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Abstract

GOAL: The time gap between sexual partners is a risk factor in the
spread of sexually transmitted infections (STI). A gap that is shorter
than the infectious period implies a risk of transmission. The aim of
this study is both empirical, methodological and theoretical: (1) to de-
termine covariates affecting gap lengths, (2) to evaluate gap measures,
and (3) to calculate effects of different gap lengths on R0. METH-
ODS: A Swedish sample of partnership data is used to calculate gaps
from self-estimations of partnership timing, and to test for differences
in age, sex, and self-reported unfaithfulness. A stochastic epidemic
model with partnership dynamics for homogenous populations is used
to define an alternative gap measure and to calculate R0 for differ-
ent gap lengths and partnership durations. RESULTS: Self-reported
unfaithfulness is the only significant determinant of gap length. The
effect of gap lengths on R0 is marked for gaps less than six months,
but the effect is attenuated for longer partnerships. CONCLUSIONS:
Gap statistics based on self-reported estimations of partnership timing
is biased. It presupposes at least two partnerships and favors higher
rates of partnership change. More research is needed to generalize gap
measures and results to heterogenous populations.
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1 Introduction

Extensive research has been conducted on the risks of concurrency, i.e. multi-
ple and simultaneous sexual partners, for the spread of sexually transmitted
infections (STI). It is considered an important risk factor [19][24][29] and
a hallmark of core groups, i.e. individuals with high rates of partnership
change and high levels of sexual activity [4][22][36]. With concurrent part-
ners, infections can spread to a greater number of individuals.

Two studies of sexual behavior point to the more general risk of ”time
gaps” for the spread of STIs [18][26], i.e. the time between sexual partners.
In this study, we restrict the definition of ”gap” to the time between the
first sexual contact with the current or most recent sexual partner and the
last sexual contact with the partner that directly preceded the current or
most recent sexual partner. If the gap length is shorter than the infectious
period, sexual contact without protective measures is a risk of transmission.
Knowledge of the covariates affecting gap length is of value in developing
and designing preventive measures against STIs.

In this paper, the concepts of ”negative gap” and ”concurrency” will be
kept apart. Concurrency is a discrete variable, referring to the number of
concurrent partners, whereas negative gap is about partnership timing, a
continuous variable. A long negative gap implies a long partnership. If the
infectious period is shorter than the absolute value of the negative gap, the
STI may be ”trapped” and die out in the same way as it may be ”trapped”
and die out in a long positive gap. Thus, an absolute gap length shorter
than the infectious period implies a risk of transmission of a STI.

In section 2.1., we summarize the results of the two previous gap studies
[18][26]. Together, they point to significant age differences in absolute gap
length, with shorter absolute gaps for younger age groups. Since younger
age groups also demonstrate higher incidence of STIs, the results confirm
partnership timing as a risk factor. However, the studies were based on
selective sampling. Only respondents who provided information on more
than one sexual partner were taken into account. By excluding individuals
with less sexual experience, there is the risk of overestimating the rate of
partnership change in the population, and underestimating the absolute gap
length.

Consequently, in section 2.2., we define an alternative gap measure based
on the queueing model M/M/∞ [33]: the gap length is the difference between
”the inter-arrival time” - the time between the starting points of two succes-
sive partnerships - and ”the service time” - the partnership duration. This
allows us to estimate gap length at the population level by means of the rates
of partnership formation and dissolution. Furthermore, self-reported esti-
mations on partnership timing, the rate parameters can be used to calculate
the basic reproduction number.
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In section 2.3., with the aim of evaluating threshold effects of gap lengths,
we describe a stochastic epidemic model with partnership dynamics for a
homogenous population [1]. We cite a formula for the basic reproduction
number R0 that takes partnership and infection dynamics into account, i.e.
rates of partnership formation and dissolution, as well as rates of infection
and recovery.

In section 3, we describe the data and the methods of analysis. We apply
our two different gap measures to Swedish partnership data collected in a
survey almost twenty years ago (1988) [22]. The survey is still of value for
methodological reasons. It is a representative survey. It allows us to test
several covariates of gap length, e.g. age, sex and self-reported unfaithfulness,
and to apply and compare our two gap measures.

In section 4, we present the results of the statistical analysis. We also
describe and analyze gap distributions for different sub-groups of subjects.
We calculate R0 for various gap lengths, partnership durations, and rates
of infection and recovery. The purpose is to evaluate the relative thresh-
old effects of these parameters, and thereby to define hypotheses for future
studies.
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2 Studies and Modeling of Gaps

2.1 Two previous gap studies

Kraut-Becher et al [26] carried out the first gap study. It is based on sex
partnership data collected in the 1995 National Survey of Family Growth
(NSFG), a cross-sectional survey of a representative sample of 10,847 women
15 to 44 years of age in the United States. The statistical analysis was done
on a smaller sample of 2,768 women. Approximately 25% of the original
sample was excluded because the women were not sexually active. Another
50% of the original sample was excluded due to missing information on
partnership timing.

The gap study was restricted to positive gaps, but also included statistics
on concurrency. Concurrency was measured in terms of the proportions of
respondents reporting an overlap the last five years. About 25% of the sub-
jects reported concurrency at some time during the last five years. Positive
gaps were measured by self-estimation of end- and starting-points of sexual
contact with successive partners. Statistical analysis demonstrated signifi-
cant age differences in positive gap length, with shorter gaps among younger
women (15-19), about 8 months, compared to 11 and 18 months for women
20-29 and 30-44 respectively. The conclusion was that more than half of the
subjects changed partner within time periods shorter than infectious periods
of some STIs.

Foxman et al conducted another gap study in 2006 ([18]. The gap statis-
tics is based on a survey of sex partners among 1194 male and female res-
idents in Seattle between 2003-2004. The initial sample consisted of 8683
households in Seattle, but 6101 (70.2%) did not meet requirements for par-
ticipation - age 18-39 and fluency in English. The final analysis was based
on 1051 individuals who agreed to participate and could provide information
on partnership timing and sexual activity for the last five partners.

One third of the subjects reported at least one overlap. This is about
5-10% higher than the figure in the first study. Exact figures are missing.
The average length of gaps, both positive and negative, was 60.8 days (SE:
29.9), about 2 months. Positive gaps averaged 354.1 days (SE: 19.1), almost
12 months, which is roughly the same figure as in the first study. The length
of overlaps averaged 801.2 days (SE: 52.3), near 27 months.

Age differences were reported for negative gaps, not for positive ones.
No exact figures were given, but approximate figures can be deduced from
a diagram, with shorter negative gaps among younger subjects: -250 days
for the age group 18-19, -500 days for the age group 20-24, -600 days for the
age group 25-29, -850 for the age group 30-34, and -1250 days for the age
group 35-39.
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No gap differences could be discerned for income, marital status, gen-
der, age at first sex, and having same-sex partners. Other studies have
demonstrated sex differences, men reporting more partners and overlaps
[12][24][29][31]. The absence of sex differences may be due to the detailed
survey questions. It forces the respondents to think carefully about their
sexual partners, instead of giving general answers, for which reason the gen-
der bias is reduced.

Furthermore, no significant changes in gap length could be discerned
across partnerships over time, despite significant age differences. A possible
explanation is the mean rate of partnership formation (1.81 per year). Con-
sidering that the maximum number of reported partnerships was limited to
5, this means that the estimated gaps do not stretch too far back in time,
at most 5-10 years.

For the purpose of comparison with the first gap study, we have av-
eraged the negative gap lengths for the first and second age groups, and
for the fourth and fifth age groups. For the same reason, we re-scaled the
negative gap length into months. In diagram 1, we render the positive gap
lengths across age groups according to the first study (NSFG 1995), as well
as the corresponding negative gap lengths according to the second study
(SEATTLE 2003).

Together the two studies point to a gap and age trend. The absolute
gap length increases with age. This agrees with research and studies that
demonstrate higher rates of partnership change among adolescents, before
people pass into stable relationships with occasional sidesteps.
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2.2 Gap measures

The two previous gap studies conclude that a majority of time gaps between
partnerships are shorter than the infectious periods of several STIs. The
conclusion is problematic for both theoretical and methodological reasons.

First, subjects who do not, or cannot, report more than one partner were
excluded from the studies. Thus, gap estimates are biased for subjects with
higher rates of partnership turnover and shorter absolute gap lengths.

Second, in the second gap study, the average gap length was an average
over positive and negative gaps over different numbers of partners for each
respondent. This results in further bias for subjects with higher rates of
partnership turnover and shorter absolute gap lengths.

Third, negative gaps are equated with overlaps (concurrency). The dif-
ference between long and short negative gaps is not taken into account. A
long negative gap implies a long partnership without any recent concurrent
partner. STIs may be trapped if the partnership duration is longer than the
infectious period.

We cannot know if and to what extent the reported gap statistics is
representative for the larger population. An important part of the problem
is the gap measure - self-reported estimations of partnership timing. This
gap measure presupposes more than one partner to report. Furthermore, it
is put into practice in different ways in the two studies.

We defined the gap to be the difference between the date of
the first sex with a current or most recent partner and the date
of last sex with a previous partner [26].

This gap definition was used in the first gap study. The concept of
”previous partner” is not specified any further, but the most reasonable
interpretation is ”the partner that directly preceded the current or most
recent partner”. Partnership data were limited to 5 years before the inter-
view, other than spouses and cohabiting partners for whom there was no
time limit.

In the second gap study, there was no time limit on partnership data.
Gaps were calculated for the last up to five sexual partnerships regardless
of their occurrence in time. The gap statistics included all gap data for a
respondent. This explains the more loose gap concept used in the second
study.

The length of time between the end of an individual’s part-
nership with one sexual partner and the start of their next part-
nership [18].

This gap measure results in gap statistics based on 1-4 gaps (2-5 part-
ners) for each subject, without any predefined limit to the occurrence of the
partnerships in time. This raises five theoretical and methodological issues.
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First, there are generational shifts in partnership dynamics. For exam-
ple, during the last two decades, rates of partnership change have gone up
in Sweden and Norway [17][35]. If gaps are collapsed over time, we cannot
account for these changes.

Second, partnership sampling over longer time periods may result in
higher sample losses among younger subjects with less sexual experience.
We lack the relevant statistics to support or reject this hypothesis.

Third, the generalized gap measure gives more weight to subjects with
many partners, since they have more gaps to report. This may result in a
bias for shorter absolute gap lengths.

Fourth, to model the spread of STIs in populations, we must specify the
prevalence of sexual behaviors and STIs at a particular time. A measure
that collapses data over time is not suited as a parameter.

Fifth, the generalized gap measure introduces a potential bias in gap
recall [16]. Recall is probably better for the most recent partners, whereas
missing information on gaps increases with time. Thus, longer gaps may be
underestimated.

The authors do not discuss these issues, but argue that the generalized
gap measure strengthen the validity of gap statistics. However, to evalu-
ate the methodological issues, we need to compare and evaluate different
gap measures. Therefore, in the present study, we apply two different gap
measures.

First, we use a modified version of the first gap measure: the time in
days between the date of the first sexual contact with the current or most
recent sexual partner and the date of the last sexual contact with the partner
that directly preceded the current or most recent sexual partner. This is a
gap measure at the individual level.

Second, we use of queueing theory to derive a representative gap mea-
sure at the population level. In the queueing model (M/M/∞)[1][33], a
single individual can be conceived as a partnership service station dissolv-
ing partnerships at a constant rate σ - the dissociation rate. The remaining
individuals in the population are potential clients who arrive at the station
at a constant rate ρ - the association rate.

The inter-arrival time, the length of time between two successive starting-
points of two partnerships, is exponentially distributed with parameter ρ and
expected value ρ−1. The service time, the partnership duration, is exponen-
tially distributed with parameter σ and expected value σ−1.

In the queueing model (M/M/∞), gap is a random variable Z defined
by the difference between two independent random variables Y and X - the
inter-arrival time for two successive partnerships and the duration of the first
partnership in the succession. In terms of partnership dynamics, the gap is
the time between the end-point of partnership X and the starting-point of
partnership Y directly succeeding partnership X (figure 1).
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The gap distribution is derived from the distributions of its constituents,
the inter-arrival time (Y ) and the service time (X), with their corresponding
parameters ρ and σ. The formulas for calculating expected gap value, the
overall value as well as conditional values for positive and negative gaps,
and gap variance, are given below.

Y ∼ exp (ρ) (1)
X ∼ exp (σ) (2)
Z = Y −X (3)

fZ(z) =
∫ ∞

0
fX(x)fY (z + x)dx if z ≥ 0 (4)

fZ(z) =
ρ σ

ρ + σ
e−ρz if z ≥ 0 (5)

fZ(z) =
∫ ∞

−z
fX(x)fY (z + x)dx if z < 0 (6)

fZ(z) =
ρ σ

ρ + σ
eσz if z < 0 (7)

E(Z) = E(Y )−E(X) = ρ−1 − σ−1 (8)
V (Z) = V (Y ) + V (X) = ρ−2 + σ−2 (9)

E(Z|Z ≥ 0) =
ρσ

ρ + σ
ρ−2 (10)

E(|Z||Z < 0) =
ρσ

ρ + σ
σ−2 (11)

This gap model enables a gap measure based on the association and
dissociation rates ρ and σ at the population level, in contrast to the gap
measure that relies on self-reported estimation of partnership timing at the
individual level.
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The model predicts lower gap variance for groups of individuals with
higher mean rates of partnership formation and dissolution. This agrees
with age trends in partnership dynamics, i.e. higher rates of turnover and
shorter absolute gap lengths among younger persons.

The model also allows us to evaluate the effects of gap length on R0. (See
Appendix A for a short introduction to the basic reproduction number). As
far as we know, there is no epidemic model that explicitly defines a gap
parameter, but there are models that include ρ and σ. We can calculate
relative effects of gap length by varying these parameters.

2.3 Stochastic epidemic modeling

A majority of epidemic models is based on the assumption of occasional
sexual contact: an infected individual makes occasional sexual contact with
susceptible individuals at a regular rate. These models cannot account for
the function of partnership in the spread of STIs [23][24][29][34][36]. (See
Appendix B for a short introduction to epidemic modeling).

Some deterministic models do take partnership dynamics into account.
They have mainly been formalized by means of dynamic systems - systems of
differential equations - that specify rates of pair formation and dissolution,
as well as rates of infection and recovery [9][11][27][28].

The dynamic system approach extends the state space of the basic ver-
sion of the SIR model (appendix B). Individuals are either single or paired,
which enables evaluation of relative threshold effects of partnerships com-
pared to isolated contacts. The drawback with this approach is the mathe-
matical complexity that does not always allow for explicit calculations of R0

[1]. Nor is the approach well suited to deal with concurrency, except when
assuming severe restrictions on the number of concurrent partners [20].

An argument has been made that the dynamic system approach does al-
low for unlimited concurrency: ”rapidly changing monogamous interactions”
[15]. However, concurrency covers different types of overlapping partner-
ships, including concurrency with one steady and one causal partner, which
cannot be equated with high rates of partnership formation and dissolution.

Altmann [1] proposes a different approach to epidemic modeling with
partnership dynamics. He extends the SIR-model to include stochastic part-
nerships, i.e. partnerships as independent stochastic processes, thereby al-
lowing for concurrency without predefined limits of the number of partners.
The main idea is to track states of dyads, pairs of individuals.

A dyad is in one of two states, single or united. Furthermore, each
individual in the dyad is in one of three disease states: susceptible, infected
or recovered. Thus, there are 18 states in this dyadic model: 2x3x3. The
basic version of the model assumes a homogenous population and Markov
transitions between the states. Thus, the transitions are regulated by the
following assumptions.
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1. Constant rate of association (per individual): ρ/N

2. Constant rate of dissociation (per partnership): σ

3. Constant rate of infection from infectious partner: γ

4. Constant rate of recovery or removal from infection: ν

The parameter ρ is scaled by population size N to keep the total rate of
association constant over different population sizes.

The model can be elaborated for heterogenous populations and/or gener-
alized to semi- or non-Markov processes, but the Markov model is sufficient
for our purposes. It accounts for partnership dynamics and keeps the math-
ematical formula for calculating R0 simple and explicit. The derivation of
R0 that follows is a short summary of the derivation in Altmann [1].

We assume a homogenous and completely susceptible population of size
N +1. We also assume that the stochastic process of partnership formation
and dissolution has equilibrated when the infection is introduced for a ran-
dom individual. The infected exists in N dyads. To calculate the probability
of transmission in a dyad, we only need to deal with the reduced state space
in figure 2.

The state of the infected is given. This reduces the original state space
of the Markov model from 18 to 12 states: 2 x 2 x 3. Furthermore, the
states I − I, R ·S, and R−S are absorption states. Thus, seven states that
are dependent on these absorption states are excluded: I · I, R − I, I − R,
R · I, I ·R, R ·R, and R−R. The five states in figure 2 remain.
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When a dyad with the infected makes a transition from the single to
the united state, there is a probability β that the infection gets transmitted
at first contact. Thereafter, if not transmitted, the infection is transmitted
at a constant rate γ when the infected and the susceptible are united in
partnership.

To calculate the probability of transmission for a dyad, we calculate the
probability of absorption into state I − I as opposed to R ·S or R−S. This
is done with standard methods for Markov processes.

A dyad begins either in state I · S or I − S. Let P0(I · S) denote the
probability that the dyad starts in I ·S. Let P0(I−S) denote the probability
that the dyad starts in I − S,

P0(I · S) =
Nσ

ρ + Nσ
, (12)

P0(I − S) =
ρ

ρ + Nσ
. (13)

Furthermore, let P (I − I|I ·S) denote the probability of absorption into
state I−I, starting from state I ·S. Let P (I−I|I−S) denote the probability
of absorption into state I − I, starting from state I − S. P (I − I|I · S) and
P (I − I|I − S) then satisfy the following system of equations,

βρ/N + (1− β)ρ/NP (I − I|I − S) = (ρ/N + ν)P (I − I|I · S), (14)
(ν + σ + γ)P (I − I|I − S) = γ + σP (I − I|I · S). (15)

Together with initial state probabilities, this system gives us the proba-
bility of transmission for a dyad.

The stochastic and independent nature of partnership processes implies
that the secondary cases in a large population are unlikely to be partners.
Thus, we calculate R0 by summing up the probabilities of absorption over
all dyads involving the infected. For large N, the equation [1] converges to

lim
N→∞

R0 =
ργ

σ(ν + σ + γ)
+

βρ

ν
+

ργ(1− β)
(ν + σ + γ)ν

(16)

Later on, we will make use of this formula for calculating the basic
reproduction number for various gap lengths by means of ρ and σ - the
rates of association and dissolution - as well as for different values of γ and
ν - the rates of infection and removal/recovery.
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3 Data and Methods

3.1 The Gotland data

To address the theoretical and methodological issues raised in this paper,
we will apply our gap measures to Swedish partnership data collected in a
survey conducted on Gotland in 1988 [22]. Gotland is an island in the Baltic
sea. At present, it has 57,500 inhabitants. Its demographics is similar to
the general Swedish population.

The respondents were selected on the basis of a random sample of 1150
local residents in the age group 16-31. They were invited to come to
schools and other public places on specified dates and times to answer a
self-administered questionnaire. 779 individuals (70%), 432 women and 347
men, completed it.

One part of the questionnaire consisted of simple and direct questions
regarding the subject’s sexual experience and general background: Have you
ever had intercourse? How old were you at your first intercourse? How old
was your partner? How old were you at first intercourse with your second
partner? How many different persons have you had intercourse with during
your life? Have you ever been unfaithful to a partner? Age and sex?

Another part consisted of graphical representation of the subject’s sexual
contacts in the preceding 12 months. The subject was given a graph showing
the months from July 1987 to June 1988. He or she was then asked to mark
any causal contact with an ’X’ on the time line, and each longer, stable
relationship with a continuous horizontal line. For each partner, the subject
was asked to give information on the partner’s age, number of occasions in
which they had had sexual intercourse, and whether a condom had been
used.

General statistics from this study has already been published [22]. The
authors reported results that agree with general findings. Men tend to
report more sexual experience, more partners and sexual activity, although
age at first sex is generally lower for women than for men. The authors
also reported longer and increasingly stable partnerships with age, both for
men and women. High-risk behavior, i.e. several partners in parallel or in
quick succession, only occurred in about 10% of the subjects. The authors
concluded that a rather small group of people have sexual contacts that put
them at risk of acquiring or transmitting STIs, supporting the notion of a
core-group.

In the previous gap studies, a majority of respondents were estimated
at risk. Different sampling techniques and questionnaire design explain the
discrepancy. No one was excluded in the Gotland study due to lack of sexual
experience. Furthermore, the gap measures and estimates interact with the
different time windows.
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The time window for reporting sexual partners was smallest in the Got-
land study, one year, moderate in the first American study, five years, and
unlimited in the second American study. With a larger time window, a
larger proportion of respondents will report concurrent partners at some
point in time. The proportion of subjects who report at least one case of
concurrency increases from 10% in the Gotland study, to 25% and 33% in
the two American studies.

3.2 Methods of Analysis

The first study of the Gotland data was mainly descriptive in kind [22]. In
this paper, we will present a more detailed analysis of the partnership data
within the one-year time window - July 1987 to June 1988. For this one year
time window, we have information on end- and starting points of partners
and partnerships.

We will begin by presenting partnership and gap statistics based on self-
reported estimations of partnership timing: the mean number of partners
and the average gap length. Due to the restricted one-year time window,
which cannot account for absolute gaps > 12 months, the average empirical
gap length ought to be shorter than the gap estimates in the previous studies.

We then test for differences in age, sex and self-reported unfaithfulness
with a three-way ANOVA. For this purpose, we have divided the subjects
into three age groups (16 to 20, 21 to 25, and 26 to 31). Furthermore,
we make a regression analysis of gap length on several other variables to
evaluate the best predictors: age (continuous), sex (dichotomous), age of
first sex (continuous), age difference between subject and previous partner
(continuous), and number of sex acts with previous partner (continuous).

After the statistical analysis, we apply the Markov gap measure at the
population level and derive gap estimates on the basis of monthly rates
of association and dissociation. We compare the results of the two gap
measures, as well as with the results from the two previous gap studies.
Considering that the Markov gap measure is calculated at the population
level, not excluding subjects with less sexual experience, it ought to result
in longer gap estimates, as well as greater variance, than any gap measure
based on self-reported estimation of partnership timing.

Markov gap estimates are thereafter calculated separately for two sub-
populations, i.e. subjects who reported being unfaithful and faithful respec-
tively. This division reflects core and non-core group behavior. First, un-
faithfulness implies concurrency, multiple partners. This is a hallmark of
core groups [6]. Second, unfaithfulness implies nondisclosure of information
to sexual partners [14], which is also a central feature of core group behavior,
where multiple sexual contacts are ignorant of each other. Together, concur-
rency and non-disclosure of information neutralize the regulating function
of partnerships in the spread of STI.
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By splitting the population into unfaithful and faithful, we control for
core and non-core behavior at the population level. Considering that they
represent different levels of sexual activity, the groups ought to demonstrate
shorter and longer absolute gaps respectively.

Finally, we use the Markov formula for R0 to evaluate relative threshold
effects of various gap lengths and partnership durations at the population
level. We calculate and compare R0 for the core and the non-core group
respectively. We simulate and plot R0 for (1) continuous variations of gap
length, (2) discrete partnership durations (1, 6, and 36 months), and (3)
two different types of infections, (F) fast infection with high transmission
and recovery rates and (S) slow infection with low transmission and recovery
rates [15][19].
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4 Results

4.1 Gotland partnership and gap statistics

The mean number of sexual partners during the one-year time window is 1.12
(SD: 1.16); median 1.00. A three-way ANOVA of the number of partners
(R2 = 0.144) demonstrates main effects of age (F (2, 761) = 11.68, p = 0.001)
and unfaithfulness (F (1, 761) = 111.03, p < 0.001), as well as an interaction
effect of these factors (F (2, 761) = 10.78, p < 0.001) (cf. Diagram 2). The
effect of unfaithfulness (partial η2 = 0.127) is stronger than the effect of age
(partial η2 = 0.018). There is no main effect of sex.

The mean number of partners for subjects with self-reported unfaithful-
ness and faithfulness are 1.87 and 0.93 respectively (SD: 1.66 and 0.90). The
mean number for the age groups are 1.03, 1.25, and 1.10 (SD: 1.43, 1.19,
and 0.73).
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The mean age of subjects with self-reported unfaithfulness and faithful-
ness are 24.57 and 22.61 respectively (SD: 4.60 and 5.00). The difference is
significant (t(772) = 4.36, equal variances assumed, p < 0.001).

160 subjects (20.5%) report sexual contacts with two or more persons.
The mean value of the most recent gap is 55.62 days (SD: 99.40); median
44.15 (cf. histogram 1). 19 gaps (11.9%) are negative. The average positive
and negative gaps were 78.80 and -116.40 days (SD: 6.09 and 24.21).

A three-way ANOVA of the gap length (R2 = 0.244) demonstrates a
main effect of self-reported unfaithfulness (F (2, 145) = 19.50, p < 0.001).
The mean values of gaps for subjects with self-reported faithfulness and
unfaithfulness are 85.51 and 11.60 days respectively (SD: 74.49 and 115.66).
The ANOVA cannot confirm main effects of age group or sex, but a weak
interaction between these factors, with longer gaps for men and shorter for
women (F (2, 145) = 4.75, p ≈ 0.01, η2 = 0.061) (diagram 3 on next page).

Linear regression analysis of gap length confirms unfaithfulness to be the
only significant predictor among several variables: age (continuous), sex (di-
chotomous), age of first sex (continuous), age difference between subject and
previous partner (continuous), and number of sex acts with previous part-
ner (continuous). Linear regression analysis of gap length for each variable
demonstrated significant effects of unfaithfulness and age, with shorter gaps
for unfaithfulness and with age. When tested together, as well as pair-wise
and step-wise with the remaining variables, only unfaithfulness proved to
be a robust predictor for a linear regression model (F (1, 156) = 24.16, p <
0.001, t = −4.916, p < 0.001, standardized β = −0.366).
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4.2 Markov estimates and distributions

Tables 1-3 on the following page present the calculations of the Markov
estimate of gap length for the whole sample (Table 1), the core group (Table
2), and the non-core group (the whole sample excluding the core group)
(Table 3).

Monthly rates of partnership association (ρ) were calculated on the basis
of the number of new partnership per month and subject. Monthly rates of
partnership dissociation (σ) were calculated on the basis of the proportion
of dissolved partnerships per month.
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The monthly rates of association and dissociation were used to calcu-
late monthly inter-arrival times and service times. In turn, these served to
estimate the average monthly gap length (8).

The Markov gap estimate for all subjects is 4.83 months, or 145 days.
The empirical gap mean in the previous section was 55.6 days. The diver-
gence is to be expected considering the one-year time-window. The discrep-
ancy should be less for subjects with self-reported unfaithfulness, since core
behavior means shorter absolute gaps, and larger for self-reported faithful-
ness, since non-core behavior means longer absolute gaps.

For the core group, the Markov gap estimate is 0.548 months (SD: 2.20
months), which is more in line with the empirical gap estimate of 11.60 days.
The largest divergence is found for subjects with self-reported faithfulness:
212.2 days (7.07 months, SD: 4.29 months)and 85.5 days respectively.

On the next page, we show plots of the theoretical gap distributions
(5)(7) for the core and the non-core group. The main difference is the
tighter distribution for the core group, less variance, which is a consequence
of more frequent changes and shorter duration. Previous empirical gap
studies identify this gap pattern as more typical for younger age groups,
whereas the gap distribution for the non-core group is more typical for older
age groups.

The expected positive gap E(Z|Z ≥ 0) (10) is 3.4 months for the core
group and 12.6 months for non-core group. The expected negative gap
E(Z|Z < 0) (11) is 3.2 months for the core group and 5.9 months for non-
core group.

For a M/M/∞-system, the stationary distribution of the number of cus-
tomers is Poisson distributed with parameter ρ/σ. Applied to our data, the
expected number of partners is 0.72 for the whole sample, 0.96 for the core
group, and 0.68 for the non-core group. The Poisson estimate can be com-
pared with the proportion of time that the subjects find themselves engaged
in a partnership. Since the one year time window is a more representative
time frame for the core group, we will only make the comparison for this
group.

The average duration of the first noted partnership is 238.4 days for the
core group (SD: 13.0). The average gap length is 11.2 days. Thus, the pro-
portion of time in partnership is 0.955, which agrees well with the Poisson
estimate0.96. Taken together, the short gap length and the short partner-
ship duration for the core group mean partnership changes well within the
infectious periods of several STIs.
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4.3 Epidemic threshold effects

To calculate R0 based on Altmann’s model (16), five parameters need to be
specified, besides the rates of partnership association and dissociation, (1)
the probability of transmission at first contact (β), (2) the rate of trans-
mission with a partnership (γ), and (3) the rate of recovery (removal) from
infection (ν). We will use two classes of fictive but realistic parameter values
that correspond to two types of infections: (1) fast infection (F) - high trans-
mission and recovery rates - and (2) slow infection (S) - low transmission
and recovery rates.

1. β = 0.25, γ = 1.5, and ν = 0.15

2. β = 0.01, γ = 0.1, and ν = 0.025

With our previous estimates of ρ and σ for the core and non-core groups,
we get the following result (superscript F = fast infection and S = slow
infection),
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RF
0 = 0.878 for the non-core group,

RF
0 = 1.661 for the core group,

RS
0 = 1.329 for the non-core group,

RS
0 = 2.504 for the core group.

R0 is almost doubled for the core group, irrespectively of the type of
disease.

Our Markov gap estimates are based on a sample of young subjects.
Adults manifest lower rates. Therefore, we calculated RF

0 and RS
0 for ρ =

0.014 and σ = 0.017, corresponding to partnership durations of 58.8 months
and gaps of 12.6 months. This results in RF

0 = 0.827 and RS
0 = 0.976.

Thus, prolonging partnership duration by several years and doubling the
gap length do not radically effect R0.

To make a more systematic evaluation of the threshold effects of gap
length, R0 was plotted against gap length, for three partnership durations
(1, 6, and 36 months) and for fast and slow infections. The plots are given
in figure 3 on the next page.

For the fast infection, the critical gap length for which R0 < 1 is rather
stable across partnership durations, about 5 months or less. For slow infec-
tions, the critical gap length changes to a larger extent across partnership
durations, 5-15 months. The plots illustrate that changes in the thresh-
old effect of gaps are larger for small gaps, less than 10 months, and for
partnerships of short duration, six months and less.
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5 Conclusions

The statistical analysis of the Gotland gap data demonstrates that core and
non-core behavior is a stronger determinant of gap length than age and
sex. The risk of core group behavior is also marked compared to non-core
behavior. The Markov gap measure results in an average gap length of 0.55
months and 7.07 months for the non-core group. The expected positive gap
length is 3.4 months for the core group and 12.6 for the non-core group.
The calculations of R0 indicate critical gap lengths of approximately 5-10
months.

We could not confirm a significant linear age effect on gap length. There
are several explanations for this. First, the age span of the respondents
was tighter and lower in the Gotland study, 16-31 compared to 15-44 and
18-39 in the American studies. The tighter span makes age differences less
prominent. Another explanation is the one-year time window.

A one-year time window cannot account for absolute gap lengths > 12
months. According to the previous studies, the average absolute gap length
for adults lies above that. In fact, the one-year time window is biased for
younger subjects. The mean age is 21.54 (SD: 4.36) for subjects reporting
at least two sexual partners, and 23.36 (SD: 5.06) for subjects reporting at
most one sexual partner, which is a significant difference (t(281) = 4.561,
equal variances not assumed, p < 0.001).

Only 11.9% of the gaps measured by self-estimation of partnership timing
were negative in the Gotland study, compared to one third of the subjects in
the most recent American study. The reason for the discrepancy is unclear.
One explanation could be the age differences, i.e. the younger and tighter
age span in the Gotland study. Perhaps the proportion of negative gaps
increases with age. Another explanation could be cultural differences in
sexual behavior.

Selective sampling for subjects with higher levels of sexual activity results
in gap statistics that is not representative for the general population. With
self-reported estimations of partnership timing, which excludes subjects with
less sexual experience, we get an average gap length of almost two months
in the Gotland study, whereas the Markov gap estimate predicts almost five
months at the population level.

More research is needed to evaluate gap measures and estimates. We
need systematic comparisons and statistical analysis of the effects of using
selective sampling and different time-windows. Furthermore, we need to
be more clear about the concepts in use, in particular measures including
”negative gap”. In this study, ”negative gap” denotes the timing of partner-
ships, whereas previous studies equate negative gaps with concurrency and
overlaps.

For modeling purposes, an independent gap parameter is of limited value.
In this study, it is derived from the general partnership dynamics, i.e. as-
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sociation and dissociation rates. Furthermore, its epidemic effect interacts
with partnership duration. Considering the problems of empirical gap mea-
sures and estimation, it would then seem more reasonable to define the gap
parameter in terms of general partnership dynamics.

The epidemic function of gaps is more complex than its relation to the
infectious period. Gaps of equal size are not always equal in function. If
monogamous partnerships are long enough, STI with an infectious period
many times shorter than partnership duration will have little chance to be
passed on, irrespectively of the time gap between current and next part-
nership. This supports our initial discussion of negative time gaps. A long
negative gap implies a long partnership and less risk of transmission since
the STI is trapped in the partnership.

Consequently, negative gaps should not be equated with concurrency as
a risk factor in the spread of STIs. Concurrency refers to the number of
partners at a particular moment, wheras time gaps refer to the timing of
partnerships, i.e. the time distance between starting- and end-points of part-
nerships. Thus, the relevant epidemic risk factor may be the absolute gap
length (time distance). Everything else equal, longer absolute gaps imply
lower risks of transmission; shorter absolute gaps, higher risks of transmis-
sion. This is a hypothesis for future research.

More research is needed to validate or refute a queueing model of gaps
and corresponding stochastic models. For example, we should consider and
evaluate different distributions than the exponential one [30]. More research
is also needed to understand and explain the partnership dynamics and the
threshold effects in heterogenous populations and over time [13]. In this
study, we have kept the analysis of core and non-core groups apart. A more
realistic and relevant modeling must take their interaction into account.
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A The basic reproduction number R0

The phrasing varies - the reproductive ratio or the reproductive rate - but
the meaning is the same. The reproduction number is a measure of the
potential of an infection to reproduce and spread itself in a population.

The reproductive number is the ratio of ”births” of new in-
fections to the ”deaths” of old infections [19].

If R > 1, the epidemic tends to increase. If R < 1, it tends to decrease.
R = 1 is a point of equilibrium. However, R is not constant during an
epidemic. It is greater than 1 when the epidemic starts to grow, and less
than 1 when the spread abates [19].

The basic reproduction number R0 restricts the general concept to the
initiation phase of epidemics. It is a measure of the take-off potential of
an infectious disease, a key parameter in epidemic modeling. The following
definition holds for homogenous populations.

R0 is the average number of individuals directly infected by
an infectious case during his or her entire infectious period, when
he or she enters a totally susceptible population [21].

There are several ways to formalize the parameter depending on the
model. The following equation is a starting-point for epidemic models in
continuous time: R0 = γ/ν.

γ is the infection rate, the number of new infectious contacts per unit
time. ν is the rate of recovery from infection. The equation is derived from
the SIR model (appendix B).
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B Epidemic models

There is a variety of epidemic models [2][3][5][10]. They can be divided into
different kinds depending on their formal and mathematical properties [20].
Here is a list of the main distinctions.

Compartmental versus distributional models refer to the progression
of the STI, whether the infection state is stable (compartmental) or
change in some way throughout the infectious period (distributional).

Discrete versus continuous models refer to the transition time between
states, whether the time is discrete or continuous.

Deterministic versus stochastic models refer to the type of transition
between states, whether transitions are fully determined or occur at
random in the population.

Group versus individual models refer to the level of analysis. Epidemic
modeling often involves homogenous groups at some level, whereas
simulations are usually based on networks of individuals.

Besides these formal properties, epidemic models take various forms de-
pending on the determinants of concern [25]. For example, the SIR-model
- a compartmental model - includes a removed state (R) that is relevant
for some STIs (Chlamydia), but not others (HIV). Other compartmental
models include other states and/or transitions.

SIS: Susceptible → Infectious → Susceptible

SEIR: Susceptible → Exposed → Infectious → Removed

MSIR: Immune → Susceptible → Infectious → Removed

The classic SIR-model, the Kermack-McKendrick model, involves three
infection states: Susceptible (S), Infected (I), and Recovered (R). Individuals
pass from being susceptible to infected, and than from infected to recovered,
or removed. The transitions between the states are governed by a set of
differential equations and boundary conditions.

dS

dt
= −γIS (17)

dI

dt
= γIS − νI (18)

dR

dt
= νI (19)

N = S(t) + I(t) + R(t) (20)
R0 = γ/ν (21)
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N is the constant number of individuals in the population. S(t), I(t)
and R(t) are the numbers of susceptibles, infected, and recovered at time t.
γ and ν are transition rates between the infection states. γ is the transition
rate from susceptible to infected per susceptible and per infected. ν is the
rate of transition from infected to recovered.

The SIR model rests on the following set of assumptions: (1) fixed pop-
ulation size, i.e. no births or deaths; (2) homogeneous population with no
social structures or relations; (3) constant rate of infection; (4) constant
rate of recovery; (5) instantaneous infection after contact; (6) and indepen-
dent infection and recovery rates. Assumptions of this kind are necessary
to reduce real-world complexity and enable modeling in the early stages,
but they must be continuously refined to develop models that make better
approximations to real processes. This has also been done with the SIR
model. Several of the assumptions and parameters have been revised and
refined, not least the infection rate.

In its most simple form, the infection rate is a summary of both hu-
man sexual behavior, the contact rate, and the infectivity of the disease, the
transmission rate. However, there are good reasons for keeping these param-
eters apart. Due to evolutionary pressures of the immune system, there is a
trade-off between the infectivity of the disease and its duration. Highly in-
fectious organisms are short-lived. They mobilize the immune system. The
reaction is fast. Less infectious organisms do not elicit extensive reactions
and may therefore survive for longer time [3][19]. Consequently, transmis-
sion and recovery rates are not independent, but outcomes of interactions
between the immune system and the nature of the infectious organism.

Higher transmission rates imply higher recovery rates. Lower transmis-
sion rates imply lower recovery rates. For this reason, more elaborated epi-
demic models of STIs usually split the infection rate γ into two parameters:
the contact rate β and the transmission rate ν, to distinguish behavioral
and biological factors in the spread of STIs,

R0 = αβ/ν. (22)

α is the probability of transmission per sexual contact, and β is the
sexual contact rate, i.e. the number of new sexual contacts per unit time per
infected individual. The contact rate is a behavioral measure, whereas the
transmission probability is a measure of the biology of infection. This split of
the infection rate parameter into two, the contact rate and the probability
of transmission, is an example of how epidemic models are elaborated in
response to empirical considerations. The inclusion of partnership formation
and dissociation - partnership dynamics - is another example.
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