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Abstract

In this paper, we study estimation of dispersion parameters in GLMs
with and without random effects with focus on its application in non-
life insurance. Three different methods of estimating φ, the dispersion
parameter in the GLMs, have been presented, namely maximum like-
lihood, Pearson and Deviance methods. We extended the GLMs by
introducing a random effect representing so-called multi-level factor.
This introduces an additional dispersion parameter α. We investigate
two methods that have been suggested for estimating α: the maximum
likelihood method and an alternative method proposed by Ohlsson and
Johansson(2003b). We study and compared all the estimation meth-
ods partly by empirical studies with data from the non-life insurance
and partly by simulations.
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1 Non-life Insurance and Generalized Linear

Models

The aim of this paper is to study estimation methods for dispersion pa-

rameters in Generalized Linear Models (GLMs) in the context of non-life

insurance. Before we go into details, we need to give a brief picture of what

GLMs are and how they are used in non-life insurance. In the first part of

this section, we are going to introduce some important definitions concerning

non-life insurance. In the second part an outline of the theory of GLMs will

be presented. Finally, we present more details on how GLMs are applied in

modelling the average claims in non-life insurance.

1.1 Mathematical Modelling for Non-life Insurance

Non-life insurance protects the insured against certain risks, such as financial

loss or property damage liability. The insured is obliged to pay a premium to

the insurer who undertakes to indemnify for the losses. The premium is the

price to insure a specified risk for a specified period of time. An important

task for actuaries is to model the premium so that it reflects differences

between groups of customers. The most important part of the premium is

the risk premium, which is defined as the average claim cost per insured. It

can be expressed in terms of two other quantities, average claim amount and

claim frequency:

Risk premium = claim frequency × average claim amount

where average claim amount equals the total claims cost divided by the

number of claims and claim frequency is the average number of claims per

year. In this paper we shall only consider the problem of modelling the

average claim amount.
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We seek a model that describes the differences in average claim amount

among various groups of customers. For instance, in the case of car insurance,

large cars may have higher average claims than small ones. To deal with

the problem, insurance companies often define several variables, which are

related to properties of the customers or the insured objects. Such variables

are called rating factors. In car insurance, ages of cars and ages of drivers

are two commonly used rating factors. Rating factors are often discretized

by forming group of adjacent values. For instance, car age can be discretized

by letting cars aged 0-2 years form one group, 3-5 years another and so on.

Customers belonging to the same group with respect to all the rating factors

are said to belong to the same tariff cell. In the model, customers in the

same tariff cell are considered to have the same average claim amount.

In a statistical model, we consider rating factors as regressors for the response

variable, the average claim amount. In this circumstance, the classical re-

gression models are no longer applicable for the following reasons:

1. Classical linear models are additive whilst we prefer a multiplicative

model, because in the context of average claim amount we are more

interested in the relative change against a ’standard level’ rather than

the change in absolute values.

2. In the classical linear models, it is assumed that the response variable

has a Gaussian distribution. This is obviously unreasonable for average

claim amount, which only takes non-negative values and is skewed to

the right.

Hence classical linear models are not the most suitable in this context. We

need to find other models which can solve these problems.
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1.2 Introduction to Generalized Linear Models

Generalized linear models (GLMs) are an extension of classical linear models.

Firstly, GLMs allow a more extensive distribution family for the response

variable than just the Gaussian distribution. The probability density for the

response variable can be expressed as:

f(y) = exp

{
yθ − b(θ)

φ/w
+ c(y, φ)

}
(1)

where w denotes the weight of the response variable. This distribution family

is known as ’Exponential Dispersion Models’ (EDM). Apart from the Gaus-

sian distribution, there are many other distributions belonging to this family,

such as the binomial, Poisson and gamma distributions.

GLMs are parameterized in terms of the parameters θ and φ. The latter is

called the dispersion parameter. We are going to focus on estimation methods

for this parameter in the next section.

The mean and variance of Y can be written as follows:

µ = E(Y) = b′(θ)

Var(Y) =
b′′(θ)φ

w
=

V (µ)φ

w
(2)

where V (µ) is called the variance function. The variance function is of much

importance because it has one-to-one relationship to the distribution within

EDM. In another words, the variance function determines exclusively the

specific distribution within the EDM family (Jögensen, 1987). Table 1 sum-

marizes some variance functions for different distributions in EDM:

Distribution Normal Poisson Gamma Binomial
V (µ) 1 µ µ2 µ(1− µ)

Table 1: Examples of the variance functions for the distributions in EDM.

The other extension in GLM is that the relation between the mean and the

regressors does not have to be linear. The so-called link function relates a
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linear predictor η to the expected value µ of response variable Y where η is

defined by

η =
J∑

j=0

βj · xj (3)

where xj are indicator variables determining whether to include a βj or not.

In classical linear models we define that η = µ whereas in the case of GLMs

η and µ are related to each other through a monotonic differentiable link

function η = g(µ). For instance η = log(µ) and η = log( µ
1−µ

) are two of the

most common link functions.

1.3 GLMs for the Average Claim Amount

As has been discussed in the previous section, GLMs have some advantages

over classical linear models for modelling average claim amount. Before we

apply GLMs to average claim amount, we first need to make some assump-

tions:

Assumption 1.1

a. The amount of different claims are independent of each other.

b. Within a tariff cell, all claims amounts have the same distribution.

There are mainly two ways to fit GLMs to data. One is to aggregate data in

terms of the total cost of claims and total number of damages within every

single tariff cell before fitting the GLM. The other way is to fit GLM directly

to all the individual observations without aggregation. The results should be

the same as concerns the regression parameters βj, but we choose the latter

one for the reason that non-aggregated data contains more information on

the variance than the aggregated data does and thus should give a more

precise estimate of φ.
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We now define Xi as the i:th claim amount where i = 1, 2, 3...M and M is the

total number of claims. According to the definition, the response variable,

average claim amount Yi = Xi/wi has wi equal to 1 in the non-aggregated

data. The model for E(Yi) can be described as by equation 3, where βj in

this case denotes the j:th rating factor. We use a log-link, ηi = log(µi) to

build up a multiplicative model for E(Yi), which can be rewritten as follows:

E(Yi) = µi = exp (ηi) = exp (
J∑

j=0

βj(i)xj(i)) = γ0 · γ1(i) · γ2(i) · ... · γj(i) (4)

where γj(i) is the relativity of rating factor j for claim number i. It is cus-

tomary to choose as reference cell the tariff cell with the largest number of

claims. γ0 denotes the parameter for the reference cell. If claim i belongs to

the reference cell, γj(i) = 1 for all the j and γ0 is the expectation of claim i.

As for the distribution of Yi, there is no canonical choice. However in practice,

it is often reasonable to assume that the standard deviation is approximately

proportional to its mean value. Based on this fact, a often used assumption

when using GLMs to model average claim amounts is that V (µi) = µ2
i . From

Table 1, we see that the corresponding distribution in EDM is the gamma

distribution.

2 Estimation of the Dispersion Parameter φ

In this section we consider estimation of the dispersion parameter φ in GLMs

in the context of non-life insurance. The parameter φ affects GLMs in the

following aspects:

Firstly, for EDM, the variance of the response variable Y has the form:

V ar(Y ) = V (µ)φ/w. This shows that the variance of Y is proportional to

the value of φ, which implies that a good estimator of φ gives a good reflection

of the variance of Y .

Secondly, for GLM we estimate the parameters β by maximizing the log-
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likelihood function, l for Y , i.e by setting ∂l/∂β = 0. According to asymp-

totic theory the estimates of β follows approximatively a normal distribution:

β̂ ≈ N(β; I−1) where I is Fisher’s information matrix, the negative expected

value of H, the matrix of the second order derivatives of the log-likelihood

function l with respect to β:

I = −E

(
∂2l

∂βj∂βk

)
= −∑

i

xij
wi

φv(µi)g′(µi)2
xik

This expression tells us that although the value of β̂ does not depend on φ,

φ does affect the precision of β and a precise estimate φ̂ is important to get

a good confidence interval for β.

In section 2.1, we introduce three different estimation methods for φ, and in

section 2.2, we apply the methods to car insurance.

2.1 Three Estimation Methods of φ

We will assume that V (µi) = µ2
i , corresponding to a gamma distribution.

The density function can be expressed in the parameters µ and φ as (Ohlsson

& Johansson, 2003):

fY (yi) = exp

(−yi/µi − log(µi)

φ/wi

+ c(yi, φ, wi)

)
(5)

where c(yi, φ, wi) = log(wiyi/φ)wi/φ− log(yi)− log Γ(wi/φ)

The expression above is a straight forward re-parametrization of the density

function of gamma distribution in terms of α and β (See Appendix A1):

f(y) =
βα

Γ(α)
yα−1e−βy

We are going to present three methods to estimate the parameter φ:

• Deviance method

8



• Pearson method

• Maximum Likelihood method

2.1.1 Deviance and Pearson Estimation of φ

We start with Deviance estimation of φ. Deviance, as a measure of goodness

of fit, is defined as following:

D(y, µ̂) = φ ·D∗(y, µ̂) = 2 · φ[l(y, φ)− l(µ̂, φ)]

Where l(·) is log-likelihood function. D and D∗ are called scaled and non-

scaled Deviance respectively. We can estimate φ by the mean scaled De-

viance, expressed in equation 6 (Ohlsson and Johansson, 2003a):

φ̂d =
D(y, µ̂, φ)

n− r
= 2 · φ [l(y, φ)− l(µ̂, φ)]

n− r
(6)

where r is the total number of unknown parameters. D∗ = D/φ is ap-

proximately χ2(n − r) distributed with expectation (n − r). Thus φ̂d is

approximately unbiased.

Now we assume that the response variable Yi follows a gamma distribution,

by which we can obtain the explicit expressions for φ̂d:

φ̂d =
2

n− r
·∑

i

wi ·
(

log

(
µ̂i

yi

)
+

yi − µ̂i

µ̂i

)
=

2

n− r
·∑

i

wi · log

(
µ̂i

yi

)
(7)

where we use the fact that
∑

i wi · (y − µ̂)/µ̂ = 0, which can be derived

from the ML equation for β̂ in the case of gamma distribution (Ohlsson &

Johansson, 2003).

Apart from the Deviance estimator of φ, we can also use the Pearson method

to estimate φ, where the φ̂p can be expressed as:

φ̂p =
φ ·X2

n− r
(8)
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where X2 is the Pearson X2 statistic with the form:

X2 =
1

φ

∑

i

(
wi

(yi − µ̂i)
2

v(µ̂i)

)

.

φ̂p is approximately unbiased because Pearson’s X2 follows approximately

χ2(n− r) distribution with expectation (n− r).

Under the assumption that Yi is gamma distributed, we can derive the explicit

expression of φ̂p:

φ̂p =
1

n− r
·∑

i

wi · (yi − µ̂i)
2

υ(µ̂i)
=

1

n− r
·∑

i

wi · (yi − µ̂i)
2

µ̂2
i

(9)

2.1.2 Maximum Likelihood Estimation of φ

The maximum likelihood method (ML) estimate is the value that maxi-

mizes the likelihood or log-likelihood function. With the assumption that

V (µi) = µ2
i , Yi follows a gamma distribution within EDM and its log-

likelihood function can be expressed as:

l(µi; φ) =
n∑

i

(
wi

φ
· log

(
wi

φµi

)
+

(
wi

φ
− 1

)
· log(y)− wiyi

φµi

− log

(
Γ(

wi

φ
)

))

where n is the total number of observations. To obtain the ML estimator

of φ we first obtain the ML estimate of µ, which is independent of φ. Then

the ML equation is obtained by setting the derivative of the log-likelihood

function with respect to φ equal to zero. The ML estimate of φ is the solution

of the ML equation.

The ML equation expressed in terms of the parameters µi and φ for the

gamma distribution has the form (for the proof see Appendix A2):

D∗ = 2 ·
n∑

i=1

wi

(
log

(
wi

φ̂

)
−Ψ

(
wi

φ̂

))
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where D∗ as defined before, the deviance for the gamma distribution and

Ψ(·) is known as the digamma function:

D∗ = 2 ·
n∑

i

wi · log

(
µ̂i

yi

)
; Ψ (x) =

Γ′ (x)

Γ (x)

Since Yi here represents the i:th observation of loss, wi = 1 for all the i. The

equation above can be reduced to log(1/φ̂) − Ψ(1/φ̂) = D/2n and then an

approximate solution for φ̂ is [Cordeiro and McCullagh 1991]:

φ̂m ≈ 2D∗

n(1 + (1 + 2D∗/3n)1/2)
(10)

2.1.3 Comparison of the three Methods

This section applies only when the response variable Y is gamma distributed.

An interesting statement made by Cordeiro and McCullagh (1991) is that

from the inequality 1/2x < log(x) − Ψ(x) < 1/x, we can induce a relation

between φd and φm:

D∗/2n < φ̂m < D∗/n ⇒ φ̂d · (n− r)

2n
< φ̂m <

φ̂d · (n− r)

n

This implies that when the total number of observations is large, φ̂d should

always be larger than the φ̂m and the values of φ̂m is in between φ̂d/2 and

φ̂d.

We can also compare the Pearson estimator with the deviance estimator by

taking advantage of Taylor expansion:

f(a) = f(a) + f ′(a)(x− a) +
f ′′(a)

2!
(x− a)2...

f (n)(a)

n!
(x− a)n...

We apply the above to the expression of φ̂d and obtain (for a proof see

Appendix A3):

φ̂d ≈ 1

n− r
·∑

i

wi

(
yi − µ̂i

µ̂i

)2

− 1

n− r
·∑

i

2wi

3

(
yi − µ̂i

µ̂i

)3
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We see that φ̂p is the first term of the expression above. The last term, which

can take both positive and negative values can be considered as a measure

of the difference between these two estimators. Thus the φ̂p can be either

larger or smaller than the φ̂d. These two estimators are approximately the

same only when the values of yi are close to the predicted values, i.e. the

GLM has a good fit to the data.

What deserves notice here is that even though the Pearson and Deviance

estimators can be considered as measures of deviations of Yi from µ̂i, they can

come to quite different results. The Pearson estimator to some extent might

exaggerate the deviations by taking the square of the difference between yi

and µ̂i while the Deviance estimator on the opposite might under-estimates

the deviations because it diminishes with the logarithm of the ratio of µ̂i and

yi.

2.2 Numerical Examples from Car Insurance

In this section we study the φ estimators for the data from car insurance.

In order to gain more insights into the properties of the φ estimators, in

the next section we study the empirical distributions of the φ estimators

obtained by simulation. Finally our empirical outcomes will be compared

with the theoretical discussion in the previous section.

2.2.1 Analysis of car insurance data

The data that we use consists of totally 896,321 car insurances claims from

year 1995 to 2000. We divide all the claims into 4 groups corresponding

to the insurance covers, namely Third part liability (TPL), Hull, Partial

kasko and Mer. The cover TPL protects the insured against financial loss

arising out of legal liability imposed upon him/her in connection with bodily

injury, property damage, medical payments etc. Hull covers damage made

to the insured’s vehicle that results from a collision with another vehicle or
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object or damage incurred when vehicle is transported by boat or train etc.

Partial kasko is a comprehensive cover that protects against losses resulting

from glass damage (Gls), theft (Sto), fire (Bra), salvage (Rad) and machine

(Mas). Mer covers some risks that are not defined in the other risk covers,

e.g. intentional damage.

We are going to fit a GLM to the empirical data for each cover and each

subcover of Partial kasko and thereby obtain the corresponding φ estimates.

Each observation corresponds to a specific claim identified by an exclusive

claim number. The data set includes only claims with positive amount, i.e.

we exclude zero claims. The following table lists the number of observations

and the claim years for each cover/subcover:

Risk cover Nmb of obs Duration
TPL 51,880 1995-1998

P.kasko 342,105 1995-2000
Mer 51,013 1995-2000
Hull 109,797 1995-2000
Gls 198,817 1995-2000
Sto 97,005 1995-2000
Bra 6,257 1996-2000
Rad 32,045 1995-2000
Map 7,402 1996-2000

Table 2: Car insurance: Number of observations of average claim amounts
from 1995 to 2000 in terms of different covers.

Using the SAS procedure Proc Genmod, we estimate φ by the three different

methods for the different covers. The estimation results are summarized in

table 3:

2.2.2 Analysis of Estimators

In this section, we are going to discuss the estimation results in two different

ways. The first way is to compare the estimates for different covers. Secondly
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Average claim
Cover Pearson Deviance ML

TPL 34,054 2,623 2,054
P.kasko 6,477 1,317 1,124

Mer 1,957 1,202 1,035
Hull 1,285 1,023 0.897
Gls 8,143 0,384 0,362
Sto 2,363 1,146 0,993
Bra 1,764 1,330 1,125
Rad 3,723 1,257 1,077
Mas 1,150 1,026 0,893

Table 3: Estimation results of parameter φ in the GLM for average claims
in car insurance with three different methods: Pearson, Deviance and ML.

we are going to make a comparison of estimation results among the three

methods.

First of all, comparing the φ estimates for the different covers we see that

the φ estimates for TPL are much larger than the other three risk covers,

no matter which estimation method is used. The reason is that large claims

are far more dominating in TPL than the other covers. Claims above 1

million SEK are quite common for TPL while they seldom occur for the

other covers. Hence it is reasonable to expect that values of φ are larger

in this case. Partial kasko is also worth noticing because although the φ

estimates with ML and Deviance methods are close to those of Mer and

Hull, it has an usually large estimate with the Pearson method. If we study

furthermore the φ estimates for the subcover of Partial kasko we find that

Gls is the main cause to the large value of the φ estimate in the whole group.

Gls protects against the risk of damages to car windows and the value of car

windows are not expected to vary significantly. Thus we suspect that there

might exist abnormal observations or errors in the data.

The existence of outliers in the data can be examined by plotting residuals.

There are several ways to define residuals but we choose the Anscombe resid-

ual (P.McCullagh and J.A.Nelder, 1997). An advantage of using anscombe
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residuals is that with some mathematical manipulations we can obtain the

adjusted residual, which is normal-like distributed. The anscombe residual

is given by the following expression for gamma distributed Yi:

ri =
3(y1/3 − µ

1/3
i )

µ
1/3
i

where ri are identically distributed with mean zero if the assumption that

Yi is gamma distributed holds. Means as well as variances of ri for the four

covers are showed in the following table:

Risk cover Mean Std.Dev of residual Skewness
TPL -0,843 1,224 3,977

P.kasko -0,423 1,008 1,996
Mer -0,361 0,993 0,816
Hull -0,305 0,927 0,602

Table 4: Means, standard deviations and skewness of the anscombe residuals
of the GLM for the average claims in terms of different covers.

For TPL, the variance, as expected is larger than the other three covers.

The residuals of Partial kasko although with a smaller variance than in the

TPL, are quite skewly distributed. The skewness of the residuals indicates

the existence of extreme values in both TPL and Partial kasko. We have

also checked the distributions of residuals for all the covers and find that all

of the distributions are a little skewed to the right, which implies that the

GLM with gamma distribution does not fit perfectly to our data. However

we still regard them as acceptable and leave the problem to the later sections,

where we are going to study what happens to the estimators of φ when the

distribution assumption is questionable.

We next compare the estimation results obtained with different methods

within the different covers. It is shown clearly that the values of φ̂ are rather

close for ML and Deviance. The Deviance estimates are a little bit larger

than ML for all the covers. This results is in accordance with our theoretical

analysis in section 2.1.3. However, the Pearson estimates take the largest
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value compared with the other two, probably due to the existence of extreme

values.

The Pearson estimate for TLP deserves extra attention since it is abnormally

larger than the deviance and the ML estimates. It possibly indicates the

sensitivity of the Pearson estimator to large amounts. For the cover Mer

however, all these three estimates are fairly close to each other. We may

summarize the results as follows:

1. The covers TLP and Partial kasko represent two different phenomena.

TLP has both large variance and skewness in the residuals. In practice

the distribution of TLP claims has fat tails due to the large amounts

in some claims. In this circumstance, the assumption of a gamma

distribution makes less sense than for the other covers. For Partial

kasko variance of the residuals is not very large but the skewness, caused

by outliers, is large. To deal with this kind of data, it is important to

find out the causes for the outliers. It turned out that in this case, the

outliers were caused by defective recording procedures.

2. The Pearson estimates differ greatly from the estimates with the other

two methods especially for the TPL and Partial kasko. It implies that

the Pearson estimator of φ is sensitive to the variance of data and

extreme values, while such values do not have much effect on ML and

deviance estimators.

2.2.3 Sensitivity of estimates to extreme values

In the previous section, we found that estimation results of φ were quite

dependent on which estimation method we employed, particularly for the

covers where extremely large losses occur. This observation motivates us to

study more closely how the φ estimates react to extreme values. In order to

reduce the load of work, we choose the covers TLP as well as Gls as our study

objects, where Gls is one of the subgroups of Partial Kasko and contributes
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most to the variation in the group.

There are mainly two alternatives when dealing with extreme values. One is

truncation where the claim cost above a certain level is cut away. Truncation

is often used to deal with the problem of large claims in non-life insurance.

The other alternative is to delete all observations defined as ’extreme’. When

the outliers are assumed to be caused by errors, it is natural to use the second

method. After truncation or deletion we obtain a modified data set which

will be used to fit GLMs and estimate the parameter φ. In order to study

the sensitivity of φ̂ to the extreme values we are going to set several levels

at which the data will be truncated or deleted so that we can observe how

φ estimates change with different levels. We use truncation for risk cover

TLP and deletion for Gls. The results are showed in table 5 and table 6

respectively:

Method Original estimate level1 level2 level3 level4
Pearson 34,054 10,194 2,953 1,782 0,640
Deviance 2,623 2,124 1,588 1,333 0,801

ML 2,054 1,711 1,326 1,136 0,718

Table 5: Estimations of the parameter φ in the GLM for the cover TLP with
truncations on four different levels (Unit: SEK): level 1 = 1 000 000; level
2 = 200 000; level 3 = 100 000; level 4 = 30 000.

Method Original estimate level1 level2 level3 level4
Pearson 8.143 1,444 0,286 0,235 0,261
Deviance 0.384 0,352 0,335 0,322 0,309

ML 0.362 0,333 0,318 0,306 0,295

Table 6: Estimations of the parameter φ in the GLM for the cover Gls with
truncations on four different levels (Unit: SEK): level 1 = 500 000; level 2
= 50 000; level 3 = 4 686 (corresponding to 99% quantile) level 4 = 3 415
(corresponding to 95% quantile).

From the table 5 and 6, we find that the Pearson estimates are quite sensitive

to large values while the Deviance and ML estimates are much less affected by

truncation or deletion. Besides, we also notice that after truncation or dele-
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tion of the extreme values on certain levels, the Pearson estimates decrease

dramatically and become less than the values of the deviance estimate.

2.3 Simulation

From the previous section, we found that in practice, there can be large

differences between the φ estimates. In this section, we are going to study

the properties of the φ estimators when the underlying distribution is known

and try to find out which estimator is the most reliable by a simulation study.

The estimators will be compared in terms of unbiasedness and efficiency. In

order to limit the study, we will only choose two risk covers: TPL and Hull.

Two problems will be of interest in this section. First we are going to study

how the φ estimates behave when the assumption of a gamma distribution is

true. The other interesting problem is what the empirical distributions of φ̂

look like when the response variable is no longer gamma distributed but the

relationship V (µi) = µ2
i still holds. There are many non-EDM distributions

which satisfy the condition above, we choose the Generalized Pareto distri-

bution which has a fat tail. We simulate data out of this distribution and

fit GLMs to it under the false assumption that Y is gamma distributed. We

are interested in studying whether estimators are robust to variation of the

Y distribution.

2.3.1 Simulations with Gamma Distributed Claims

We assume that the claims Yi follow the Gamma distribution where E(Yi) =

µi and V ar(Yi) = φ · µ2
i . For the parameter µi, we use the estimated values

for TPL and Hull from the previous sections. We choose the true value of

φ also based on the earlier estimating results so as to make the simulated

data as realistic as possible. Besides, the number of claims per tariff cell

is chosen in accordance with the empirical data. We fitted GLMs to the

simulated data with 10 000 repetitions, each of which contained the same
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number of observations as in the real data. We obtain the corresponding

10 000 φ estimates and so their empirical distribution. The mean of the

empirical distribution will be compared to the true value of φ. Results of the

simulations with the different estimation methods are presented in table 7

and 8:

Estimation method Mean of φ̂ Std.Dev of φ̂
ML 1,9999 0,010

deviance 2,5426 0,014
Pearson 2,0015 0,020

Table 7: Means and standard deviations of the three estimators of φ for TPL
with gamma distributed average claims. The results are obtained by 10 000
simulations and the true value of φ is 2.

Estimation method Mean of φ̂ Std.Dev of φ̂
ML 1,0497 0,005

deviance 1,2194 0,006
Pearson 1,0496 0,006

Table 8: Means and standard deviations of the three estimators of φ for Hull
with gamma distributed average claims. The results are obtained by 10 000
simulations and the true value of φ is 1.05.

For the Pearson and ML estimates, the means of the estimates are very close

to the true value whilst the means of the deviance estimates deviates quite

much from the true value for both covers. It is also shown that the standard

deviations of all the estimates are quite small, indicating good efficiency of

the estimators.

2.3.2 Simulations with Pareto Distributed Claims

In this section we are trying to answer at least partly the question of how the

distributional assumption affects the estimation of φ with the three methods.

In practice, one often uses a quadratic variance function, corresponding to a

gamma distribution. However, even if a quadratic variance function may be

realistic, the gamma assumption may not always be suitable, especially in
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the presence of extreme values. In many cases, distributions with fatter tails

fit better the empirical data, e.g. the log-normal distribution or the gener-

alized Pareto distribution etc. Neither of them belongs to the EDM family.

Therefore we cannot apply these distributions directly in the frame of GLM.

We have studied what happens to the φ estimates if we still assume gamma

distribution though the real data follows a generalized Pareto distribution.

It may be noted that McCullagh and Nelder (1997) recommends using the

Pearson estimator in situations where the gamma assumption is in doubt.

We simulated data from a generalized Pareto distribution with the same

true value of φ as before. Fitting GLMs to the data with the assumption

of a gamma distribution, after 10 000 repetitions, we obtained the empirical

distribution of the φ estimator. Table 9 and 10 show the means and variances

of φ̂:

Estimation method Mean of φ̂ Std.Dev of φ̂
ML 0,807 0,003

deviance 1,469 0,006
Pearson 1,989 0,069

Table 9: Means and standard deviations of the three estimators of φ for TPL
with generalized pareto distributed average claims. The results are obtained
by 10 000 simulations and the true value of φ is 2.

We see that only the means of the Pearson estimates are close to the true

value. Both the ML and deviance estimators are biased. Another point worth

noticing is that the variance of the Pearson estimator is much greater than

the corresponding value when the response variable is gamma distributed.

Estimation method Mean of φ̂ Std.Dev of φ̂
ML 0,982 0,005

deviance 1,179 0,007
Pearson 1,049 0,010

Table 10: Means and standard deviations of the three estimators of φ for Hull
with generalized pareto distributed average claims. The results are obtained
by 10 000 simulations and the true value of φ is 1.05.
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3 Estimation of Dispersion parameters in GLMs

with Random Effect

In practice, one is often encountered with the problem of multi-level factors.

A multi-level factor has a large number of classes, many of which with in-

sufficient data for reliable estimates. Car model is a typical example of a

multi-level factor. Nelder & Verral (1997) and Ohlsson & Johansson (2003b)

suggested that multi-level factors can be modelled as random effects in GLMs.

These models include an additional dispersion parameter α and two different

methods of estimating α will be introduced. An empirical study of the three

methods is presented with the same data as we used in the previous section.

The section is ended with a simulation study.

3.1 Introduction to GLMs with Random Effect

According to Ohlsson and Johansson (2003b), GLMs can be extended by

introducing a random effect U in the way that µi(uk) = E(Yi|Uk = uk) = µiuk

for each level k of the random effect and µi = γ0γ1(i)γ2(i)...γj(i), the product

of all the relativities. It is natural to assume that E(Uk) = 1 since Uk can be

interpreted as a random deviation from the mean value given by other rating

factors. This corresponds to assuming mean zero for the random effects in

additive models. The main problem is how we find a suitable predictor for Uk.

According to Ohlsson and Johansson (2003b), the optimal linear predictor

can be expressed as g(Yi) = E(Uk|Yi), which minimizes the mean square

error. In the first part of this section, we are going to give a brief introduction

to Jewell’s Theorem, providing an idea of how to obtain g(Yi) = E(Uk|Yi)

when Yi is an EDM and µi depends on a random effect. Then we will discuss

so-called Tweedie models, where we can obtain an explicit expression for

E(Uk|Yi).
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3.1.1 Jewell’s Theorem

We assume that conditioning on parameter Θ, the distribution of the response

variable Y is an EDM with density:

fYi|Θ(yi|θ) = exp

(
yiθ − b(θ)

φ/wi

+ c(yi, φ, wi)

)
(11)

where we have suppressed the index k and defined µ(Θ) = E(Y |Θ). We

assume also that:

Assumption [2]

• Θk are independent and identically distributed random variables for

k = 1, 2...K.

• For k = 1, 2...K, the pairs (Yik, Θk) are independent.

• Conditional on Θk the random variables Y1k,Y2k,...,YIk,k are indepen-

dent.

Given the distribution of the parameter Θ, which functions as prior distribu-

tion, we can get the posterior distribution FΘ|Y (θ|y) with the help of Bayes’

theorem. In Jewell’s theorem, it is assumed that distribution of Θ is of the

form:

fΘ(θ) = exp

(
θδ − b(θ)

1/α
+ d(δ, α)

)
(12)

where:

δ = E(b′(Θ)) = E(µ(Θ)) (13)

and

α =
E(b′′(Θ))

V ar(b′(Θ))
=

E(V (µ(Θ)))

V ar(µ(Θ))
(14)

α is the additional dispersion parameter in the GLMs with random effect.

Equation 14 shows how the dispersion parameter α is related to the variance
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of µ(Θ). It follows from Bayes’s theorem that:

fΘ|Y (θ|y) ∝ exp

(
θδ̃ − b(θ)

1/α̃

)
(15)

where α̃ = α + (w./φ) and δ̃ = E(µ(Θ)|Y ) = (αδ + (w./φ)ȳ)/α̃. We see

from the above that the posterior distribution belongs to the same family as

the prior distribution of Θ. In such a case, we call the distribution a natural

conjugate distribution of Yi|Θ.

3.1.2 Tweedie Models and Random Effects in GLMs

In Jewell’s theorem, only the random effect is considered. In this section we

are going to introduce a sub-family of EDM, for which it is possible to extend

Jewell’s theorem to the situation with fixed effects apart from the random

effect.

An EDM is called a Tweedie model if the variance function can be written

as:

V (µ) = µp (16)

where p is a positive integer.

For the Tweedie models, under certain conditions (Ohlsson and Johansson,

2003b):

α =
E(µ(Θk)

p)

V ar(µ(Θk)

where in the case of p = 2, α can expressed as:

α = 1 +
1

V ar(µ(Θk))
(17)

This indicates that the dispersion parameter has a negative relationship with

the variance of µ(Θk).

In GLMs with a random effect, the mean can be expressed in the form:

µi(Uk) = µiUk
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where µi is given by the ordinary rating factors and Uk denotes the the

random effect on k:th level. We denote the so called canonical link function by

h(·). Based on the results in the previous section, we can obtain the following

(Ohlsson and Johansson, 2003b): We define the response variable Yik and

E(Yik|Uk) = µiUk. Conditioning on Uk = uk, the Yik follow a Tweedie model

with 1 ≤ p ≤ 2 and Θ = h(Uk) follows the natural conjugate distribution

where α > 0 and δ > 0, then the optimal predictor of Uk is of the form:

ûk = E(Uk|Yik), and is given by

ûk =

∑
i wikyik/µ

p−1
i + φα

∑
i wikµ

2−p
i + φα

(18)

3.2 Estimation of the α

We are interested in the estimation of the dispersion parameters in GLMs

and now focus on the additional dispersion parameter α. In this section, two

methods of estimating α will be presented, starting with maximum likelihood

estimations in the marginal distribution of Yik. Then an alternative method

proposed by Ohlsson and Johansson(2003b) is introduced. We assume that

the response variable Yik|Uk follows a Tweedie model.

3.2.1 ML Estimation of α

For p = 1 or p = 2 in the Tweedie model, it is possible to derive an explicit

expression for the marginal density of Y . The ML estimator can then be

obtained as the solution to the ML equations.

For p=2, i.e. V (µ) = µ2, according to Ohlsson & Johansson (2002, unpub-

lished), the ML equation is:

1

K

∑

k

[
α + 1

α
− νw.k + α + 1

νw.kȳ∗k + α

]
− 1

K

∑

k

log
[
νw.kȳ

∗
k + α

α

]

+
1

K

∑

k

[Ψ(νw.k + α + 1)−Ψ(α + 1)] = 0
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where K denotes the total number of classes of the multi-level factor, ν = 1/φ

and yk∗ = yik/µk. Using the estimated α we can then predict the random

effect Uk.

The estimation results of α depends partly on φ̂, as we can tell from the ex-

pression above. Thus the estimate of φ will affect the quality of the estimate

of α when we use the ML estimator.

3.2.2 An Alternative Estimation Method

According to Ohlsson and Johansson (2003b), under the assumption of Tweedie

models, one can prove that

α =
E(µ(Θ)p)

V ar(µ(Θ))

where Θ = h(U). We now consider separate estimation of σ2 = φE(µ(Θ)p)

and σ2
Θ = V ar(µ(Θ)), whose ratio is the term φα. From equation 18 we see

that with the α̂φ we can predict Uk directly. In another words, we do not

need to estimate α and φ separately to obtain Ûk.

An estimator of σ2 can be obtained as follows (Ohlsson and Johansson,

2003b)

σ̂2
k =

1

Ik − 1

∑

i

wikµ
2−p
i

(
Yik

µi

− ūk

)2

where Ik is the number of observations in class k and ūk is the weighted

average of yik/µi:

ūk =

∑
i (wikµ

2−p
i )yik/µi∑

i wikµ
2−p
i

Weighing σ̂2
k together with weights Ik − 1 we get the estimator as:

σ̂2 =

∑
k (Ik − 1)σ̂2

k∑
k (Ik − 1)

An estimator of σ2
U is given by by the following expression:

σ̂2
U =

∑
k

∑
i wikµ

2−p
i (ūk − 1)2 −Kσ̂2

∑
k

∑
i wikµ

2−p
i

25



The estimator of αφ can be expressed as: α̂φ = σ̂2/σ̂2
U . It can be shown that

given µi, σ̂2 and σ̂2
U are unbiased estimators of σ2 and σ2

U respectively.

3.2.3 Estimation Algorithm

The estimation algorithm used for estimating Uk can summarized as the

follows (Ohlsson and Johansson, 2003b):

0. Set the initial value of uk as 1 for all k;

1. Run SAS Proc Genmod, with log(Uk) as offset variable, to get µ̂i;

2. Estimate α using the µ̂i from step 1;

3. Compute ûk using the estimates of step 1 and step 2;

4. Repeat step 1-3 until convergence;

3.3 Application to Car Insurance

The application of GLMs to car insurance will be extended by including a

random effect. The point of interest here is the estimation of α. We consider

basically two estimation methods. The first is to estimate φ as before and α

using the ML estimator in the marginal distribution of Y . The other method

is to use the alternative estimator in section 3.2.2. The application to real

insurance data will be complemented by a simulation study.

3.3.1 Empirical Study

We use the same data as before with the difference that we introduce a

new variable car model as a multi-level factor Uk and choose different rating

factors from the previous model. There are around 2000 different car models,
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i.e. Uk has about 2000 classes. The new model can be expressed as follows:

µi(uk) = E(Yi|Uk = uk) = γ0γ1(i)γ2(i)...γj(i)uk

where the parameter γj(i) denotes the relativity for the i:th level with respect

to the j:th rating factor.

A study is made for each of the four different covers. It is worth noticing

that the ML estimator of α depends partly on the value of φ̂, which can be

obtained with three different methods: ML, Pearson and deviance. We are

going to use all of these methods to estimate φ and study how they affect the

estimation of α. However, with the alternative methods of estimating Uk, we

consider αφ as a whole, which means that the results will be the same no

matter which method we use to estimate φ. The estimation results for four

covers are shown in the tables 11-14:

Without Uk With Uk–ML With Uk–Alt

φ̂ φ̂ α̂φ α̂φ
ML 0,919 0,875 9,338 17,913

Deviance 1,051 0,997 11,797 17,913
Pearson 1,449 1,194 16,397 17,913

Table 11: Estimation of αφ for the cover Hull in the GLM with the random
effect. The results are obtained by two methods, ML and the alternative
method, where ML estimator produces three different estimates due to the
different methods of estimating corresponding φ and is obtained by multiplying
φ̂ with α̂−ML. The alternative estimator does not depend on φ̂.

Without Uk With Uk–ML With Uk–Alt

φ̂ φ̂ α̂φ α̂φ
ML 1,055 1,003 15,054 29,435

Deviance 1,227 1,163 19,645 29,435
Pearson 2,002 1,647 37,687 29,435

Table 12: Estimation of αφ for the cover Mer in the GLM with random effect.

First of all, we study the ML estimator of α. Since we have obtained three

different estimates for each α̂ due to different methods of estimating φ, we

are interested in finding out whether these three estimates get along with
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Without Uk With Uk–ML With Uk–Alt

φ̂ φ̂ α̂φ α̂φ
ML 1,193 1,075 3,971 22,524

Deviance 1,408 1,252 4,863 22,524
Pearson 3,942 5,778 22,774 22,524

Table 13: Estimation of αφ for the cover Partial kasko in the GLM with
random effect where the extreme values have already been deleted.

Without Uk With Uk–ML With Uk–Alt

φ̂ φ̂ α̂φ α̂φ
ML 1,371 1,332 16,098 162,738

Deviance 1,649 1,605 29,710 162,738
Pearson 3,508 3,475 1062,704 162,738

Table 14: Estimations of the αφ in the GLM for the cover TPL with trunca-
tions on the level 200 000 SEK.

each other. The tables 11-14 show that the α̂φ with Pearson φ̂ deviates quite

much from the other two estimates and values of φ̂d and φ̂m are relatively

close to each other. This can be seen even more clearly in the covers Partial

Kasko and TPL.

Comparing estimation results between the ML and the alternative method,

we see that the estimates of α̂φ obtained by alternative method are more

close to the ML-estimates with φ̂p for the covers Hull, Mer as well as Partial

kasko. For TPL, the estimates with alternative method differs quite much

from all the ML estimates. It seems that the TPL data are so skewed that

random effect prediction is not possible in that case. Also with α̂φ = 163 all

Ûk will be close to 1.

From section 2.2.2, we have learned that cover TPL has large variance and

skewness. Besides φ̂p is very sensitive to extreme values. This might be an

explanation for the strange estimation results for αφ for TPL.
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3.3.2 Simulation Study

In order to give more insight into the properties of the estimators of α, we

performed a simulation study. The main purpose of simulations is to compare

the estimated α with the true value, in which way we can get some idea of

how well different estimation methods work. For the sake of simplicity, we

choose to create a data set with only one fixed effect and one random effect.

To begin with, we assume that

Yi|Uk ∼ Gamma(µiUk, φ)

where E(Yi|Uk) = µiUk. The corresponding natural conjugate distribution

fΘ(θ) is of the form

fΘ(θ) = exp

(
θδ + log(−θ)

1/α
+ d

)

where the canonical link function can be expressed as Θ = −1/Uk. It can be

shown that Uk ∼ InverseGamma(α + 1, α) (for a proof see the Appendix

A4). To generate the data Yi, we take the following steps:

• Set the true values of the fixed factors µi (See table 15)

• Set the true values of φ = 2 and α = 12

• Simulate variable Uk ∼ InverseGamma(α + 1, α)

• Simulate variable Yi|Uk ∼ Gamma(µiUk, φ)

We suppose that the fixed effect has only five levels, µi for i = 1, 2, 3, 4, 5

that take the following values:

We assume also that the multi-level factors has totally 1110 levels with the

number of observations for each level given by the following table:

Thus we have 6 000 observations on each level i and totally 30 000 obser-

vations. We fit the extended GLMs with the random effect Uk into the
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level i= 1 2 3 4 5
µi 1000 1240 1130 1080 1020

Table 15: Values of µi on level 1, 2, 3, 4 and 5. The true values of µi are
chosen based on the estimation results in the models without random effect
in section 2.

level k= 1-10 11-110 111-1110
nik 200 20 2

Table 16: The number of observations for each k on the i:th level where
k = 1, 2, ...1100 and i = 1...5.

simulated data for 5 000 times and estimate the parameter α (or αφ) as well

as the corresponding φ with the methods described in the previous sections.

We then obtain the means and variances of estimates of both α (or αφ) and

φ and then compare the means with the true values. The estimation results

are showed in the tables 17 and 18:

φ estimation Mean of φ̂ Std.Dev of φ̂ Mean of α̂φ Std.Dev of α̂φ
ML 1,981 0,014 23,265 1,969

Deviance 2,532 0,020 45,092 4,314
Pearson 1,929 0,028 25,482 2,669

Table 17: Means and standard deviations of ML estimator of α̂φ with differ-
ent methods of estimating the parameter φ in the GLM where the response
variable average claim amount is gamma distributed. The true value of αφ
is 24.

Comparing the three ML estimators we see that the best result is obtained

when we use φ̂m where the mean value of α̂φ is most close to the true value

while the standard deviation is the smallest. With the alternative method,

the mean value of the α̂φ is also around the true value but with a larger

standard deviation. Therefore we can conclude that the ML estimation of α

with φ̂m is the most preferable in this case.

In practice, the distribution of response variable is often skewly distributed,

as the case for covers Partial Kasko and TPL. In the following, we are going
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Mean of α̂φ Std.Dev of α̂φ
26,630 2,866

Table 18: Means and standard deviations of the alternative estimator of αφ
in the GLM with random effect where the response variable average claim is
gamma distributed. The true value of αφ is 24.

to generate a data which follows the Generalized Pareto distribution though

we still assume in the GLMs that it is gamma distributed. The random

effect Uk is still inverse gamma distributed. We are going to compare all

the estimators of α when the assumption of distribution is not proper. We

choose the same true values of α and φ. The results are shown in the tables

19 and 20:

φ estimation Mean of φ̂ Std.Dev of φ̂ Mean of α̂φ Std.Dev of α̂φ
ML 1,209 0,009 11,502 0,937

Deviance 1,434 0,013 14,856 1,205
Pearson 1,790 0,078 21,820 4,363

Table 19: Means and standard deviations of ML estimator of α̂φ with differ-
ent methods of estimating the parameter φ in the GLM where the response
variable average claim amount is generalized pareto distributed. The true
value of αφ is 24.

Mean of α̂φ Std.Dev of α̂φ
22,175 4,458

Table 20: Means and standard deviations of the alternative estimator of αφ
in the GLM with random effect where the response variable average claim is
generalized pareto distributed. The true value of αφ is 24.

When the distribution assumption has been changed, ML estimate of α with

φ̂m becomes much worse while ML estimate of α with φ̂p is still close to the

alternative estimate and the true value.
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4 Conclusion

In the GLMs without random effect, there is only one dispersion parameter

φ. We have discussed three methods of estimating φ in two different sit-

uations. In the first case, where the GLM fits well to our empirical data,

the ML estimator of φ turns out to be unbiased with 95% confidence. Both

Pearson and Deviance estimators are biased. Meanwhile, the Deviance esti-

mates are always larger than the ML estimates, which has been shown both

theoretically and empirically. The Pearson estimator is pretty good in the

sense that the value of the estimate is quite close to the true value. In the

second case, when the distributional assumption is doubtful, we find that

the ML estimator is no longer unbiased. However, the Pearson estimator

is robust because the estimate does not change much even when the distri-

bution assumption has been changed. Another finding is that the Pearson

estimator is very sensitive to extreme values. When we delete or truncate

the extreme values, the Pearson estimate decreases dramatically as it should.

On the other side, the Deviance and ML estimates do not change much after

deletion or truncation.

In the GLMs with random effect, there is an additional dispersion parameter,

α. In this paper, two estimation methods, ML and the alternative method

have been introduced to estimate the quantity αφ, which can be used directly

to calculate the random effect Uk. The ML estimator is dependent of the φ

estimate. It has been shown that when the distributional assumption is

sensible, all of the ML estimators are biased with 95% confidence. However,

the ML estimates with φ̂m and φ̂p are quite close to the true value while the

ML estimates with φ̂d deviates much from the true value. After we change

the assumption, the estimate with φ̂m becomes worse and its value is close

to the one of ML estimates with φ̂d. The ML estimates with φ̂p is affected

comparatively less and the value of the estimate is still relatively close to

the true value. This is in accordance with the results in the GLMs without

random effects, where the φ̂p is the most robust. Comparing the ML with

the alternative method, we find that except for the cover TPL, the value of
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the alternative estimate gets along with the ML estimates with φ̂p no matter

whether the distributional assumption is proper or not. This is the case in

both empirical and simulation studies. However, a disadvantage of these two

estimators is that the standard deviations of the estimates are large.

When the value of α̂φ is large, the ûk is convergent to 1, which implies that

the random effect does not affect the model substantially and even can be

ignored. This could possibly explain the abnormal estimations of α̂φ for TPL

where the random effect car model does not have much importance on the

response variable, average claim amount. In such cases, neither ML nor the

alternative estimators yield sensible estimations.

In summary, we recommend the Pearson estimator for estimating φ with the

reason that it is the most robust against the distributional assumption since

in practice it is often difficult to find a canonical distribution that fits the data

well, particularly when there are large values. Concerning the α estimation

in the model with a random effect, it turns out that the ML estimator with

φ̂p and the alternative estimator are superior to the others, though both are

biased, the estimates are robust and do not deviate much from the true value.
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6 Appendix A

Appendix A1 : Re-parametrization of gamma distribution with

GLM

The gamma distribution belongs to the GLMs and can be expressed in terms

of two parameters µ and φ. Though it takes different look, it is completely

consistent with the density function of gamma distribution in terms of α and

β, which we are more familiar with. By some simple manipulations, we can

reparametrize the density function by α and β:

fY (yi) = exp

(−yi/µi − log(µi)

φ/wi

+ log(wiyi/φ)wi/φ− log(yi)− log Γ(wi/φ)

)

= e−wβy ·
(

β

α

)αw

· (αwy)αw · y−1 · 1

Γ(αw)

=
(wβ)αw

Γ(αw)
· yαw−1 · e−βwy

The last expression reminds us of the density function of gamma distribution:

f(x) =
βα

Γ(α)
xα−1e−βx

where we have α′ = αw and β′ = βw in this case. The relation between these

two parametrization can be expressed as µ = α/β and φ = 1/α
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Appendix A2 : Proof of the ML equation for the gamma distribu-

tion

l(µi; φ) =
n∑

i

wi

φ
log

(
wi

φµi

)
+

(
wi

φ
− 1

)
log(y)− wiyi

φµi

− log Γ

(
wi

φ

)

=⇒ ∂l

∂φ
=

n∑

i

−wi

φ2
log

(
(

wi

φµi

)
− wi

φ2
− wi

φ2
log(y) +

wiyi

φ2µi

−Ψ

(
wi

φ

) (
−wi

φ2

)

Setting ∂l/∂φ = 0

=⇒ 2 ·
n∑

i

wi

(
log

(
wi

φ

)
−Ψ

(
wi

φ

))
= 2 ·

n∑

i

wi

(
log

(
µi

yi

)
+

yi − µi

µi

)

Where the right side of the equation equals the deviance for the gamma

distribution.
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Appendix A3 : An Approximate Form of φd with Taylor Expansion

Taylor expansion:

f(x) = f(a)+f ′(a)(x−a)+
f ′′(a)

2!
(x−a)2+

f (3)(a)

3!
(x−a)3+...+

f (n)(a)

n!
(x−a)n

Applying Taylor expansion to the function f(yi) = wi · log(µ̂i/yi) with x = yi

and a = µ̂i

f ′(yi) = −wi

yi

f ′′(yi) =
wi

y2
i

f (3)(yi) = −2 · wi

y3
i

=⇒ f(yi) = wi log(µ̂i/yi) ≈ wi

2µ2
i

(yi − µ̂i)
2 − 2 wi

6µ̂3
i

(yi − µ̂i)
3

=⇒ φ̂d =
2

n− r

∑

i

f(yi) =
2

n− r

∑

i

wi log

(
µ̂i

yi

)

≈ wi

n− r
· log(µ̂i/µ̂i)− 1

n− r
·∑

i

wi

(
yi − µ̂i

µ̂i

)

+
1

n− r
·∑

i

wi

(
yi − µ̂i

µ̂i

)2

− 1

n− r
·∑

i

2wi

3

(
yi − µ̂i

µ̂i

)3

=
1

n− r
·∑

i

wi

(
yi − µ̂i

µ̂i

)2

− 1

n− r
·∑

i

2wi

3

(
yi − µ̂i

µ̂i

)3

where we use the fact that
∑

i wi · (yi − µ̂i)/(µ̂i) = 0
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Appendix A4 : Proof of Inversely Gamma Distribution

If we have a variable X following a gamma distribution, the variable Y=1/X

is inverse gamma distributed. In other words, to prove that Uk follows a

inverse gamma distribution, we only need to prove Θ′ = −Θ = 1/Uk is

gamma distributed.

We have density function of Θ with the form:

fΘ(θ) = exp

(
θ + log(−θ)

1/α
+ d

)

FΘ′(θ
′) = P (Θ′ ≤ θ′) = P (−Θ ≤ θ′) = 1− P (Θ ≤ −θ′) = 1− FΘ(−θ′)

=⇒ fΘ′(θ
′) = fΘ(−θ′) ∝ exp

(−θ′ + log(θ′)
1/α

)
= θ′αe−αθ′

This indicates that Θ′ ∼Gamma (α + 1, α) and hence Uk ∼ InverseGamma

(α + 1, α).

38



7 Acknowledgement

I would like to extend my sincere gratitude and appreciation to many people

who make this master thesis possible.

First of all, great thanks are due to my supervisors, Esbjörn Ohlsson and

Björn Johansson, who have been providing me with a great many inspiring

ideas and instructions on both content and structure of this thesis. Thanks

to their participance, it has become a fully enjoyable learning process to write

the thesis.

I am highly indebted to Actuary Department at Länsförskringar, Sak, whose
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