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Abstract

A Reed-Frost epidemic with inhomogeneous infection probabilities on a
graph with prescribed degree distribution is studied. Each edge (u, v) in
the graph is equipped with two weights W(u,v) and W(v,u) that represent
the (subjective) strength of the connection and determine the probability
that u infects v in case u is infected and vice versa. Expressions for the
epidemic threshold are derived for i.i.d. weights and for weights that are
functions of the degrees. For i.i.d. weights, a variation of the so called
acquaintance vaccination strategy is considered where vertices are chosen
randomly and neighbors of these vertices with maximal edge weights are
vaccinated. This strategy is shown to outperform the strategy where the
neighbors are chosen randomly in the sense that the basic reproduction
number is smaller for a given vaccination coverage.

Keywords: Reed-Frost epidemic, weighted graph, degree distribution,
epidemic threshold, vaccination.
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1 Introduction

The Reed-Frost model is one of the simplest stochastic epidemic models. It
was formulated by Lowell Reed and Wade Frost in 1928 (in unpublished work)
and describes the evolution of an infection in generations. Each infected in-
dividual in generation t (t = 1, 2, . . .) independently infects each susceptible
individual in the population with some probability p. The individuals that
become infected by the individuals in generation t then constitute generation
t+ 1 and the individuals in generation t are removed from the epidemic pro-
cess. See [3] for a description of the asymptotic (as the population size grows
to infinity) behavior of the process.

In the original version, an infective individual infects each susceptible in-
dividual in the population with the same probability. Realistically however
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an infective individual has the possibility to infect only those individuals with
whom she actually has some kind of social contact. The Reed-Frost model is
easily modified to capture this by introducing a graph to represent the social
structure in the population and then let the infection spread on this graph.
More precisely, an infective individual infects each neighbor in the graph in-
dependently with some probability p.

When analyzing epidemics on graphs, the graph is usually taken to be
unweighted with respect to the infection, that is, transmission takes place along
all edges with the same probability. In this paper however, inhomogeneity will
be incorporated in the transmission probability by aid of weights on the edges.
More precisely, each edge (u, v) in the graph is assigned two weights W(u,v)

and W(v,u) that are assumed to take values in [0,1]. The probability that u
infects v if u gets infected is then given by W(u,v) and vice versa. Note that
it may well be that W(u,v) ̸= W(v,u). We shall mainly consider i.i.d. weights,
although we briefly treat weights that are determined by the degrees of the
vertices in Section 3.

To describe the underlying network, we shall use the so called configura-
tion model [12, 13]. Once the graph has been generated, each edge is equipped
with two weights as described above. Basically, the configuration model takes
a probability distribution with support on positive integers as input and gener-
ates a graph with this particular degree distribution; see Section 2 for further
details. The degree distribution is indeed an important characteristic of a
network with a large impact on the properties of the network and it is there-
fore desirable to be able to control this in a graph model. Furthermore, the
configuration model exhibits short distances between the vertices, which is in
agreement with empirical findings; see [10]. Epidemics on un-weighted graphs
generated by the configuration model has previously been studied in [1, 2, 7].
Related results have also appeared in the physics literature [14].

An important quantity in epidemic modeling is the epidemic threshold,
commonly denoted by R0. It is defined as a function of the parameters of
the model such that a large outbreak in the epidemic has positive probability
if and only if R0 > 1. Expressions for R0 typically stems from branching
process approximations of the initial stages of the epidemic. It is well-known
from branching process theory that the process has a positive probability of
exploding if and only if the expected number of children of an individual
exceeds 1. A natural candidate for R0 is hence the expected number of new
cases caused by a typical infective in the beginning of the time course. For this
reason, the epidemic threshold is often referred to as the basic reproduction
number.

The main goal of the paper is to study how the epidemic threshold is
affected by vaccination strategies based on the edges weights. To this end,
we assume that a perfect vaccine is available that completely removes vacci-
nated individuals from the epidemic process. The simplest possible vaccina-
tion strategy, usually referred to as random vaccination, is to draw a random
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sample from the population and then vaccinate the corresponding individuals.
An alternative, known as acquaintance vaccination, is to choose individuals
randomly and then, for each chosen individual, vaccinate a random neigh-
bor rather than the individual itself [8, 7]. The idea is that, by doing this,
individuals with larger degrees are vaccinated. We shall study a version of
acquaintance vaccination where, instead of choosing random neighbors, the
neighbors with maximal edge weights are chosen. In a human population, this
correspond to asking individuals to name their closest friend (in some respect)
instead of just naming a random friend. It is demonstrated that this is more
efficient than standard acquaintance vaccination, in the sense that the basic
reproduction number with the weight based strategy is smaller for a given
vaccination coverage.

Throughout this paper we shall use the term “infection” to refer to the
phenomenon that is spreading on the network. We remark that this does not
necessarily consist of an infectious disease spreading in a human population,
but may also refer to other infectious phenomena such as a computer virus
spreading in a computer network, information routed in a communication
net or a rumor growing in a social media. In many of these situations the
connections are indeed highly inhomogeneous. Furthermore, depending on
what type of spreading phenomenon that is at hand, the term vaccination can
refer to different types of immunization.

Epidemics on weighted graphs have been very little studied so far and
there are few theoretical results. See however [14] for an approach based on
generating function and [9, 15] for simulation studies. We mention also the
recent work on first passage percolation on random graphs by Bhamidi et al.
[4, 5, 6]. There, each edge in a graph generated according to the configuration
model is equipped with an exponential weight and the length and weight of
the weight-minimizing path between two vertices are studied. Interpreting
the weights as the traversal times for an infection, this can be related to the
time-dynamics of an epidemic.

The rest of the paper is organized so that the graph model and the epidemic
model are described in more detail in Section 2. In Section 3, expressions
for the epidemic thresholds are given and calculated for some specific weight
distributions. Section 4 is devoted to vaccination: In Section 4.1 a weight based
acquaintance vaccination strategy for weights with a continuous distribution
is described and an expression for the epidemic threshold is derived. Section
4.2 treats a strategy for a two-point weight distribution. The findings are
summarized in Section 5, where also some directions for further work are given.
We shall throughout refrain from giving rigorous details for the underlying
branching process approximations, but instead focus on heuristic derivations
of the epidemic quantities. Indeed, what needs to be proved is basically that
the branching process approximations hold long enough so that conclusions
for the branching processes are valid also for the epidemic processes. This
however is not affected by weights on edges (as long as these are not functions
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of the structure of the graph) and hence rigorous details can presumably be
filled in by straightforward modifications of the arguments in [7] (the degree
based weights mentioned in Section 3 might however require some more work).

2 Description of the model

We consider a population of size n represented by n vertices. The graph rep-
resenting the connections in the population is generated by the configuration
model. To produce the graph, a probability distribution with support on the
non-negative integers is fixed and each vertex u is independently equipped
with a random number of half-edges Du according to this distribution. These
half-edges are then paired randomly to create the edges in the graph, that is,
first two half-edges are picked at random and joined, then another two half-
edges are picked at random from the set of remaining half-edges and joined,
etc. If the total number of half-edges is odd, a half-edge is added at a randomly
chosen vertex to pair with the last half-edge.

This procedure gives a multi-graph, that is, a graph where self-loops and
multiple edges between vertices may occur. If D has finite second moment
however, there will not be very many of these imperfections. In particular,
the probability that the resulting graph is simple will be bounded away from
0 as n → ∞; see [7, Lemma 5.5] or [11, Theorem 7.10]. If D has finite second
moment we can hence condition on the event that the graph is simple, and
work under this assumption. Another option is to erase self-loops and merge
multiple edges, which asymptotically does not affect the degree distribution if
D has finite second moment; see [11, Theorem 7.9]. Henceforth we shall hence
assume that D has finite second moment and ignore self-loops and multiple
edges.

When the graph has been generated, each edge (u, v) is assigned two
weights W(u,v) and W(v,u) that are assumed to take values in [0,1]. This can
be thought of as if each one of the half-edges that is used to create the edge
independently receives a weight. The epidemic spread is initiated in that one
randomly chosen vertex is infected. This vertex constitutes generation 1. The
epidemic then propagates in that each vertex u in generation t (t = 1, 2, . . .) in-
fects each susceptible neighbor v independently with probability W(u,v). Gen-
eration t + 1 then consists of the vertices that are infected by the vertices in
generation t and the vertices in generation t are removed from the epidemic
process.

We shall mainly restrict to the case where the weights are taken to be
independent. However, we mention also the possibility to let them be functions
of the degrees of the vertices:

Independent weights. The weights are taken to be i.i.d. copies of a random
variable W that takes values in [0,1]. The distribution of W can be defined in
many different ways:
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• As an intrinsic distribution on [0,1], for instance a uniform distribution
or, more generally, a Beta distribution.

• By letting N be an integer valued random variable, indicating for in-
stance how many times a given vertex contacts a given neighbor during

some time period, and then setting W
d
= 1 − (1 − p)N , with p ∈ [0, 1]

denoting the probability of infection at a given contact.

• By, similarly, letting X be a positive random variable, interpreted as the

(subjective) strength of a connection, and then for instance setting W
d
=

1{X ≥ θ} for some θ ≥ 0 or W
d
= 1−αX for α ∈ [0, 1]. Alternatively, X

could be interpreted as the resistance involved in a connection and W
modeled as a decreasing function of X.

Degree dependent weights. The weights of an edge (u, v) could also
be modeled as functions of Du and Dv. We shall consider the case when
W(u,v) = g(Du) for some function g that takes values in [0,1]. All outgoing
edges from u hence have the same weight, and independent trials with this
success probability determine whether the edges are used to transmit infec-
tion. With g increasing, this setup means that vertices with large degree have a
larger probability of infecting their neighbors, for instance in that they tend to
be more active. With g decreasing, high degree vertices are instead less likely
to infect their neighbors, which might be the case for instance in a situation
where high degree vertices have weaker bonds to their acquaintances.

3 Epidemic threshold

As mentioned in the introduction, expressions for epidemic thresholds usu-
ally come from branching process approximations of the initial stages of an
epidemic. As for epidemics on graphs, branching process approximations are
typically in force as soon as the graph is tree-like, that is, if with high proba-
bility the graph does not contain short cycles. This means that the neighbors
of a given infective in the beginning of the time course are susceptible with
high probability and hence the initial stages of the generation process of infec-
tives is well approximated by a branching process. Under the assumption that
the degree distribution has finite second moment, the configuration model is
indeed tree-like, allowing for such an approximation; see e.g. [10, 7] for details.
The epidemic threshold is then given by the reproduction mean in the approx-
imating branching process, which in turn is given by the expected number of
new cases generated by an infective vertex in the beginning of the epidemic.
When calculating this, one should not consider the initial infective, since this
vertex might be atypical, but rather an infective vertex in, say, the second
generation.
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Let {pk}k≥0 be the probabilities defining the degree distribution in the
configuration model. Then the initial infective has degree distribution {pk},
while the neighbors of this vertex have the size biased degree distribution {p̃k}
defined by

p̃k =
kpk
µ

,

where µ =
∑

kpk denotes the mean degree. The infective vertices in the second
(and later) generations hence have degree distribution {p̃k}. Denote by D̃ a
random variable with this distribution.

Independent weights. Consider an infected vertex in the second generation.
One neighbor of this vertex must have transmitted the infection and can hence
not get reinfected, while the other neighbors are with high probability suscep-
tible. The number of new cases generated by the vertex is hence distributed
as

D̃−1∑
i=1

1{neighbor i infected}. (1)

If the weights are i.i.d. copies of W , then the mean of the indicators is γ :=
E[W ] and we get

R0 = γE[D̃ − 1] = γ

(
µ+

Var(D)− µ

µ

)
.

In this case the epidemic threshold is hence the same as in a model with
constant infection probability p = γ ; see [2, 7]. Note that, for degree distri-
butions with large variance, R0 can be large even if µ is small. Also note that
the above reasoning remains valid in a situation where the weights W(u,v) and
W(v,u) on a given edge are correlated, as long as the weights are independent
between edges. In fact, as long as the transmission between separate links are
i.i.d., the whole epidemic process is equivalent to a Reed Frost model (on the
configuration model) with p = E[W ].

Degree dependent weights. Assume that W(u,v) = g(Du). Since Wu,v

does not depend on Dv, the degree distribution of an infective in the second
generation is {p̃k}. Conditionally on its degree D̃ = d̃, the number of new
cases generated by an infective in the second generation is Bin(d̃ − 1, g(d̃))-
distributed. It follows that

Rdeg
0 = E[(D̃ − 1)g(D̃)].

Let Rh1
0 denote the basic reproduction number for an epidemic with a homo-

geneous infection probability given by the transmission probability E[g(D̃)]
for a randomly chosen half-edge, that is,

Rh1
0 = E[g(D̃)]E[D̃ − 1].
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When g is an increasing function we have Rdeg
0 ≥ Rh1

0 , due to the positive

correlation between g(D̃) and D̃, while, if g is decreasing, then Rdeg
0 ≤ Rh1

0 .

Another comparison that might be relevant is to relate Rdeg
0 to the basic

reproduction number for an epidemic with a homogeneous infection probability
given by E[g(D)], that is, an epidemic where the infection probability g(D)
for a vertex with degree D is averaged over all possible degrees. The basic
reproduction number in such an epidemic is given by

Rh2
0 = E[D̃ − 1]E[g(D)].

Example 3.1. First takeD ∼ Po(µ). It is not hard to see that then p̃k = pk−1.
Take g(x) = 1{x ≥ θ}. If W(u,v) = g(Du), this means that only vertices with
degree at least θ transmit the infection. We have

E[1{D̃ ≥ θ}] = P(D ≥ θ − 1)

and

E[(D̃ − 1)1{D̃ ≥ θ}] =
∑
k≥θ

(k − 1)
kpk
µ

=
∑
k≥θ

µk−1

(k − 2)!
e−µ = µP(D ≥ θ − 2).

Hence
Rh2

0 = µP(D ≥ θ)
Rh1

0 = µP(D ≥ θ − 1)

Rdeg
0 = µP(D ≥ θ − 2).

With g(x) = αx for α ∈ (0, 1), we get

E[αD] = e−µ(1−α) and E[αD̃] = αe−µ(1−α).

Furthermore

E[(D̃ − 1)αD̃] =
∑
k≥1

(k − 1)αk kpk
µ

= α2
∑
k≥0

αkpk = α2e−µ(1−α).

Hence
Rh2

0 = µe−µ(1−α)

Rh1
0 = µαe−µ(1−α)

Rdeg
0 = µα2e−µ(1−α).

2

Example 3.2. Now take a distribution with pk ∼ ck−3.5. In this case exact
computations are out of reach but numerical values of the thresholds are easily
obtained. We give an example with g(x) = x−τ for τ ∈ [0, 1]. The initial de-
grees in the graph has been modified to give a mean of 4. In Figure 1 the basic
reproduction numbers are plotted against τ , showing that Rh2

0 > Rh1
0 > Rdeg

0 .
The homogeneous epidemics remain supercritical (that is, their reproduction
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Figure 1: The basic reproduction numbers Rh2
0 (solid line), Rh1

0 (dashed line)

and Rdeg
0 (dash-dotted line) with g(x) = x−τ plotted against τ . The degree

distribution is a power law with exponent 3.5 and mean 4.

numbers exceed 1) at τ = 1, while the epidemic with degree dependent weights
become subcritical for large τ . Indeed, the degree dependent epidemic is sub-
critical at τ = 1 for any degree distribution. 2

For the remainder of the paper we shall restrict to the case with indepen-
dent weights.

4 Vaccination

We now proceed to analyze a version of the so called acquaintance vaccination
strategy. To this end, suppose that a perfect vaccine is available that prevents
vaccinated vertices from participating in the epidemic process and that this
vaccine is distributed prior to the start of the epidemic. More precisely, first
we generate the underlying graph and assign the edge weights, then we choose
which vertices that are to be vaccinated and finally, when the vaccine has been
distributed, we analyze the epidemic spread among the unvaccinated vertices.

The simplest vaccination scheme is to vaccinate each vertex independently
with some probability v. We shall refer to this as uniform vaccination and
write RUv for the corresponding basic reproduction number. By reasoning as
in the case without vaccination and keeping in mind that only unvaccinated
vertices can be infected, it is not hard to see that RUv is obtained by multiplying
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the expression for the case without vaccination with (1− v), that is,

RUv = (1− v)γ

(
µ+

Var(D)− µ

µ

)
. (2)

An alternative strategy, referred to as acquaintance vaccination, is to vaccinate
neighbors of the chosen vertices rather than the vertices themselves; see [8].
More precisely, each vertex is sampled independently with probability s and,
for each sampled vertex, a randomly chosen neighbor is vaccinated. A neighbor
that is chosen via more than one vertex is (of course) vaccinated only once. The
fact that two vertices can both pick a common neighbor to receive vaccination
means that the asymptotic fraction of vaccinated vertices v(s), referred to
as the vaccination coverage, is smaller than s. In fact, in many cases it is
not possible to push an epidemic below criticality (that is, to obtain a basic
reproduction number smaller than 1) even when s = 1. This motivates a
strategy where a vertex can be sampled more than once and thereby have
more than one neighbor vaccinated.

In [7], a strategy is analyzed where each vertex is sampled independently
a Po(β) number of times and each time a vertex is sampled, a randomly
chosen neighbor is vaccinated. When there are weights on the edges however,
more efficient strategies are possible. Here we shall consider strategies where,
rather than choosing neighbors randomly for vaccination, neighbors with large
weights on their edges are chosen. We treat the case with independent directed
weights. In Section 4.1, the weights are assumed to come from a continuous
distribution and Section 4.2 is devoted to a strategy for two-point distributions.

4.1 Weight based acquaintance vaccination: continuous weights

Assume that the directed edge weights are i.i.d. realizations from a continuous
probability distribution on [0,1]. Each vertex u is sampled independently a
Po(β) number of times. Write Nu for the set of neighbors of a vertex u and,
for i = 1, . . . , |Nu|, let vi ∈ Nu be the vertex corresponding to the i:th largest
element in {W(u,v) : v ∈ Nu} (note that vi is almost surely unique, since the
weights are assumed to come from a continuous distribution). Then, if u is
sampled i ≤ Du times, the neighbors v1, . . . , vi are vaccinated. If i ≥ Du, all
neighbors of u are vaccinated and, if Du = 0, no action is taken. This will be
referred to as weight based acquaintance vaccination.

To derive an expression for the vaccinated fraction v(β) of the population,
let V ∼ Po(β) represent the number of times that a given vertex is sampled.
The probability that a randomly chosen vertex u is not chosen for vaccination
by a given neighbor with degree k is given by

rk =
k−1∑
i=0

P(V = i)

(
1− i

k

)
. (3)
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Since the neighbors of u have degree distribution {p̃k}, the probability that u
avoids being chosen for vaccination by a given neighbor equals

α =
∑
k≥1

rkp̃k.

If u has degree j, then the probability that u is not vaccinated is αj . The
degree distribution of u is {pj} and, since the fraction of unvaccinated ver-
tices coincides with the probability that a randomly chosen vertices is not
vaccinated, we obtain v(β) from the equation

1− v(β) =
∑
j≥0

αjpj .

Next, to identify the epidemic threshold in a population vaccinated according
to the weight based acquaintance strategy, we shall employ a branching process
approximation of the initial stages of the epidemic. The process however is
slightly more complicated than in the case with uniform vaccination, and
this is because the knowledge that an edge has not been used for vaccination
carries information of the degrees of the corresponding vertices. The process
is analogous to the one used in [7]. To describe it, say that a directed edge
(u,w) is used for vaccination if u is sampled and chooses the neighbor w for
vaccination. Furthermore, conditionally on the weight, a directed edge is said
to be open for transmission if a bernoulli trial with success probability given
by the weight of the edge results in a success. A directed edge that is not used
for vaccination and that is open for transmission is called dangerous.

An “individual” in the branching process now consists of an unvaccinated
vertex u along with a dangerous outgoing edge (u,w). The individual then
gives birth to a new individual if the vertex w is unvaccinated an in turn has a
dangerous edge (w,w′) pointing out from it. Note that an unvaccinated vertex
can hence give rise to several individuals (if it has more than one outgoing
dangerous edge) or no individuals at all (if it does not have any outgoing
dangerous edges). Furthermore, the individuals reproduce independently.

It is not hard to see that the epidemic has a positive probability of taking
off if and only if the above branching process has a positive probability of
exploding: With positive probability the initial infective in unvaccinated and
with positive probability it has at least one dangerous out-edge. The propaga-
tion of the epidemic from the vertices that are hit by these dangerous edges is
then approximated by the above branching process. To find an expression for
the reproduction mean of the process, consider a given unvaccinated vertex
u along with an outgoing dangerous edge (u,w). How many new individuals
does this give rise to? First, the degree distribution of w, which is size biased,
is now affected also by the information that the edge (w, u) has not been used
for vaccination. Write A for the latter event and PA and EA for probability
and expectation respectively conditionally on A. We get

PA(Dw = k) =
rkp̃k∑
rkp̃k

=
rkp̃k
α

,
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where rk is defined in (3). If w has degree k, then the probability that w is not
chosen for vaccination by any of its other k− 1 neighbors (apart from u that,
by assumption, does not have a dangerous edge to w) is αk−1. Write H for the
number of dangerous edges (w,w′) with w′ ̸= u. Note that, conditionally on
the degree of w, the event that w is unvaccinated (which carries information
on the in-weights of w) does not affect H (which is determined by the out-
weights of w). The reproduction mean of the branching process is hence given
by

RWβ =
∑
k≥2

PA(Dw = k)αk−1EA,k[H], (4)

where EA,k[H] := EA[H|Dw = k] (below we use PA,k to denote the corre-
sponding probability and Pk to denote probability conditional only on that
Dw = k). It remains to quantify this expectation. Clearly H is affected by the
number of times Vw that w is sampled to name a neighbor in the vaccination
procedure, which in turn is affected by the information that (w, u) was not
used for vaccination. Specifically, when Dw = k, we have, for i = 0, . . . , k− 1,
that

PA,k(Vw = i) =
Pk(A|Vw = i)Pk(Vw = i)

Pk(A)

=

(
1− i

k

)
P(Vw = i)

rk
.

Let W
(k)
j denote a random variable distributed as the j:th smallest in a collec-

tion of k independent weight variables. If Vw = i (i = 1, . . . , k − 1), then the
out-edges with the i largest weights are used for vaccination. The remaining
k − i out-edges are dangerous with a probability given by the expectation of
their weights. Note however that we do not want to count the edge to u,
whose weight indeed belongs to the k − i smallest since, by assumption, it is
not used for vaccination. The ordering of the weight on the edge to u among
the remaining k − i out-weights is uniform on {1, . . . , k − i}. We obtain

EA,k[H|Vw = i] =

(
1− 1

k − i

) k−i∑
j=1

E[W (k)
j ]. (5)

Note that, if Vw = 0, then each one of the k−1 out-edges from w to Nw\{u} is
dangerous independently with probability γ, and the above expression reduces
to (k − 1)γ. If Vw ≥ k − 1, then all out-edges (except (w, u)) are used for
vaccination meaning that there are no dangerous out-edges. Hence

EA,k[H] =
k−2∑
i=0

PA,k(Vw = i)EA,k[H|Vw = i].

This concludes the derivation of the reproduction mean (4).
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Calculating the reproduction mean involves calculating expectations of or-
der statistics (c.f. (5)). Finding analytical expressions for such expectations is
typically not possible. However, the density of the j:th smallest observation
in a collection of k i.i.d. variables with density f and distribution function F
is given by

fk,j(x) =
Γ(k + 1)

Γ(j)Γ(k + 1− j)
(F (x))j−1(1− F (x))k−jf(x), (6)

where Γ(·) denotes the gamma function. For a given weight distribution F , the
mean can hence be calculated by aid of numerical integration. A particularly
easy case is when the weights are uniform on [0,1]. Then

W
(k)
j ∼ Beta(j, k + 1− j)

so that E[W (k)
j ] = j/(k + 1), and hence

EA,k[H|Vw = i] =

(
1− 1

k − i

) k−i∑
j=1

j

k + 1
=

(k − i− 1)(k − i+ 1)

2(k + 1)
. (7)

We now want to compare the epidemic threshold for the weight based
strategy to the threshold for the standard acquaintance vaccination strategy,
where neighbors are chosen randomly. In [7], the vaccination coverage v(β)
for the latter strategy is shown to be defined by

1− v(β) =
∑
j≥0

αjpj

with α =
∑

e−β/kp̃k. Furthermore, for a homogeneous infection probability p,
the basic reproduction number is shown to be

RAβ = p
∑
k≥2

(k − 1)αk−2e−2β/kp̃k. (8)

Straightforward modifications of the arguments leading up to these expressions
reveals that they apply also for the inhomogeneous case with independent
weights, with p replaced by the mean weight γ.

Example 4.1.1. Let the edge weights be uniformly distributed on [0, 1]. Then
γ = 1/2 and, using (7), the reproduction mean RWβ in (4) is easily calculated
for a given degree distribution {pk}. Figure 2 shows the basic reproduction
number RWβ plotted against the vaccination coverage v(β) when the degree dis-
tribution is Po(6). The plot also shows the reproduction number for standard
acquaintance vaccination and for uniform vaccination. For a given vaccination
coverage, we have RU > RA > RW, although the difference between standard
acquaintance vaccination and the weight based strategy is quite small. Note
however that, in practical situations also a small gain could be valuable: The
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vaccination coverage required to push the epidemic threshold below 1 – thereby
preventing large outbreaks – is referred to as the critical vaccination coverage.
Clearly, when fighting an infectious disease in a large human population for
instance, even a very small decrease in the critical vaccination coverage might
imply large savings in terms of vaccination costs. 2

Example 4.1.2. Let the weights have a Beta distribution with parameters
0.5 and 2.5; see Figure 3. In this case it is not possible to write down analytical
expressions in closed form for RW but it is easily computed numerically. Fig-
ure 4 shows the basic reproduction numbers plotted against the vaccination
coverage when the degree distribution is Po(14). In this case the weight based
strategy performs clearly better than the standard acquaintance vaccination.
In particular, the critical vaccination coverage for uniform vaccination and
standard acquaintance vaccination is 0.58 and 0.53 respectively, while for the
weight based strategy it is decreased to 0.47. The reason is that the weight
distribution is right-skewed: Most weights are small but there is a thick right-
tail with large weights, and by getting rid of these large weights the mean in
the weight distribution is decreased more than in the uniform case. 2

Example 4.1.3. Finally, let the weights have the same Beta distribution as in
the previous example, but take the degree distribution to be a power-law with
exponent 3.5 and the same mean 14 as in the Poisson distribution. Figure 5
displays the basic reproduction numbers in this case. Again the weight based
strategy performs better than standard acquaintance vaccination. In this case
however, the most striking feature is the difference between the uniform vac-
cination and the acquaintance based strategies: when the degree distribution
is a power law, the basic reproduction number is pushed down very effectively
by targeting high degree vertices. 2

4.2 Weight based vaccination: two-point weights

The finding in the previous section that the weight based strategy is performs
well for right-skewed weight distributions in the continuous case might lead
one to suspect that the strategy is particularly useful for a “polarized” discrete
distribution. In this section we analyze the simple case when the weights have
a two-point distribution. As a motivation we can think of a network having
two types of directed transmission links, one that spreads an infection with
high probability and one that does so only with a very small probability. It
would then be natural to design a strategy that targets vertices with highly
infectious connections.

Assume that W ∈ {a, b} where a < b and write pa = P(W = a) and
pb = P(W = b). The strategy is defined so that each vertex is sampled
independently with probability s and, for each sampled vertex u, its neighbors
with weight b on their edge from u are vaccinated: Recall that Nu denotes the
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Figure 2: Basic reproduction numbers with U(0, 1) weights for a Po(6) de-
gree distribution plotted against the vaccination coverage: the weight based
acquaintance strategy (solid line), the standard acquaintance vaccination
(dashed line) and uniform vaccination (dash-dotted line).
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Figure 3: A Beta density with parameter 0.5 and 2.5.
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Figure 4: Basic reproduction numbers with Beta(0.5,2.5) weights for a Po(14)
degree distribution plotted against the vaccination coverage: the weight based
acquaintance strategy (solid line), the standard acquaintance vaccination
(dashed line) and uniform vaccination (dash-dotted line).
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Figure 5: Basic reproduction numbers with Beta(0.5,2.5) weights for power-
law degree distribution with exponent 3.5 and mean 14 plotted against the
vaccination coverage.
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set of neighbors of a vertex u and let

N (b)
u = {v ∈ Nu : W(u,v) = b},

that is, N (b)
u is the set of neighbors of u for which the weight on the edge

(u, v) attains the larger value b. Then, if u is sampled, the vertices in N (b)
u are

vaccinated. No action is taken if N (b)
u is empty.

To derive the vaccination coverage, note that the probability that a ran-
domly chosen vertex in the graph is not chosen for vaccination by a given
neighbor equals

α = 1− spb.

As in the previous section we obtain the vaccination coverage from the equation

1− v(s) =
∑
j≥0

αjpj .

The derivation of the epidemic threshold is based on the same branching pro-
cess as in the previous section, that is, an individual in the branching process
consists of an unvaccinated vertex u along with an outgoing edge (u,w) that is
not used for vaccination and that is open for transmission. To find an expres-
sion for the reproduction mean RDs , which serves as the epidemic threshold,
first note that in this case the degree distribution of vertex w is not affected by
the information that w did not chose u for vaccination (recall that the latter
event is denoted A). Indeed, whether u is vaccinated or not if w is sampled is
determined only by W(w,u). Hence PA(Dw = k) = p̃k.

Conditionally on Dw = k, the probability that w is not vaccinated via any
of its other k − 1 neighbors (apart from u) is given by αk−1. We also need
to determine the expected number of dangerous edges from w to vertices in
Nw \ {u} conditionally on that Dw = k and on A (note that, conditionally
on the degree, the distribution of the number of dangerous edges from w
is not affected by the information that w is not vaccinated). For this we
need the corresponding probability that w is sampled to name a neighbor for
vaccination. With Vw ∈ {0, 1} denoting the number of times that w is sampled
to name a neighbor, we get

PA,k(Vw = 1) =
Pk(A|Vw = 1)Pk(Vw = 1)

Pk(A)
=

pas

α
=: ν.

Note that this probability does not depend on k. If Vw = 0, then the expected
number of dangerous edges from w (to other vertices than u) is (k − 1)γ. If
Vw = 1 on the other hand, then the neighbors reached by edges with the
large weight are vaccinated. The expected number of remaining out-edges
from w (to other vertices than u) is (k − 1)pa and each one of these is open
for transmission with probability a. The expected number of dangerous edges
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from w is hence (k−1)apa. Write RW2s for the basic reproduction number with
the current vaccination strategy. We get

RW2s = (νapa + (1− ν)γ)
∑
k≥2

p̃kα
k−1(k − 1). (9)

We now compare this to the epidemic threshold (2) for uniform vaccination
and, in particular, to the threshold (8) for the standard acquaintance vaccina-
tion strategy.

Example 4.2.1. Figure 6 shows the basic reproduction numbers when the
degree distribution is Po(14) and the weight distribution is specified by P(W =
0.1) = 1 − P(W = 1) = 0.9 (most edges hence have a very small weight, but
a small fraction has weight 1, implying almost sure transmission). The plot
reveals that the weight based strategy clearly outperforms the other strate-
gies in this case. The critical vaccination coverage is lowered from 0.58 with
standard acquaintance vaccination to 0.48 with the weight based strategy. 2

Example 4.2.2. Figure 7 shows the basic reproduction numbers for the same
weight distribution as in the previous example when the degree distribution
is a power-law with exponent 3.5 and mean 14. Again we see that the weight
based strategy is the most efficient. 2

Example 4.2.3. Finally, Figure 8 displays the basic reproduction numbers
for the same power-law degree distribution as in the previous example but for
a weight distribution specified by P(W = 0.1) = 1− P(W = 1) = 0.5. In this
case almost nothing is gained by using the weight based strategy compared to
standard acquaintance vaccination (the lines are almost aligned). The likely
explanation for this is that, although the weight based strategy targets highly
infective links, it does so more “locally” in the graph: Recall that all high
weighted neighbors of a sampled vertex are vaccinated. This means that, to
achieve a given vaccination coverage, a much smaller sample of vertices is
required compared to standard acquaintance vaccination if the probability of
the larger weight is reasonably large; Figure 9 shows a plot for the current
example. Thus the weight based strategy affects fewer parts of the graph
and this apparently cancels the positive effect that lies in securing high risk
connections. However, the strategy does not perform worse than the standard
acquaintance strategy. Hence the strategy is still more effective in the sense
that it requires a smaller sample of vertices to name neighbors for vaccination
to obtain a given vaccination coverage. In situations when there are costs
associated with selecting and communication with the sampled vertices, this
might be important. 2

5 Summary and discussion

We have formulated and analyzed a model for epidemic spread on weighted
graphs, where the weight of an edge indicates the probability that it is used for
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Figure 6: Basic reproduction numbers plotted against the vaccination coverage
with P(W = 0.1) = 1 − P(W = 1) = 0.9 and a Po(14) degree distribution:
the weight based acquaintance strategy (solid line), the standard acquaintance
vaccination (dashed line) and uniform vaccination (dash-dotted line).
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Figure 7: Basic reproduction numbers plotted against the vaccination coverage
with P(W = 0.1) = 1 − P(W = 1) = 0.9 and a power law degree distribution
with exponent 3.5 and mean 14.
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Figure 8: Basic reproduction numbers plotted against the vaccination coverage
with P(W = 0.1) = 1 − P(W = 1) = 0.5 and a power law degree distribu-
tion with exponent 3.5 and mean 14: the weight based acquaintance strategy
(solid line), the standard acquaintance vaccination (dashed line) and uniform
vaccination (dash-dotted line).
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Figure 9: The fraction of the population that has to be sampled to vaccinate
(at least one) neighbor(s) plotted against the resulting vaccination coverage for
the weight based strategy (solid line) and standard acquaintance vaccination
(dashed line).
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transmission. Expressions for the epidemic threshold, specifying when there is
a positive probability for an epidemic to take off, have been derived. The case
with independent weights is analogous to the case with a constant infection
probability given by the mean weight. For degree dependent out-weights,
which for instance makes it possible to model a situation where high degree
vertices infect their neighbors with a smaller probability, however the behavior
is different from a homogenized epidemic.

Furthermore, we have analyzed a version of the acquaintance vaccination
strategy where neighbors of the sampled vertices reached by edges with large
weights are vaccinated. The selected vertices hence impose vaccination on the
neighbor(s) that they have the strongest connection(s) to instead of a ran-
dom neighbor. Two versions of this strategy have been treated: one for a
continuous weight distribution and one for a two-point distribution. In the
examples we have looked at, these strategies have been seen to outperform
standard acquaintance vaccination, the difference being largest in cases where
the weight distribution is highly right-skewed. The reason why the weight
based acquaintance strategies perform better than standard acquaintance vac-
cination is that, in addition to removing the vaccinated neighbors, the ability
to spread the epidemic is decreased also for the sampled vertices in that their
high-weight connections are secured.

As for further work, there are numerous possibilities. In many situations
it would be desirable to allow for (typically positive) correlations between the
weights W(u,v) and W(v,u) on a given edge, for instance one might want to
assign only one weight per edge, specifying the probability of transmission in
any direction. This leads to complications in the current analysis, basically
because the information that a vertex is unvaccinated then gives information
on the weights on the edges of its neighbors. Furthermore, the basic idea in
acquaintance vaccination is that, by vaccinating neighbors of the sampled ver-
tices, one reaches vertices with higher degree. A natural further development
of this idea would be to vaccinate neighbors with maximal degree, that is,
selected vertices are asked to identify their neighbor(s) with the largest degree
among the neighbors (assuming that they have this information) and these
neighbors are then vaccinated. Unfortunately this seems to lead to compli-
cated dependencies in the resulting epidemic process.

We also mention that it would be interesting to investigate the final size of
the epidemic. This is usually related to the probability of a large outbreak and
quantified via an equation involving the generating function of the reproduc-
tion distribution. For the vaccination strategies that we have considered here,
this equation would involve the distribution (6) of order statistics and is hence
presumably complicated. But it would be interesting to study the final size by
aid of simulation. Other possible continuations include investigating how the
results are affected by introducing clustering (triangles and other short cycles)
in the underlying graph, to involve time-dynamic in the vaccination procedure
and to generalize the model for the epidemic spread.
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