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Abstract

The Lee-Carter Model is one of the most popular methodologies for
forecasting mortality rates. The model is widely known to be simple
and has been used very successfully in U.S. and several countries. In
the present paper, the Lee-Carter model is applied to data from Swe-
den in the long-term perspective. The Singular Value Decomposition
(SVD) was used to estimate the model’s parameters. Identification
of a common trend of mortality change has been attempted by fit-
ting a standard Lee-Carter model to different time series (1860-2004,
1900-2004, 1950-2004 and 1980-2204). We concluded by forecasting
the mortality rates for 1901-2004 and 1951-2004 based on a total of
seven different estimation periods and comparing them with the re-
sults obtained by application of the extended Lee-Carter model with a
constant b̂x. The results indicate that the selection of an appropriate
estimation period is important for forecasting mortality.
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1. Introduction 
The attempt to find an appropriate mortality curve has a long history in demography and 

actuarial sciences. Traditionally, a parametric curve was fitted to annual mortality rates.  The 

most famous researchers in the history are deMoivre (1725), Gompertz (1825), Makeham 

(1860), Sang (1868) and Weibull (1939). Over the past ten years, a number of new 

approaches have been developed for forecasting mortality using stochastic models, such as 

Alho (1990, 1992), Alho and Spencer (1985, 1990), McNown and Rogers (1989, 1992), Bell 

and MOnsell (1991), and Lee and Carter (1992). 

 

Recently, the Lee-Carter model became more and more popular and was applied for long-run 

forecasts of age specific mortality rates from many countries and time periods.  This model is 

computationally simple to apply and it has given successful results for various countries, for 

instance, U.S. (Lee and Carter 1992), Canada (Lee and Nault 1993), Chile (Lee and Rofman 

1994), Japan (Wilmoth 1996), the seven most economically developed nations (G7) 

(Tuljapurkar et al. 2000) and Belgium (Brouhns et al. 2002).  Interestingly, the model did not 

succeed in Australian data (Booth et al. 2002) and the U.K. (Renshaw and Haberman 2003).  

 

As is well known, Sweden has a long tradition of applying the Makeham method to adjust 

mortality rates.  It could therefore be useful to study other methods for Swedish data as well.  

At present, several researchers have applied Lee-Carter to Swedish data — Hans Lundström 

and Jan Qvist (2002) examined how the Lee-Carter model operates with Swedish data for the 

period 1901-2001. Peter Wohlfart (2006) compared the differences in mortality rates and 

expected lifetime between Sweden and Denmark by using the Lee-Carter model, whereas 

Estrella Zarate (2006) applied the Lee-Carter model to the insured individuals’ data for a 

pension fund, KP Pension. 

 

In this paper, we will focus on a long-term study of mortality rates for Swedish population 

data, and give an overview of the Lee-Carter model through describing the basic method; 

discussing applications and extensions and evaluating the performance of the method.  In 

addition, we will study how a forecaster could get a better performance of the model by 

selection of an optimal time period to fit the model. 
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The paper is divided into several sections.  In Section 2, we introduce some historical 

background on Swedish data, discuss how to deal with data and describe the basic model of 

the Lee-Carter model. Section 3 we present the method for deriving the model’s components 

in details and discuss the model and its properties by applying the method to different time 

series.  Residual terms are discussed in this part as well.  In section 4, we forecast the 

mortality rate and present the results from the evaluation.  Finally, Section 5 gives a summary 

of our study. 

 

2. The data and method 

2.1 The data 

 
The data source used for the studies made in this paper is “Human Mortality Database” 

(www.mortality.org).  

 

The Human Mortality Database (HMD) began in the year 2000 and was launched in May 

2002 after its first phase of development.  It received financial and logistical support from its 

two sponsoring institutions — the Department of Demography at the University of California, 

Berkeley in US and at the Max Planck Institute for Demographic Research in Rostock, 

Germany.  It also has financial support from the National Institute on Aging, USA and 

received technical advice and assistance from many other international collaborators. 

 

The database provides detailed mortality and population data to researchers, students, 

journalists, policy analysts, and others interested in the history of human longevity and this 

database is free of charge.  Currently, it contains detailed data for a collection of 28 countries.  

 

The information in the HMD is standardized and includes the following types of data: 

• Live birth counts, 

• Death counts, 

• Population size on January 1st, 

• Population exposed to risk of death (period & cohort: period data are indexed by year 

of death, whereas cohort data are indexed by year of birth), 
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• Death rates (period & cohort), and 

• Life tables (period & cohort). 

All HMD data files are organized by sex, age and time. Population size is given for one-year 

and five-year age groups.  One-year age groups means 1, 2, …, 109, 110+; and five-year age 

groups means 0, 1-4, 5-9, 10-14, …, 105-109, 110+.  Age groups are defined in terms of 

actual age, for instance, “10-14” extends from exact age 10 to right before the 15th birthday.  

In this paper, the data we will use is the death rate period and the population size is five-year 

age groups. 

 

In the HMD, the mortality series for Sweden begins in 1751, which is the earliest record in the 

database.  In fact, Sweden already began to keep a complete and continuously updated 

register of its population more than 300 years ago.  The registration was implemented based 

on local initiatives.  In 1686, these different initiatives were followed by a unitary decree for 

all of Sweden.  From that year, it was mandatory for each parish to keep registers on baptisms, 

burials, marriages, divorces, and migration, as well as a population register.  The 

ecclesiastical decree of 1686, which prescribed that everyone in Sweden was to profess 

allegiance to the Lutheran church, was the most important event in making the Swedish 

population registration efficient, even at an early stage. 

 

The first attempts to collect population statistics from the church registers began in 1721.  It 

followed by a plan for systematic collection of population statistics, the so-called Tabellverket 

Data collection started in 1749, the clergy was asked to complete forms using data from the 

parish registers in every parish.  Summaries were then made for the rectorial districts, the 

rural deaneries, and the diocese. Finally, the forms for the diocese were sent to the Chancery 

Committee.   

 

Problems of missing forms and other errors in each stage of the process were resolved over 

time.  The statistics can be considered more reliable after 1802.  In 1858, with the founding of 

Statistics Sweden [Statistiska Centralbyrån], the compilation of population statistics was 

reorganized.  Since 1860, the compilation has been based on copies of all parish registers sent 

to Statistics Sweden. Thus, for the first time, it is feasible to check all information very 

carefully.  Population data from 1860 can be considered to be of very high quality. 
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In general, Swedish mortality rates have a downward trend from 1750 to 2004.  However the 

declining mortality was interrupted by periods of high death rates due to epidemics.  In 1771-

1772, a harvest failure led to famine and epidemics, resulting in increased deaths during 1772-

1773. Another increase in mortality during the first decade of the 19th century coincided with 

the Finnish War of 1808-09. The Spanish influenza epidemic of 1918-19 also resulted in 

increased death rates, especially among those aged 15 to 40. Because Sweden remained 

neutral during both world wars, it was minimally impacted by the war relative to other 

European countries.  In Figure 1, we take the age group 20-24 as an example to present the 

trend of Swedish death rates since 1750. The periods of high death rates due to above-

mentioned epidemics are shown clearly. 

 

Figure1. : The trend of Swedish mortality rates, 1751-2004, ages 20-24. 

The trend of Swedish mortality rates from 1751 to 2004 
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2.2 The Lee-Carter Model 

In 1992, based on a combination of statistical time series methods, Lee and Carter have 

developed a new model that could be used for the extrapolation of trends and age patterns in 

mortality.  

 

The Lee-Carter methodology for forecasting mortality rates is a simple bilinear model in the 

variables x (age) and t (calendar year). The model is defined as:  

 

txtxxtx kbam ,, )ln( ε++=                                                        (1) 

Where 

txm , : observed central death rate at age x in year t 

xa    : average age-specific pattern of mortality 

xb    : pattern of deviations from the age of profile as the kt varies 

tk    : a time-trend index of general mortality level 

tx ,ε : the residual term at age x and time t. 

The time component  captures the main time trend on the logarithmic scale in mortality 

rates at all ages. The model includes no assumption about the nature of the trend in . The 

age component modifies the main time trend according to whether change at a particular 

age is faster or slower than the main trend. In principle, not all the need have the same sign, 

in which case movement in opposite directions could occur. In practice, all the  do have the 

same sign, at least when the model is fit over fairly long periods.  The model assumes that  

is invariant over time. 

tk

tk

xb

xb

xb

xb

 

In order to obtain a unique solution for the system of equations of the model,  is set equal 

to the averages over time of the , the square values of  sum to unity, and  values 

sum to zero, these are of the forms: 

xa

txM ,
ln xb tk

xa = ∑
t

M txT ,
ln1    ,             ,            12 =∑

x
xb 0=∑

t
tk                                                           (2) 
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3. Fitting and Applying the Model 
 
To ensure good performance, an appropriate method to estimate the model’s parameters has 

to be decided carefully at the very beginning. 

 

In their original paper, Lee and Carter (1992) applied a two-stage estimation procedure.  In 

the first stage, singular value decomposition (SVD) is applied to the matrix of 

{ }xtx am −)log( , to obtain estimates of and .  Then in the second stage, the time series of 

is re-estimated by the method of so called”second stage estimation”.  Lee and Carter 

noticed that once and  have been estimated, the observed total number of deaths 

 is not guaranteed to be equal to the fitted number of deaths.  Therefore, they 

made a second stage estimation of by finding a value that makes the observed number of 

deaths equal to the predicted number of deaths.  That is, they searched for  such that  

xb tk

tk

xb tk

∑≡
x

xtt DD

tk

tk

 

                                                 { }∑ +=
x

txtxxt NkbaD ,)exp( ,                                                  (3) 

where 

tD is the total number of deaths in year t; 

txN ,  is the population (exposure to risk) of age x in year t.  

 

There are several advantages to make a second stage estimate of the , which were described 

in details by Lee and Carter (1992).  These can be useful in the life table presentation of the 

data and especially in cases where only the total, rather than age-specific, death rates are 

known in certain years. 

tk

 

However, different criteria have been proposed for this method. Wilmoth (1993) believe the 

reason for the differences in the observed number of deaths and the fitted number is that the 

estimates of are computed by minimizing the least square error over log-mortality rather 

than mortality itself.  As a result, age groups with small numbers of deaths had the same 

weight as age groups with large numbers of death, even though they contributed very little to 

the overall mortality.  Therefore, Wilmoth developed two alternative one-stage estimation 

strategies ⎯ a weighted least square (WLS) and a maximum likelihood (MLE) technique. 

tk
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Currently, the Singular Value Decomposition (SVD), the Weighted Least Square method 

(WLS) and the Maximum Likelihood Estimate (MLE) have become the three most used 

methods for estimating the model’s parameters. A study by Marie Claire Koisst, Arnold 

Shapiro, and Göran Högnäs has compared these three methods.  Their results showed that 

SVD is the best alternative for the mortality index k, especially for the data from Nordic 

countries.  Another advantage of SVD is that it can be easily facilitated by using Biplot* (see 

Appendix2) in Microsoft Excel.  

 

In this study, we skip the re-estimation stage and apply the first stage SVD method directly.  

 

3.1 The SVD method 
 

From equation (2) in section 2.2, the parameter vector  can be easily computed as the 

average over time of the logarithm of the central death rate. Then we apply the Singular Value 

Decomposition to matrix , producing the matrices 

. Approximation to the first term gives the 

estimates  and . The whole application of the SVD method is relative 

simple and follows six steps:  

xa

( ) ∧

−= xtxtx amZ ,, ln

tXxXXtxtx VULVULZSVDULV ++== ...)(' 111,

1xx Ub =
∧

11 tt VLk =
∧

 

Step 1. ( )∑
=

∧

=
nt

tt
txx m

T
a

1

,ln1  

Step 2. Create a matrix txZ ,  for estimating and , where =  xb tk ( ) ∧

−= xtxtx amZ ,, ln txkb

 
Step 3. Apply the Singular Value Decomposition to matrix Zx,t, which decomposes the matrix 

of  into the product of three matrices :txZ , tXxXXtxtx VULVULZSVDULV ++== ...)(' 111, , 

where U representing the age component, L is the singular values and V representing the time 

component. 

 
Step 4.Select Singular Value Decomposition Dialog (see the graph) from Biplot in 

Microsoft Excel, by running the program. is derived from the first vector of the time-
∧

tk
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component matrix and the first singular value ( ), and is derived from the first 

vector of the age-component matrix ( ). 

11 tt VLk =
∧ ∧

xb

1xx Ub =
∧

 

 
 
 

Step 5. (Lee-Carter) Approximate a new matrix by the product of the estimated 

parameters and  and get = . 

∧

txZ ,

∧

xb
∧

tk
∧

11txZ
∧∧

11 tx kb

 

                                        =  
∧

txZ ,

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

∧∧∧

∧∧∧

∧∧∧

nAAA

n

n

txtxtx

txtxtx

txtxtx

ZZZ

ZZZ

ZZZ

...
............

...

...

21

22212

12111
∧

xb

                                                                      

∧

tk
 

Step  6. Estimate the logarithm of the central death rate,  txxtxxtx kbaZamnl
∧∧∧∧∧∧

+=+= ,, )(
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3.2 Applying the Lee-Carter Model 

3.2.1. The period of 1860-2004 
 
We start by applying the Lee-Carter model for estimating the whole period 1860-2004 for all 

ages 1-89.  By using the SVD (Singular Value Decomposition) method, we obtain the values 

for model components , , and .  Before going to the next step of estimation, we would 

like to check our model by checking two more things: sums of squares of residuals per age 

(SResi.A.) and sums of squares of residuals per year (SResi.Y) (residual 

terms  ).  As the Table 1 shows, the SResiA we obtain for ages 1-24 is 

quite high when we consider the whole period and all ages 1-89.  Therefore, we decide to 

remove those youngsters and obtain the new vectors of , and SResi, the resulted values 

of SResi.A became lower in general.  We thereafter take the SResi.Y (Sums of squares of 

residuals per year) into consideration, and observe that the value of SResi.Y for year 1918 is 

extremely high.  This is probably due to the effect of Spanish influenza epidemic.  In order to 

get a better performance, we decide to remove the year 1918 from the data and calculate the 

parameters again.  In Figure 2, we take the female as an example and compare the values 

of , , , sums of squares of residuals per age and sums of squares of residuals per year 

for three different conditions: whole period 1860-2004 & all ages 1-89; whole period 1860-

2004 & ages 25-89 and period 1860-2004 (without 1918) & ages 25-89.  The estimation data 

from 1860-2004 (without 1918) & ages 25-89 give the best result.  Therefore, all the data we 

used in the rest of our study only cover the age from 25 to 89 and skip the data from year 

1918. 

xâ xb̂ tk̂

txxM kba
tx

ˆˆˆln
,

−−=ε

xâ xb̂

xâ xb̂ tk̂
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Table 1: , and Sums of squares of residuals per age for different periods and ages. xâ xb̂

Age / 
Period 

Whole period 1860-2004  
&  all ages 1-89 

Whole period 1860-2004 
 &  ages 25-89 

1860-2004 (without 1918)  
&   ages 25-89 

Female a1 b1 SResiA*.1 a2 b2 SResiA*.2 a3 b3 SResiA*.3
1--4 -5,8916 0,4436 6,6950             
5--9 -6,7557 0,3932 6,7757             
10--14 -6,9633 0,3413 2,0563             
15--19 -6,5354 0,2982 5,6407             
20--24 -6,3501 0,3008 5,7052             
25--29 -6,2206 0,2919 3,5493 -6,2206 0,4911 2,7756 -6,2347 0,4893 2,588332
30--34 -6,0644 0,2673 1,6389 -6,0644 0,4491 1,3614 -6,0766 0,4479 1,27936
35--39 -5,8414 0,2348 0,6824 -5,8414 0,3940 0,8853 -5,8508 0,3936 0,883463
40--44 -5,5866 0,1971 0,5496 -5,5866 0,3308 0,6014 -5,5933 0,3312 0,591558
45--49 -5,3029 0,1559 0,5954 -5,3029 0,2624 0,3191 -5,3080 0,2628 0,304492
50--54 -4,9706 0,1340 0,9309 -4,9706 0,2259 0,5294 -4,9744 0,2267 0,492283
55--59 -4,6080 0,1192 1,3584 -4,6080 0,2014 0,9475 -4,6110 0,2023 0,892954
60--64 -4,1785 0,1111 1,9035 -4,1785 0,1881 1,4149 -4,1809 0,1892 1,337243
65--69 -3,6990 0,1040 2,4667 -3,6990 0,1765 1,8894 -3,7010 0,1776 1,796457
70--74 -3,1800 0,0938 3,1294 -3,1800 0,1598 2,5046 -3,1816 0,1609 2,412575
75--79 -2,6455 0,0815 3,1454 -2,6455 0,1392 2,6036 -2,6463 0,1405 2,4879
80--84 -2,1294 0,0656 2,5610 -2,1294 0,1123 2,1473 -2,1304 0,1132 2,090969
85--89 -1,6420 0,0520 1,7713 -1,6420 0,0892 1,4883 -1,6424 0,0901 1,427563

* SResi.A = Sums of squares of residuals per age 
  
 
 
Figure  2. Estimate performances with three different conditions    
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Comparison of b(x) values, Female
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comparison of Sums of squares of residuals 
per year, Female
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In order to explore the properties of the three components of the model: ,  and , we 

plot them for females and males in Figure 3.  Parameter  represents the general age shape 

of mortality.  From this figure, we find that both females and males have upward trend of 

mortality in general, whereas the younger ages have a lower mortality and the older ages have 

a higher mortality.  The mortality index, , captures the main time trend on the logarithmic 

scale in death rates at all ages.  From Figure 3, we find that men have a significant change of 

mortality rates after 1965, which was probably caused by a change of smoking habit at that 

time.  Parameter describes the tendency of mortality at age x to change as the general level 

of mortality ( ) changes.  This indicates that when  is large for some x, the death rate at 

age x varies a lot than the general level of mortality change and when is small, then the 

death rate at that age varies a little.   

xâ xb̂ tk̂

xâ

tk̂

xb̂

tk̂ xb̂

xb̂
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Figure 3: Comparison of the components between female and male, period 1860-2004. 
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These characteristics can be observed in Figure 4, where we compare the mortality between 

men aged 25-29 and aged 65-69 for the period of 1966-1990.  This period was chosen since 

we have demonstrated that was a change in mortality pattern for men after 1965.  The results 

showed that men aged 25-29 with larger value of (se Figure 2) have a much more fluctuant 

mortality than men aged 65-69.  

xb̂

 
Figure 4: Performance of death rates for selected ages and periods, male.  
( Display in thousands) txM ,
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3.2.2. Periods of 1900-2004 / 1950-2004 / 1980-2004 
 
We have applied the Lee-Carter model to mortality rates in time series from 1860 to 2004.  

We now apply this method to three sub-samples of 1900-2004, 1950-2004 and 1980-2004.  In 

the same way as before, we estimate the  and for each set of data and then estimate  

for these years based on these  and estimates.   

xâ xb̂ tk̂

xâ xb̂

 

The comparison among the entire time series 1860-2004 and the three sub-samples is 

presented in Figure 5.  In general, mortality has declined continuously over the course of the 

20th century.  We also observe that the pattern in 1860-2004 is similar to the period of 1900-

2004; while 1950-2004 and 1980-2004 give similar patterns.  The main difference between 

these two “blocks” is resulting from growing importance of medical care.  Throughout the 

later 19th century and first half of the 20th century, infectious diseases were the leading cause 

of death.  Pneumonia, tuberculosis and influenza were the biggest killers.  Early in the 20th 

century, mortality began to decline, thanks to public health and economic measures that 

improved peoples’ ability to withstand diseases.  Difference in age group is also observed ⎯ 

mortality reductions are concentrated at younger ages.   As shown in Figure 5, mortality for 

younger ages declines a lot when we compare age patterns of mortality of 1900-2004 and 

1950-2004.  This mortality decline is very likely resulting from the more significant impact of 

nutrition and public health on the young people than the old. 

 

By the mid 20th century, infectious diseases continued to decline, which is probably due to 

medical factors. Antibiotics, including penicillin and sulfa drugs, became important 

contributors to mortality reduction in this era.  Antibiotics help the elderly as well as the 

young, so mortality reductions became more widespread across the age distribution, which 

could explain mortality declines almost at same rate for young and old ages in 1950-2004 and 

1980-2004. 
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Figure 5: Comparison of the components of the entire time series 1860-2004 and three selected                 
sub-samples 1900-2004, 1950-2004 and 1980-2004, male and female.  
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Comparison of Sums of squares of residuals 
per year, Female
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3.2.3. Graphical Presentation of Residual Term 
 
Figures 7, 8, 9 and 10 are the graphical presentations of the residual term of the mortality rate 

on a logarithmic scale.  In order to highlight the relevant features, the unit term is 

standardized in the corresponding periods.  Figure 7 shows the residual term of the entire time 

series of 1860-2004.  Most parts of the graph appear random or less systematic, but a 

systematic pattern is still noticeable, such as during period 1945-1975 for both females and 

males.  We think tuberculosis could probably be a contributing factor for the systematic 

pattern.  As we mentioned previously, tuberculosis has been the leading cause of high death 

rates, especially for women.  Figure 6 demonstrates this unusual period more clearly by 

plotting the sum of squares of residuals per year.  The same effect can be easily recognized in 

Figure 8 as well.   

 

However, in Figures 9 and 10, we recognize a (very weak) cohort effect as a diagonal line for 

males.  We may conclude that the males born in 1943 have slightly higher death rates.  An 

example is given in Figure 9. We could follow a man who is 27 years old at year 1970 and 

thus 37 years old at 1980 and 57 years old at 2000.  We find that it is almost a diagonal line in 

blue color from year 1970 to 2000 corresponding to the age groups from 25-29 to 55-59.  

Furthermore, we express the residual term as residual death rates instead of a logarithmic 

value in Figure 11.  It shows this effect more clearly, even though the effect is not very 

significant.  Finally, most of the high value of residuals occurs at younger ages, which 

reflecting both the greater irregularity in death rates at these ages and the smaller weights at 

ages with smaller numbers of deaths.  We also noticed that young women have especially 

larger value of residuals than men during the recent 20 years.  It is probably caused by much 
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smaller numbers of deaths in females than males at the young age; young men have a higher 

chance to be killed in accidents, such as motorcycle accidents. 

 

Figure 6: Sum of squares of residuals per year, Female & Male, 1860-2004 
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Figure 7: Lee-Carter Residual Term – Female & Male, 1860-2004 
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Note: Residuals are on a logarithmic scale. 
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 Figure 8: Lee-Carter Residual Term – Female & Male, 1900-2004 
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Note: Residuals are on a logarithmic scale. 
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Figure 9: Lee-Carter Residual Term – Female & Male, 1950-2004 
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Note: Residuals are on a logarithmic scale. 
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Figure 10: Lee-Carter Residual Term – Female & Male, 1980-2004 
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Note: Residuals are on a logarithmic scale. 
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Figure 11: Lee-Carter Residual death rates.  
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4. Forecasting 
 

4.1. Forecast the mortality index 
 
One advantage of the LC (Lee and Carter) approach is that once the data are fitted to the 

model and the values of the vectors , , and  are found; only the mortality index  

needs to be predicted. Lee and Carter predicted the mortality index in their original paper 

by a standard univariate time series model ARIMA (0,1,0). They demonstrated that other 

ARIMA models might be preferable for different data sets, but in practice the random walk 

with drift model (RWD) for  has been used almost exclusively.  The model is as follows: 

xâ xb̂ tk̂ tk̂

tk̂

tk

 

ttt kk εθ ++= −1
ˆˆ                                                               (4) 

 

where θ  is known as the drift parameter and  

 

     
1

ˆˆ
ˆ 1

−
−

=
T

kkTθ                                                                 (5) 

 

which means  only depends on the first and last of the  estimates; while θ̂ tk tε  is the error 

term. Then to forecast two periods ahead, we just substitute for the definition of moved 

back in time one period: 

1
ˆ
−tk

                                                             ttt kk εθ ++= −
ˆˆˆ

1

                   =  tttk εθεθ ++++ −−
ˆ)ˆˆ( 12

                                                                 =                                             (6) )(ˆ2ˆ
12 tttk εεθ +++ −−

 

To forecast  at time T + with data available up to period T, we follow the same 

procedure and iterate 

tk̂ )( tΔ

)( tΔ times and obtain: 

                                                 ∑
Δ

−+Δ+ +Δ+=
)(

1)(
ˆ)(ˆˆ

t

n
nTTtT tkk εθ
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                                                           = tT ttk εθ )(ˆ)(ˆ Δ+Δ+                                                     (7) 

If ignore the error term, we can obtain forecast point estimates, which follow a straight line as 

a function of , with slope : )( tΔ θ̂

                                                        θ̂)(ˆˆ
)( tkk TtT Δ+=Δ+

                                                                  =
1

ˆˆ
)(ˆ 1

−
−

Δ+
T

kktk T
T                                                    (8) 

The forecasting of is thus very simple: Extrapolate from a straight line drawn through the 

first and last points, and all other points are ignored.  

tk̂

1̂k Tk̂ tk̂

 

In this paper, instead of extrapolating from a straight line drawn through the first and last 

points, which would make the slope  depending on only the first and last of the  

estimates, we decide to extrapolate from a straight line drawn through a new point  which 

is the average value of the last five points up to period T, and we also make a different value 

for the drift parameter .   The new model is defined as:  

1̂k

Tk̂ θ̂ tk

'
ˆ

Tk

θ̂

 

                                                                                                                (9) '')(
ˆ)(ˆˆ
TTtT tkk θΔ+=Δ+

where  

                                             
5

ˆˆˆˆˆ
ˆ 4321

'
−−−− ++++

= TTTTT
T

kkkkk
k                                            (10) 

 

We then apply the least squares estimation to find the slope .  'T̂θ

First we assume the point of ( ) is an origin (0, 0) and simplified the above equation as: ',ˆ
' TkT

                                                                                                                       (11) ')(
ˆ)(ˆ
TtT tk θΔ=Δ+

 

Then we obtain  

 

QtkMin T
t

tT
T

=Δ−∑
Δ

Δ+
2

)(ˆ
)ˆ)(ˆ( θ

θ
    ⇒  

0)ˆ)(ˆ(2ˆ )( =ΔΔ−=
∂
∂ ∑

Δ
Δ+ ttkQ

T
t

tT
T

θ
θ

  ⇒  
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0)(ˆˆ 2
')( =Δ−Δ ∑∑
ΔΔ
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tT ttk θ    ⇒    

                                                              
∑
∑

Δ

Δ
Δ+

Δ

Δ
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t

t
tT

T t

tk

2

)(

' )(

ˆ

θ̂                                                       (12) 

 

We plug this expression into the equation (9) to make a point forecast for . tk

Figure 12 illustrates the fitted and forecasted mortality index, obtained with our transformed 

Lee-Carter approach. 

 

Figure 12: Fitted and Forecasted Mortality Index kt. 
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Since the mortality index  is the only parameter that needs to be predicted, we could then 

easily get forecasts for the future mortality rates with the estimation period ends at calendar 

year T:  

tk

 
                                                                                                         (13) tTxxtTx kbam Δ+Δ+ +≈ ˆˆˆ)ln( ,
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4.2 Performance and result 
 

We have constructed two experiments using the LC model to generate forecasts.  The purpose 

is to study how the performance of the predictions would have changed if we had changed the 

length of the estimation period.   

 

In the first experiment, the period 1901-2004 is assumed as “future” and its mortality rates 

will be predicted.  In this case, we always using the year 1900 as the end year for our 

estimation period, while we allow the first year for the estimation period vary as the following: 

1875-1900, 1850-1900 and 1800-1900.  It means that we are using 25-, 50- and 100- years 

time interval for estimation.  We will then predicting the “future” mortality rates for the next 

100 years basing on those different estimation periods.  In the second experiment we study 

another four different estimation periods: 1940-1950, 1925-1950, 1900-1950 and 1850-1950, 

which have the year 1950 as the end year.  The prediction period in this case is 1951-2004.  

According to the procedure described previously, we have a total of seven different estimation 

periods.  For each of these period, we will get a corresponding matrix of mortality rates by 

estimating and forecasting LC parameters , , and . xâ xb̂ tk̂

 

In the following part, we present the results obtained when we have different durations of the 

estimation periods for different spans of the prediction periods.  From these results we will try 

to determine the optimal length of the estimation periods.  A limitation for the graphical 

presentations is that it would be too many graphs if we presented the situation for all the ages.   

To resolve this dilemma, we present the results for both males and females aged 25-29, 45-49, 

65-69 and 85-89 as examples.  An extensive overview is given in Figure 13 to 20, and the 

performance of the predictions is illustrated by comparing the predicted mortality to the 

observed mortality.  The evaluation depends on how the predicted mortality rates resemble 

the actual mortality rates observed.  If the predicted mortality rates correspond to the observed 

rates, the model is considered to have a good performance.  By using this approach, we made 

additionally two evaluation tables — Table 2 and Table 3, so that the results can be observed 

more intuitively.  Moreover, we format the y-axis scale as standard units for appropriate age 

in order to facilitate the comparison of the performances.  
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Forecast 1901-2004 
 
 
 Figure 13: Difference in observed and fitted and forecasted mortality for estimates based on the  
 time series end up with 1900, for ages 25-29, female and male.  
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Figure 14: Difference in observed and fitted and forecasted mortality for estimates based on the  
 time series end up with 1900, for ages 45-49, female and male.  
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Figure 15: Difference in observed and fitted and forecasted mortality for estimates based on the  
 time series end up with 1900, for ages 65-69, female and male.  
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Figure 16: Difference in observed and fitted and forecasted mortality for estimates based on the  
 time series end up with 1900, for ages 85-89, female and male.  
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Forecast 1951-2004 
 
 
Figure 17: Difference in observed and fitted and forecasted mortality for estimates based on the  
 time series end up with 1950, for ages 25-29, female and male.  
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Figure 18: Difference in observed and fitted and forecasted mortality for estimates based on the  
 time series end up with 1950, for ages 45-49, female and male.  
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Figure 19: Difference in observed and fitted and forecasted mortality for estimates based on the  
 time series end up with 1950, for ages 65-69, female and male.  
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Figure 20: Difference in observed and fitted and forecasted mortality for estimates based on the  
 time series end up with 1950, for ages 85-89, female and male.  
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Table 2: Evaluation of the predicted period: 1901-2004. 
 

Prediction Periods: 1901-2004 

ages 25-29 ages 45-49 ages 65-69 ages 85-89 

Estimation 
Periods:  

Female Male Female Male Female Male Female Male 

Performance: Very 
bad 

Bad Good Very 
good 

Very 
good 

Good OK Very 
good 

1800-1900 ***    *** ** ** *** *** * ** 

1850-1900 *   ** *** *** ** * *** *** 

1875-1900  ** * * * *** ** ** *** 

 
Notes: 1.) Performance certificate: very bad→bad ok good very good → → →
           2.)” *”is the rating star, for example: *** is the best rating for both “good” and “bad” among three 

different estimation periods by given fixed age and sex. 
           3.) The best performance in the same column has been marked as red.  
 
Table 3: Evaluation of the predicted period: 1951-2004. 
 

Prediction Periods: 1951-2004 

ages 25-29 ages 45-49 ages 65-69 ages 85-89 

Estimation 
Periods: 

Female Male Female Male Female Male Female Male 

Performance: Very 
good 

Good Very 
good 

Good Ok Ok Bad Very 
good 

1850-1950 * ** **** **** **** ** **** **** 

1900-1950 **** **** **** **** ** **** * *** 

1925-1950 *** *** *** *** *** **** *** *** 

1940-1950 ** ** *** *** *** *** ** *** 

 
Notes: 1.) Performance certificate: very bad→bad ok good very good → → →
           2.)” *”is the rating star, for example: **** is the best rating of  both “good” and “bad” among four 

different estimation periods by given fixed age and sex. 
         3.) The best performance in the same column has been marked as red.   
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From Figure 13 to Figure 16, we present the comparison of fitted and forecasted mortality 

among three predictions which based on different spans of estimation periods and the 

observed mortality.  On some occasions, the results of the three predictions vary a lot, while 

sometimes they are very similar.  This characteristic has been shown even more obviously in 

Figure 17 - 20, in which we compared all four different predictions together with the observed 

mortality.  

 

In Table 2 and 3, we evaluated the forecast results obtained for the two different prediction 

periods of 1901-2004 and 1951-2004.  Five grades were used to measure the performances: 

very bad, bad, ok, good and very good.  At the same time, rating stars are used to compare the 

performances within the same category.  For example, the evaluation of the forecasted 

performance for female aged 25-29, is “very bad” using each of the three estimation periods 

as shown in Table 2.  However, a relatively better performance was observed while using the 

estimation period of 1800-1900, therefore we give it a “3-star" rating.   

 

Table 2 shows that predictions for ages 25-29 are bad for all the estimation periods for both 

men and women.  However, it worked quite well for men and women aged 45-49 and aged 

65-69 and men aged 85-89.  In general, Table 3 presents better performance than Table 2.  

The short prediction period is likely to contribute to the lower uncertainty of predictions.   

 

Contrary to Table 2, prediction results in Table 3 are very good for young people but are not 

so good for old females.  In Table 3, we found that estimation period of 1850-1950 and 1900-

1950 gave better performances than the periods of 1925-1950 and 1940-1950.   

 

In both table 2 and table 3, we could see those estimation periods of 50 years and longer give 

better results than shorter estimation periods. However, the 100 years estimation period does 

not give better results than the 50 years estimation period.  

 

 In the most of cases, the performance for males and females is similar for the same time 

period. 
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4.3 Discussion: Forecasting with a constant  xb̂

 
As we have shown in the previous sections, the Lee-Carter model is a useful and appropriate 

approach to extrapolate historical trends in the level and age distribution of mortality. 

However, there have been a number of criticisms and discussions about the problems and 

limitations of the method.  One of the problems is that the model assumes a certain pattern of 

change in the age distribution of mortality, such that the rates of the decline at different ages 

given by ( ) always maintain the same ratio to one another over time.  However, in 

reality, the relative speed of decline at different ages may vary.  As shown in Figure 21(a) and 

Figure 22(a), the fitted and forecasted mortality of the recent years become more and more 

concave.  This phenomenon indicates that the value of at the concave point is much higher 

than others.  As we have predicted, the mortality index is a straight downward line, a large 

 value will yield smaller mortality.   

xb̂ dtdkt /

xb̂

xk̂

xb̂

 

We would like to study whether the model is more predictive when we assume that is 

constant.  The simplest way is to take a mean value for as the constant.  In Figure 21(b) and 

Figure 22(b), two examples are chosen to present how the shape of fitted and forecasted 

mortality will change when we use a constant value for .  The first example is the 

prediction of 1901-2004 using the estimation period of 1800-1900 for females; while the 

second example is the prediction of 1901-2004 but using the estimation period of 1850-1900 

for males.  The idea behind this is that the first example has been performed very poorly for 

female aged 25-29 and the second example has been performed very well for male aged 85-89 

(see Table 2 in Section 4.2).  We are interested to see how the results change by changing 

to a constant.  Figure 23 and Figure 24 display the comparison of the predictions by using 

a constant and variable .  The performance with a constant in Figure 23 seems slightly 

xb̂

xb̂

xb̂

xb̂

xb̂ xb̂
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better than the result using a variable , presented in section 4.2.  On the contrary, the 

performance in Figure 24 using a constant is much worse than before.  

xb̂

xb̂

 

In order to compare the performances between the variable and constant , we also make 

two tables (Table 4 and 5) for constant  following the same approach as in Table 2 and 3 in 

section 4.2.  Similarly, the evaluations in Table 4 and 5 also show that the estimation periods 

of 1850-1900 and 1900-1950 give the best performance than the other periods.  If we take age 

into account, the performance from constant for ages 85-89 is very bad for all estimation 

periods and predicted periods.  Comparing with Table 3, Table 5 shows a poor performance 

result for ages 25-29 for both females and males.  However, the result is quite good for ages 

45-49 and ages 65-69 (except the males).  One could see a tendency that the performances for 

shorter estimation periods are better compared to the longer estimation periods, when a 

variable  is used.  Generally, there is absolutely no guarantee that the extend method with a 

constant would perform better than a variable . 

xb̂ xb̂

xb̂

xb̂

xb̂

xb̂ xb̂
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Figure 21:  Fitted and Forecasted mortalities with different with estimates based on time 
series 1800-1900 for females all ages, on a logarithmic scale. 

xb̂

 
 
                                     (a)                                                                           (b) 

Fitted and Forecasted mortality when bx is inconstant, 
1800-2004, Female

0,001

0,01

0,1

1
25-
-29

30-
-34

35-
-39

40-
-44

45-
-49

50-
-54

55-
-59

60-
-64

65-
-69

70-
-74

75-
-79

80-
-84

85-
-89

Age

M
or

ta
lit

y

1800
1825
1850
1875
1900
1925
1950
1975
2000

Fitted and Forecasted mortality when bx is constant,
1800-2004, Female

0,001

0,01

0,1

1
25-
-29

30-
-34

35-
-39

40-
-44

45-
-49

50-
-54

55-
-59

60-
-64

65-
-69

70-
-74

75-
-79

80-
-84

85-
-89

Age

M
or

ta
lit

y

1800
1825
1850
1875
1900
1925
1950
1975
2000

 
 
 
 

Figure 22: Fitted and Forecasted mortalities with different , with estimates based on time 
series 1850-1900 for males all ages, on a logarithmic scale. 

xb̂
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Figure 23: Compare the prediction results with constant and inconstant  for ages 25-29 
female and estimates based on the time series 1800-1900. 

xb̂
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Figure 24: Compare the prediction results with constant and variable  for males ages 85-89 
and estimates based on the time series 1850-1900. 

xb̂
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Table 4: Evaluation of the predicted period: 1901-2004 with constant . xb̂
 

Prediction Periods: 1901-2004 

ages 25-29 ages 45-49 ages 65-69 ages 85-89 

Estimation 
Periods:  

Female Male Female Male Female Male Female Male 

Performance: Bad Bad Good Good Good Good Very 
bad 

Very 
Bad 

1800-1900 *** ** ** ** ** *** ** ** 

1850-1900 *** *** *** *** *** ** ** ** 

1875-1900  ** * ** ** ** *** *** *** 

 
Notes: 1.) Performance certificate: very bad→bad ok good very good → → →
           2.)” *”is the rating star, for example: *** is the best rating for both “good” and “bad” among three 

different estimation periods by given fixed age and sex. 
           3.) The best performance in the same column has been marked as blue.  
 
Table 5: Evaluation of the predicted period: 1951-2004 with constant bx. 
 

Prediction Periods: 1951-2004 

ages 25-29 ages 45-49 ages 65-69 ages 85-89 

Estimation 
Periods: 

Female Male Female Male Female Male Female Male 

Performance: Very 
bad 

OK Very 
good 

Very 
good 

Very 
good 

bad Very 
bad 

Very 
bad 

1850-1950 * * ** *** **** ** * ** 

1900-1950 ** ** **** **** *** ** **** **** 

1925-1950 *** *** **** ** ** *** *** **** 

1940-1950 **** **** *** * ** **** ** *** 

 
Notes: 1.) Performance certificate: very bad→bad ok good very good → → →
           2.)” *”is the rating star, for example: *** is the best rating for both “good” and “bad” among three 

different estimation periods by given fixed age and sex. 
           3.) The best performance in the same column has been marked as blue.  
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5. Conclusion 
 

We have attempted to identify the common trend of mortality change by fitting a standard 

Lee-Carter model to Swedish historical population data. The model’s parameters were 

estimated with the Singular Value Decomposition (SVD).  The computations and 

comparisons were completed using the data from time series of 1860-2004 and three selected 

sub-samples of 1900-2004, 1950-2004 and 1980-2204. The estimates for the components 

from data in 1860-2004 and 1900-2004 are most alike whereas 1950-2004 and 1980-2004 are 

similar to each other.  This is due to the growing importance of medical care in mortality 

decline in the later half of the 20th century.   

 

To study the efficiency of the Lee-Carter model, the residual term on a logarithmic scale has 

been examined as well.  The cohort effect does not appear very significant, and most of the 

residual terms show a similar lack of systematic pattern.  However, the residuals still cannot 

be described as random as the marked clusters do occur.  The occurrence is probably a result 

of the infectious diseases, which were the leading cause of death during certain periods.  

Insufficient weight for young people at ages with smaller numbers of deaths also contributed 

to this observation. 

 
Whether any empirical pattern will continue in the future is of course the subject of almost 

every forecasting work.  In this paper, we simulated two prediction periods: 1901-2004 and 

1951-2004 as the “future” periods. Three different estimation periods of 1800-1900, 1850-

1900 and 1875-1900 were used to predict the mortality rates for 1901-2004. Four estimation 

periods of 1850-1950, 1900-1950, 1925-1950 and 1940-1950 were used to predict the 

mortality rates for 1951-2004.  Our purpose is to study how the performance of the 

predictions would change if we change the span of the estimation period.  The forecasting of 

the mortality index is very simple: extrapolate from a straight line drawn through the point 

 which is the average value of the last five points up to period T, while all other points 

are ignored.  The results showed that the estimation periods of 1850-1900 and 1900-1950 

yield the best forecasting performances for prediction series of 1901-2004 and 1951-2004, 

respectively.  Not surprisingly, the prediction with short estimation period like 1875-1900 and 

1940-1950 did not work well. 

tk̂

'
ˆ

Tk tk̂

 46



In addition, we have also discussed whether the model would perform better when we assume 

as a constant in section 4.3.  The value of is fixed using the mean value.  The results 

showed that the model does perform better than the forecasting using a variable in certain 

estimation periods and age groups.  However, poorer performance was also observed using 

other estimation periods and age groups.  The improvement of the performance by using a 

constant is not reliable, as there is absolutely no guarantee that the extend method with a 

constant would perform better than a variable .  Nevertheless, similar to the previous 

forecasts, the prediction with a constant  also demonstrated that the estimation period of a 

50-year time interval, e.g.1850-1900 and 1900-1950 are the optimal span for the estimation 

period.  This indicates that the selection of an appropriate estimation period is important for 

forecasting mortality.  Moreover, males and females almost have similar performances for the 

same time period. 

xb̂ xb̂

xb̂

xb̂

xb̂ xb̂

xb̂

 
Since Lee and Carter published this model for long-run forecasts of the level and age pattern 

of mortality in 1992, there have been a number of extensions of the method, including the 

development of coherent forecasts by sex and by race, and forecasts for regions comprising a 

national system and so on.  This paper is only an initial investigation into the attributes of an 

original Lee-Carter model used for estimation and forecasting mortality.  Hence there is still a 

room left for an after work thinking, for instance, may assumed to be a function of age 

factor x for receiving a better performance. 

xb̂

 

Moreover, by studying Swedish historical data, we found that infectious diseases and medical 

factors are always very important contributors to the trend of mortality.  Therefore, in practice, 

the model could be combined with the addition of expert opinions to estimate future trends, 

such as the opinions about medical developments, environments and new diseases.  

 
Finally, we experienced the user-friendly application of the model as we have completed all 

the calculations using functions in Microsoft Excel. 
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Appendix:  
 
I. Proof Lee-Carter Approximation 
 
Given a matrix =  with two conditions of 

txM ,
ln txz kba + 0=∑

t
tk  and  . 

Parameters , and are determined by minimizing the Q (a, b, k), where  

12 =∑
x

xb

xa xb tk
 
Q (a, b, k) =   2

,
)(ln

, txx
tx

M kba
tx

−−∑
 

Let 
xa

Q
∂
∂ =

xb
Q

∂
∂ =

tk
Q
∂
∂ =0, and we can get  

 

xa
Q

∂
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t
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−−∑
 

xb
Q
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t
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tk
Q
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∂ = 2 = 0                          ( 3 ) )(ln

, txx
x

M kba
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−−∑ xb

 
With the help of the equation (1) and the condition 2, we can get directly, xa
 

=−= ∑∑∑ t
t

x
t

M
t

x kba
tx ,

ln ∑
t

M tx ,
log     ⇒

 

xa = ∑
t

M txT ,
ln1  

 
Now let us set a new matrix xtxtx aZ −= ,, ln , then we can get the following equations for 

and  : xb tk
 

∑∑∑∑ ==−=
t

txt
t

txtx
t

txt
t

tx kbkkbkakZ 2
,, )()(ln  

 
∑∑∑∑ ==−=

x
xtxt

x
xxx

x
txx

x
tx bkbkbbabZ 2

,, )()(ln = , (since tk 12 =∑
x

xb ) 

 
By considering of a vector form with β=∑ 2

t
tk , we rewrite two above equations as the 

following: 
 
Zk = β b   and Z’b = k   (where Z’ = ZT ), which gives: 
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(ZZ’) b = Zk = β b 
 
Therefore, b is the eigenvector of matrix (ZZ’) with the eigenvalueβ , under the conditions of 

(b’b) =  and (k’k) = . 12 =∑
x

xb β=∑ 2

t
tk

 
By using equations: , xtxtx aZ −= ,, ln ∑

x
txx Zb , = , tk 12 =∑

x
xb  and β=∑ 2

t
tk  , we can 

simplify Q(a,b,k) as the following: 
 
Q (a, b, k) =   2
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In order to minimize Q, we have to maximize β . It also gives that b will be eigenvector of 
(ZZ’) with the maximal eigenvalueβ , and k = Z’b.  
 
 
II. How to add Biplot function in your Ms Excel®? 
 
Download the “Biplot” from 
(http://filebox.vt.edu/artsci/stats/vining/keying/biplot_final.zip) or from other websites. 
 
To install biplot01.xla do the following: 
 

 Save the file “biplot01” on your hard drive (for example: D:\software\biplot01.exl). 
 Start MS Excel® 
 In Excel go to Tools|Add-Ins... and invoke  the Add-ins dialog 
 In the Add-Ins dialog click Browse button and select the current biplot01.xla from where 

you have saved on your hard drive (eg: D:\software\biplot01.exl). 
 After pressing OK button, the menu item "biplot" should appear on your Excel main 

menu.  
 Refer to biplot help for instructions about specific functions. 
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