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Abstract

Respondent driven sampling (RDS) is a method often used to estimate
population properties (e.g. sexual risk behavior) in hard-to-reach popula-
tions. It combines an effective modified snowball sampling methodology
with an estimation procedure that yields unbiased population estimates un-
der the assumption that the sampling process behaves like a random walk
on the social network of the population. Current RDS estimation method-
ology assumes that the social network is undirected, i.e. that all edges are
reciprocal. However, empirical social networks in general also have non-
reciprocated edges. To account for this fact, we develop a new estimation
method for RDS in the presence of directed edges on the basis of random
walks on directed networks. We distinguish directed and undirected edges
and consider the possibility that the random walk returns to its current
position in two steps through an undirected edge. We derive estimators
of the selection probabilities of individuals as a function of the number of
outgoing edges of sampled individuals. We evaluate the performance of the
proposed estimators on artificial and empirical networks to show that they
generally perform better than existing methods. This is in particular the
case when the fraction of directed edges in the network is large.





1 INTRODUCTION

Random walks on networks are crucial to the understanding of many net-
work processes, and in many applications, random walks serve as either
rigorous or approximate tools depending on the amount of information avail-
able about networks. A network sampling methodology taking advantage
of a random walk approximation is respondent-driven sampling (RDS). The
method, first suggested in Heckathorn (1997), is especially suitable for inves-
tigating hidden or hard-to-reach populations, such as injecting drug users
(IDUs), sex workers, and men who have sex with men (MSM). For such
populations, sampling frames are typically unavailable because individuals
often suffer from social stigmatization and/or legal difficulties, and conven-
tional sampling methods therefore fail. High demand for valid inference on
hidden populations, e.g. on the risk behavior of individuals and the disease
prevalence in the population, as well as a lack of competing methods, has
made RDS a leading method. Examples of RDS studies from 2013 include
MSM in Nanjing, China (Tang et al., 2013), undocumented Central Amer-
ican immigrants in Houston, Texas (Montealegre et al., 2013), and IDUs in
the District of Columbia (Magnus et al., 2013).

At the core of RDS is the notion of a social network that binds the
population together. During the sampling process, already sampled indi-
viduals use their social relations (edges of the social network) to recruit new
individuals in the population into the sample, creating a snowball-like mech-
anism. Additionally, information on the structure of the network collected
during the sampling process facilitates unbiased population estimates given
that the actual RDS recruitment process behaves like a random walk on the
network (Salganik and Heckathorn, 2004; Volz and Heckathorn, 2008).

In recent years, much RDS research has focused on the sensitivity of
current RDS estimators to violations of the assumptions underlying the
estimating process. In fact, it has been shown that RDS estimators may be
subject to substantial biases and large variances when some assumptions are
not valid (Gile and Handcock, 2010; Lu et al., 2012; Wejnert, 2009; Tomas
and Gile, 2011; Goel and Salganik, 2010). New RDS estimators have been
developed to mitigate this problem (Gile and Handcock, 2011; Gile, 2011;
Lu et al., 2013).

Current RDS estimation assumes that the social network of the pop-
ulation is undirected. However, real social networks are at least partially
directed in general. The directedness of a network can be quantified by
the the ratio of the number of non-reciprocal (i.e., directed) edges to the
total number of edges in the network (Wasserman and Faust, 1994). This
value lies between 0 and 1, and a large value indicates that the network is
close to a purely directed network. Examples of real social networks and
social networks, including e-mail social networks, from online communities
having a considerable fraction of non-reciprocal edges are shown in Table
1. For these and other directed social networks, RDS methods assuming an
undirected network may be biased.

Motivated by these data, we aim to expand RDS estimation to the case
of directed networks. Because the RDS method uses the random walk, a
random walk framework for directed networks is a key component to this
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Table 1: Proportion of directed edges in social networks.

Real social networks Online social networks

High-tech managers 0.71 Google+ (Oct 2011) 0.62
(Wasserman and Faust, 1994) (Gong et al., 2013)
Dining partners 0.76 Flickr (May 2007) 0.55
(Moreno et al., 1960) (Gong et al., 2013)
Radio amateurs 0.59 LiveJournal (Dec 2006) 0.26
(Killworth and Bernard, 1976) (Mislove et al., 2007)

Twitter (June 2009) 0.78
(Kwak et al., 2010)
University e-mail 0.77
(Newman et al., 2002)
Enron e-mail 0.85
(Boldi and Vigna, 2004)
(Boldi et al., 2011)

expansion. This is not a trivial task because the random walk behaves
very differently in undirected and directed networks. In particular, the
stationary distribution of the random walk is simply proportional to the
degree of the vertex in undirected networks (Doyle and Snell, 1984; Lovász,
1993), whereas it is affected by the entire network structure in directed
networks (Donato et al., 2004; Langville and Meyer, 2006; Masuda and
Ohtsuki, 2009).

In this paper, we first present the commonly available RDS estimation
procedures and the basics of random walks on networks in Sections 2 and
3, respectively. Then, we present methods for estimating the stationary
distribution from random walks on directed networks and its application to
RDS estimation in Section 4. These methods are then evaluated and com-
pared to existing methods by numerical simulations, which we describe in
Section 5. The results from simulations are presented in Section 6. Finally,
our findings are discussed in Section 7.

2 RESPONDENT-DRIVEN SAMPLING

In practice, an RDS study begins with the selection of a seed group of indi-
viduals from the population. Each seed is given a fixed number of coupons,
typically three to five, which are effectively the tickets for participation in
the study, to be distributed to other peers in the population. Those who
have received a coupon and joined the study (i.e., respondents) are also given
coupons to be distributed to other peers that have not obtained a coupon.
This procedure is repeated until the desired sample size has been reached.
Each respondent is rewarded both for participating in the study and for the
participation of those to whom he/she passed coupons, resulting in dou-
ble incentives for participation. The sampling procedure ensures that the
identities of members of the population are not revealed in the recruitment
process. For each respondent, the properties of interest (e.g., HIV status),

4



number of neighbors (degree), and the neighbors that the respondent has
successfully recruited are recorded.

We approximate the RDS recruitment process by a random walk on the
social network. To this end, we assume that (i) respondents recruit peers
from their social contacts with uniform probability, (ii) each recruitment
consists of only one peer, (iii) sampling is done with replacement, such that
a respondent may appear in the sample multiple times, (iv) the degree of
respondents is accurately reported, and (v) the population forms a con-
nected network. Then, if the random walk is in equilibrium with a known
stationary distribution {πi; i = 1, . . . , N}, where N is the population size,
we may estimate pA, the fraction of individuals with a property of interest
A, as (Thompson, 2012)

p̂A =

∑
i∈S∩A 1/πi∑
i∈S 1/πi

, (1)

where S is our sample. For undirected networks, the stationary distribution
is proportional to the degree (Doyle and Snell, 1984; Lovász, 1993), and Eq.
(1) yields the most widely used RDS estimator (Volz and Heckathorn, 2008)
given by

p̂VH
A =

∑
i∈S∩A 1/di∑
i∈S 1/di

, (2)

where di is the degree of node i. However, the estimator given by Eq. (2)
may be biased for directed networks (Lu et al., 2012, 2013). Therefore, to
estimate pA without bias from an RDS sample on a directed network, we
need to accurately calculate Eq. (1). Because the stationary distribution
{πi} used in Eq. (1) is analytically intractable for most directed networks,
we will proceed by deriving estimators of it.

3 RANDOM WALKS ON DIRECTED

NETWORKS

We consider a directed, unweighted, aperiodic, and strongly connected net-
work G with N vertices. Let eij = 1 if there is a directed edge from i to
j and 0 otherwise. An undirected edge exists between i and j if and only
if eij = eji = 1. We denote the number of undirected, in-directed, and

out-directed edges at vertex i by d
(un)
i , d

(in)
i , and d

(out)
i , respectively. We

use D(un), D(in), and D(out) to refer to the corresponding random variables
if a node is drawn uniformly at random. If we specifically mention that

the network is undirected, we obtain d
(in)
i = d

(out)
i = 0, and the degree of

vertex i refers to d
(un)
i = di. Otherwise, the degree of vertex i refers to the

triplet (d
(un)
i , d

(in)
i , d

(out)
i ). We refer to d

(un)
i + d

(in)
i and d

(un)
i + d

(out)
i as the

in-degree and out-degree of vertex i, respectively. It should be noted that

we may observe for example the out-degree d
(un)
i +d

(out)
i , but not separately

the d
(un)
i and d

(out)
i values.

Consider the simple random walk X = {X(t); t = 0, 1, . . .} with state
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space S = {1, . . . , N} on G such that the walker staying at vertex i moves to

any of the d
(un)
i + d

(out)
i neighbors reached by an undirected or out-directed

edge with equal probability. We denote the stationary distribution of X by
{πi; i = 1, . . . , N}, where πi = limt→∞ P (X(t) = i). If we sample from the
random walk in equilibrium, vertices will be selected with probabilities given
by the stationary distribution, and we then refer to {πi} as the selection
probabilities of the vertices in G.

For an arbitrary network, we obtain

πi =

N∑
j=1

eji∑N
`=1 ej`

πj =

N∑
j=1

eji

d
(un)
j + d

(out)
j

πj , (3)

where the stationary distribution is fully defined by
∑N

i=1 πi = 1. In undi-

rected networks, we obtain πi = di/
∑N

j=1 dj . In contrast, there is no analyt-
ical closed form solution for {πi} in directed networks. If a directed network
has little assortativity (i.e., degree correlation between adjacent vertices),
{πi} is often accurately estimated by the normalized in-degree (Lu et al.,
2013; Fortunato et al., 2008; Ghoshal and Barabási, 2011) because

πi ≈
N∑
j=1

eji

d
(un)
j + d

(out)
j

π̄ ∝
N∑
j=1

eji = d
(in)
i + d

(un)
i , (4)

where π̄ is the average selection probability. However, the estimate given
by (4) is often inaccurate in general directed networks (Donato et al., 2004;
Masuda and Ohtsuki, 2009). Moreover, since it is much easier for individuals
to assess how many people they know (i.e., out-degree) than by how many
people they are known (i.e., in-degree), it is common to observe only the
out-degree. In this case, Eq. (4) can not be used with an RDS sample.

4 ESTIMATION OF SELECTION

PROBABILITIES FOR DIRECTED NETWORKS

We now derive estimators of the selection probabilities for the random walk
on directed networks. We first derive an estimation scheme when the full
degree (d

(un)
i , d

(in)
i , d

(out)
i ) is observed for all the vertices i visited by the

random walk. Then, we extend this estimation to the situation in which
only the out-degree duni + douti of the visited vertices is observed.

4.1 Estimating Selection Probabilities From Full Degrees

In order to estimate {πi}, we assume that X(t0) = i and that t0 is suf-
ficiently large for the stationary distribution to be reached. We evaluate
the frequency with which X visits i in the subsequent times. If X leaves i

through an undirected edge e
(un)
i· , where e

(un)
i· is one of the d

(un)
i undirected

edges owned by i, X may return to i after two steps using the same edge
and repeat the same type of returns m times in total, perhaps using different
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(a) Zn
i consecutive returns to i.

i

j

i

j

(b) Leaves i for Y n
i steps.

i

j

Figure 1: Schematic of a renewal period. a) The walker makes Zn
i consecutive

direct returns to i. b) The walker leaves i without an immediate return, because
the walker leaves i by a directed edge or leaves j by another edge. Then, the
walker returns to i after Y n

i steps.

undirected edges e
(un)
i· . Then, X(t0) = X(t0 + 2) = · · · = X(t0 + 2m) = i

and X(t0 + 2m+ 2) = k for some k 6= i.
IfX(t0+2) = i, the walk first moves from i through an undirected edge to

vertex j at t = t0+1 and returns to i through the same edge at t = t0+2. The

probability of this event is given by d
(un)
i /(d

(un)
i + d

(out)
i ) · 1/(d(un)j + d

(out)
j ).

Because the out-degree of vertex j, i.e., d
(un)
j + d

(out)
j , is unknown, we ap-

proximate 1/(d
(un)
j + d

(out)
j ) by E

(
1/(D̃(un) +D(out))

)
. Here D̃(un) denotes

the undirected degree distribution under the condition that the vertex is
reached by following an undirected edge, i.e. a size-biased distribution for
the undirected degree, P (D̃(un) = d) ∝ dP (D(un) = d) (Newman, 2010). It

is also possible to estimate 1/(d
(un)
j + d

(out)
j ) by 1/E(D̃(un) +D(out)), which

however showed to have hardly any effect in our simulations, and if any,
slightly worse. Thus, we estimate the probability of returning to vertex i
after two steps by

p
(ret)
i =

d
(un)
i

d
(un)
i + d

(out)
i

E

(
1

D̃(un) +D(out)

)
. (5)

When t ≥ t0 +2m+3, we use Eq. (4) to estimate the probability to visit

vertex i at any time as being proportional to d
(un)
i + d

(in)
i , i.e.,

p
(vis)
i =

d
(un)
i + d

(in)
i

N(E(D(un)) + E(D(in)))
. (6)

Under these estimates, the number of returns after two steps to vertex i,
counting the starting point X(t0) = i as a return to i, is geometrically dis-

tributed with expected value 1/(1−p(ret)i ), and the number of steps starting
from t = t0+2m+2, counting this step, and ending at the time immediately

before visiting i with probability p
(vis)
i is geometrically distributed with ex-

pected value 1/p
(vis)
i . We then have a renewal process {Rni ;n ≥ 1, R0

i = 0}
with the nth renewal occurring at random time Rni =

∑n
k=1(2Z

k
i + Y k

i ),
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where Zni ∼ Ge(1 − p(ret)i ) and Y n
i ∼ Ge(p

(vis)
i ). In Figure 1, the behavior

of the process during a renewal period is schematically shown. The average
time step between consecutive renewal events is equal to 2E(Zni ) +E(Y n

i ).
The average number of visits to i between the two renewal events, with the
visit to i at t = t0 included, is equal to E(Zni ). Therefore, from renewal
theory (see e.g., Resnick, 1992), we obtain an estimate of πi as

πi ≈
E(Zni )

2E(Zni ) + E(Y n
i )

=

1

1−p(ret)i

2 1

1−p(ret)i

+ 1

p
(vis)
i

=
p
(vis)
i

2p
(vis)
i + 1− p(ret)i

. (7)

Because p
(ret)
i = O(1) and p

(vis)
i = O(1/N), removing higher order terms in

Eq. (7) yields

π̂i ≈
p
(vis)
i

1− p(ret)i

∝
d
(un)
i + d

(in)
i

1− d
(un)
i

d
(un)
i +d

(out)
i

E
(

1
D̃(un)+D(out)

) . (8)

The proportionality constant is given by imposing that
∑N

i=1 π̂i = 1. If the

network is undirected, we obtain π̂i ∝ d(un)i , such that π̂i coincides with the
exact solution used in Eq. (2). If the network is fully directed, i.e., there are
no reciprocal edges and α = 1, the estimator is proportional to in-directed

degree d
(in)
i .

4.2 Estimating Selection Probabilities From Out-degrees

A common situation in RDS is that only the out-degrees (i.e., d
(un)
i +d

(out)
i )

of respondents are recorded. Then, the estimator of the selection probabili-
ties given by Eq. (8) can not be directly used. To cope with this situation, we
estimate the number of undirected, in-directed, and out-directed edges from

the observed out-degrees and substitute the estimators (d̂
(un)
i , d̂

(in)
i , d̂

(out)
i )

in Eq. (8).

Assume that we have observed the out-degree d
(un)
i + d

(out)
i of vertex i.

We estimate d
(un)
i and d

(out)
i by their expected proportions of the out-degree,

and the in-directed degree by its expectation, as follows:
d̂
(un)
i = E(D(un))

E(D(un))+E(D(out))

(
d
(un)
i + d

(out)
i

)
,

d̂
(out)
i = E(D(out))

E(D(un))+E(D(out))

(
d
(un)
i + d

(out)
i

)
,

d̂
(in)
i = E(D(in)).

(9)

The expectations used in Eq. (9) rely on the assumption that we have a
random sample from the network, which is not true in this case. A plausible
assumption on the sampled degree distributions is that they are size-biased.
However, our numerical results suggest that a size-biased distribution for
un-directed and/or the in-directed degree makes little difference, and if any,
increases the bias of selection probability estimators. Therefore, we stay
with the estimators given by Eq. (9).
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When (d̂
(un)
i , d̂

(in)
i , d̂

(out)
i ) is substituted in Eq. (8) in place of (d

(un)
i , d

(in)
i , d

(out)
i ),

d̂
(un)
i /(d̂

(un)
i + d̂

(out)
i ) in the denominator is a constant. Therefore, the esti-

mator is proportional to d̂
(un)
i + d̂

(in)
i , i.e., equivalent to Eq. (4) calculated

with the estimated degrees.

4.3 Estimating Network Parameters

The estimators of directed degrees in Eq. (9) rely on knowing E(D(un)),
E(D(in)), and E(D(un)) separately, which are not estimable from a typical

RDS sample, where only the out-degrees d
(un)
i + d

(out)
i of respondents are

recorded. Therefore, we need to extend the estimation procedure to handle
these unknown moments. We do so by assuming a model for the network
from which we can estimate the required moments.

Specifically, we assume that the observed network is a realization of a
directed equivalent of the simple G(N, p = λ/(N−1)) random graph (Erdős
and Renyi, 1960). Given parameters α ∈ [0, 1] and λ ∈ [0, N − 1], each pair
of vertices independently forms an edge with probability λ/(N−1), which is
undirected with probability (1−α) and directed with probability α. When
the edge is directed, the direction is selected with equal probability. It
follows that λ is the expected total degree of a vertex and that α is the
fraction of directed edges as N →∞.

If N is large, D(un), D(in), and D(out) approximately follow indepen-
dent Poisson distributions with parameters (1 − α)λ, αλ/2, and αλ/2,
respectively. Therefore, the out-degree D(un) + D(out) and the in-degree
D(un) +D(in) are both Poisson distributed with parameter (2−α)λ/2. Con-
sequently, if we estimate α and λ, we can estimate the unknown moments
by substituting the estimated α̂ and λ̂ in the moments of the (Poissonian)
degree distributions.

To find estimators of α and λ, we again consider the random walk X =
{X(t)} on the network. Assume that eij = 1, X(t0) = i, and X(t0 + 1) = j,
for a large t0. If X(t0 + 2) = i, an undirected edge between i and j exists,
i.e. eij = eji = 1, and the random walk leaves vertex j via eji. Because the
edge between i and j is either in-directed to j or undirected, the probability
that the edge is undirected is equal to the probability that a randomly
selected edge among all undirected and in-directed edges is undirected, i.e.,
(1 − α)/(1 − α/2). If there is an undirected edge between i and j (i.e.,

eji = 1), the random walk leaves j via eji with probability 1/(d
(un)
j +d

(out)
j ).

Thus, the random walk revisits vertex i at t0 + 2 under the directed E-R
random graph model with probability

1− α
1− α/2

· 1

d
(un)
j + d

(out)
j

. (10)

Let M be the number of immediate revisits, which is described above,
during l consecutive steps. Then, we have M =

∑l
k=2Mk, where Mk = 1 if

a revisit occurs in step k and Mk = 0 otherwise. Mk is Bernoulli distributed,

Mk ∼ Be
(

(1− α)/(1− α/2) · 1/(d(un)jk−1
+ d

(out)
jk−1

)
)

, where jk−1 is the vertex

visited in step k− 1. We obtain the expected number of immediate revisits
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as

E(M) =
1− α

1− α/2

l−1∑
k=1

1

d
(un)
jk

+ d
(out)
jk

. (11)

If m is the observed number of revisits, we set m = E(M) in Eq. (11) to
obtain the moment estimator

α̂ =
m−

∑l−1
k=1

(
d
(un)
jk

+ d
(out)
jk

)−1
m/2−

∑l−1
k=1

(
d
(un)
jk

+ d
(out)
jk

)−1 . (12)

If the estimated α̂ < 0, we force α̂ = 0.
Given α̂, we estimate λ as follows. If α = 0, the network contains

only undirected edges, and the observed out-degree equals the observed
undirected degree, which has a size-biased distribution, with E(D̃(un)) =
λ + 1. If α = 1, the network has only directed edges, and the expected
observed out-degree equals the expected number of out-directed edges, λ/2.
By linearly interpolating the expected observed out-degree between α = 0
and α = 1, and substituting it with the mean sample out-degree ū, we
obtain ū = λ/2 + (1− α)(1 + λ/2), which yields an estimator of λ as

λ̂ =
ū+ α̂− 1

1− α̂/2
. (13)

Using α̂ and λ̂, we can estimate the moments of the degree distributions
under the random graph model. For example, E(D(un)) is estimated by
(1 − α̂)λ̂. By substituting the estimated moments in Eqs. (8) and (9), we
obtain an estimator of the selection probability of vertex i as

π̂i ∝ d̂(un)i + d̂
(in)
i =

1− α̂
1− α̂/2

(d
(un)
i + d

(out)
i ) +

α̂λ̂

2
. (14)

When α = 0 is assumed known and used in place of α̂, the estimator
in Eq. (14) is equivalent to that used in Eq. (2). When α̂ = α = 1, it is
proportional to 1, and thus equivalent to the sample mean.

5 SIMULATION SETUP

We numerically examine the accuracy of our estimation schemes on di-
rected Erdős-Renyi graphs, a model of directed power-law networks (i.e.,
networks with a power-law degree distribution), and a real online MSM so-
cial network. We evaluate both the estimated selection probabilities and
corresponding estimates of pA. As described in Section 1, real directed so-
cial networks show a varying fraction of directed edges, corresponding to
a diversity of α values. Therefore, α is varied in the model networks. We
also vary λ and other network parameters. We study the performance of
the estimators described in Section 4 when the full degree is observed and
when only the out-degree is observed, and compare the performance of our
estimators to existing estimators. We do not consider RDS estimators that
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are not based on the random walk framework because they fall outside the
scope of this study.

5.1 Network Models and Empirical Network

The first model network that we use is a variant of the simple Erdős-Rényi
graph with a mixture of undirected and directed edges, as described in
Section 4.3. We generate the networks with α ∈ {0.25, 0.5, 0.75} and λ ∈
{5, 10, 15}. We then extract the largest strongly connected component of
the generated network, which has O(N) vertices for all combinations of α
and λ.

The directed Erdős-Rényi networks have Poisson degree distributions
with quickly decaying tails. To mimic heavy-tailed degree distributions
present in many empirical networks (Newman, 2010), we also use a variant of
the power-law network model proposed in (Goh et al., 2001; Chung and Lu,
2002; Chung et al., 2003). The original algorithm for generating undirected
power-law networks presented in Goh et al. (2001) is as follows.

We fix the number of vertices N and expected degree E(D). Then, we
set the weight of vertex i (1 ≤ i ≤ N) to be wi = i−τ , where 0 ≤ τ ≤ 1 is a
parameter that controls the power-law exponent of the degree distribution.
Then, we select a pair of vertices i and j (1 ≤ i 6= j ≤ N) with probability
proportional to wiwj . If the two vertices are not yet connected, we connect
them by an undirected edge. We repeat the procedure until the network
has E(D)N/2 edges. The expected degree of vertex i is proportional to wi,
and the degree distribution is given by p(d) ∝ d−γ , where γ = 1 + 1

τ (Goh
et al., 2001).

To generate a power-law network in which undirected and directed edges
are mixed with a desired fraction, we extend the algorithm as follows. First,
we specify the expected undirected degree E(D(un)) and generate an undi-
rected network. Second, we define win

i = (σin(i))−τ
in

(1 ≤ i ≤ N), where σin

is a random permutation on 1, . . ., N , and τ in is a parameter that specifies
the power-law exponent of the in-directed degree distribution. Similarly, we
set wout

i = (σout(i))−τ
out

(1 ≤ i ≤ N). Third, we select a pair of vertices
with probability proportional to win

i w
out
j . If i 6= j and there is not yet a di-

rected edge from j to i, we place a directed edge from j to i. We repeat the
procedure until a total of E(D(in))N/2 edges are placed. It should be noted
that E(D(in)) = E(D(out)). The in-directed degree distribution is given by
p(din) ∝ (din)−γ

in
, where γin = 1 + 1

τ in
, and similar for the out-directed

degree distribution. Finally, we superpose the obtained undirected network
and directed network to make a single graph. If the combined graph is not
strongly connected, we discard it and start over. This network is devoid of
degree correlation by construction.

In both network models, we vary the probability of a vertex being
assigned property A as proportional to six different combinations of its
degree: in-degree, out-degree, undirected degree, in-directed degree, out-
directed degree, and directed (in- and out-directed) degree. Formally, if

P (vertex i has A) ∝ g(d
(un)
i , d

(in)
i , d

(out)
i ), we let g be equal to (d

(un)
i +d

(in)
i ),

(d
(un)
i + d

(out)
i ), d

(un)
i , d

(in)
i , d

(out)
i , and (d

(in)
i + d

(out)
i ), respectively. We refer
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to these as different ways to allocate property A. We also examined the
case in which we assigned the property uniformly over all vertices. How-
ever, because the performance of the different estimators is almost the same
in this case, we do not show the results in the following. For all allocations
of A, the property is assigned in such a way that the expected proportion
of vertices being assigned A is equal to some fixed value p. Because A is
stochastically assigned, the actual proportion pA of vertices with A will vary
between realized allocations.

We also evaluate our estimators on an online MSM social network,
www.qruiser.com, which is the Nordic region’s largest community for les-
bian, gay, bisexual, transgender and queer persons (Dec 2005-Jan 2006;
Rybski et al., 2009; Lu et al., 2013, 2012). Our dataset consists of 16,082
male homosexual members and forms a strongly connected component. Be-
cause members are allowed to add any member to their list of contacts
without approval of that member, the resulting network is directed; the
fraction of directed edges equals α = 0.7572. The in-degree and out-degree
distributions are skewed (Lu et al., 2012), and the mean number of edges λ
is equal to 27.7434. The data set also includes user’s profiles, from which
we obtain four dichotomous properties on which we evaluate estimators of
population proportions: age (born before 1980 or not), county (live in Stock-
holm or not), civil status (married or unmarried), and profession (employed
or unemployed).

5.2 Evaluation of Estimators

We compared the performance of our estimators of the selection probabil-
ities with three other estimators. We refer to our estimator {π̂i} obtained

from Eq. (8) as {π̂(ren)i } (ren stands for renewal). The other estimators

are the uniform stationary distribution {π̂(uni)i }, where π̂
(uni)
i = 1/N for all

i, the selection probabilities proportional to the out-degree {π̂(outdeg)i }, on

which Eq. (2) is based, where π̂
(outdeg)
i ∝ d

(un)
i + d

(out)
i , and the station-

ary distribution obtained from Eq. (4) {π̂(indeg)i }, i.e., proportional to the
in-degree. In the following, we suppress the {} notation.

To assess the performance of an estimator we first calculated the esti-
mated selection probabilities π̂i for one of the four estimators and the true
stationary distribution πi at all the vertices in the given network. Then, we
calculated their total variation distance defined by

DTV =
1

2

N∑
i=1

|π̂i − πi| (15)

(Levin et al., 2009). The stationary distribution πi was obtained using the
power method (Langville and Meyer, 2006) with an accuracy of 10−10 in
terms of the total variation distance for the two distributions given in the
successive two steps of the power iteration.

For π̂(ren), we considered three variants depending on the information
available from observed degree and knowledge of the moments of the degree

distributions. When the full degree (d
(un)
i , d

(in)
i , d

(out)
i ) is observed, we used

12



Eq. (8) to calculate π̂(ren), where E
(

1/(D̃(un) +D(out))
)

is estimated by

the mean of the inverse sample out-degrees. We denote the corresponding

estimator with π̂
(ren)
f.d. , where f.d. stands for “full degree”. When only the

out-degree is observed and the moments of the degree distributions are
known, we used Eq. (9). This case is only evaluated for the directed Erdős-

Rényi graphs, and the corresponding estimator is denoted by π̂
(ren)
α,λ . If only

the out-degree is observed and the moments of the degree distributions are
unknown, we used Eqs. (12), (13), and (14), and the estimator is denoted
π̂(ren).

We sampled from each generated network by means of a random walk
starting from a randomly selected vertex. In the random walk, we collect
the degree of the visited nodes and also check whether they have property A
or not. We estimated the population proportion pA from the sample by re-
placing π in Eq. (1) by either π̂(uni), π̂(outdeg), π̂(indeg), or any of the variants

of π̂(ren), yielding estimates p̂
(uni)
A , p̂

(outdeg)
A , p̂

(indeg)
A , or p̂

(ren)
A , respectively.

The sample size is denoted by s.

6 NUMERICAL RESULTS

6.1 Directed Erdős-Renyi Graphs

In Table 2, we show the mean of the total variation distance DTV between

the true stationary distribution and π̂(uni), π̂(outdeg), π̂(indeg), and π̂
(ren)
f.d. ,

calculated on the basis of 1000 realizations of the largest strongly connected
component of the directed random graph havingN = 1000 vertices. Because
the standard deviation of DTV is similar between the estimators, we show

an average over the four estimators. The sample size s used in π̂
(ren)
f.d. is 500.

We also tried s = 200, which gave similar results. The DTV value of π̂(indeg)

and π̂
(ren)
f.d. is much smaller than that of π̂(uni) and π̂(outdeg) for all values of α

and λ. Furthermore π̂
(ren)
f.d always gives smaller DTV than π(indeg) although

the two values are similar for many combinations of the parameters.
In Table 3, we show the mean and average s.d. of DTV when the out-

degree, i.e. d
(un)
i + d

(out)
i , is observed but the individual d

(un)
i and d

(out)
i

values are not. The assumptions underlying the network generation are the
same as those for Table 2, and the sample size s is equal to 500. Here we
consider two cases. In the first case, the moments of the degree distribution

are known, and we use the estimator π̂
(ren)
α,λ . In the second case, they are

not known, and we use π̂(ren). Results for π̂(indeg) are not shown in Table 3
because in-degree is not observed. Table 3 indicates that DTV for π̂(ren)

is smaller than that for π̂(uni) and π̂(outdeg) when α is 0.5 and 0.75. When
α = 0.75, π̂(outdeg) yields the largest DTV . For α = 0.1 and 0.25, π̂(ren)

and π̂(outdeg) yield similar results. For all parameter values π̂
(ren)
α,λ slightly

outperforms π̂(ren). We tried s = 200 (not shown) which gave similar s.d.

for π̂
(ren)
α,λ , and similarly for π̂(ren), except for α = 0.1, where, for example,

λ = 15 yielded the s.d. values of 0.0039 and 0.0073 for s = 500 and s = 200,
respectively.

13



Table 2: Mean and average s.d. of DTV for the directed random graph when
(d

(un)
i , d

(in)
i , d

(out)
i ) is observed and moments of the degree distributions are known.

The lowest DTV value marked in boldface. We set N = 1000.

(a) α = 0.1

λ π̂(uni) π̂(outdeg) π̂(indeg) π̂
(ren)
f.d s.d.

5 0.185 0.074 0.042 0.041 0.004
10 0.131 0.045 0.017 0.016 0.002
15 0.106 0.036 0.010 0.010 0.001

(b) α = 0.25

π̂(uni) π̂(outdeg) π̂(indeg) π̂
(ren)
f.d s.d.

0.203 0.134 0.077 0.075 0.005
0.140 0.081 0.031 0.030 0.002
0.112 0.063 0.019 0.019 0.002

(c) α = 0.5

λ π̂(uni) π̂(outdeg) π̂(indeg) π̂
(ren)
f.d s.d.

5 0.247 0.225 0.138 0.133 0.009
10 0.160 0.136 0.056 0.055 0.004
15 0.126 0.105 0.034 0.033 0.002

(d) α = 0.75

π̂(uni) π̂(outdeg) π̂(indeg) π̂
(ren)
f.d s.d.

0.303 0.319 0.207 0.201 0.014
0.188 0.201 0.090 0.088 0.005
0.144 0.156 0.055 0.055 0.003

Table 3: Mean and average s.d. of DTV for the directed random graph when
d
(un)
i + d

(out)
i is observed. We set N = 1000.

(a) α = 0.1

λ π̂(uni) π̂(outdeg) π̂
(ren)
α,λ π̂(ren) s.d.

5 0.185 0.074 0.074 0.075 0.004
10 0.131 0.045 0.045 0.047 0.003
15 0.106 0.036 0.035 0.037 0.002

(b) α = 0.25

π̂(uni) π̂(outdeg) π̂
(ren)
α,λ π̂(ren) s.d.

0.203 0.135 0.132 0.133 0.006
0.140 0.081 0.079 0.080 0.003
0.112 0.063 0.061 0.063 0.002

(c) α = 0.5

λ π̂(uni) π̂(outdeg) π̂
(ren)
α,λ π̂(ren) s.d.

5 0.246 0.225 0.214 0.215 0.010
10 0.160 0.136 0.127 0.128 0.004
15 0.125 0.105 0.098 0.099 0.003

(d) α = 0.75

π̂(uni) π̂(outdeg) π̂
(ren)
α,λ π̂(ren) s.d.

0.303 0.318 0.294 0.295 0.014
0.188 0.201 0.177 0.178 0.006
0.144 0.156 0.135 0.135 0.004
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Figure 2: Deviations of estimated p̂A from true value in the directed Erdős-Rényi
graphs with N = 1000, α = 0.75, λ = 10, p = 0.5, and s = 500. Each group
of boxplots corresponds to p̂

(ren)
Af.d.

, p̂
(indeg)
A , p̂

(ren)
A , p̂

(ren)
Aα,λ

, p̂
(outdeg)
A , and p̂

(uni)
A for one

allocation of the individual property A. The abbreviations for the allocations
corresponds to the function g, i.e., In-deg. equals (d

(un)
i + d

(in)
i ), Out-deg. (d

(un)
i +

d
(out)
i ), Undir. d

(un)
i , In-dir. d

(in)
i , Out-dir. d

(out)
i , and Dir. (d

(in)
i + d

(out)
i ).
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To compare estimated pA, we generated 1000 networks for each com-
bination of the parameters α ∈ {0.25, 0.5, 0.75} and λ = 10. On each of
these networks we in turn allocate the property A in each of the six ways
described in Section 5.1. The probability of a vertex having A is denoted by
p ∈ {0.2, 0.5}. For each network and allocation, we simulate a random walk
with length s ∈ {200, 500} and calculate the differences between estimated
proportions of the population with property A and the actual proportion of
vertices with A. In Figure 2, results for α = 0.75, p = 0.5, and s = 500 are
shown. The six groups of four boxplots correspond to the six different ways
of allocating A (see Section 5.1). The six boxplots in each group correspond

to p̂
(ren)
Af.d.

, p̂
(indeg)
A , p̂

(ren)
A , p̂

(ren)
Aα,λ

, p̂
(outdeg)
A , and p̂

(uni)
A .

We see that the bias of p̂
(ren)
Af.d

and p̂
(indeg)
A is small for all allocations, as

to be expected. For the estimators utilizing the out-degree, p̂
(ren)
A , p̂

(ren)
Aα,λ

,

and p̂
(outdeg)
A , Figure 2 indicates that the choice of how to allocate A has a

significant impact on the performance of estimators. When A is allocated

proportional to the out-degree (Out-deg. in Fig. 2), p̂
(ren)
A and p̂

(ren)
Aα,λ

yields

the most accurate result, and when A is allocated proportional to the num-

ber of directed edges (Dir. in Fig. 2), p̂
(outdeg)
A is most accurate; this is true

for almost all parameter combinations. In general, the bias and variance
increase with both α and p for all estimators, and a small s results in an
increased variance, as to be expected. In the Supplementary material, these
findings are further illustrated by numerical results with (α, p, s) equal to
(0.5, 0.2, 500), (0.25, 0.5, 500), and (0.75, 0.5, 200).
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Figure 3: Average DTV between the true stationary distribution and π̂
(ren)
f.d. , π̂(indeg),

π̂(ren), π̂
(ren)
α,λ , π̂(outdeg), and π̂(uni) in the power-law networks with N = 1000, α equal

to a) 0.25, b) 0.5, and c) 0.75, and s = 500.
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6.2 Networks With Power-law Degree Distributions

To generate power-law networks, we set the expected total number of edges
for each node to 16, while we set the expected number of undirected and
directed edges equal to (E(D(un)), E(D(in) + D(out))) = (12, 4), (8, 8), and
(4, 12). The three cases yield α = 0.25, 0.5, and 0.75, respectively. For each
combination of the parameters, we generate 1000 networks of size N = 1000
and calculate the mean of the DTV . We also calculate the s.d., which is of
magnitude 10−3 and therefore not shown. The sample size s is set to 200
and 500.

The average DTV values for π̂
(ren)
f.d. , π̂(indeg), π̂(ren), π̂

(ren)
α,λ , π̂(outdeg), and

π̂(uni) are shown in Figure 3 for various α and γ values. Figure 3 suggests

that π̂
(ren)
f.d and π̂(indeg) are the most accurate among the four estimators,

with π̂
(ren)
f.d being slightly better. When α = 0.25 and 0.5, π̂

(ren)
α,λ has a

lower mean DTV than π̂(ren), but this difference is not seen when α = 0.75.
π̂(outdeg) performs better than π̂(ren) for all values of γ when α = 0.25, and
the opposite result holds true when α = 0.75.

In Figure 4, the results for p̂
(ren)
Af.d.

, p̂
(indeg)
A , p̂

(ren)
A , p̂

(ren)
Aα,λ

, p̂
(outdeg)
A , and

p̂
(uni)
A when γ = 3, E(D(un)) = 4, E(D(in) + D(out)) = 12, p = 0.2, and

s = 500 are shown. The figure indicates that p̂
(ren)
Af.d.

and p̂
(indeg)
A have small

bias across different allocations of A. In contrast, the magnitude of the

bias of p̂
(ren)
A , p̂

(ren)
Aα,λ

, and p̂
(outdeg)
A depends on the allocation type; p̂

(ren)
A

has the smallest bias when A is allocated proportional to the undirected

degree, and p̂
(ren)
Aα,λ

and p̂
(outdeg)
A when A is allocated proportional to the

out-degree. Their relative performance is hard to assess for other alloca-
tions. In general, a large fraction of directed edges, small γ, and large p
increase bias and variance, and variance of course decreases with s. The Sup-
plementary material contains numerical results for (γ,E(D(un)), E(D(in) +
D(out)), p, s) = (4.5, 4, 12, 0.2, 500), (4.5, 4, 12, 0.5, 500), (4.5, 12, 4, 0.5, 500),
and (3, 4, 12, 0.2, 200) to further support these results.
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Figure 4: Deviations of estimated pA from the true population proportion in the
power-law networks for γ = 3, E(D(un)) = 4, E(D(in) + D(out)) = 12, p = 0.2,

and s = 500. Each group of boxplots corresponds to p̂
(ren)
Af.d.
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A , p̂
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,

p̂
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A , and p̂
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A , for one allocation of A.
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p̂
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A

p̂
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p̂
(ren)
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p̂
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A

p̂
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A

Table 4: DTV between the true stationary distribution and π̂(uni), π̂(outdeg), π̂(indeg),
π̂
(ren)
f.d. and π̂(ren). S.d. is shown in the second row, but only applies to π̂

(ren)
f.d. and

π̂(ren).

π̂
(ren)
f.d. π̂(indeg) π̂(ren) π̂(outdeg) π̂(uni)

0.2198 0.2248 0.4057 0.4290 0.4484
0.0004 - 0.0048 -

6.3 Online MSM Network

For the Qruiser online MSM network, we first evaluate π̂(uni), π̂(outdeg),

π̂(indeg), π̂
(ren)
f.d. , and π̂(ren). The results are shown in Table 4. Note that π̂

(ren)
α,λ

is not evaluated because α and λ are not known beforehand. For π̂(uni),
π̂(outdeg), and π̂(indeg), DTV to the true selection probabilities is exactly

calculated. For π̂
(ren)
f.d. and π̂(ren), we show the mean and s.d. of DTV on the

basis of 1000 samples of size 500. We see that π̂
(ren)
f.d. has smaller DTV than

π̂(indeg), and that the mean DTV of π̂(ren) is smaller than that of π̂(uni) and
π̂(outdeg).

In Figure 5, we show estimates of the population proportions of the
age, county, civil status, and profession properties. The true population
proportions are shown by the dashed lines. The sample size is 500. Figure 5

indicates that p̂
(ren)
Af.d.

performs best of all estimators. Among the estimators

utilizing d
(un)
i + d

(out)
i , p̂

(ren)
A has the smallest overall bias. Moreover, the

variance of p̂
(ren)
A is smaller than for p̂

(outdeg)
A for all properties, in particular

the civil status.
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Figure 5: Estimates of population proportions in the Qruiser network for a) age, b)

civil status, c) county, and d) profession. Each figure shows p̂
(ren)
Af.d.

, p̂
(indeg)
A , p̂

(ren)
A ,

p̂
(outdeg)
A , and p̂

(uni)
A . The true population proportions are shown by the dashed

lines and are equal to 0.77, 0.40, 0.39, and 0.38 for age, civil status, county, and
profession, respectively.
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7 DISCUSSION AND CONCLUSIONS

We developed statistical procedures for sampling vertices in social networks
to account for the empirical fact that social networks generally include
non-reciprocal edges. The proposed estimation procedures typically outper-
formed existing methods that neglect directed edges. Among the scenarios
investigated in the present study, the best accuracy of estimation was ob-
tained when undirected, in-directed, and out-directed degree are separately
observed for sampled individuals. In the more realistic scenario in which
one only knows the sum of undirected and out-directed edges of sampled
individuals, all estimation procedures are less precise. Our simulations also
showed that estimators of population proportions were highly sensitive to
how the property A is allocated in the social network.

If the full directed degree (d
(un)
i , d

(in)
i , d

(out)
i ) is observed and the moments

of the degree distributions are known, our estimator π̂
(ren)
f.d. is compared to

π̂(indeg). It can be seen in Tables 2 and 4, and Figure 3 that π̂
(ren)
f.d. performs

slightly better than π̂(indeg) in all the studied situations. The corresponding

estimated proportions given by p̂
(ren)
Af.d.

and p̂
(outdeg)
A in Figures 2, 4, and 5 are

very similar.

If only the out-degree d
(un)
i + d

(out)
i is observed, we compare π̂(ren) and

π̂(outdeg) (Tables 3 and 4, and Figure 3). We also include π̂
(ren)
α,λ in the com-

parison on the generated networks, and it can be seen that the performance

of π̂
(ren)
α,λ is only slightly better than that of π̂(ren). Our estimator π̂(ren)

outperforms π̂(outdeg) except when the fraction of directed edges α is small
(0.1 in Table 3 and 0.25 in Figure 3). This corresponds to that π̂(ren) will
deviate further from π̂(outdeg) as α increases (Eq. (14)). Figures 2 and 4

indicate that the results of the estimators p̂
(ren)
A , p̂

(ren)
Aα,λ

, and p̂
(outdeg)
A depend

much on the allocation of the property A. We believe that it is of interest to
further study how properties are distributed in empirical social networks.

If α is known, we can estimate λ using only the mean sample out-degree
in Eq. (13). Although generally difficult, it is possible to assess the frac-
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tion of directed edges in the social network of a hidden population through
direct methods. In many RDS studies, participants are asked questions
that experimenters use to quantify the nature of the relationship between a
participant and its recruiter, e.g., friends, acquantiances or strangers (e.g.,
Ramirez-Valles et al., 2005; Wang et al., 2007; Ma et al., 2007). With these
questions, the authors aim to control for non-reciprocated relationships,
which could lead to the participant being excluded from the sample. This
type of questions is also useful for assessing the directedness of the social
network, because the fraction of coupons given by strangers could be a
measure of (non-)reciprocity. In Gile et al. (2012), another type of question
more directly assessing reciprocation is suggested, e.g. “Do you think that
the person to whom you gave a coupon would have given you a coupon
if you had not participated in the study first?”. Another possible method
to estimate α would be to obtain information on the number of revisits m
used in Eq. (12). This could be done by asking for example “Would you
give a coupon to the person who gave you a coupon if he or she had not yet
participated in the study?”.

The main focus of the present paper was on accounting for directed
edges in a social network. There are also other assumptions in existing
estimation procedures (including the current one) worthy of relaxing. For
example, the methods typically assume that participants choose coupon
recipents uniformly at random among their neighbors in the social network.
In reality, they probably sample closely connected neighbors more likely,
which may bias estimators of selection probabilities. Extending the RDS
methods by allowing weighted edges warrants for future work. It should be
noted that our methods allow the two weights on the same undirected edge
in the opposite directions to be different, because our framework targets
directed networks.

Random walks on directed networks have numerous other applications,
including identification of important vertices (Brin and Page, 1998; Langville
and Meyer, 2006; Noh and Rieger, 2004; Newman, 2005) and community
detection (Rosvall and Bergstrom, 2008). Therefore, we also hope that this
work may contribute to an increased understanding in other areas of net-
work research that use random walks on directed networks.
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Figure 1: Deviations of estimated p̂A from true value in the directed Erdős-Rényi
graphs with N = 1000, α = 0.5, λ = 10, p = 0.2, and s = 500. Each group of boxplots
corresponds to p̂
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Figure 2: Deviations of estimated p̂A from true value in the directed Erdős-Rényi
graphs with N = 1000, α = 0.25, λ = 10, p = 0.5, and s = 500. Each group
of boxplots corresponds to p̂
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Figure 3: Deviations of estimated p̂A from true value in the directed Erdős-Rényi
graphs with N = 1000, α = 0.75, λ = 10, p = 0.5, and s = 200. Each group
of boxplots corresponds to p̂
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Figure 4: Deviations of estimated pA from the true population proportion in the
power-law networks for γ = 4.5, E(D(un)) = 4, E(D(in) + D(out)) = 12, p = 0.2, and

s = 500. Each group of boxplots corresponds to p̂
(ren)
Af.d.
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Figure 5: Deviations of estimated pA from the true population proportion in the
power-law networks for γ = 4.5, E(D(un)) = 4, E(D(in) + D(out)) = 12, p = 0.5, and

s = 500. Each group of boxplots corresponds to p̂
(ren)
Af.d.
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Figure 6: Deviations of estimated pA from the true population proportion in the
power-law networks for γ = 4.5, E(D(un)) = 12, E(D(in) + D(out)) = 4, p = 0.5, and

s = 500. Each group of boxplots corresponds to p̂
(ren)
Af.d.
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Figure 7: Deviations of estimated pA from the true population proportion in the
power-law networks for γ = 3, E(D(un)) = 4, E(D(in) + D(out)) = 12, p = 0.2, and

s = 200. Each group of boxplots corresponds to p̂
(ren)
Af.d.
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