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Abstract

Social networks are rarely observed in full detail. In many situ-
ations properties are known for only a sample of the individuals in
the network and it is desirable to induce global properties of the full
social network from this ”egocentric” network data. In the current
paper we study a few different types of egocentric data, and show
what global network properties are consistent with those egocentric
data. Two global network properties are considered: the size of the
largest connected component in the network (the giant), and secondly,
the possible size of an epidemic outbreak taking place on the network,
in which transmission occurs only between network neighbours, and
with probability p. The main conclusion is that in most cases, egocen-
tric data allow for a large range of possible sizes of the giant and the
outbreak. However, there is an upper bound for the latter. For the
case that the network is selected uniformly among networks with pre-
scribed egocentric data (satisfying some conditions), the asymptotic
size of the giant and the outbreak is characterised.
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Abstract

Social networks are rarely observed in full detail. In many situations properties

are known for only a sample of the individuals in the network and it is desirable

to induce global properties of the full social network from this �egocentric� network

data. In the current paper we study a few di�erent types of egocentric data, and show

what global network properties are consistent with those egocentric data. Two global

network properties are considered: the size of the largest connected component in the

network (the giant), and secondly, the possible size of an epidemic outbreak taking

place on the network, in which transmission occurs only between network neighbours,

and with probability p. The main conclusion is that in most cases, egocentric data

allow for a large range of possible sizes of the giant and the outbreak. However, there

is an upper bound for the latter. For the case that the network is selected uniformly

among networks with prescribed egocentric data (satisfying some conditions), the

asymptotic size of the giant and the outbreak is characterised.

1 Introduction

Social network data may be of di�erent levels of detail, e.g. complete (sociocentric), snow-
ball sampled, egocentric with alter connections or ego-only egocentric [7]. Here egocentric
data means that information of the immediate surrounding of a sample of actors are col-
lected. More precisely, following Hanneman and Riddle, we distinguish between ego-only
egocentric data where the connections of each sampled actor (ego) is all that is collected,
and egocentric with alter connections, where it is also observed which of these connec-
tions are themselves connected. To observe the complete network in a large community
is of course expensive and time consuming, which is the reason why data often consists
of snowball samples or egocentric data (e.g. [7]). Clearly, the higher level of detail in
the collected data, the more can be inferred with higher precision [12]. However, as has
been shown by Marsden [10] who studies betweenness, it is in some situations possible
to infer also global network properties from egocentric data in a fairly robust way. Many
social networks share the property known as transitivity (closely related to clustering)
that if A is connected to B and B is connected to C, then it is more likely that A is
also connected to C (e.g. [9]). To which extent this property is manifested in a given
social network is obviously better known from egocentric data with alter connections as
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compared with ego-only egocentric data. As a consequence, global properties a�ected by
transitivity/clustering should be easier to infer from the former type of data.

In the current paper we investigate what can be deduced about global network properties
when observing di�erent sorts of egocentric data. More precisely, we focus on the (relative)
size τ of the largest connected component of the network (the giant) when all that is known
is the mean degree of actors, when ego-only egocentric data are collected, and where
egocentric data with alter connections are observed. Additional to this we study possibly
scenarios for an epidemic spreading �on� the social network. The main conclusion is that
very little can be said about τ if only egocentric data of any type without additional
information are observed. The same is however not true for epidemics occurring on
the (more speci�ed) social network: the more detailed information about the egocentric
network the narrower is the range of possible outbreak sizes. We also study the size of
the connected component and the epidemic outbreak size of a random or typical network
with the prescribed egocentric properties.

2 Network properties and epidemic model

Consider a community, or social network, consisting of n individuals/actors, where n is
assumed to be large. Each pair of actors i and j are either connected by an (undirected)
edge or not, where the edge re�ects some type of social relationship (liking, shared mem-
bership of group or household, sexual relationship, ...). Let di,j = dj,i = 1 if i and j are
connected and di,j = dj,i = 0 otherwise. Knowing di,j for all i and j then corresponds to
knowing the complete network. Knowing ego-only egocentric data means that we only
know di =

∑
j di,j, the number of connections, or the degree, of all or a sample of the

actors. This means that we know the degree distribution in the community. Below we
will also study the situation where we have even less information, i.e. where all that is
observed is the mean degree µD =

∑
i di/n. Thus, in the �rst situation we know what

fraction p0 that has degree 0, what fraction p1 that has degree 1 and so on (i.e. we know
the degree distribution {pk}), whereas in the latter case we only know that the mean
degree equals a certain number µD. Knowing the degree distribution will also give the
mean degree by the relation µD =

∑
k kpk.

If we have egocentric data with alter connections we also know which connections of an
actor are connected themselves. That is, if di,j = 1 and di,k = 1 we observe whether
dj,k = 1 or not. Later we will simplify this type of data to the situation that we specify
two degrees of each actor: the single degree and the triangle degree, where the single
degree is the number of actors �ego� is connected to that are not connected to any other
acquaintance of ego, and the triangle degree denotes how many triangles ego is part of [11].
So for example, in Figure 1 ego (actor 1) is connected to 5 actors, 3 which together with
ego all know each other and 2 separate actors that, each of them, don't know anyone else
of ego's neighbours. So, ego has single degree 2 and triangle degree 3 (there are three ways
to chose 2 out the 3 common friends) Admittedly, by reducing the egocentric data with
alter connections to only keeping track of actors single and triangle degree we loose some
information. The reason for doing this is that it makes the mathematical analysis more
tractable and it is our hope that it will have only minor e�ect on the results. To conclude,
we represent the egocentric data with alter connections by the single and triangle degree

2



2

3

4 5

6

1

Figure 1: A mini graph in which actor 1 has single degree 2 and triangle degree 3

distribution {pk1,k∆
}, where pk1,k∆

denotes the fraction of actors that have single degree
k1 and triangle degree k∆.

The �rst global property we investigate is the relative size of the largest connected com-
ponent τ . Individuals in the network are said to be directly connected if there is an edge
between the actors, and in general nodes are said to be connected if there is a path of
directly connected actors between them. The network can hence be decomposed into
separate connected components, and the largest (in terms of number of actors) of these
components is called the giant component. The relative size τ is the size (the number of
actors) of the giant divided by the population size.

As mentioned earlier we will also see what the e�ect of an infectious disease spreading in
the community, i.e. �on� the social network, is, in the sense that an infected actor may
infect any of its (not yet infected) connected actors but no one else. We assume that the
epidemic is initiated by one uniformly at random selected index case, and that anyone
that gets infected infects each of its susceptible neighbours independently with probability
p (those who get infected may spread the disease to their not yet infected neighbours,
and so on). This model is known as the Reed-Frost epidemic model on a network. It is
well-known that, for such epidemics taking place in a large community, two qualitatively
di�erent things may happen. Either only few actors will get infected (a minor outbreak)
or else a positive (hardly random) fraction will get infected; we say a major outbreak has
occurred (e.g. [14, 2]). Another known fact for these class of models is that the probability
π of observing a major outbreak equals the relative size τ (epi) of the major outbreak,
i.e. π = τ (epi). In the current paper we are mainly interested in the relative size of the
epidemic, but for the reason just mentioned we may equally well compute the probability
π of having a major epidemic outbreak. The case p = 1 implies that the disease spreads to
the whole connected component of the index case. The probability π of a major outbreak
is then equal to the probability that the index case belongs to the giant component, and
because the index case is chosen uniformly at random this is the same as the relative size
τ of the giant. We hence have τ (epi) = τ when p = 1.

In the next sections we investigate what the range of possible relative sizes of the giant
connected component is, assuming that certain local features of the social network are
given. We also study what e�ect an epidemic taking place on the social network may
have. We start by only assuming that the mean degree µD is known, and then gradually
assume more informative egocentric data.
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3 Observing only mean degree

Suppose �rst that all we know about the network is that mean degree equals µD (0 <
µD < ∞). First we study properties of the largest connected component, and then the
size of an epidemic outbreak occurring on the social network.

3.1 The giant connected component

What might the relative size of the giant connected component τ be? Since very lit-
tle is �xed (only the mean degree µD) we may choose rather freely in order to max-
imise/minimise τ . If we want to minimise τ we simply make small fully connected and
isolated components of size bµDc and dµDe where bµDc is the integer part of µD and
dµDe is the smallest integer, which is larger than or equal to µD. If µD is an integer, say
µD = 5, we simply group actors into fully connected groups of size 6 (actors then have
degree 5). As a consequence, all connected components have size 6 and the relative size
of the largest connected component is 6/n ≈ 0 implying that

τmin = 0.

If we instead want to maximise τ , this is achieved (among other ways) by connecting all
actors with degree 2 or more into one giant component (�rst make a �line� out of all actors
and then add edges arbitrarily). We hence want to maximise the fraction having degree
2 or more. If µD ≥ 2 all actors can have degree larger than or equal to 2, which implies
that all actors may be connected into one giant component, i.e. τmax = 1. If µD < 2 we
have to �sacri�ce� a fraction of the actors such that the remaining actors all have degree
2. (We can connect two degree 1 actors to the end points of the line, but since we assume
that the population is large, those two actors have only marginal e�ect on the size of the
giant.) More speci�cally, we let a fraction 1 − µD/2 have degree 0 and the remaining
fraction µD/2 have degree two and putting the latter in one long line. The size of the
largest connected component then equals τmax = µD/2. To conclude, if µD ≥ 2 then
τmax = 1 and otherwise τmax = µD/2.

This feature, that τmin = 0 and τmax = 1 or close to 1 (if the mean degree is large
enough) will be repeated also when we observe the ego-only egocentric network or with
alter connections.

We now pick a network at random among all networks having mean degree µD. Having the
mean degree �xed and equal to µD is identical to having the total number of edges constant
and equal to nµD/2 (the denominator 2 comes from the fact that each edge contributes
to the degree of two di�erent nodes). Choosing a network with n nodes and m = nµD/2
edges uniformly at random is a well-known model of Erd®s-Rényi denoted G(n,m) and
it is well-known that this network is (for our purposes) asymptotically equivalent to the
more familiar G(n, p = µD/n) network of Erd®s and Rényi in which edges appear between
di�erent pairs of nodes independently, each with probability µD/n [1, 5].

The relative size τRand of the largest connected component in this network is given by the
largest solution τRand = t to the equation

1− t = e−µDt. (1)
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See Figure 2 for an illustration of how τRand = t depends on µD. It is also known that
τRand is strictly positive if and only if µD > 1 [6, 1, 5].

1 2 3 4 ΜD

0.2

0.4

0.6

0.8

1.0

ΤRand

Figure 2: The relative size τRand of the largest connected component in an Erd®s-Rényi
network.

3.2 Epidemic outbreak size

Suppose now that we are interested in the potential spread of an infectious disease taking
place on the social network having mean degree µD. More precisely, we assume that the
transmission model is as de�ned above, with transmission probability p (0 < p < 1), and
that the mean degree µD is all that is given about the social network.

How big can a major outbreak be? Having transmission probability p means that we erase
each existing edge with probability 1 − p and keep it with probability p. This will have
the e�ect of possibly breaking up the original largest connected component, but never
making it bigger. As a consequence, we still have

τ
(epi)
min = 0,

since it was shown in the previous section that τmin = 0.

Because the epidemic has the e�ect of removing some edges (often denoted thinning) it is
very unlikely that everyone gets infected. How do we maximise the size of a major out-
break for given µD and transmission probability p? Let us �rst consider the case where
µD is a multiple of 2. One choice of network that maximises the outbreak size/probability
τ (epi) is then to let µD/2 (an integer) number of actors each be connected to every other
actor (we call them central nodes), and the remaining n − µD/2 actors each only be-
ing connected to these central actors (see Figure 3 for an illustration of this �starlike�
construction for the case µD = 4). The mean degree of this network equals

µD/2

n
(n− 1) +

n− µD/2
n

µD/2 ≈ µD,

the approximation relying on n to be large.

To compute the probability π of a large epidemic outbreak for this network is straightfor-
ward, and as before we have π = τ (epi), the relative size of a major outbreak. The index
case is selected randomly; most likely it is hence one of the nodes having degree µD/2.
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Figure 3: Illustration of a large network having mean degree µD = 4 that maximises the
probability and size of a major outbreak. The relative outbreak size in case of a major
outbreak equals τ

(epi)
max = 1− (1− p)2 where p is the transmission probability.

However, if this actor infects at least one of its neighbours, then a major outbreak will
certainly occur since all of its neighbours are central actors, each with degree n− 1. The
probability that the actor infects at least one neighbour is 1 − (1 − p)µD/2 which hence
equals π = τ (epi). This reasoning is easily extended to the case that µD/2 is not an integer.
To this end let µD/2 = bµD/2c + α where bµD/2c is the integer-part of µD/2 and α the
remainder. Then there should be bµD/2c central nodes, each connected to all other nodes,
and one node connected to αn other nodes (if bµD/2c = 0 this means a fraction 1− α of
the nodes are isolated and the remaining fraction α form a star). In order to compute the
probability (=relative size) of an outbreak we then have to condition on if our selected
index case was connected to bµD/2c or bµD/2c + 1 nodes. The resulting expression for
the probability/size of an outbreak, also valid for the case where µD/2 is an integer (or
equivalently α = 0), is then given by:

τ (epi)
max = (1− α)

(
1− (1− p)k

)
+ α

(
1− (1− p)k+1

)
, (2)

where k = bµD/2c and α = µD/2− k.
Finally we treat the size of an epidemic outbreak in a randomly selected network among
all networks having mean degree µD. As mentioned earlier, such a network corresponds
to the Erd®s-Rényi network and an the epidemic on the network corresponds to having
the Reed-Frost epidemic model (e.g.[2, 5]) with transmission probability pµD/n between

each pair of actors. If an epidemic occurs on this network the �nal size τ
(epi)
Rand is given by

the largest solution τ
(epi)
Rand = t to the equation

1− t = e−pµDt. (3)

Note that when p = 1 this equation coincides with Equation (1) as to be expected. It is

also known that τ
(epi)
Rand is strictly positive if and only if pµD > 1 (e.g.[14, 2]). In (3) it is

seen that τ
(epi)
Rand only depends on the product pµD and not on the separate components.

In Figure 2 we illustrate this dependence, with µD playing the role of pµD.

4 Observing egocentric data: ego only

We now consider the case that we observe egocentric data, i.e. we observe the degree of a
sample or all of the actors in the network. In case of a sample we neglect the uncertainty
stemming from not knowing the exact degree distribution. We hence assume that we
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know the degree distribution {pk}, where pk is the probability that a randomly selected
actor has degree k.

4.1 The giant connected component

Just as in the previous section it is easy to construct a network consisting of small com-
pletely connected isolated units, thus achieving τmin = 0. Similarly, it is possible to join
all actors having degree 2 or larger into one single giant connected component by putting
them in a line, actors with degree 1 can the be connected to actors having degree larger
than 2 in the line. As a consequence, the size of the giant connected component is at least
as large as the community fraction having degree 2 or larger, i.e.

τmax ≥ 1− (p0 + p1). (4)

This can be made even larger by connecting the degree 1 actors to the actors which
have degree larger than 2. The mean number of actors those �large-degree� actors still
have freedom to chose as neighbours is µD−p1

1−(p0+p1)
− 2. If this number exceeds p1, then

τmax ≥ 1− p0. Otherwise τmax = 1− (p0 + p1) + µD−p1

1−(p0+p1)
− 2.

Having solved τmin and τmax we now look at the case where we choose our network uni-
formly at random among all networks having degree distribution {pk}. This is in fact
exactly what is done in the con�guration model (e.g. [5, 13, 14]) where actors are given
i.i.d. degrees according to the degree distribution {pk} and edges of nodes are connected
completely at random (this may of course lead to self-loops and multiple edges but it is
known, [5], that the fraction of such edges are negligible when µD < ∞, so they may be
removed without a�ecting the limiting degree distribution).

The relative size of the giant connected component, τRand, in a network constructed using
the con�guration model has already been derived (e.g. [14, 5]). Let

ρ(s) =
∑
k

skpk

denote the probability generating function of the degree distribution and ρ′(s) its deriva-
tive. Let t = τ̃ denote the largest solution to the equation

1− t =
ρ′(1− t)
ρ′(1)

.

Given the solution τ̃ (which will lie in [0, 1)), our quantity of interest, τRand, is given by

τRand = 1− ρ(1− τ̃). (5)

It is also known that

τRand > 0 if and only if RG := µD +
σ2
D − µD
µD

> 1,

where σ2
D is the variance of the degree distribution. In Figure 4 we plot τRand as a function

of µD having �xed standard deviation σD or RG, and as a function of σD or RG having
�xed mean degree µD, where D has a negative binomial distribution.

The case where only the mean degree is �xed (Section 3) and a randomly selected network
is chosen corresponds to the case where the degree distribution is Poisson with mean µD.
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Figure 4: Illustration of how τRand depends on the mean µD of the degree distribution,
with σ2

D = 2 �xed (a), with RG = 2 �xed (b) and how τRand depends on RG (c) or on
the variance σ2

D of the degree distribution (d) with µD = 1 �xed. Here D has a negative
binomial distribution.

4.2 Epidemic outbreak size

We now look at what can happen with an epidemic (with transmission parameter p) oc-
curring on a network having degree distribution {pk}. Adding the epidemic, i.e. removing
edges with probability 1−p, will of course only make the size of the largest connected com-
ponent smaller. So, as in the previous section, the minimal size of the largest connected
component is still 0: τ

(epi)
min = 0.

The corresponding maximisation problem is more involved. It is intractable to characterise
how to construct a network with �xed degree distribution {pk} such that the epidemic
outbreak size is maximal. Instead we illustrate the construction for one particular (simple)
degree distribution: p2 = 1 − p3 = 0.6, i.e. that 60% of all nodes have degree 2 and the
remaining half have degree 3, implying that µD = 2.4.

The question is hence how we should connect nodes in order to maximise the size of the
largest connected component in the thinned network (corresponding to the epidemic).
It is obvious that we should avoid short loops because these will only reduce spreading
since then some potential infectious contacts will be with already infected people. The
remaining question is therefore how to connect 2-nodes (and 3-nodes respectively) to
other actors. We extend the con�guration model in the following way (knowing that
this will result in a network without clustering). Distribute the degrees of actors as in
the con�guration model (i.e. i.i.d. degrees each having degree 2 with probability 0.6 and
otherwise having degree 3). We now let each edge of a 2-node select an edge among
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the other 2-nodes with probability r (0 ≤ r ≤ 1) and with 3-nodes with the remaining
probability 1 − r. In order for the total number of edges to match it follows that this
implies that edges/stubs of 3-nodes should select stubs of other 3-nodes with probability
r as well and stubs of 2-nodes with probability (1 − r). The parameter r, which can be
interpreted as the fraction of all connections to actors with the same degree, may be freely
chosen in order to maximise the size of the giant. The parameter r is closely related to
the degree correlation: if r is small we have negative degree correlation whereas if r is
large the degree correlation is positive.

It is straightforward to (numerically) deduce the size of an outbreak for this epidemic
model. Let η2 be the probability that an actor of degree 2, which itself is infected during
the epidemic, will only generate a small number of further cases in the epidemic. De�ne
η3 similarly. Since an infected actor of degree 2 can infect only one other actor, which has
degree 2 with probability r and degree 3 with probability 1− r, we have

η2 = (1− p) + prη2 + p(1− r)η3.

Here the 1 − p is the probability that the infected degree 2 actor will not infect other
actors, while the prη2 (resp. p(1 − r)η3) term denotes the probability that a degree 2
(resp. 3) actor will get infected, but does not cause many further infections. Similarly we
deduce that

η3 = [(1− p) + p(1− r)η2 + prη3]
2.

From the theory on so-called branching processes [8], we know that we need the solution
for which both η2 and η3 are minimal.

Similar arguments give that the probability that a uniformly at random chosen actor is
part of a large outbreak, if the outbreak occurs is given by

1− τ (epi)(µD, r, p) = 0.6[(1− p) + prη2 + p(1− r)η3]
2 + 0.4[(1− p) + p(1− r)η2 + prη3]

3

If p ≤ 1/2, then a large outbreak has probability 0, even if all actors would have had
degree 3. If on the other hand p > 1/2, then a large outbreak is possible for some r. The
r for which the outbreak size is maximised, rmax is given in Figure 5.

The qualitative conclusion from the example, also valid for other degree distributions
{pk}, is hence that the size of the giant component τ (epi) in the epidemic is maximised
when nodes with high degree are connected to other nodes with high degree (and low to
low) when p (or more correctly pµD) is small, and that τ (epi) is maximised by the opposite
construction (low to high) in the case that pµD is large.

Finally, the epidemic outbreak size in a randomly selected network having degree distri-
bution {pk} and transmission probability p is obtained exactly as for the size of the giant
connected component in the randomly selected network. The only di�erence comes from
the fact that only a binomial number of the neighbours remain connected with an actor
after having thinned the network. More precisely, as has been shown in e.g. [3, 5], τ̃ is
now the largest solution to

1− t =
ρ′(1− pt)
ρ′(1)

.

And, given the solution τ̃ , our quantity of interest, τ
(epi)
Rand, is then given by

τ
(epi)
Rand = 1− ρ(1− pτ̃). (6)
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Figure 5: The fraction rmax of edges which connect actors of the same degree to each other,
for which a large outbreak is maximised in a network in which 60% of the actors has degree
2 and the other actors have degree 3, as a function of the transmission probability p (solid
line). The dashed line gives the corresponding relative outbreak size τmax as a function
of p.

Similar to before, it also holds that

τ
(epi)
Rand > 0 if and only if R0 = p

(
µD +

σ2
D − µD
µD

)
> 1,

where R0 denotes the basic reproduction number.

If we know that a network is well described by a con�guration model and we know the
mean degree of the actors, µD, One further question to answer is: for which distribution
{pk} is the size of a large outbreak maximised when the transmission probability equals
p? In [4] it is shown that the answer to this question depends on p and µD, but in all
cases the degree distribution should be non-zero at at most 2 consecutive positive integer
numbers and possible at degree 0.

5 Observing egocentric data with alter connections

We end our analysis with the situation where the number of connections of all (or a
sample of) actors are observed, and where it is also observed which of the connections of
an actor are themselves connected. Such data, referred to as egocentric data with alter
connections (e.g. [7]), may often be collected in egocentric network surveys since egos are
usually aware of this information.

Such data gives the degree distribution in the community, but also, for each degree, the
community frequency of having any given set of fully connected components of various
sizes. As an example, one would know what fraction of the community that have degree
6 where two connections are not connected to any other connection, and the remaining
four are connected pairwise (forming 2 triangles with ego). As mentioned previously we
simplify this type of data to knowing only the degree distribution and how many of the
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connections are not connected with others and how many are connected pairwise, with
the implicit assumption that having larger fully connected components than triangles is
unlikely (cf. [11]). The distribution is hence speci�ed by {p(k1, k∆)}, where p(k1, k∆) is
the probability that a randomly selected ego has k1 connections that are not connected to
other connections of ego, and k∆ pairs of connections that are also connected themselves
pairwise. The total degree of such an actor is hence k1 + 2k∆.

5.1 The giant connected component

As in the previous situations it is possible to construct a network consisting of only small
connected components. Now that the number of triangles each actor belongs to is pre-
speci�ed, this is a bit more involved as it is no longer possible to join egos into fully
connected components. However, it is possible to pick suitably many egos of a given
degree pair (k1, k∆) such that they can form an isolated component; for (k1 = 2, k∆ = 1)
it su�ces with 9 egos to form an isolated component, (see Figure 6). As a consequence,
it is possible to construct a network without a giant component, so τmin = 0.

Figure 6: A component of a graph where all elements have degree pair (k1 = 2, k∆ = 1)

Similarly, it is in most situations, possible to construct a network in which all egos are
connected (i.e. τmax = 1). This may not be the case if the degrees (of both sorts) are too
small; then some egos have to be �sacri�ced� just like before. We will not characterise
which degree distributions that allow for all egos being connected (i.e. τmax = 1) and how
large the giant may be if this is not the case.

Now to the relative size of the largest connected component of a random network having
the speci�ed distribution {p(k1, k∆)} of singleton neighbours and pairs of interconnected
neighbours. For this we use results by Miller [11] who derives τRand for such a random
network. The recipe is given in the next subsection for the special case where the trans-
mission probability p equals 1.

5.2 Epidemic outbreak size

Removing edges due to no transmission will never increase the size of the giant component,
so we still have τ

(epi)
min = 0 as for the case without the epidemic.
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Next we present how to derive the relative size of the giant of a randomly selected network
having the prescribed degree and triangle distribution {p(k1, k∆)} using methods from
[11]. This is done by �rst solving 4 unknowns g1, g∆, h1, h∆ from 4 equations. The
interpretation of g1 and g∆, are as the probability that a singleton edge, or triangle
respectively, of a randomly selected node does not connect to the giant component, and
h1 and h∆ are the probabilities that a node reached by a randomly selected singleton edge,
or triangle respectively, does not connected to the giant from this edge/triangle. The four
equations are:

g1 = 1− p+ ph1,

h1 =
1

E(D1)

∑
k1,k∆

k1p(k1, k∆)gk1−1
1 gk∆

∆ ,

g∆ = (1− p+ ph∆)2 − 2p2(1− p)h∆(1− h∆),

h∆ =
1

E(D∆)

∑
k1,k∆

k∆p(k1, k∆)gk1
1 g

k∆−1
∆ .

These equations can be solved iteratively beginning with e.g. h1 = h∆ = 0 thus giving the
numerical solutions g1, h1, g∆, h∆. Given these solutions we have that the relative �nal
size of a major epidemic outbreak in a random network with single- and triangle-degree
distribution {p(k1, k∆)} and with transmission probability p is given by

τ
(epi)
Rand = 1−

∑
k1,k∆

p(k1, k∆)gk1
1 g

k∆
∆ . (7)

Further, τ
(epi)
Rand is strictly positive if and only if the basic reproduction number R0 exceeds

the value of 1, and it is shown in [11] that R0 is the dominant eigenvalue of the 2×2-matrix
M de�ned by

M =

(
pE(D2

1−D1)

E(D1)
pE(D1D∆)
E(D∆)

2p(1+p−p2)E(D1D∆)
E(D1)

2p(1+p−p2)E(D2
∆−D∆)

E(D∆)

)
.

The corresponding result for the giant component of the original network is obtained by
setting p = 1 in the equations above which reduces the number of equations to be solved
iteratively from 4 down to 2.

Having derived τ
(epi)
Rand de�ned in (7) we can as before ask: is it possible to have a bigger

epidemic outbreak than τRand for �xed degree distribution {p(k1, k∆)} and transmission
probability p. The answer is �yes�, as it was for the case with given singleton degree
distribution and no triangles (cf. Section 4.2). In fact, a larger outbreak is possible to
obtain if large-degree egos are connected to other large degree ego in the case that the
transmission probability and mean degrees are small, and by connecting large-degree
egos to small-degree egos when these quantities are large. To try to characterise exactly
how this should be done for a given degree distribution {p(k1, k∆)} is however not very
instructive and is hence omitted.

In Figure 7 we illustrate how the relative size of the giant component varies with the
transmission probability p for the case where p(k1 = 0, k∆ = 1) = p(k1 = 2, k∆ = 1) = 0.5,
i.e. where all actors belong to one triangle and half of the actors have no other connections
and the other half have two independent singleton edges on top of this. We plot both
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the case where the triangles are connected completely at random (zero degree correlation)
and the extreme where triangles are always formed by connecting actors having the same
degree. It is seen that positive degree correlation gives the largest outbreak size when p
is small whereas zero degree correlation gives larger outbreak size when p is close to 1.

0.2 0.4 0.6 0.8 1.0 p

0.2

0.4

0.6

0.8

Τ

Figure 7: Illustration of how τ = τ (epi) varies with p for a given independent and triangle
distribution, both the random case (dashed line) and the case where nodes of similar
degree tend to be connected (solid line).

6 Discussion

In the paper it was described how large/small the giant connected component, as well as
the size of an epidemic outbreak occurring on the social network, might be for some given
information about the egocentric network. For all types of egocentric data it is possible
not to have a giant (or epidemic outbreak) of the same order as the network. However, the
upper bound on the size of the giant/outbreak decreases the more detailed egocentric data
is available. For the epidemic case, a larger outbreak than that of a randomly selected
network among those consistent with the egocentric data, is obtained by connecting actors
with high degree to low degree actors if the transmission probability p and the degrees are
large, and to connected actors with high degree to other actors if these numbers instead
are small. That is, if the degrees and transmission probability are large, then we get a
larger outbreak if the degree correlation is negative, and if the degree and transmission
probability are small we get a larger outbreak if the degree correlation is positive.

In the data form denoted egocentric with alter connection it was assumed that actors
only had neighbours that were not connected to any other neighbour of ego, or else that
were connected to exactly one other neighbour of ego. This is of course a simpli�cation
of real world networks (for example household are usually treated as a fully connected
group of actors). It is an open question to see what e�ect such a deviation from the model
assumption has on the network properties.

In the paper we studied three di�erent levels of detailed egocentric data: mean degree,
degree distribution, and degree distribution including singleton and triangle degree. The
only global properties treated were the size of the giant and of a possible epidemic outbreak

13



in the community. There are many other global properties worthy of analysis under the
same scenario, for example the diameter and betweeness of the network.
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