sulogo Matematiska institutionen

Stockholms universitet
Brunnsviken

INSTITUTETS FORSKNINGSRAPPORTER

Serie B: Examensarbeten och tillämpad forskning:
(1995 - 1999)


B55
Rashin Kabiri: Statistical evaluation of test results on electrical contacts and proposals for optimization of a master test sequence. Masters Thesis, December 1999.
B54
Claes Westerdahl: Prissättning av derivat på elmarknaden. Examensarbete, oktober 1999.
B53
Annika Reistad: Fördelningsanpassning av anmälningstiden vid skadeförsäkring. Examensarbete, september 1999.
B52
Johan Lindbäck: Geografisk spridning av Campylobacterinfektioner. Statistisk analys med MCMC. (September 1999)
B51
Maria Lundqvist: En modell för beräkning av livförsäkringsbolags självbehåll, riskreserv och ruin- och förlustsannolikheter. (Examensarbete, augusti 1999) ( Abstract )
B50
Anna Johansson : Modelling the Dissolution Profile. A Study of the Release of a Drug in the Large Intestine Using Different Regression Methods. (Masters Thesis, March 1999) ( Abstract )
B49
Marie Linder and Rolf Sundberg : Looking at process capability indices and data: Graphical statistical aspects, for application in manufacturing control. (Statistiska Forskningsgruppen) ( Abstract )
 
B48
Åsa Hansson : Hur säkert kan atmosfärens koldioxidökning bestämmas ur data från iskärnor? (Examensarbete, nov -98)
 
B 47
Jonas Leander : Analys av risken att få bröstcancer för kvinnor vars mammor fått bröstcancer två gånger. (Examensarbete, nov -98)
 
B46
Torbjörn Andréason och Fredrik Johansson: Säkerhetsreserv i skadeförsäkring. En analys av Normalplanen. (Examensarbete, sep- 98)
 
B45
Joanna Tyrcha and Rolf Sundberg: Statistical modelling and saddle point approximation of tail probabilities for accumulated splice loss in fibre optics (December 1998)
B44
David Anderson : Fluctuation of windstorms premiums for X/L reinsurance in Japan (Masters Thesis, April -98)
 
B43
Milla Pakkanen : A Model for Prediction of Fault-Prone Software Modules (Masters Thesis, April -98)
 
B42
Gabriela Ghibu: Large Deviations for Performance Analysis. (Masters Thesis, March -98)
 
 
B41
Dan Hedlin : On the stratification of highly skewed populations. (Masters Thesis, Jan -98)
 
B40
Anastasia Iliadou : Introduction to Genetic Epidemiology and applications to a sample collected from Sardinia. (Masters Thesis, Dec -97)
 
B39
Harald Hannerz : Korttidsdödlighet bland hjärtinfarktpatienter vid svenska akutsjukhus.(Examensarbete, april -97)
 
B38
Rikard Bergström : Loss Distribution Models for Reinsurance. (March -97)
B37
Anna Carlsund : Studie av alarmsystem för smittsamma sjukdomar. (Examensarbete februari -97)
B36
Gunde Brandin och Morgan Skogh: Winsorisering av Outliers. Utvärdering av en metod som minskar inflytandet av extrema observationer vid stratifierat urval (Examensarbete maj -97)
B35
Jonas Byström : Prognosmetoder för skadekostnader.
(Examensarbete dec. -96)
 
B34
Rozita Sohrabian : Statistical Evaluation of Call Failures in a
GSM Basestation. (Examensarbete maj -96)
 
B33
Johan Irbäck och Niclas Sjögren : Statistisk analys av en Longitudinell malaria-
studie från Tanzania. (Examensarbete dec -95)
B32
Anders Jonsson : Statistisk analys av reproducerbarheten för övergripande tillståndsmätningar. (Examensarbete mars -95)
 



Abstracts of selected reports

B51
Maria Lundqvist: En modell för beräkning av livförsäkringsbolags självbehåll, riskreserv och ruin- och förlustsannolikheter. (Examensarbete, augusti 1999)

One of the major problems facing a life insurance actuary is to decide what amount of money he or she shall allocate to the company's reserve for ongoing claims. On the one hand, there is no point in building up the reserve out of proportion, on the other hand the company must limit its risk for a loss, or even ruin.

This report describes a simple model to calculate ruin- and loss probabilities in a life insurance company. It is based on the ruin probability theory presented by Beard, Pesonen and Pentikainen in their book "Risk Theory".

The model has then been developed into a Pascal program intended for a life insurance portfolio, where the user can choose to calculate any out of several parameters such as ruin probability, loss probability, suitable retention or reserve for this specific portfolio.

An overview of the program's structure is given in the Appendix


B50
Anna Johansson: Modelling the Dissolution Profile. A Study of the Release of a Drug in the Large Intestine Using Different Regression Methods. (Masters Thesis, March 1999)

It is vital that tablets are designed to release the active substance in the right area of the digestion system. To be able to predict how long and how fast a specific tablet dissolves is therefore an interesting problem. The data used here have been obtained through experiments where tablets are dissolved in vessels simulating the environment in the large intestine. The Weibull function describes adequately how the percentage released substance increases with time. The two parameters of the Weibull function (the form parameter and the scale factor) describe the slope and the delay of the curve. The methods of univariate linear regression, multivariate linear regression and partial least squares regression have been used to analyse how the two parameters depend on physical and chemical factors. The results show that the profile may be predicted quite accurately if the input data matches the ranges of the calibration data. To get a faster dissolution, variables such as percentage of polymers, percentage polymers of coating, coating solution flow, air temperature in and fluid-air flow should be increased, while variables such as percentage coating solution used of theoretical amount, nozzle pressure and air temperature out should be decreased.


B49
Marie Linder and Rolf Sundberg : Looking at process capability indices and data: Graphical statistical aspects, for application in manufacturing control.

We discuss how the capability of a manufacturing process should be presented from collected quality control data. We argue against the conventional presentation of capability in the form of estimated values of capability indices with constructed standard errors and confidence intervals. Instead we advocate a two-dimensional graphical presentation of a confidence region for mean and standard deviation jointly, of the process characteristic under study, together with a capability region in the same parameters corresponding to desired bounds for a set of capability indices regarded to be of interest. We argue that looking at the size and position of the confidence region relative to the capability region gives a good understanding of the capability and performance of the manufacturing process.

Keywords: Capability, confidence regions, tolerance.