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Abstract

In the portfolio optimizing such as the Black Litterman the covari-
ance matrix is essential. The usual approach is to forecast the future
covariance matrices only based on equally weighted historical returns,
which implies the covariance matrix is constant over time. Lately,
more complex time-varying models that give a greater weight to the
more recent returns, such as the multivariate GARCH models, have
been developed. The aim of this thesis is to evaluate how forecasts of
the Dynamic Conditional Correlation model of Engle and Sheppard
(2001) performs compared to the traditional one. To evaluate the fore-
casts performances the unique property of the global mean-variance
portfolio (GMVP) is used, namely that the most correct forecast of
the covariance matrix will generate the least variance of the GMVP.
Presented results show that the dynamic conditional correlation tend
to out perform the covariance matrix based on historical data in the
short run, while in the long run the reverse relationship holds.

∗E-mail: therese.peters@gmail.com. Supervisor: Thomas Höglund.
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1 Introduction

In the financial industry volatility is an important conception, which measure the state

of instability of the return. It is widely known that volatility varies over time and tends

to cluster in periods of large volatility and periods of tranquillity. This phenomenon is

called heteroscedatisity. An additional factor to consider is that the volatility has

shown to be autocorrelated, which means that today’s volatility depends on that of the

past. Considering the fact that volatility is not directly observable the need of a good

model to help estimate and forecast it is essential. One model that captures the

properties mentioned above is the univariate GARCH -General Autocorrelated

Conditional Heteroscedatisity model introduced by Bollerslev (1986). This model has

shown to be successful in estimating and predicting volatility changes.

Although in the portfolio optimization model Black-Litterman, beside each individual

asset’s variance, the behavior between the assets is essential. A tool that quantifies all

these components is the symmetric covariance matrix where the variance of each

individual asset is found on the diagonal and the pair-wise covariance at the other

elements. One method to estimate the covariance matrix is to extend the univariate

GARCH model into a multivariate GARCH model.

The purpose of this project is to clarify problems of forecasting covariance matrices to

use in the Black Litterman model, as well, to evaluate how the forecast from a

multivariate GARCH model performs compared to a covariance matrix based simply

on historical data. The portfolio consists of assets from several markets such as stock-,

bond-, credit markets and real estate

When extending the model some difficulties appear which need to be considered;

• in order to make estimates feasible the number of parameters need to be

reduced without restricting the flexibility to capture the dynamic in the

conditional covariance too much.

• determine the conditions that make the covariance matrix positive definite at

every point in time (as required by definition) and the conditions for the weak

stationary of the process.

• the parameters should be easily interpreted.
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One approach is to model the conditional covariance matrix indirectly through the

conditional correlation matrix. The first model of this type was the constant

conditional correlation (CCC) model of Bollerslev 1990. The conditional correlation

was assumed to be constant and only the conditional variances were time varying.

Thus, the assumption that the conditional correlation is constant over time is not

convincing, since correlation in practice for many assets changes over time. Engle and

Sheppard (2001) introduce the dynamic conditional correlation (DCC) model.  This

model has a two-step algorithm to estimate the parameters that makes the model

relatively easy to use in practice. In the first step, the conditional variance is estimated

via unvariate GARCH model for respectively asset. In the second step the parameters

for the conditional correlation given the parameters from the first step are estimated.

This approach makes it possible to estimate covariance with 100 assets without too

cumbersome computation. Finally, the DCC-model includes conditions that make the

covariance matrix positive definite at all points in time and the process covariance

stationary.

This paper is organized as follows: In Section 2, the estimation of univariate GARCH

models is discussed, the DCC model follows in Section 3. Forecasting the DCC

model is the topic of Section 4 and in Section 5 I will show how to evaluate the

performance of the DCC compared to a covariance matrix based on simply historical

data. An empirical comparison of the models is presented in Section 6. Finally,

Section 7 presents some conclusions.
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2 Univariate GARCH

Analyzing and understanding how the univariate GARCH model works is

fundamental for a study of the Dynamic Conditional Correlation multivariate GARCH

model of Engle and Sheppard (2001). It is not only important because of the fact that

the model is a nonlinear combination of univariate GARCH models [2], but also

because the dynamic conditional correlation matrix is based on how the univariate

GARCH(1,1) process works.

The volatility of an assets return refers to the standard deviation of the changes in

value during a specific time horizon. In the long run returns tend to move towards a

mean value (mean reverting). The changes in value that appear during this time are

both positive and negative (asymmetric), mostly close to the mean value but some

changes obtain extreme values (leptokurtic). As mentioned in the introduction, the

volatility of today’s returns is conditional on the past volatility and tends to cluster in

volatility. [3]

Suppose that the stochastic process { }Tttr  describes the return during a specific time

horizon where tr is the return observed at time t . Consider, for instance, the following

model for the return:

tttr ηµ += (2.1)

where )( 1−= ttt rE ψµ  denotes the conditional expectations of the return series, tη

the conditional errors and { }( )1:1 −≤=− tsrst σψ  represent the information set (sigma

field) generated by the values of the return until time 1−t .[17]  This model take in the

characteristics of the return stated above.

Assume that the conditional errors are the conditional standard deviations of the

returns 21
1

21 )( −= ttt rVarh ψ  times the independent and identically normally

distributed zero mean unit variance stochastic variable tz . [17] Also note, th  and tz are

supposed to be



7

independent of for all t.

),0(~ tttt hNzh=η  given 1−tψ
(2.2)

Finally, suppose that the conditional expectation 0=tµ , which implies that

ttt zhr =   and  ),0(~ ttt hNr ψ (2.3)

In practice if 0≠tµ , the returns can be either ARMA filtered or demeaning.[12]

However, in this case when 0=tµ  the variance of the return coincides with the

variance of the errors and their conditional expectation is zero, therefore the error

process is an innovation process. [10]

Often in financial models, conditioning is stated as regressions of a variable’s present

values of a variable on the same variable’s past values, as well in the GARCH(p,q)

model of Bollerslev (1986). This discrete process is given by equation (2.1) and

∑∑
=

−
=

− ++=
p

i
iti

q

i
itit hh

11

2 γηδω
(2.4)

0≥p ,  0>q

0≥ω 0≥iδ  for qi ,...,1=   0≥iγ  for pi ,...,1=

In words the GARCH(p,q) consists of three terms

• ω  - the weighted long run variance

• ∑
=

−

q

i
iti

1

2ηδ -the moving average term, which is the sum of the q previous lags of

squared-innovations times the assigned weight iδ  for each lagged square

innovation. qi ,...,1=
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• ∑
=

−

p

i
iti h

1
γ - the autoregressive term, which is the sum of the p previous lagged

variances times the assigned weight iγ  for each  lagged variance pi ,...,1=

Note that the innovations tη  in the moving average term is squared and the

GARCH(p,q) does not include the asymmetry of the errors, which is a drawback. The

EGARCH model of Nelson (1991) and the GJR-GARCH model of Glosten,

Jagannathan and Runkle (1993) are two examples of extended GARCH models that

accommodate the asymmetry of the returns.[24] These two models would not be further

analyzed in these thesis.

Since the variance is non-negative by definition, the process { }∞=0tth  needs to be non-

negative valued. Exact constraints for the GARCH(p,q) process are complicated and

can be found in Nelson and Cao (1992).

2.1 GARCH (1,1)

The simplest and very popular GARCH model is the GARCH(1,1) which is given by

equation (2.1) and

1
2
1 −− ++= ttt hh γηδω (2.5)

where 0≥ω , 0≥δ , 0≥γ

The three terms can be interpreted as for the GARCH(p,q) but with only one lag each

for the squared innovation and variance respectively. [4]

Successively backward substituting th  to time Jt −  yields the alternative expression

of the GARCH(1,1)

=++++++= −
=

−
−− ∑ Jt

J
J

k
kt

kJ
t hh γηγδγγγω

1

2112 )...1(
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Jt
J

J

k
kt

k
J

h −
=

−
− ++

−

−
= ∑ γηγδ

γ
γ

ω
1

21

1
1

(2.6)

If J approaches infinity then

∑
∞

=
−

−

∞→
+

−
=

1

21

1
lim

k
kt

j
tJ
h ηγδ

γ
ω   since 10 << γ (2.7)

This implies that current volatility is an exponentially weighted moving average of

past squared innovations. Although, there are crucial differences between the

GARCH(1,1) and EMWA (exponential weighted moving average) model, in the

GARCH case the parameters need to be estimated. [7] and mean reversion has been

incorporated  in the model.

To reduce the number of parameters from three to two in the GARCH(1,1) and

thereby make the computation easier “variance targeting” of Engle and Mezrich

(1996) can be used. To illustrate how this works, denote the unconditional variance h

and rewrite equation (2.5) as the deviations from the unconditional variance

hhhhhhhh ttt δγγηδω ++−+−+−=− −− )()( 1
2
1

(2.8)

After rearranging equation (2.8)

=++−−+−−−= −− 1
2
1)1()1( ttt hhhh γηδγδγδω

1
2
1)1()1( −− ++−−+−−−= tt hhh γηδγδγδω (2.9)

If h)1( γδω −−=  then equation (2.5) can be written as following

1
2
1)1( −− ++−−= ttt hhh γηδγδ (2.10)

The model is not only easier to compute but it also implies that the unconditional

variance )1( γδω −−=h . This simply works under the assumption that 1<+ δγ

and it only makes sense if the weights 0>ω , 0>δ  and 0>γ  [7]
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2.1.1 The Inequality Constrains of the GARCH(1,1)

As mentioned before, the conditional variance th  must by definition remain non-

negative with probability one. To ensure this for the GARCH(1,1) process the

following conditions are sufficient 0≥ω , 0≥δ  and 0≥γ .

Another feature that keeps the conditional variance non-negative is if the process

behaves similar in any epoch that might be observed, in other words, if the process is

stationary. [9] Thus, when discussing the stationarity of a process we consider the

unconditional moments of the series [15].

The GARCH(1,1)-process is weakly1 stationary with the unconditional expected value

and covariance

[ ] 0=trE

[ ] )1(, γδω −−=−stt rrCov (2.11)

if and only if 1<+ δγ .[17].

Recall, when using variance targeting in the GARCH(1,1) the unconditional variance

)1( γδω −−=h  which coincides with the unconditional variance when the process

is weakly stationary. [11]

As a short summary, the inequalities constraints to regard in the GARCH(1,1) when

using variance targeting is  0>ω , 0>δ , 0>γ  and 1<+ δγ . The process is

considered to be covariance stationary.

2.2.2 Estimate GARCH (1,1)

The question arises whether all of the constraints are necessary when estimating the

parameters with the log likelihood function. Both yes and no! Analyzing the quasi

                                                  
1 The process { }Tttr 1=  is weakly stationary (covariance stationary) if neither the mean nor the

autocovariances depend on the time t.  That is if µ=)( trE  for all t and jjtt rrE γµµ =−− − ))((  for
all t and j [14]
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log-likelihood function it is obvious that it will not generate negative conditional

variances in sample since the natural logarithmic function will explode to minus

infinity when the conditional variances approaches zero. Another reason is that the

logarithmic function is also ill defined for values less then zero. However, out-of-

sample it can be negative from the estimated parameters without any restriction. [21]

The assumption that the conditional return is normally distributed with zero mean and

variance th  gives the following (quasi) log-likelihood function of the GARCH(1,1)

∑
=

=







++−=

T

t t

t
t h
hL

1

2

)log()2log(
2
1),(log

η
πδγ

( ) 

















++−= ∑

=

T

t t

t
t h

rhT
1

2

log)2log(
2
1

π
(2.12)

The non-linear log-likelihood function needs to be maximized numerically with

respect to its inequality constraints. For instance, the matlab command fmincon in the

optimizing toolbox can be used.

It is necessary to compute the variance at time t, th , recursively and therefore a startup

value for 0h  and 2
0η  greater than zero has to be selected. To make sure that the

variance process { }∞=0tth  is non-negative with probability one given earlier mentioned

constraints 0h  and 0η  is chosen as hh == 2
00 η . In practice the unconditional variance

is estimated as [21]

∑
=

=
T

t
tT

h
1

21ˆ η
(2.13)

3 The Dynamic Conditional Correlation model

To extend the assumptions of the return in section 2 to the multivariate case, suppose

that we have n  assets in a portfolio and the return vector is the colon vector
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),...,,( 21 ′= ntttt rrrr . Furthermore, assume  that the conditional returns are normally

distributed with zero mean and conditional covariance matrix [ ]1−′= tttt rrEH ψ .

This implies that

ttt zHr 21=  and ),0(~1 ttt HNr −ψ (3.1)

where ),0(~),...,,( 21 nntttt INzzzz ′=  and nI  the identity matrix of order n. 21
tH may

be obtained by Cholesky factorization of tH

In the DCC-model, the covariance matrix is decomposed into

tttt DRDH ≡ (3.2)

What do the matrices tD  and tR  represent? tD  is a diagonal matrix of time varying

standard variation from univariate GARCH -processes























=

nt

t

t

t

t

h

h
h

h

D

000
0

00
000
000

3

2

1

L

OMM

M

L

L

(3.3)

The specification of elements in the tD  matrix is not only restricted to the

GARCH(p,q) described in section 2 but to any GARCH process with normally

distributed errors which meet the requirements for suitable stationary and non-

negative conditions. The number of lags for each assets and series do not need to be

the same either.

However, tR  is the conditional correlation matrix of the standardized disturbances tε























=

1

1
1

1

,3,2,1

,3,32,31

,2,23,21

,1,13,12

L

MOMM

L

L

tntntn

tntt

tntt

tntt

t

qqq

qqq
qqq
qqq

R (3.4)
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),0(~1
tttt RNrD−=ε (3.5)

Thus, the conditional correlation is the conditional covariance between the

standardized disturbances.

Before analyzing tR  further, recall that tH has to be positive definite by the definition

of the covariance matrix. Since tH is a quadratic form based on tR  it follows from

basics in linear algebra that tR  has to be positive definite to ensure that tH is positive

definite. Furthermore, by the definition of the conditional correlation matrix all the

elements have to equal or less than one. To guarantee that both these requirements are

met tR is decomposed into

1*1* −−= tttt QQQR (3.6)

where tQ is a positive definite matrix defining the structure of the dynamics and 1*−
tQ

rescales the elements in tQ to ensure 1≤ijq . In other words 1*−
tQ  is simply the

inverted diagonal matrix with the square root of the diagonal elements of tQ























=−

t

t

t

t

t

q

q
q

q

Q

11

11

11

11

1*

1000
0

100
0010
0001

L

OMM

M

L

L

(3.7)

Suppose that the tQ  has the following dynamics

111)1( −−− +′+−−= tttt QQQ βεαεβα (3.8)

where Q is the unconditional covariance of these standardized disturbances

[ ]tttt ECovQ εεεε ′=′= )( (3.9)

and α and β  are scalars.
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At first sight the proposed structure of the dynamic might seem complicated and taken

from out of the blue, but considering the resemblance between equation (3.8) with

(2.5) it is obvious that the structure is similar to the GARCH(1,1)-process with

“variance targeting”.[25] Actually, the dynamic structure defined above is the simplest

multivariate GARCH called Scalar GARCH. One fact to emphasize is that this

structure implies that all correlations obey the same structure, which can be regarded

as a drawback of the model. [11]

The structure can be extended to the general the DCC(P,Q).

∑∑∑∑
=

−
=

−−
==

+′+−−=
Q

j
jtj

P

i
ititi

Q

j
j

P

i
it QQQ

1111
)1( βεεαβα

(3.10)

In this thesis only the DCC(1,1) model will be studied. For more information

regarding the DCC(P,Q) see Engle and Sheppard (2002).

3.1 Constraints of the DCC(1,1) model

If the covariance matrix is not positive definite then it is impossible to invert the

covariance matrix which is essential in the Black Litterman as well in portfolio

optimizing in general.

To guarantee a positive definite tH for all t  simple conditions on the parameters are

imposed. First, the conditions for the univariate GARCH model in section 2.1.1 have

to be satisfied. Similar conditions on the dynamic correlations are required, namely
[13]

0≥α and 0≥β (3.11)

1<+ βα (3.12)

and finally 0Q has to be positive definite (3.13)
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3.2 Estimation of the DCC(1,1) model

In order to estimate the parameters of tH , that is to say ),( ϕφθ = , the following log-

likelihood function l  can be used when the errors are assumed to be multivariate

normally distributed:

( )( )∑
=

−++−=
T

t
tttt rHrHn

1

1'log)2log(
2
1)( πθl

( )( )=++−= ∑
=

−−−
T

t
tttttttt rDRDrDRDn

1

111'log)2log(
2
1

π

( ) ( )( )∑
=

−+++−=
T

t
ttttt RRDn

1

1'loglog2)2log(
2
1

εεπ
(3.14)

Conveniently, the parameters in the DCC(1,1) model can be divided in to two groups

),,,...,,,( 111 nnn γδωγδωφ = and ),( βαϕ =  and estimated via two following steps:

3.2.1 Step one
The tR matrix in the log-likelihood function (3.14) is replaced with the identity

matrix nI , which gives the following log-likelihood function:

( ) ( )( )=+++−= ∑
=

−−
T

t
ttnttntt rDIDrIDnr

1

11'
1 loglog2)2log(

2
1)( πφl

( )( )=++−= ∑
=

−−
T

t
ttttt rDDrDn

1

11'log2)2log(
2
1

π

( ) =







++−= ∑∑

= =

T

t

n

i it

it
it h

rh
1 1

2

log)2log(
2
1

π

( )∑ ∑
= =



















++−=

n

i

T

t it

it
it h

rhT
1 1

2

log)2log(
2
1

π
(3.15)

Comparing equation (3.15) with (2.10) it is obvious that this quasi-likelihood function

is the sum of the univariate GARCH log-likelihood functions. Therefore, we can use

the algorithm in section 2.2.2 to estimate the parameters ),,,...,,,( 111 nnn γδωγδωφ =
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for each univariate GARCH process. Since the variance ith for asset ni ,...1=  is

estimated for [ ]Tt ,1∈ , then also the element of the tD  matrix under the same time

period is estimated.

3.2.2 step two
In the second step the correctly specified log-likelihood function is used to estimate

),( βαϕ =  given the estimated parameters )ˆ,ˆ,ˆ,...,ˆ,ˆ,ˆ(ˆ
111 nnn γδωγδωφ =  from step

one.

( ) ( ) ( )( )∑
=

−+++−=
T

t
tttttt RRDnr

1

1'
2 loglog2)2log(

2
1,ˆ εεπφϕl (3.16)

In view of the fact that the two first terms in the log-likelihood are constants, the two

last terms including tR  is of interest to maximize [13]

( ) tttt RR εε 1'
2 log −+∝l (3.17)

The standardized disturbances are calculated according to equation (3.5) and Q  is

estimated as ∑
=

′=
T

t
ttT

Q
1

1
εε

)
. [9]

Even in this case, variance targeting is used in the dynamic structure and

therefore 000 εε ′=Q
)

 and since the conditional correlation matrix also is the covariance

matrix of the standardized residuals 000
ˆ εε ′=R  . [9]

3.2.3 A third step?
The estimated parameters from step 2 are consistent, but not efficient. If a third step in

which the Newton Rahpson method maximizes the log-likelihood function (3.14) is

established, then the parameters are asymptotically efficient.  In this step the Newton

Rahpson is iterated once with the starting values )ˆ,ˆ(ˆ βαϕ = [13]
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4 Forecasting the DCC-model

When forecasting the covariance matrix of the DCC-model, the forecast of the

diagonal matrix of time varying standard variation from univariate GARCH

–processes tD  and the forecast of the conditional correlation matrix of the

standardized disturbances tR  can be calculated separately. [27] The correlation

coefficient is not itself forecast, but it is the ratio of the forecast of the covariance to

the square root of the product of the forecasts of the variances. Thus unbiased

forecasts can’t easily be computed. The following forecasting method gives the least

biased forecast according to Engle and Sheppard (2001).

4.1Forecasting GARCH(1,1)

Assume that the volatility for time t is estimated then what is the forecast for kt + ? It

follows directly from equation (2.5) that when 1=k  the volatility is

ttt hh γδηω ++=+
2

1
(4.1)

Accordingly, the GARCH model itself generates volatility forecast for the very next

point in time, which implies [ ] 11 ++ = ttt hhE ψ  for all t. To obtain the forecast [ ]tkthE ψ+

for kt +  when 1>k successive forward substitution at time 2+t , 3+t , 4+t  and so

on is used. Before presenting the formula for kt + , let’s study the forecast of 2+th  and

3+th  given the information set at time t.

First, assume that k=2, then the forecast of 2+th  given the variance at time t is

[ ] [ ] 1
2
12 +++ ++= ttttt hEhE δψηγωψ (4.2)
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Since th and tz is assumed to be independent it follows that

[ ] [ ] [ ] 1
2
11

2
1 ++++ == ttttttt hzEhEE ψψψη (4.3)

then

[ ] 12 )( ++ ++= ttt hhE γδωψ (4.4)

Now assume that the k=3 instead then

[ ] [ ] [ ]tttttt hEEhE ψδψηγωψ 2
2
23 +++ ++= (4.5)

With the same procedure as in equation (4.3) [ ] [ ]tttt hEE ψψη 2
2
2 ++ =  and therefore

[ ] =++++= ++ ))()(( 13 ttt hhhE γδωλδωψ

1
2)())(1( +++++= thγδλδω (4.6)

In formula (4.6) the weighted unconditional variance ω  times γδ +  is added and

also the 1)( ++ thγδ  is multiplied by γδ +  compared to (4.4) Continuing with the

same approach as above for the next 3−k periods in time the following formula will

be achieved, which is the forecast of kth +  given information at time t. [8]

[ ] ∑
−

=
+

−
++ +++==

2

0
1

1)()(
k

i
t

ki
tkttkt hhhE γδγδωψ

(4.7)

When h)1( γδω −−=  then (4.7) can be rewritten as following [1]

)()( 1
1 hhhh t

k
tkt −++= +

−
+ γδ (4.8)

Consequently, the forecast of the GARCH(1,1) consists of two elements, the

unconditional variance and the weighted variance of deviation between 1+th  and the

unconditional variance . It is obvious, since 1<+ γδ , that the influence from the
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variance at time 1+t decreases when the forecast is further away from 1+t . In the

long run, when ∞→k , the forecast will approach the unconditional variance h

hhhh t
k

k
=−++ +

−

∞→
)()(lim 1

1δγ
(4.9)

How fast it will decay towards the unconditional variance depends on γδ + . The

closer γδ +  is to one the greater the persistence, which implies that the variance will

decay slowly towards the long run variance.

One question to regard is how the past observations in the GARCH(1,1) model will

influence the forecast . To include the past observation from J earlier periods in time

equation (2.6) is inserted in formula (4.7) then
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tkt hhh γηγδγωγδγδγδ (4.10)

For instant, assume that a single squared return shock 2
jt−η  occurs, what impact will

that have on the forecast n days apart? In other words, how long is the memory of the

shock?  The answer is given by the ratio of the derivate of (4.9) with respect to 2
jt−η  at

time t+k+n and t+k [8]

n

jttmt

jttnmt

h

h
)(2

2

γδ
η

η
+=

∂∂

∂∂

−+

−++
(4.11)

where
jk

jttkth γγδδη 12 )( −
−+ +=∂∂ (4.12)

The memory will decline with the exponential rate γδ + . Compared with empirical

studies the GARCH(1,1) model has been criticized to have too short memory,

especially with high frequency data. [7]
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4.2 Forecasting the correlation matrix

Recall from section 3 that the structure of the conditional correlation matrix is the

following non-linear GARCH like process.

111)1( −−− +′+−−= tttt QQQ βεαεβα

Under the assumption that QR ≈  and [ ] [ ]tittit QERE ψψ ++ ≈  for ki ,...,1=  a similar

approach as in the GARCH(1,1) case can be used to derive the formula for

[ ]tktRE ψ+ , since it is also known that [ ] [ ]tkttktkt REE ψψεε 111 −+−+−+ =′ . Therefore the

formula to forecast the model k step ahead is

[ ] ∑
−

=
+

−
+ +++−−=

2

0
1

1)()()1(
k

i
t

ki
ktt RRRE βαβαβα (4.13)

Even the forecast of the conditional correlation matrix will in the long run converge to

the unconditional correlation matrix of the standardized residuals. Another evident

feature of the forecast formula is that the influence from 1+tR  will decay with

ratio )( βα +  for each future step ahead. [13]

5 Evaluate the forecast

Traditionally in the financial industry the covariance matrix has been indirectly

evaluated by putting the out-of-sample forecast in the global minimum-variance

portfolio (GMVP). The solution to the following minimization problem gives the

portfolio weights itw  at time t for each asset ni ,...,1=

tttw
wHw

t

′min

subject to 1
1

=∑
=

n

i
itw

(5.1)

Given the weights the variance tσ of the portfolio at time t can be computed
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tttt wHw=2σ (5.2)

The GMVP possesses a unique property, namely that the correct covariance leads to

improved performance. Consequently, the portfolio with the most correct covariance

will have the least variance 2
tσ  at time t and therefore the competing covariance

forecasts can be compared by the GMVP. [22]

6 The DCC model in practice

To study how the DCC model works in practice data between 1990-01-05 and

2007-12-28 from sixteen different indices is used. Among them there are two credit

bond indices OMRX Mortage index and Global Broad Non-Sovereign, six JP Morgan

Broad Government Bond indices from different regions, seven stock indices from

MSCI also from different regions and finally an index for real estates. All of these

indices are hedged into Swedish crowns. One remark about the Global Broad Non

Sovereign index that is merged with US MG Master between 1990-01-05 and 1996-

12-31 to increase the time period. When data were missing the return from the day

before was assumed to be the real value.

If daily returns are selected the information in the data may be misleading since the

return significantly changes during a day and are asynchronous in different time

zones. To prevent this, data is selected with four different frequencies, weekly as well

as every second, third and fourth week. The time period 1990 to 2007 is divided into

three subsections 1990 to 2005, 1991 to 2006 and finally 1992 to 2007.

6.1 The return series and normal distribution
Recall from section 2 and 3 that the return was assumed to be normally distributed

with zero mean and variance th and tH  respectively. The question arises whether this

assumption is durable for the return series. If the returns are normally distributed the

histograms in figure 1 will be shaped as bells. From the histograms in figure 1, the

returns do not seem to fit perfectly in the framework of the normal distribution. Both
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the JP Morgan Broad Government index over Japan and the MSCI stock index for

Asia seem to exhibit extreme values.
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Fig.1. a) the return of the JP Morgan Broad Government index over Japan. b) the return of the JP

Morgan Broad Government index over the world. c) the return of MSCI – stock index for Asia. d) the

return of the Real Estate index. All of the indices above are from 1991-2006 with returns from every

second week.

6.2 The parameters of  the univariate GARCH(1,1)
Former studies of the univariate GARCH(1,1) models’ parameters have shown that

the approximate size of the parameters are 05.0=δ  and 85.0=γ  which implies that

ĥ1.0=ω . In the end of this section table 1 to 4 present the values of the estimated

parameters of the indices for each data frequency respectively.

In table 1, the estimates seem to follow the standard above. This is not the case for all

parameters in table 2, where the frequency of the data has decreased from every week

in table1 to every second week in table 2. The parameters of the Japanese stock index

separate from the standard values during the period 1991-2006. Recall equation (2.6)

and (2.7), which implies that if 0=δ  the estimated conditional variance is constant

over time. In figure 2 this behavior is shown. The conditional variance of the Japanese

stock index has a slightly downward sloping trend. During the same time period the
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conditional variance of the United Kingdoms stock index is time varying. These

estimates follow the standard size.

0 50 100 150 200 250 300 350 400
0

0.2

0.4

0.6

0.8

1

1.2
x 10

-3

Fig.2 The conditional variance of the Japanese stock
index (magenta) has a slightly downward sloping
trend. The conditional variance of United Kingdoms
stock index (blue) that varies all the time.

This result does not seem to be correct. In figure 3, both the return series for the

United Kingdom and Japan stock index are plotted. Over the whole, it is obvious that

both the United Kingdoms’ and Japan’s returns series vary with the same regularity.

Therefore the result that the conditional variance for Japan should be constant is

peculiar, when that of the UK varies over the time.
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Fig.3 The return of the Japanese stock index
(magenta) and of  United Kingdoms stock index (blue)
that varies all the time.

The same thing happens with the Japanese stock index for the period 1992-2007 in

table 3.
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Even when the frequency of the data is four weeks some of the estimated parameters

once again have uncommon values.  Surprisingly, it is not only the parameter values

during the period 1990 to 2005 and 1992 to 2007 for Japan that differ but also the

parameter values of the USA bond indices for all three periods and the values of UK

bond index during the period of 1991 to 2006.

In figure 4 the US and European government bond indices variance are plotted. In real

life the variance of these two assets are similar, which is not the case here. When

0=γ , as for the US government bond index, the conditional variance on a certain

day only depends ω  and δ  times the squared return from the previous period.
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Fig.4 The conditional variance of the US government
bond index (magenta) and the conditional variance of
Europe government bond  index (blue).

A reasonable explanation why some of the assets’ estimated parameters deviate from

the standard values when the frequency decreases is that the GARCH(1,1) model is

not suitable.
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Every week data Period
1990-2005

Period
1991-2006

Period
1992-2007

1.943.10-6 1.261.10-6 1.589.10-6

0.0804 0.0792 0.0812Global Broad Non-sovereign
ω
δ
γ 0.8844 0.8881 0.8774

2.808.10-7 2.563.10-7 2.10-7

0.1139 0.1193 0.1080

C
re

di
t b

on
ds

OMRX Mortg BI
ω
δ
γ 0.8736 0.8869 0.8817

9.821.10-7 9.490.10-7 1.242.10-6

0.0424 0.0434 0.0494World
ω
δ
γ 0.9456 0.9452 0.9355

1.033.10-6 9.109.10-7 8.833.10-7

0.0411 0.0451 0.0432USA
ω
δ
γ 0.9338 0.9324 0.9355

2.097.10-6 1.969.10-6 2.088.10-6

0.0782 0.0742 0.0643Europe
ω
δ
γ 0.8303 0.8371 0.8426

7.482.10-6 8.348.10-6 8.779.10-6

0.1210 0.1293 0.1179United Kingdom
ω
δ
γ 0.7593 0.7250 0.7313

4.182.10-7 4.094.10-7 4.196.10-7

0.1605 0.1604 0.1763Japan
ω
δ
γ 0.8357 0.8345 0.8187

1.342.10-6 1.355.10-6 9.610.10-7

0.0988 0.1328 0.1164

JP
 M

O
R

G
A

N
 B

ro
ad

 G
ov

er
nm

en
t B

on
d

In
de

x

Sweden
ω
δ
γ 0.8711 0.8377 0.8624

1.898.10-6 1.943.10-6 2.457.10-6

0.0566 0.0573 0.0585North America
ω
δ
γ 0.9392 0.9381 0.9373

1.765.10-5 1.584.10-5 1.673.10-5

0.1729 0.1588 0.1444Europe
(United Kingdom excluded)

ω
δ
γ 0.7982 0.8134 0.8267

4.178.10-5 3.974.10-5 3.911.10-5

0.1492 0.8130 0.1471Sweden
ω
δ
γ 0.8175 0.1536 0.8205

7.245.10-6 8.883.10-6 9.931.10-6

0.0799 0.0877 0.0826United Kingdom
ω
δ
γ 0.9053 0.8929 0.8950

9.270.10-5 5.369.10-5 8.59.10-5

0.1096 0.0697 0.0841Japan
ω
δ
γ 0.7640 0.8506 0.7893

9.434.10-6 6.486.10-6 8.153.10-6

0.1114 0.0888 0.0906Asia
ω
δ
γ 0.8724 0.8983 0.8935

1.551.10-5 2.298.10-5 2.867.10-5

0.0988 0.1254 0.1129

M
SC

I-
St

oc
k 

In
de

x

Emerging Markets
ω
δ
γ 0.8833 0.8455 0.8571

4.001.10-5 4.352.10-5 2.839.10-5

0.1012 0.1129 0.0903Real Estate
ω
δ
γ 0.8303 0.8123 0.8658

Table 1:The estimates of the univariate GARCH(1,1)-model for each asset based on weekly data.
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Every second week data Period
1990-2005

Period
1991-2006

Period
1992-2007

5.919.10-6 5.778.10-6 5.729.10-6

0.0970 0.0871 0.0769Global Broad Non-sovereign
ω
δ
γ 0.7455 0.7591 0.7713

5.699.10-7 4.179.10-7 3.739.10-7

0.2458 0.2185 0.2220

C
re

di
t b

on
ds

OMRX Mortg BI
ω
δ
γ 0.7542 0.7815 0.7780

7.766.10-7 7.509.10-7 9.847.10-7

0.0309 0.0286 0.0295World
ω
δ
γ 0.9600 0.9621 0.9577

6.801.10-6 3.981.10-6 3.042.10-6

0.0690 0.0537 0.0500USA
ω
δ
γ 0.7616 0.8462 0.8743

3.153.10-6 2.849.10-6 2.916.10-6

0.0920 0.0816 0.0764Europe
ω
δ
γ 0.7614 0.7825 0.7894

1.095.10-5 1.154.10-5 8.609.10-6

0.0881 0.1092 0.0763United Kingdom
ω
δ
γ 0.7351 0.6954 0.7766

9.452.10-7 9.974.10-7 9.732.10-7

0.2351 0.2413 0.2529Japan
ω
δ
γ 0.7577 0.7467 0.7361

2.991.10-6 2.319.10-6 1.904.10-6

0.2265 0.2076 0.2006

JP
 M

O
R

G
A

N
 B

ro
ad

 G
ov

er
nm

en
t B

on
d

In
de

x

Sweden
ω
δ
γ 0.7303 0.7564 0.7700

3.470.10-6 3.448.10-6 4.561.10-6

0.0789 0.0794 0.0850North America
ω
δ
γ 0.9136 0.9122 0.9079

4.078.10-5 4.243.10-5 4.402.10-5

0.2757 0.2758 0.2433Europe
(United Kingdom excluded)

ω
δ
γ 0.6750 0.6696 0.6968

9.742.10-5 1.095.10-4 1.070.10-4

0.2531 0.2574 0.2609Sweden
ω
δ
γ 0.6970 0.6736 0.6753

1.056.10-5 1.279.10-4 1.295.10-5

0.0919 0.0961 0.0854United Kingdom
ω
δ
γ 0.8867 0.08764 0.8859

8.473.10-5 2.10-7 4.906.10-5

0.0279 0 0.0207Japan
ω
δ
γ 0.8421 0.9996 0.9013

2.110.10-5 1.967.10-5 2.765.10-5

0.1422 0.1365 0.1646Asia
ω
δ
γ 0.8144 0.8211 0.7843

2.594.10-5 4.173.10-5 5.344.10-5

0.0905 0.1399 0.1774

M
SC

I-
St

oc
k 

In
de

x

Emerging Markets
ω
δ
γ 0.8719 0.8008 0.7577

3.291.10-5 3.038.10-5 2.191.10-5

0.0770 0.0749 0.0727Real Estate
ω
δ
γ 0.8681 0.8746 0.8950

Table 2:The estimates of the univariate GARCH(1,1)-model for each asset based on data from every
second week.
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Every third week data Period
1990-2005

Period
1991-2006

Period
1992-2007

6.750.10-6 1.169.10-6 1.869.10-6

0.1553 0.0431 0.0432Global Broad Non-sovereign
ω
δ
γ 0.6822 0.9246 0.9056

1.265.10-6 2.10-7 4.072.10-7

0.3350 0.0570 0.1441

C
re

di
t b

on
ds

OMRX Mortg BI
ω
δ
γ 0.6650 0.9236 0.8315

3.514.10-6 7.887.10-7 3.289.10-6

0.0626 0.0349 0.0476World
ω
δ
γ 0.8938 0.9566 0.9129

8.645.10-7 2.234.10-6 1.653.10-6

0.02583 0.0430 0.0469USA
ω
δ
γ 0.9527 0.9053 0.9106

6.496.10-6 1.205.10-5 3.772.10-6

0.0558 0.0902 0.1985Europe
ω
δ
γ 0.6596 0.3822 0.6268

3.287.10-5 3.209.10-5 5.075.10-6

0.0707 0.1574 0.0278United Kingdom
ω
δ
γ 0.3223 0.4264 0.8561

1.808.10-6 5.751.10-7 1.493.10-6

0.2528 0.1721 0.1224Japan
ω
δ
γ 0.7235 0.8103 0.8067

1.703.10-6 2.10-7 5.940.10-6

0.2088 0.0498 0.4097

JP
 M

O
R

G
A

N
 B

ro
ad

 G
ov

er
nm

en
t B

on
d

In
de

x

Sweden
ω
δ
γ 0.7912 0.9438 0.4717

8.451.10-6 4.910.10-6 1.053.10-4

0.1419 0.0989 0.4445North America
ω
δ
γ 0.8418 0.8867 0.3904

6.449.10-5 1.316.10-5 1.198.10-5

0.3981 0.0966 0.1152Europe
(United Kingdom excluded)

ω
δ
γ 0.5461 0.8214 0.8677

1.746.10-4 4.174.10-5 1.255.10-5

0.2606 0.1361 0.3567Sweden
ω
δ
γ 0.6036 0.8770 0.6080

2.176.10-5 2.493.10-5 1.185.10-5

0.1560 0.0614 0.0613United Kingdom
ω
δ
γ 0.8091 0.8694 0.9118

4.282.10-4 1.426.10-4 7.308.10-4

0.2297 0.0921 0Japan
ω
δ
γ 0.2247 0.6520 0.0251

2.355.10-5 1.134.10-5 4.219.10-5

0.0870 0.1059 0.0556Asia
ω
δ
γ 0.8666 0.8766 0.8614

4.593.10-5 4.659.10-5 9.221.10-5

0.0448 0.0891 0.1583

M
SC

I-
St

oc
k 

In
de

x

Emerging Markets
ω
δ
γ 0.8869 0.8519 0.7118

6.647.10-5 8.911.10-5 3.367.10-5

0.1123 0.0744 0.0300Real Estate
ω
δ
γ 0.7566 0.7790 0.9093

Table 3: The estimates of the univariate GARCH(1,1)-model for each asset based on data from every
third  week.
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Every fourth week data Period
1990-2005

Period
1991-2006

Period
1992-2007

3.353.10-6 2.756.10-6 3.350.10-6

0.1505 0.1508 0.1118Global Broad Non-sovereign
ω
δ
γ 0.7422 0.7633 0.7818

1.774.10-6 4.865.10-7 5.962.10-7

0.4800 0.2369 0.2926

C
re

di
t b

on
ds

OMRX Mortg BI
ω
δ
γ 0.5200 0.7631 0.7074

9.727.10-5 6.211.10-6 6.863.10-6

0.0626 0.0394 0.0411World
ω
δ
γ 0.7885 0.8701 0.8581

3.197.10-5 3.184.10-5 3.273.10-5

0.0247 0.0227 0.0145USA
ω
δ
γ 2.01.10-12 0 0

5.286.10-6 5.842.10-6 6.052.10-6

0.1722 0.1761 0.1735Europe
ω
δ
γ 0.5504 0.5246 0.5351

1.233.10-5 3.740.10-5 1.327.10-5

0.1118 0.2119 0.1179United Kingdom
ω
δ
γ 0.6408 0 0.6136

7.313.10-6 7.474.10-6 6.762.10-6

0.3802 0.3977 0.4085Japan
ω
δ
γ 0.4197 0.3900 0.3878

1.313.10-6 7.868.10-7 0.0101
0.1261 0.1050 0.1046

JP
 M

O
R

G
A

N
 B

ro
ad

 G
ov

er
nm

en
t B

on
d

In
de

x

Sweden
ω
δ
γ 0.8487 0.8757 0.8680

7.334.10-6 7.955.10-6 1.401.10-5

0.1136 0.1184 0.1290North America
ω
δ
γ 0.8705 0.8650 0.8465

2.695.10-5 3.605.10-5 4.212.10-5

0.2167 0.3445 0.2609Europe
(United Kingdom excluded)

ω
δ
γ 0.7650 0.6555 0.7080

4.486.10-5 3.063.10-5 4.351.10-5

0.0782 0.0765 0.0921Sweden
ω
δ
γ 0.8785 0.8903 0.8701

1.659.10-5 1.803.10-5 2.302.10-5

0.0998 0.1025 0.1086United Kingdom
ω
δ
γ 0.8624 0.8551 0.8443

4.383.10-4 1.493.10-4 2.534.10-4

0.1196 0.0752 0.1155Japan
ω
δ
γ 0.0856 0.6494 0.4469

1.462.10-5 9.761.10-6 2.302.10-5

0.1085 0.1227 0.1745Asia
ω
δ
γ 0.8543 0.8552 0.7872

6.200.10-5 6.942.10-5 1.724.10-4

0.1117 0.1015 0.3180

M
SC

I-
St

oc
k 

In
de

x

Emerging Markets
ω
δ
γ 0.7831 0.7775 0.4416

3.833.10-5 4.641.10-5 4.346.10-5

0.0360 0.0364 0.0480Real Estate
ω
δ
γ 0.8982 0.8850 0.8855

Table 4:The estimates of the univariate GARCH(1,1)-model for each asset based on data from every
fourth week.
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6.3 The Parameters  of the conditional correlation matrix
Up to now, the parameters of the univariate conditional variances have been discussed

and it is time to move on to the parameters associated with the conditional correlation.

From earlier studies these parameters have an approximate size of 01.0=α  and

97.0=β .

Suppose that the conditional covariance of four different portfolios’ are estimated,

namely

 Portfolio 1 consisting of the two credit bond indices OMRX Mortage index

and Global Broad Non-Sovereign,

 Portfolio 2 the six JP Morgan Broad Government Bond indices

 Portfolio 3 the seven stock indices from MSCI

 Portfolio 4 all of the sixteen indices

For each portfolio, table 5 to 8 in the end of this section present the estimated

parameters of the conditional correlation. On the whole, the results of the estimated

parameters agree with the approximate size above. However, there is never a rule

without exceptions. The estimates in portfolio 1 (see table 5) differ during the period

1991-2006 for weekly data and 1990-2005 for data selected every third week.  Also,

in portfolio 3 the estimates sampled every fourth week deviate from the standard

result during the period 1990-2005 and 1992-2007 respectively. (see table7)

The later estimated parameters imply that the conditional correlation matrix roughly

equals the unconditional correlation. This result is not convincing since it is not

realistic that the conditional correlation will be constant over time for a portfolio only

consisting of stock indices. The reason is the poorly estimated parameters of the

Japanese stock index in the univariate case. Excluding the Japanese stock index from

portfolio 3, the estimates during 1992 to 2007 will be 0.0059=α  and 9705.0=β

when data is selected every fourth week. During 1990 to 2005 the estimates without

Japan will be 0.0070=α  and  9721.0=β .
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Portfolio 1 Period 1990-2005 Period 1991-2006 Period 1992-2007

Every week

0.0540 0.1587 0.0594α
β 0.9354 0.5669 0.9204

Every second  week

0.0309 0.0334 0.0323α
β 0.9636 0.9565 0.9570

Every third  week

0.3064 0.0361 0.0631α
β 0.2158 0. 9507 0.9097

Every fourth week

0.0979 0.0685 0.0733α
β 0.7811 0.8642 0.8315

Table 5: The parameters of the DCC-model for portfolio 1

Portfolio 2 Period 1990-2005 Period 1991-2006 Period 1992-2007

Every week

0.0190 0.0190 0.0208α
β 0.9800 0.9794 0.9767

Every second  week

0.0214 0.0213 0.0204α
β 0.9765 0.9756 0.9765

Every third  week

0.0277 0.0255 0.0324α
β 0.9620 0.9628 0.9544

Every fourth week

0.0282 0.0225 0.0151α
β 0.9553 0.9551 0.9393

Table 6: The parameters of the DCC-model for portfolio 2



31

Portfolio 3 Period 1990-2005 Period 1991-2006 Period 1992-2007

Every week

0.0118 0.0083 0.0188α
β 0.9811 0.9877 0.9860

Every second  week

0.0071 0.0047 0.0088α
β 0.9808 0.9953 0.9834

Every third  week

0.0216 0.0214 0.0198α
β 0.9066 0.8080 0.9720

Every fourth week

0.0047 0.0058 0.0124α
β 2*10-7 0.9728 2*10-7

Table 7: The parameters of the DCC-model for portfolio 3

Portfolio 4 Period 1990-2005 Period 1991-2006 Period 1992-2007

Every week

0.0139 0.0070 0.0141α
β 0.9813 0.9885 0.9808

Every second  week

0.0124 0.0045 0.0126α
β 0.9695 0.9946 0.9695

Every third  week

0.0165 0.0149 0.0190α
β 0.9191 0.9109 0.9491

Every fourth week

0.0099 0.0115 0.0084α
β 0.8107 0.8700 0.8470

Table 8: The parameters of the DCC-model for portfolio 4
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6.4 The forecast of the DCC-model
Recall that from section 5 that the most correct covariance matrix will have the least

variance 2
tσ  at time t and therefore the competing covariance forecasts can be

compared by the GMVP. Figure 5 illustrates the variance of the GMVP for the

covariance matrix forecast by the DCC model (magenta) and sample covariance

matrix (blue) for portfolio 1.
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Fig 5 The variance of the GMVP based on the covariance matrix estimated by the DCC-multivariate GARCH
model (magenta) and the sample variance (blue) in portfolio 1.
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Clearly the DCC multivariate GARCH model forecasts the covariance matrix better

than the sample covariance matrix in the short run, although in the long run the

sample covariance matrix give the most correct forecast. Only the graph for period

1991 to 2006 with the frequency of every third week diverges from this result. For all

time periods the variance of the GMVP for the DCC increases because the correctness

of the forecast decline by time.

Another point of interest is that the predicted covariance matrix of the DCC model

tends to be better than the covariance matrix based on historical data for a longer time

when it is persistent. In other words, when βα +  is close to one.

Generally speaking the assets in portfolio 2 leads to the same result as for portfolio 1.

The result of the different frequencies of the data time periods for portfolio 2 is

presented in figure 7. It is basically two graphs that disagree with the others, namely

the one in period 1990 to 2005 based on data chosen at every third week and for

period 1992 to 2007 for data selected after a period of every fourth week.

One possible explanation of this last mentioned graph is that the estimated parameters

of the US government bond index differ. If forecasting the covariance matrix and

excluding this bond the graph in fig. 6 will be completed.
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Fig 6 The variances of the GMVP for portfolio 2 excluding
the US government bond index

The shape does not change but it is clearer that the covariance matrix based on

historical data is better for all points in time.
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Fig 7 The variance of the GMVP based on the covariance matrix estimated by the  DCC-multivariate GARCH
model (magenta) and the sample variance (blue) in portfolio 2.

The next portfolio to examine is number three, only consisting of stock indices. This

inspection gives no straight answer to the question; which model will give the most

accurate forecast? A few graphs will support earlier results that the DCC-model

forecast the covariance matrix better than the sample in the short run. The other

proves the opposite. Although, it is important to look back at the estimates of the



35

univariate GARCH(1,1), which gives the impression that the Japanese stock index

makes a lot of problems.
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Fig 8 The variance of the GMVP based on the covariance matrix estimated by the  DCC-multivariate GARCH
model (magenta) and the sample variance (blue) in portfolio 3.

Eliminating the Japanese stock index from portfolio 3, the following result in figure

10 for the period 1992 to 2007 with data from every fourth week is generated.
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Fig. 9. The variance of the GMVP based on the covariance
matrix estimated by the  DCC-multivariate GARCH model
(magenta) and the sample variance (blue). For the assets in
portfolio 3 not including the Japanese stock index.

Without the Japanese stock index the result agrees with previous results of portfolio 1

and 2.

One important feature to observe is that earlier studies have shown that there is other

univariate GARCH models such as GJR or EGARCH that will estimate and forecast

the stock indices better than the GARCH(1,1).

Finally, the last portfolio to study is the portfolio consisting of all sixteen assets. Also

for this portfolio the result points out that the DCC-model give better forecasts in the

short run while  the sample covariance is better in the long run. Three periods and

frequencies are an exception from this rule in figure 10.

Comparing the persistence in the DCC model with the graphs in figure 9 the same

tendency as for portfolio 1 and 2 can be confirmed. That is to say when the model is

more persistent then the DCC-model is a better model to forecast the covariance for a

longer time period. However, in the long run the sample covariance wins the

competition.
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Fig 10. The variance of the GMVP based on the covariance matrix estimated by the  DCC-multivariate GARCH
model (magenta) and the sample variance (blue) in portfolio 4..

7 Conclusion
This thesis presented a strong tendency that the dynamic conditional correlation

model forecasts covariance matrices better than the naive sample covariance in the

short run.

In the long run the opposite relation tends to hold. There is no specific time horizon

that is short or long, but the model seems to forecast better than the sample covariance

for a longer time when the persistence is high.



38

If the GARCH(1,1) should be used to estimate and forecast the conditional variances

for each index, then data with weekly or every second week frequency seem to be

best. However, since the GARCH(1,1)  model does not include the asymmetry in the

returns it might be good to use other models such the EGARCH and GJR  for more

accurate estimations and forecasts of the conditional variance. The more correct

specification of the univariate GARCH model the more correct estimation and

forecast will be achieved from the DCC-model.

Another issue is the distribution of the returns. The assumption of the normally

distributed returns makes the model easier to compute but might restrict the model too

much. For instance, to capture the behavior of the returns a fat-tailed distribution to

include the extreme values would be necessary. However, two questions need to be

answered before introducing a new distribution; is this possible from a theoretical

point of view? And also, will the opportunity cost be too high in practice when

increasing the computational burden?

In the Black Litterman model, the covariance matrix in the benchmark portfolio is

assumed to remain constant over a specific time horizon. This assumption is not met

by the time varying GARCH models. There are two possible ways to overcome this

problem. First, the benchmark portfolio can be rebalanced with the same frequency as

in the data. Secondly, a more complicated approach is to use the same idea as for the

integrated univariate GARCH model. In the end this will generate a constant

covariance under a specific time horizon based on a mean value of the time varying

covariance matrices from the DCC-model.

Finally, the DCC-model with suitably specified univariate GARCH-models is an

appropriate model to use when forecasting the covariance matrix in the short run,

since it is relatively easy to compute.
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