homogenous. Once a split is made based upon one gene, then the subsequent splits are 

conditional on the presence or absence of a specific variant of that gene. Recursive 

partitioning is most easily described using an example. Consider the figure below, a 

hypothetical example. The RP diagram is read in the following way. In the parent node, N, 

there are 2000 individuals and 212 of them have the disease.  

A gene scan is done over a number of candidate genes (in this example bi-allelic SNPs) and it 

is determined that a person who is homozygous 1_1 for Gene i belongs to node N1 in Figure 

2.1. There are 400 such individuals and 100 of them have the disease. The remaining 1600 

individuals belong to Node N0, 112 of which have the disease. At this point in the analysis 

the original data set has been divided into two groups based on discrimination with disease 

status. At node N1, the proportion of patients is much higher than at N0. Next a gene scan is 

done over the 1600 individuals in Node N0 and again a split is determined based on 

discrimination with disease status. It is determined that 400 individual with 1_1 or 1_0 for 

gene j, 100 of which have the disease form Node N01. Of the remaining 1200 individuals 

from Node N00, 12 individuals have the disease. Nodes N1 and N01 can be viewed as two 

distinct forms of the disease based upon Genes i and j. The process is repeated many times 

with the aim to reach the maximal proportion of patients in the other nodes. For example the 

first splitting could be based upon another gene k which gives N1 50/400 and the second 

splitting gene h gives N01 30/400. This alternative leads to a less proportion of patients in the 

N1 and N01group. The partition that gives the maximal proportion of patients is selected as in 

Figure 2.1. 

 

 

Figure 2.1 Helix tree after recursive partitioning 
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The analysis is conditional. When attempting to split node N0, the search is in the 1600 with 

genotype 1_0, 0_0 individuals for gene i, so the search for a new gene is dependent on its 

combined effect with genotype 1_0, 0_0 of gene i.  

The gene i is associated to the disease since in node N1 the proportion of patients is much 

higher than in N0 and N. By conditioning on the gene i variant, we eliminate disease 

association to gene i when searching for another gene which is associated with the disease.  

 

2.2 The RP method 

 

There are two steps involved when the RP approach is used. The first is the partitioning of the 

gene space. The second is the pruning of the tree using validation data.  

 

2.2.1 Recursive Partitioning 
 

If a candidate multi-allele gene i is analysed, we assume that there are k variants i1, i2 ,i3, i4, 

i5….ik defined. We view the observed gene variants as points in k dimensional space and 

simply illustrate the RP method in a square shown in Figure 2.2 and 2.3. For example, at first, 

we split the gene i space with respect to i4. The individuals are divided into two groups 

according to genotypes, one set of genotypes in one part and the complementary sets in the 

other part, genotype (1_1) group and complement genotypes (1_0,0_0) group, where 1 

represents the i4 allele, 0 represents the no-i4 allele. See Figure 2.2. 

 

Consequently, a split with respect to another variant i5 would be performed and this splitting 

repeats with the rest allele variants. The purpose of splitting is to make the sample space as 

homogenous or ‘pure’ as possible with respect to the disease status. Eventually high purity 

sample spaces will be reached. Ideally, in those sample spaces which is represented by some 

small rectangles, all the individuals are either patients or healthy controls. See Figure 2.3. 

     

       

        Gene i space 

       

                                                                                                             

 

 

1
_

1
 

1
_

0
  0

_
0

 

i 4 
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Figure 2.2 The observations are divided in to two parts according to allele variants of i4 in 

gene i. In the upper part of the rectangles, the individual genotype is (1_1) of i4, in the lower 

part, the individual genotype is (1_0) or (0_0) of i4.  

  

        Gene i space 

      

                  +                                              −                                           

                                                                                                         

Figure 2.3   The observations are divided into two parts according to allele variants of i5 in 

gene i. In the left part of the lower panel, the individual genotype of i5 is (0_0); in the right 

part, the individual genotype of i5 is (1_0) or (1_1). By i5 splitting, a homogenous space (the 

right-lower rectangle) is obtained. 

 

The impurity at each partition can be evaluated by the Gini impurity index      

                                                                                   (2.1)                                                                       

where Pk is the fraction of the observations in rectangle A that belongs to class k. C is the total 

number of classes for the disease variable, (in our application C=2). The partition method 

with minimal Gini impurity index will be selected. (On line Lecture notes 3 “classification 

trees” www.myoops.org) 

For example  

When p1=1, p2=0, 

I1(A)=0. 

When p1=0.5, p2=0.5, 

+
 

 

1
_

1
 

 1
_

0
  0

_
0
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  i  4 
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I2(A)=0.5. 

where p1 is the proportion of individuals with a specified genotype set, for example (1_1).  p2 

is proportion of individuals with the complement genotype set, for example (1_0), (0_0). 

Hence, p1+ p2 = 1. Since I1(A)< I2(A), we chose the first alternative to split the observation 

space. 

2.2.2 Pruning of the tree 

The second step of recursive partitioning is to use validation data for pruning a tree that is 

growing excessively. The pruning step is similar to the backward deletion in the ordinary 

linear regression. In our examples, the last few splits resulted in rectangles with a very few 

observations (indeed four rectangles in the full tree have just one observation). Over-fitting 

may cause inaccurate interpretation. 

 

 

 
Figure 2.4 The observations are divided into small rectangles based on a series of alleles. In 

some rectangles, there is only one observation. After pruning, those branches will be cut off. 

 

We can intuitively see that these final splits capture features specified to the training set. We 

call this situation over-fitted.  Pruning is involved in successively selecting a decision node 

and re-designating it as a terminal node. The best tree is defined as the one in the sequence 

that gives the smallest misclassification error in cross-validation. 

 

Cross-validation, sometimes called rotation estimation, is the statistical practice of 

partitioning a sample of data into subsets such that the analysis is initially performed on a 

single subset, while the other subset(s) are retained for subsequent used in confirming and 

validating the initial analysis. 

 

Figure 2.5 gives an example of how to choose the pruning stopping point. The decreasing 

number of decision nodes increases the error in cross validation with a slow trend in the 

beginning of pruning, from 30 decision nodes down to 10 nodes. The error goes up sharply 

when the tree is quite small. So we should avoid choosing a tree with few number nodes 

during the pruning.  
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Figure 2.5 How to select minimum error tree? Here a ten nodes tree will be chosen because it 

reaches minimal validation errors. The upper curve represents the error with regard to node 

numbers using validation data.  

 

However, cross validation is not a unique pruning method; an alternative approach using χ
2
 

tests is reported by Zhang and Bonney (2000). To test if a split is significant, a 2×2 table is 

created with the number of patients and controls in presence/absence of the gene. A split is 

regarded as unnecessary if the χ
2
 tests from this split as well as its further splits are not 

significant at a pre-specified level. All nodes resulting from unnecessary splits are removed. 

To illustrate this process, let us begin with the tree in Figure 2.6 and explain how the nodes 

are pruned. 

 

Under each internal node (represented by a circle), we list a raw χ
2
 statistic. For example, we 

have “raw: 59.3” under node 1, indicating that the χ
2
 statistic from a 2 × 2 tables with cell 

values of 54, 600 (from node 2), 193 and 637 (from node 3) equals 59.3. 

We also report a maximum χ
2
 statistic obtained as follows. Let us take two representative 

nodes (3 and 5) from Figure 2.6 and show how their maximum χ
2
 statistics are derived. For 

node 3, we have a raw χ
2
 statistic of 13.7. Node 3 has two offspring internal nodes (6 and 12), 

and their raw χ
2
 statistics are 10.9 and 4.8. Then, the maximum χ

2
 statistic for node 3 is the 

maximum of 13.7, 10.9, and 4.8, which is 13.7 and turns out to be the same as the raw χ
2
 

statistic of node 3. For node 5, however, its raw χ
2
   statistic is 4.6 and its offspring node (10) 

has a larger raw χ
2
 statistic of 8.4. Thus, the maximum χ

2
 statistic for node 5 becomes 8.4, 

which is the maximum of 4.6 and 8.4. Likewise, a maximum χ
2
 statistic can be assigned for 

any internal node as displayed in Figure 2.6. After the maximum χ
2
 statistics are computed for 

all internals, we then set a critical χ
2
 level, e.g., 10.83 at the significance level of 0.001. An 

internal node becomes a terminal node (in other words, its offspring nodes are pruned) if its 

maximum χ
2
 statistic is less than the critical level. Consequently, nodes 4, 5, and 12 become 

terminal nodes because their maximum χ
2
 statistics are less than 10.83, and nodes 8 through 

11 and 13 through 19 are pruned. It is useful to note that the pruned internal nodes (e.g., node 

10) cannot have maximum χ
2
 statistics greater or equal to the critical level because of the way 

by which the maximum χ
2
 statistics are defined. This explains how we obtained the tree in 
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Figure 2.7 at the significance level of 0.001. For the significance level of 0.005 or any other 

level, the pruning is done in the same way. 

 

 

 

 

 
 

Figure 2.6 Illustration of tree pruning. Inside each node are the node number (top), the 

numbers of affected (middle), and unaffected (bottom) individuals. Under each internal node 

is the raw and maximum χ2 statistics, as described in the text in detail. 
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Figure 2.7 The pruned tree at significance level 0.001. Inside each node are the node number 

(top), the numbers of affected (middle), and unaffected (bottom) individuals. Under each 

internal node is the split based on the genotype. For example, node 1 is split based on the 

number of D5G23A7 alleles. The ‘none’ means there are no D5G23A7 allele; ‘1,2’ means the 

individuals have 1 or 2 D5G23A7 alleles.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 18 

3 The logistic regression model  
 

We define the risk of disease in term of odds k = p/(1-p), with p the probability of a randomly 

sampled individual from the population to be a patient and 1-p probability to be a healthy 

control. A logistic regression model is defined as  

 

                  
                                                                                                                                              

where Xi =0 or 1, i=1,2 ….. and e
βi

 is the odds ratio for comparing the odds of Xi=1 with Xi=0. 

Thus the variable 1 parameter exponential (e
β1

 ) compares the odds of being a case for a 

subject who is variable X1 positive to the odds of being a case for a subject who is variable X1 

negative.  β1 is the log odds ratio if variable X1 changes 1 unit.  

 

When data are stratified with regard to a variable A, the model should include variable A as a 

confounding variable.  

 

                                                                  
A class II gene involved in the recursive partitioning is defined as a confounding variable in 

the logistic regression model for class I genes. This implies that the effect of Xi, i=1,2….n is 

calculated conditionally on a specific value of A, the effect of Xi is the same for all values of 

A. In our study, we have two values for each of A, which are 0 and 1. Moreover, all the HLA 

class II genes may be confounding variables in the logistic regression model to class I genes. 
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4  Aims of the present study 

 

 
I  To apply the recursive partitioning method to describe association 

between HLA class II loci and MS. 

 

II To model the association between HLA class I loci and MS, conditional 

on a partition of HLA class II loci. 
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5  Materials and Method  

 
 

5.1 Materials 

 
 

Totally 3174 individuals were included in the present study. Among them, 983 Swedish MS 

patients were recruited by the Department of Neurology, Karolinska University Hospital, 

Stockholm and 546 MS patients were collected from Norway.  All patients fulfilled the 

McDonald criteria of MS (McDonald, 2001) with mean age of 54.1years and the female to 

male ratio of 2.5. The ethical board of Karolinska Institutet approved the study and informed 

consent was obtained from all participants. The controls (mean age of 47.3 and female to 

male ratio of 1.8) consisted of 1075 Swedish blood donors from Sweden and 570 Norwegian 

bone marrow donors from Norway. 

 

All patients and controls in this study were typed for the three HLA loci, HLA-DRB1, HLA-

A and HLA-C using Olerup SSPTM HLA Low resolution Kits (Olerup, 1992). 

 

 

5.2 Methods  

 
 

5.2.1 Helix tree generation 
 

Two softwares, Xlminer (Cytel Statistical software ver 3.0) and the recursive partitioning 

library in R (Rpart, http://cran.r-project.org;. refs 20-22 ), were used to generate a helix tree.  

All possible binary splits of the data corresponding to presence or absence of various different 

genotypes at the HLA class II loci were considered.  For each of the class II loci, data were 

divided into two groups that maximally reduced the impurity. The minimal Gini impurity 

index was applied in the Xlminer software.  

 

In the R partitioning program, another index called information with the form f(p)=-2plog(p) 

was used in stead of the Gini impurity index in XLminer, where p is the proportion of 

observations in a node that has the different genotypes. For example p1=1, that means all the 

observations have different genotypes. Then the information index f(p1)=0. Assume p2=0.5, 

then f(p2)=0.15. Since f(p1)< f(p2), we chose the second way to split the observations. A HLA 

class II Helix tree was generated by choosing a maximal information index in R partitioning 

program.   

 

5.2.2 Pruning and evaluation of the Helix tree 
 

In order to prune the Helix tree by use of the Rpart program, a cp plot was performed. 

Complex parameter (cp) indicates how observations vary in one group. It is usually computed 

using a variance estimate from the largest model under consideration. This will be done 

automatically when the cpplot function is used. The outcome of cp plot is a cp table to assess 

how the models fit. It gives a visual representation of the cross-validation result in an Rpart 

object.  
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The χ
2
 test method was also used in the tree pruning. By comparing the tree model from 

different pruning methods, a suitable model was selected.  

 

5.2.3 Testing class I locus in the case-control collections 

 
A backward stepwise logistic regression procedure was used to test whether any of the 17 loci 

typed in the HLA class I has an effect on MS in addition to the HLA class II. The class II loci 

according to the partitioning model were placed in the regression model as confounders and 

other class I loci were added. The significance of class I genes conditional on the class II 

genes in the model were evaluated by a likelihood ratio test. The significant loci remained in 

the model. Interactions between HLA class II loci were tested as well. 

 

We used a family-wise error rate (FEW) to calculate a critical value (a threshold). Null 

hypothesis: none of the markers are significant.  

 

FEW = P {Reject at least one true null hypothesis} 

  

In the present study,  

 

FEW = p-value for a single marker × (17 + the number of variables in the confounding model) 

 

where 17 represents the number of tested  HLA class I loci. 

 

We chose a threshold of FEW 0.05.  
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6  Results and discussion 

 
 

6.1. Confounding variable identification  
 

 

6.1.1 Helix tree growing and pruning 

 
All the class II variables were analysed by the XLminer software. After classification, a full 

helix tree was obtained and showed in Figure 6.1. The circle represents split nodes and the 

rectangle represents terminal nodes. The data were split into 5 groups showing minimal 

impurity according to Geni impurity index. Totally, 1407 individuals carried at least one of 

HLA DR15 allele in the genotype (DR15+), 1767 individual carried complement alleles 

(DR15-). The obtained groups were 1) DR15+; 2) DR15- DR4+; 3) DR15-, DR4-, DR1+; 4) 

DR15-,DR4-,DR1-, DR3+ and 5)DR15-,DR4-,DR1-,DR3-. According to the χ2 method 

(Zhang et al 2000), we determined the model based on the maximal of χ
2
 statistics for the 

nodes. The maximal of χ
2
 statistics is a maximal value of χ

2
 statistics from the split node to 

the terminal node. For instance, the χ
2
 statistics of the node DR4 was 1.152, but the maximal 

of χ
2
 statistics of DR4 was 1.961. It is because χ

2
 statistics of the node DR1 located 

downstream of the DR4 was 1.961. We chose the critical value of 1.96 for the χ
2
 statistics. 

The maximal χ
2
 statistics of node DR1 was 1.961>1.96, therefore we retained node DR1.  

The node DR3 was cut off since the maximal χ
2
 statistics of the node DR3 was 0.3032, which 

was < 1.96. After pruning, the model consisted of split nodes DR15, DR4 and DR1. See 

Figure 6.2. The pruning result was confirmed by likelihood ration tests as well. 

 

We analysed ratio of health control (HC) and MS in the nodes. From Figure 6.2, in split node 

DR15, HC: MS was 1.073. After the first split with respect to DR15, in the terminal node 

DR15 (DR15+), the ratio reduced to 0.503; in the split node DR4 (DR15-), the ratio raised 

to1.98. Hence, after the first splitting, the individuals were divided into two groups with either 

more proportion of HC or MS than that at the initial situation. The splitting continued based 

on the nodes DR4 and DR1. Consequently, the ratio of HC and MS reached to 2.4 in the 

terminal node DR1. 
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                                                                               1.076 (HC:MS) 
                                                                                HC 1645 
                                                                                MS 1529   
                   339.6 

            No-DR15           max 339.6   

       
 
 
                                                                1.979 (HC:MS) 

                                                                 HC 1174                            0.5032 (HC:MS)                                                     
                                                                 MS  593                                HC 471 
                                                1.152                                                      MS 936 

                   No-DR4        max 1.961 
                          
                                                  
                                                                                      1.855(HC:MS) 
                                                                                        HC 478  
                                                                                        MS 258                                        
                                              2.078(HC:MS)                   
                                               HC 696                                                     
                                                MS 335                         
         1.961 

No-DR1          max1.961 
         
 
 
                              1.946 (HC:MS)                       2.411 (HC:MS) 
                               HC 467                                HC 229 
                               MS 240                                MS 95 
                             
             0.3032   
             max 0.3032                                       
                
                                   
 
              1.860(HC:MS)                           2.057 (HC:MS) 
               HC 253                                    HC 214 
               MS 136                                    MS 104                                                                                                 
                             
                                                                                                                                                                                         
Figure 6.1 The classification of HLA-class II gene by the Xlminer software. Numbers at right 

of the nodes are ratios of healthy controls with MS patients within the groups. Numbers under 

split nodes are the χ
2
 statistics and the maximal of χ

2
 statistics. The circles represent the split 

nodes and the rectangles represent the terminal nodes. 
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                                                                               1.076 (HC:MS) 
                                                                               HC 1645 
                 MS 1529    
                                   No-DR15                      
                    
       
 
 
                                                                1.979 (HC:MS) 

                                                                 HC 1174                               0.5032 (HC:MS) 
                                                                 MS 593                                  HC 471 
                     No-DR4                                                                MS 936 

                                         
                
 
 
                                                                                      1.855 (HC:MS) 
                                                                                       HC 478 
                                              2.078 (HC:MS)                   MS 258 
                                               HC 696                          
                                               MS 335                        
          

          
         
 
           
                             1.946 (HC:MS)                     2.411 (HC:MS) 
                              HC 467                              HC 229 
                              MS 240                              MS 95 
                                                                        
                                               
 
 

Figure 6.2 After pruning with the χ
2 

method, DR15 and DR4 and DR1 retained in the 

confounding model. 
  

The pruning was also performed automatically by XLminer program with validation data. The 

program chose a subset of data randomly and tested all the alternative models with cross 

validation methods. The result displayed with only one node is the ‘main effect’ variable. See 

Figure 6.3. 
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Figure 6.3 The best pruning tree from XLminer. 

 

The data were also analysed by R in the Rpart library to carry out tree partitioning. The 

saturate partitioning tree was 11 nodes. By choosing the minimal number in a node (minsplit) 

100, and cp=0.001, we obtained a model with 9 nodes.  

 

|
DR15< 0.5

DR7>=0.5
DR12>=0.5

DR8< 0.5
DR14>=0.5

DR11>=0.5
DR13>=0.5

DR4>=0.5
DR1>=0.5

0
215/74 0

50/18
0

48/19 0
128/62 0

259/137 0
254/131

0
76/31

1
32/45

0
112/76

1
471/936

 
 

Figure 6.4 The helix tree from Rpart library, cp=0.001 minsplit=100 

 

The Helix tree grown by recursive partitioning using the Rpart program was pruned. The CP 

plot gives a table to find tree size with respect to cross-validation errors of the model. A good 

choice of cp for pruning is often the leftmost value for which the mean lies below the 

horizontal line. The result indicated that the best tree size is 2.  
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Figure 6.5 Cp plot from Rpart library, the value of complex parameter (cp) with respect to the 

cross validation error. The size of the tree corresponding to the cp is shown above the graph.  

 

The helix tree (9 nodes) from the Rpart program with cp=0.001 minsplit=100 was confirmed 

by the χ
2 

pruning method, we used likelihood ratio test to approximate the χ
2 

test. Since the 

last split node DR1 exceeded to the threshold, no node located upstream of the DR1 could be 

deleted. 

 

6.1.2 Evaluation of the helix tree models 
 

How to choose the confounding variables depends on the pruning result. But it is difficult to 

judge which pruning result, for example, by cross validation or the χ
2
 test procedure, is the 

best. The rationale for minimizing the number of variable in a model is that the resulting 

model is more likely to be numerically stable (Hosmer and Lemeshow 2000). A overfitted 

model would produce numerically unstable estimates. However the number of variables must 

be sufficient to prevent residual confounding (Nejentsev 2007). 

 

From the partitioning and pruning results, two logistic regression models were selected. 

Model 1 was obtained from the XLminer program, pruned by χ
2 

methods. Model 2 was 

obtained by the recursive partitioning using the Rpart program confirmed by χ
2 

pruning 

methods. 
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Using the real data test, we found that the two models had similar deviances and Akaike’s 

information criterions (AIC). See Table 6.1.  

 

Table 6.1 Deviance and AIC of the two models  

 Model 1 Model 2 

deviance 4030.8 4016.8 

AIC 4042.8 4034.8 

 

 

We also tested the confounding model stability by adding class I variables to the class II 

confounding models. One class I allele was added at two different class II models. If we 

found the same coefficient and p-values of the class I allele between two different 

confounding models, it indicated that the confounding models were effective and accurate. 

The test results in Table 6.2 show that the two models give similar results.  

 

Table 6.2 Confounding model stability testing with class I variables 

 

Model 1  
Input 
variables 

Coefficient Std. Error p-value Odds 
95% Confidence 

Interval 

A1 0,0457204 0,0858628 0,5943922 1,0467817 0,8846462 1,2386329 

A2 -0,4220582 0,0761138 3E-08 0,6556959 0,5648255 0,7611857 

A3 0,0986872 0,080764 0,221738 1,1037209 0,9421343 1,2930216 

A11 0,0916801 0,122056 0,4525735 1,0960141 0,8628234 1,392228 

A24 0,1098006 0,0987376 0,2661189 1,1160556 0,9196873 1,3543516 

A25 0,2307479 0,1771837 0,1928109 1,2595418 0,8900071 1,7825086 

AX 0,1211949 0,0808016 0,1336385 1,1288449 0,9635091 1,3225519 

C1 -0,1409589 0,1433228 0,3253582 0,868525 0,6558216 1,1502147 

C2 0,0218228 0,1207358 0,8565648 1,0220627 0,8066908 1,2949351 

C3 -0,0698668 0,0820427 0,3944419 0,9325181 0,7940034 1,0951968 

C4 0,1008813 0,1066609 0,3442439 1,1061454 0,8974748 1,3633336 

C5 -0,2478251 0,1073671 0,0209878 0,7804964 0,6323826 0,9633008 

C6 *    -0,1024965 0,1133091 0,3656911 0,9025813 0,7228321 1,1270294 

C7 -0,0495735 0,0799944 0,5354478 0,9516352 0,8135404 1,1131711 

C8 0,4483216 0,1797181 0,0126106 1,5656821 1,1008476 2,2267935 

C15 0,2852413 0,1709819 0,0952653 1,3300829 0,9513463 1,8595969 

CX 0,0067808 0,1131522 0,9522142 1,0068039 0,8065468 1,2567827 
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Model 2  
Input 
variables 

Coefficient Std. Error p-value Odds 
95% Confidence 

Interval 

A1 -0,040862 0,0899451 0,6496134 0,9599616 0,8048083 1,1450259 

A2     -0,4149122 0,0769327 7E-08 0,6603982 0,5679638 0,7678761 

A3 0,1020157 0,0812513 0,2092763 1,1074008 0,9443732 1,2985721 

A11 0,1269389 0,1234286 0,303743 1,1353476 0,8913869 1,4460772 

A24 0,0936535 0,0991339 0,3448032 1,0981792 0,9042536 1,333694 

A25 0,2416516 0,1787808 0,1764828 1,2733504 0,8969525 1,8077003 

AX 0,1701454 0,081938 0,0378464 1,1854773 1,0095956 1,3919991 

C1 -0,1516555 0,1447556 0,2947924 0,8592842 0,6470245 1,1411771 

C2 0,02382 0,1227341 0,8461149 1,0241059 0,8051438 1,3026156 

C3 -0,0835495 0,083877 0,3192039 0,9198456 0,7804025 1,0842044 

C4 0,1398572 0,1077637 0,1943512 1,1501095 0,9311307 1,4205868 

C5 -0,2260517 0,1092966 0,0386173 0,7976769 0,6438631 0,9882354 

C6 *    0,0309449 0,1213559 0,7987286 1,0314287 0,8130941 1,3083911 

C7 -0,1498677 0,0841031 *0,0747571 0,8608218 0,7300028 1,015084 

C8 0,5267255 0,1822166 *0,0038444 1,6933783 1,184816 2,4202323 

C15 0,3001238 0,1725285 0,0819362 1,3500259 0,962688 1,8932092 

CX 0,0809605 0,1153596 0,4827978 1,0843281 0,8649011 1,3594239 

* represents the different value between two models. 

 

 

6.2  Logistic regression models 

 

 
6.2.1 Tests for interaction of confounding  
After the ‘main effect’ variables of the class II genes were determined, the interactions 

between the main effect variables were tested. The forward stepwise method was used to test 

for the interaction of confounding variables in model 1. The result in Table 6.3 demonstrated 

the interactions between DR1 and DR4, and between DR1 and DR15.  

 

Models in forward stepwise method 

 

 
 

 

 
 

Table 6.3 P-values of interaction variables 

variables DR1 DR4 DR15 

DR1  0.000689 0.00796 

DR4   0.309 

DR15    
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6.2.2 Class I variable tests by the backward elimination method  
 

All the HLA class I exposure variables were simultaneously added in the class II confounding 

model and variables without significance were successively eliminated. The combined data 

set (Swedish and Norwegian) showed that the exposure variable A2 was significant. The 

model for combined data set and the result in Table 6.3 are based on criterion of P-values 

before Bonferroni correction.  

 

Model for combined data: 

 

 
 

Table 6.3 Results of HLA class I variables tested using the combined data (Swedish and 

Norwegian) 

 Estimate Std. Error      z value   Pr(>|z|)     

A2 -0.42278     0.07630   -5.541    3.01e-08  

 

The data were also analysed separately according to different populations (Swedish and 

Norwegian). For the Swedish MS, A2 was significant with the odds ratio 0.64 that confirmed 

previous results (odds ratio 0.63, Brynedal 2007). A new allele Cn was also significant with a 

P-value 0.000853, FWE 0.0144, odds ratio 2.29. The p value of allele C5 was 0.0412, but the 

FWE was 0.7004 >0.05. Therefore, C5 was discarded. The model for Swedish data set and the 

result in Table 6.4 are based on criterion of P-values before Bonferroni correction.  

 

Swedish data tests 

Model: 

 

 
 

Table 6.4 The result of HLA class I variables with Swedish data  

 Estimate Std. Error     z value   Pr(>|z|)     

A2 -0.44690     0.09634   -4.639    3.51e-06  

C5 -0.28805    0.14112   -2.041    0.041233    

Cn 0.82980     0.24880    3.335    0.000853 

 

In the Norwegian data, no significant allele was found because p value for A2 was 0.018 and 

FWE was 0.306. The model for Norwegian data set and the result in Table 6.5 are based on 

criterion of P-values before Bonferroni correction.  
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Table 6.5 The result of HLA class I variables with Norwegian data  

 Estimate Std. Error z value   Pr(>|z|)     

A2 -0.3010     0.1280        -2.352   0.01866    

 

 

6.3  Discussion about confounding model 
 

We tested the real data sets with different confounding models, and compared the HLA class I 

gene findings with different class II confounding models. 

  

6.3.1 Real data set test with different confounding models 

 

Confounding strata with significant nodes 

 
 

Confounding strata with pruned recursive partitioning 

 
 

Confounding strata with recursive partitioning 

 
 

Confounding strata with recursive partitioning and one additional interaction term 

 
 

Confounding strata with recursive partitioning and two additional interaction terms 

 
 

                                                        
 

Confounding strata according to the recursive partitioning from the R-part program 

 

 
 

6.3.2 Comparison of HLA class I gene finding results with different confounding models 
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Tables 6.6-6.8 present p values of HLA class I variables in the 6 models above. All the class I 

variables were added to the 6 models. Using the backward eliminate method, alleles that 

exceeded the significant threshold were recorded in the tables. The threshold of 0.05 before 

Bonferroni corrections was used. Some variables included in model 1 were not significant in 

models 2, 3, 4, 5 and 6, for instance A1, C3, C5 in Table 6.6. Thus, the absence of sufficient 

confounding variables may result in false positive results.  

 

When we calculated p values using FEW, weak positive associations of the alleles did not 

exceed the threshold and those false positive were discarded. All the models gave the same 

results. The allele A2 was significantly associated with MS in combined data of Swedish and 

Norwegian set. Interestingly, the allele Cn showed significant association with Swedish MS, 

though A2 has also shown association in Swedish data. However, no significant association of 

any alleles in Norwegian data was found. In Table 6.6-6.8, the threshold after Bonferroni 

correction for every model is showed. For instance, in model 1, threshold is 0.0026.  

 

Table 6.6 Comparison of different confounding models with combined data 

 Model 1 

DR1, DR15 

 

 

 

 

 

 

P<0.0026 

Model 2 

DR1, 

DR4,DR15 

 

 

 

 

 

P<0.0025 

Model 3 

DR1,DR3, 

  

DR4,DR15 

 

 

 

 

P<0.0024 

Model 4 

DR1, 

DR4,DR15, 

DR1*DR4 

 

 

 

 

P<0.0024 

Model 5 

DR1,DR4, 

DR15, 

DR1*DR4, 

DR1*DR15 

 

 

 

P<0.0023 

Model 6 

DR1,DR4,DR7, 

DR8, 

DR11,DR12, 

DR13, 

DR14,DR15, 

DR1*DR4, 

DR1*DR15 

P<0.0018                               

A1 0.00462      

*A2  1.37e-07 2.94e-08 1.41e-08 3.19e-08 3.01e-08 2.53e-08 

C3 0.00517      

C5 0.01489       

Cn      0.007002 

* represents the significant HLA class I variable based on criterion after correction. 

 

 

Table 6.7 Comparison of different confounding models with Swedish data 

 DR1, 

DR15 

 

 

 

P<0.0026 

DR1, 

DR4,DR15 

 

 

 

P<0.0025 

DR1,DR3, 

DR4,DR15 

 

 

 

P<0.0024 

DR1, 

DR4,DR15,  

DR1*Dr4 

 

 

P<0.0024 

DR1,DR4, 

DR15 

DR1*DR4, 

DR1*DR15 

 

P<0.0023 

DR1,DR4,DR7,DR8, 

DR11,DR12,DR13, 

DR14,DR15, 

DR1*DR4, 

DR1*DR15 

P<0.0018                               

*A2 1.83e-06  2.95e-06 1.6e-06 3.72e-06 3.51e-06 1.22e-06  

C5 0.02202 0.029066 0.0284 0.038039 0.041233 0.053 

C7 0.04108     0.0062 

*Cn 0.00199 0.000826 0.000845 0.000852 0.000853 0.00069      

* represents the significant HLA class I variable based on criterion after correction. 

 

 

 

 

 



 32 

Table 6.8 Comparison of different confounding models with Norwegian data 

 DR1, 

DR15 

 

 

 

P<0.0026 

DR1, 

DR4,DR15 

 

 

 

P<0.0025 

DR1,DR3, 

DR4,DR15 

 

 

 

P<0.0024 

DR1, 

DR4,DR15, 

DR1*Dr4 

 

 

P<0.0024 

DR1,DR4, 

DR15, 

DR1*DR4, 

DR1*DR15 

 

P<0.0023 

DR1,DR4,DR7, 

DR8,DR11,DR12, 

DR13, DR14, 

DR15, DR1*DR4, 

DR1*DR15 

P<0.0018                               

A2 0.0167 0.019333 0.01648 0.01875 0.01866 0.0133 
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7  Conclusions 

  
The statistical analysis of the genotype data of HLA polymorphisms in MS revealed that HLA 

class I gene polymorphisms are associated with MS in Swedish population independent of the 

class II association. The HLA-A2 locus is associated with reduced risk of MS in Swedish and 

Norwegian combined data. In addition, association of the HLA-Cn locus is a new finding in 

the Swedish set. Interactions between HLA class II genes (HLA DR1*DR4 and DR1*DR15) 

were found in the combined data of Swedish and Norwegian set.  

 

In methodology, recursive partitioning was applied to analysis of genotype data in HLA class 

II polymorphisms. Two statistical programs were used to grow the helix trees. Different 

pruning methods were performed to create a partitioning tree model. When we used the 

logistic regression model to test for association to HLA class I gene, the class II confounding 

model was first performed in genotype data for conditioning. 

 

In previous statistical analysis using logistic regression, HLA-A2 at HLA class I and HLA-

DR15 at HLA class II were associated with MS in Swedish population. The effects of these 

two loci were independent of each other. These results were also confirmed in the present 

study.  

 

However, association of HLA-Cn with Swedish MS (983 MS patients), but no association 

with Norwegian MS was identified. It might be due to low power to detect a weak effect in 

the Norwegian data (only 546 MS patients). Alternatively, this finding suggests that there 

might be population heterogeneity that opens up the probability of further studies in the future.  
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Appendix  

 
A.1 The binary probability model and conditional probability model  

                                                 

                                                  F (Failure) 

                                                    

                 p 

 

 

 

 

 

 

 

 

           1− p 

 

                                                       S (Survival) 

 

 

Figure A.1 The binary probability model. There are two possible outcomes. P is probability of 

Failure. The probability of survival is 1-p (Clayton et al. 1993 p7,) 

 

 

                                                                                                                     Probability 

 

                                                                                    F (Failure)                  0.006 

                                                               0.015                

 

 

                                                E+ 

                                                                                                   

                                                              0.095                 S(Survival) 

              0.4 

 

 

 

 

 

                                                                                        F                               0.003 

              0.6                                               0.005 

 

                                                     E− 

                                                    

                                                                  0.995 

                                                                                         S 

Figure A.2    A Conditional probability model (Clayton et al. 1993 p7,) 
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When the subjects are classified as either exposed (E+) or not exposed (E-), the conditional 

probability model can be presented as a tree with 6 branches. For example if 0.4 is the 

probability of exposure and 0.6 that of unexposure, the conditional probabilities are 0.015 (F) 

and 0.985(S) if a subject is exposed.  The probability that a subject is exposed and fails is 

0.4×0.015=0.006. 

                                       

A.2 Case-control study and stratification 

 

Case-control study 

 

Case-control study is a type of observational study. Enrollment into the study is based on 

presence (``case'') or absence (``control'') of disease. Characteristics such as previous 

exposure are then compared between cases and controls. 

 
 

Confounding 

  

Confounding is the distortion of the effect of one risk factor by the presence of another. 

Confounding occurs when another risk factor for a disease is also associated with the risk 

factor being studied but acts separately. Age, breed, gender and production levels are often 

confounding risk factors because animal with different values of these are often at difference 

risk of disease. As a result of the association between the group with the study risk factor and 

the control group without the study factor, the confounding is not distributed randomly 

between these two groups. 

 

Correction for confounding 

 

Confounding can be controlled by restriction, by matching on the confounding variable or by 

including it in the statistical analysis.  

 

Stratification  

The classical approach to experimentation is to hold constant all influence other than the 

experimental variable(s) of interest. For example, to avoid confounding by age, we would 

compare failure risk in exposed and unexposed subjects of a fixed age, or falling within a 

narrow range of ages. The statistical comparison would be made conditional upon age. This 

statistical analytical strategy is called stratification. 
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