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Abstract

We study an open population stochastic epidemic model from the time
of introduction of the disease, through a possible outbreak and to ex-
tinction. The model describes an SIS (susceptible-infective-susceptible)
epidemic where all individuals, including infectious ones, reproduce
at a given rate. An approximate expression for the outbreak prob-
ability is derived using a coupling argument. Further, we analyse
the behaviour of the model close to quasi-stationarity, and the time
to disease extinction, with the aid of a diffusion approximation. In
this situation the number of susceptibles and infectives behaves as an
Ornstein-Uhlenbeck process, centred around the stationary point, for
an exponentially distributed time before going extinct.
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Abstract

We study an open population stochastic epidemic model from the time of intro-
duction of the disease, through a possible outbreak and to extinction. The model
describes an SIS (susceptible-infective-susceptible) epidemic where all individuals,
including infectious ones, reproduce at a given rate. An approximate expression
for the outbreak probability is derived using a coupling argument. Further, we
analyse the behaviour of the model close to quasi-stationarity, and the time to dis-
ease extinction, with the aid of a diffusion approximation. In this situation the
number of susceptibles and infectives behaves as an Ornstein-Uhlenbeck process,
centred around the stationary point, for an exponentially distributed time before
going extinct.

Keywords: stochastic epidemic model, quasi stationarity, sis model, coupling, Ornstein-
Uhlenbeck,diffusion approximation, outbreak probability

1 Introduction

Stochastic epidemic models have been studied intensely over the past decades, trying to
capture the behaviour of a real epidemic spreading in a population, may it be human or
bacterial (see e.g. [3] and [4]). Over time more general models have been analysed such
as multitype epidemics models, and models allowing for individual heterogeneities and
demographics in the monitored population. We focus on the last of these generalisations.

More specifically, we analyse an SIS (susceptible→ infectious→ susceptible) stochastic
epidemic model with demography. The model aims at capturing the behaviour of the
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process of infectious individuals introduced into a population where both susceptible and
infectious individuals reproduce and die. We determine the probability of an outbreak,
analyse the dynamics of the process close to quasi-stationarity i.e. the endemic state,
and derive results concerning the time to disease extinction given that the process is
started in the quasi-stationary state. That is, the complete dynamics from introduction
to extinction.

Similar models have been analysed by e.g. [9] and [5]. In the first, it is assumed
that only susceptibles reproduce and no recovery from infection is possible, in the latter,
immigration is assumed instead of, as in our model, reproduction from within the process
itself. Both [8] and [2] address the question of time to disease extinction, but where [8] is
concerned with an open population model with immigration whereas [2] studies a closed
population model. In the present paper the time to extinction is analysed using the same
methods as used in [8].

In the model we make some standard, albeit unrealistic, assumptions regarding the
spread of the disease. These include the assumption of homogeneous mixing, i.e. that
all pairs of individuals have the same probability of meeting and infecting each other. A
thorough treatment of stochastic epidemic models and the standard assumptions can be
found in [1].

The rest of the paper is organised as follows: Section 2 describes the model and the
assumptions made in detail. In Section 3 the basic reproduction number is derived. In
Section 4 an approximation of the probability of an outbreak is calculated under the
assumption that the number of susceptibles is large compared to the number of infectives
at the early stages of the epidemic. This is done via coupling arguments. In Section
5 the endemic phase is studied, i.e. when the number of infectives has reached a level
that is stable for a longer period of time. A diffusion approximation is derived which
provides insights into the dynamics of the disease. Section 6 is devoted to calculating the
distribution of the time to extinction given that the process is started in quasi- stationarity.
Following [8] we show that it is exponentially distributed and provide an approximate
formula for its expected value. In Section 7 the paper is concluded by a discussion of the
results obtained.

2 Model

We will consider a two-dimensional Markov process {(S(t), I(t)), t ≥ 0}, where S(t) and
I(t) represent the number of susceptibles and infectives respectively, at time t. The process
{(S(t), I(t)), t ≥ 0} makes transitions in continuous time according to the transition rates
given in Table 1. The parameter ν is a scaling parameter and will be proportional
to the initial population size and intuitively also to the inhabited area. We analyse the
behaviour of the model for large populations, i.e. when ν → ∞. Infected individuals
make infectious contacts according to independent processes with intensities β

ν
S(t) until

recovery or death. The parameter β
ν

is thus interpreted as the rate of infectious contacts
per unit of area. This definition of the contact intensity guarantees that the process is a
so called density dependent process. Intuitively it means that the dynamics are the same
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Event Transition Transition rate

Infection of susceptible (x, y) → (x− 1, y + 1) β
ν
xy

Birth of susceptible (x, y) → (x + 1, y) µ(x + y)
Death of susceptible (x, y) → (x− 1, x) δx
Death of infective (x, y) → (x, y − 1) (δ + η)y
Recovery of infective (x, y) → (x + 1, y − 1) γy

Table 1: Transitions rates of the epidemic process at t with {(S(t), I(t)) = (x, y)}, where
all parameters are larger than 0.

Susceptible Infectious

µ(s + i)

µ(s + i)µ(s + i)

β

ν
si

δs
γi

(δ + η)i

Figure 1: Transition diagram.

in a large population on a larger area as within a small population on a smaller area, i.e.
the dynamics is scale invariant. Our process being density dependent is crucial for the
diffusion approximation in Section 5.2.

Both susceptible and infective individuals give birth at the rate µ, whereas infective
individuals die a higher rate δ + ν than susceptibles which die at the rate δ. We assume
that all parameters are strictly positive and that δ < µ < δ + η. The latter assumption is
crucial since it ensures the existence of a quasi-stationarity state of the process. This can
be seen heuristically as follows: Should, violating the assumption, µ < δ the birth rate
of the total population would be smaller than the average death rate and the population
would go extinct. If the second inequality is violated and δ + η < µ the birth rate of the
total population would be larger than the average death rate making the total population
process supercritical and thereby excluding the possibility of a quasi-stationary state.

Infective individuals leaves the infective state with intensity δ + η + γ, thus implying
an exponentially distributed infectious period with mean 1/(δ + η + γ). Furthermore, the
probability of dying of the disease when infected is η/(δ + η + γ).

3 The basic reproduction number

The basic reproduction number, commonly denoted R0, is the mean offspring of an in-
dividual in a branching process. When used in epidemic modeling R0 is interpreted as
the mean number of infections caused by an infective. In the latter case R0 is calculated
assuming that the vast majority of the population is susceptible, i.e. during the initial
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stages of an epidemic when a branching process approximation of the process of infec-
tives is valid. Since we are analysing an open population model we also need to worry
about the susceptible population fluctuating. Thus R0 calculated for our model is not
necessarily valid as the mean number of infections caused by an infective, for as long as
in the corresponding fixed population model, since the conditions change more rapidly.
We derive R0 as follows:

The first infective is introduced into a population of ν susceptibles where ν is large.
The first infectives spread the disease according to a process with intensity β

ν
S(t) ≈ β

ν
ν =

β, during the infectious period, for small t. That is, when there are approximately ν
susceptibles, and few infectives compared to susceptibles. Let {ξ(t), t ≥ 0} be a Poisson
process with intensity β and let Y be the infectious period of an infective individual,
where ξ and Y are independent. Then

R0 = E[E[ξ(Y )|Y ]] = E[βY ] =
β

γ + δ + η
, (3.1)

since ξ([0, t]) is Poisson distributed with mean βt and the infectious period Y is exponen-
tially distributed with mean 1

γ+δ+η
.

4 Outbreak probability

The aim of the present section is to approximate, the probability that a large outbreak
occurs, p, when a single infected individual is introduced into a large susceptible popula-
tion. We will show that our process can be approximated arbitrarily well by the process
analysed in [10], here denoted {(S̃, Ĩ)}, for which the outbreak probability is known. This
process describes the spread of an epidemic in a open population, different to ours in
that no recovery or reproduction is allowed in the infective state. The process {(S̃, Ĩ)} is
governed by the transition rates in Table 2.

Transition Transition rate

(x, y, u, v) → (x− 1, y + 1, u, v) β
ν
xy

(x, y, u, v) → (x− 1, y, u, v) δx
(x, y, u, v) → (x + 1, y, u, v) µx
(x, y, u, v) → (x, y − 1, u, v) (δ + η)y
(x, y, u, v) → (x, y − 1, u + 1, v) γy
(x, y, u, v) → (x, y, u + 1, v) µ(y + u + v)
(x, y, u, v) → (x, y, u− 1, v) δu

(x, y, u, v) → (x− y, i, u, v + 1) β
ν
xv

(x, y, u, v) → (x, y, u− 1, v + 1) β
ν
u(y + v)

(x, y, u, v) → (x, y, u, v − 1) (δ + η)v

Table 2: Transitions rates of the process {(S̃(t), Ĩ(t)), SG(t), IG(t)} at {x, y, u, v}.

That the approximation of (S, I) by (S̃, Ĩ) is valid will be verified by the following
coupling argument. Let S̃(0) = ν, Ĩ(0) = 1, SG(0) = IG(0) = 0, S ≡ S̃ + SG and
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I ≡ Ĩ + IG. We think of SG and IG as ghost susceptibles and ghost infectives respectively
from the point of view of the approximating process {(S̃, Ĩ)}, since they are a product of
the process {(S̃, Ĩ)} but does not affect it. It follows readily that the transition rates of
our process {(S, I)} in Table 2 are the same as those in Table 1. The number of infectives
Ĩ in the approximating model are the same as the number of infectives in our model, I,
as long as there are no ghost infectives IG. Thus the coupling of I and Ĩ breaks down at
T = inf{t : IG(t) > 0}. The idea behind the coupling is that, in the initial phase, there
are relatively few recovered and children of infectives in the population, compared to the
total number of susceptibles. More specifically we want to prove that P (T > t) → 1 as
ν → ∞ for all t > 0. To this end we define the counting process N(t) = {# jumps from
SG into IG in [0, t]} and exploit that P (T > t) = P (N(t) = 0). Furthermore, for t < T it
holds that N(t) | {SG(s)}s≤t, {Ĩ(s)}s≤t is Poisson distributed with mean

∫ t

0
β
ν
SG(s)Ĩ(s)ds.

Thus

P (T > t) = E[P (N(t) = 0) | {SG(s)}s≤t{Ĩ(s)}s≤t]

= E
[
exp

{
−
∫ t

0

β

ν
SG(s)Ĩ(s)ds

}]
≥ exp

{
− β

ν
E
[ ∫ t

0

SG(s)Ĩ(s)ds
]}

≥ exp
{
− β

ν

∫ t

0

√
E[S2

G(s)]E[Ĩ2(s)]ds
}

(4.1)

where the second to last inequality follows from Jensen’s inequality and the last from the
Cauchy-Schwarz inequality. In order to show that (4.1) → 1 we introduce birth (-death)
processes that are stochastically larger than SG and Ĩ on [0, t]. Take ε > 0, t < T and let
the processes z, z′, w, w′ make transitions according to Table 3.

Transition Transition rate
z(s) → z(s) + 1 β exp{(µ− δ)s}z(s)
z(s) → z(s)− 1 (δ + η + γ)z(s)
z′(s) → z′(s) + 1 β exp{(µ− δ)t}z′(s)
w(s) → w(s) + 1 (z′(s) + ε)(γ + µ) + µw(s)
w′(s) → w′(s) + 1 (z′(t) + ε)(γ + 2µ)w′(s)

Table 3: Transition rates of birth (-death) processes larger than SG and Ĩ on [0, t], with
z(0) = z′(0) = w(0) = w′(0) = 1,.

By Theorem 3.2 in [10] there exists ν ′ such that Ĩ(ν)(ω, s) ≤ z(ω, s) + ε a.s. for all
ν ≥ ν ′. For s ≤ t and ν ≥ ν ′ we therefore have that Ĩ(ν)(s) ≤D z(s) + ε ≤D z′(s) + ε ≤
z′(t) + ε, where the second inequality is by the construction of the processes z and z′ and
the last follows from that z′(s) is non-decreasing. Furthermore, for ν ≥ ν ′ and s ≤ t < T

we have that S
(ν)
G (s) ≤D w(s) since the the birth rate of w is (z′(s) + ε)(γ + µ) + µw(s) ≥
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(µ + γ)Ĩ(s) + µw(s). Hence, for ν > ν ′,∫ t

0

√
E[S2

G(s)]E[Ĩ2(s)]ds ≤
∫ t

0

√
E[(z′(s) + ε)2]E[(w2(s)]ds

≤ tE[(z′(t) + ε)2]E[w2(t)]

≤ t(1 + ε)2E[z′(t)2]E[E((w
′
(t))2 | z′(t))],

where z
′
and w

′|z′
are Yule processes. The second inequality holds since z′, w ≥ 1 and

z′, w are non decreasing, and the third since w ≤D w′|z′. This last fact follows since the
birth intensity of w′ is larger than that of w, which is seen by examining the last two lines
of Table 3.

According to [12] p. 377 it holds that z
′

and w
′|z′

(t) are geometrically distributed
with second moments 2−q1

q2
1

and 2−q2

q2
2

respectively, where q1 := β exp{− exp{(µ − δ)t}t}
and q2 := (z

′
+ ε)(γ + 2µ)t. Thus

E[z′(t)2]E[E((w
′
(t))2 | z′(t))] =

2− q1

q2
1

E[(2− q2)/q2]

≤ 2

q2
1

E[
2

q2

]

≤ 2 exp{2 exp{(µ− δ)t}t}
β2(1 + ε)(γ + 2µ)t

< ∞ ∀t, (4.2)

where the last inequality holds since z′ ≥ 1. Hence
∫ t

0
E[S2

G(s)]E[Ĩ2(s)]ds is bounded for

all t > 0 and exp
{
− E

[ ∫ t

0
βy(s)w(s)ds

]
/ν
}
→ 1 as ν →∞ ∀ t > 0.

In words, the probability that I and Ĩ are the same on any given time interval tends
to 1 as the initial number of susceptibles tends to infinity. Hence we may for large ν
approximate the probability of an epidemic outbreak p in our model with the probability
of an epidemic outbreak p′ in the approximating model. The outbreak probability is

p′ = (I + 1)−1 (4.3)

I =

∫ ∞

0

(δ + η + γ) exp
{

(δ + η + γ)s +
β

µ− δ
(1− exp{(µ− δ)s})

}
ds (4.4)

(see [10] p. 456). For µ = δ we instead have

p′ = (

∫ ∞

0

(δ + η + γ) exp{(δ + γ + η − β)s}ds + 1)−1 = 1− 1/R0

which equals the outbreak probability equals the corresponding one for a SIR model with
closed, homogeneously mixing, population. In the present and the following section we
study the model for the parameter values: δ = 1, η = 5, γ = 2, β = 10 and µ = 2. The
parameters are chosen so that the demography and disease related dynamics of the process
are of the same magnitude and on the same time-scale. In Figure 2 it is seen that the
probability of an outbreak is increasing in R0, which is intuitive from the the definition of
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Figure 2: Outbreak probability as function of R0 for different values of µ, where β =
10, γ = 2, η = 5 and δ = 1.

R0 as the expected number of infections caused by a single infective in an otherwise disease
free population. Furthermore we note that the outbreak probability increases as µ − δ
increases. It is also seen that an approximation by the simple expression p′ = 1 − 1/R0

is good when R0 is large. We also want to compare the result with estimates from
simulations of the epidemic. In Table 4 we see estimates and 95%-confidence intervalls,
based on 1000 simulations of the epidemic, for different initial population sizes. To be
classified as an outbreak we require that at least

√
(ν) is infected. Assuming that the

simulations producing an estimate are iid geometrically distributed, we use a normal
approximation to derive the confidence intervalls.

ν p̂ 95%-CI
100 0.374 (0.344 , 0.404)
500 0.336 (0.307 , 0.365)
1000 0.338 (0.309 , 0.367)
2000 0.335 (0.306 , 0.364)
4000 0.338 (0.309 , 0.367)
10000 0.314 (0.285 , 0.343)
20000 0.331 (0.302 , 0.360)

Table 4: Estimates of the outbreak probability p from 1000 simulations, where the theo-
retical estimate is 0.338

We see that the theoretical approximation is inside the 95% confidence intervalls for
this choice of parameters and initial population sizes. We also note that the estimate
0.338 is substantially better than the crude estimate p = 1− 1/R0 = 0.2.
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5 Endemic phase

Once an outbreak has occurred the branching process approximation in the previous
section breaks down. To be able to study the behaviour of the process after the outbreak,
in the endemic phase, we instead rely on a Gaussian diffusion approximation. The scaling
parameter will as before be ν, i.e. we will let the inhabited area of the model grow large.
To emphasise the dependence on ν we will denote the process {(S(t), I(t)), t ≥ 0} with
parameter ν by {(S(ν)(t), I(ν)(t)), t ≥ 0}. We will rely on the results in [7] and in particular
Theorems 8.1 and 8.2 therein.

5.1 Law of large numbers

Our approximations will depend on the fact that (S(ν)(t), I(ν)(t)) is a so called density de-
pendent Markov process, i.e. the transition rates depend on the current state of the process
only through the density of susceptibles and infectives. The notion of density dependence
is formalised by denoting the transition intensities in Table 1 by q(ν)((x, y), (x, y)+ l) and
noting that

q(ν)((x, y), (x, y) + l) = νf((x, y)/ν, l),

for l ∈ {(−1, 0), (−1, 1), (1,−1), (1, 0), (0,−1))}, i.e. all possible jumps and f given by
Table 5. As ν increases, we begin by considering the sequence of density processes

Event l f((x, y), l) νf((x, y)/ν, l)

Death of susceptible (−1, 0) (δxν)/ν δx
Recovery of infective (1,−1) (γyν)/ν γy
Birth of susceptible (1, 0) (µ(xν + yν))/ν µ(x + y)
Death of infective (0,−1) ((δ + η)yν)/ν (δ + η)y
Infection of susceptible (−1, 1) (βxνyν)/ν βxy/ν,

Table 5: Transition rates.

(S(ν)(t)/ν, I(ν)(t)/ν). Towards stating a Law of Large Numbers we introduce the functions
s(t) and i(t) defined as the solution to the system of ODEs:

ds

dt
=µ(s + i) + γi− sδ − βsi, s(0) = s0, (5.1)

di

dt
=βsi− i(γ + δ + η), i(0) = i0. (5.2)

We also introduce the drift vector of this system by F , i.e F =
∑

l ql(·), where ql((x, y)) ≡
q(1)((x, y), (x, y) + l). Now, given the conditions

(i)
∑

l |l| sup(x,y)∈K f((x, y), l) < ∞, ∀ compact K ⊂ R2,

(ii) ∃ MK > 0 s.t. |F ((x, y))− F ((x′, y′))| ≤ MK |(x, y)− (x′, y′)|, ∀ (x, y), (x′, y′) ∈ K,

(iii) limν→∞(S(ν)(0)/ν, I(ν)(0)/ν) = (s0, i0),
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we get by Theorem 8.1 in [7] that

lim
ν→∞

sup
t≤s

|(S(ν)(t)/ν, I(ν)(t)/ν)− (s(t), i(t))| = 0 a.s. ∀ s > 0.

The first condition is clear since f(·, ·) is continuous in the first variable and therefore
bounded over a compact set. The second condition follows from F being C1 on any
compact K, thus locally Lipschitz.

Having obtained a Law of Large Numbers it is of interest to investigate the implications
of this, that is to investigate (s(t), i(t)). The system (5.1), (5.2) does not admit an explicit
solution. However, since we are primarily interested in the endemic state, that is the
properties of the process after a long time with the infection present, we investigate the
asymptotic properties of the solutions. Of immediate interest is then the stationary point,
(s?, i?), of the system of ODEs, i.e. the solutions to the equations ds

dt
= 0 and di

dt
= 0. Easy

calculations show that the only positive solutions to these equations, given the previously
stated restrictions on the parameters, are

s? =
γ + δ + η

β
=

1

R0

, (5.3)

i? =
s?(µ− δ)

s?β − µ− γ
. (5.4)

The asymptotics of s(t) and i(t) are to a large extent determined by the stability of
the ODE system. We say that the system is stable in the stationary point if the Jacobian
matrix evaluated in the stationary point is stable, i.e. if

∂F (s, i) =

(
µ− δ − βi µ + γ − βs

βi βs− γ − δ − η

)
, (5.5)

evaluated in the stationary point

∂F (s?, i?) =

(
−(µ−δ)(µ+γ)

δ+η−µ
−δ − η + µ

(µ−δ)(γ+δ+η)
δ+η−µ

0

)
,

is stable. Denote the elements of this matrix by ∂F (s?, i?) ≡ {Fij}. The matrix is stable if
both eigenvalues have negative real parts, i.e. if the roots of the characteristic polynomial
λ2 − λF11 − F12F21 all have negative real parts. By the Routh Hurwitz conditions this
is true precisely if −F11 > 0 and −F11(−F12F21) > 0. We see that −F11 > 0 since, by
assumption, all parameters are positive and δ < µ. Further we have that

−F11(−F12F21) =
(µ− δ)(µ + γ)

δ + η − µ
(δ + η − µ)

(µ− δ)(γ + δ + η)

δ + η − µ

=
(µ− δ)2(δ + η + γ)

δ + η − µ
> 0,

since we have assumed that µ < δ+η. This allows us to conclude that the local asymptotic
stability of the stationary point, i.e. given that (s0, i0) is close enough to (s?, i?), we have
that

lim
t→∞

(s(t), i(t)) = (s?, i?).
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We therefore conclude that after having an outbreak the epidemic is likely to reach the
endemic level, given by the stationary point.

5.2 Diffusion approximation

While the Law of Large Numbers is interesting in its own right it is a poor approximation
of the process (S(t), I(t)) since it does not tell us anything about the fluctuations we
expect around the endemic level. To get a more accurate approximation we therefore
need to consider a diffusion approximation. For ease of notation let us define the scaled
process

Z(ν)(t) ≡
√

ν((S(ν)(t), I(ν)(t))/ν − (s(t), i(t))),

that is, the original process with its mean subtracted and scaled by 1/
√

ν. We note
here that the scaling parameter is a multiple of the population size in equilibrium. Now,
Theorem 8.2 in [7] ensures that Z(ν)(·) converges weakly to Z(·) where Z(t) is the solution
to the linear SDE

dZ = ∂F (s(t), i(t))Zdt +
√

G(s(t), i(t))dW, (5.6)

where W is a 2-dimensional Wiener process and G(x, y) =
∑

l ll
T ql(x, y), if the following

conditions are satisfied:

(i)
∑

l |l|2 sup(x,y) f((x, y), l) < ∞,

(ii) ∂F (x, y) is bounded and continuous,

(iii) limν→∞
√

ν|(S(ν)(0), I(ν)(0))− (s(t), i(t))| = 0,

By the asymptotic stability of the stationary point, the trajectory of (s(t), i(t)) is con-
tained in some compact set and the restriction of f and ∂F to a compact set is bounded,
which implies the first and second condition.

As t → ∞ we get that ∂F (s(t), i(t)) → ∂F (s?, i?) ≡ ∂F ? and G(s(t), i(t)) →
G(s?, i?) ≡ G? so that Z(t) approaches a stationary Ornstein-Uhlenbeck process given
as the solution to

dZ = ∂F ?Zdt +
√

G?dW. (5.7)

The stationary distribution of Z is multivariate normal with mean (s?, i?) and covariance
matrix Σ satisfying

∂F ?Σ + Σ∂F ? = −G?. (5.8)

The definition of G(ξ) implies that zT Gz > 0 ∀x ∈ R2, i.e G(ξ) is positive definite.
This together with the stability of ∂F guarantees the existence of unique positive definite
symmetric Σ that solves the above equation, thereby ensuring the interpretation as a
covariance matrix. Using this it is also possible to calculate the covariance function of Z
according to

ρ(t) = Σet(∂F ?)T

(5.9)

(see e.g. [6] Theorem 5.6.7).
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5.3 Dynamics in the limit

Using the results in the above section we are able to draw conclusions concerning the
dynamics of the system when ν is large. It is possible to obtain an explicit solution to
Eq. (5.8). We note in particular that the covariance between the number of susceptibles
and infectives σS,I = −

√
νR and since R > 0 the correlation is negative for all choices

of parameters. There also exists explicit expressions for the variance of the number of
susceptible and infective but these are more involved and are therefore omitted. We also
get that (S(t), I(t)) ∼ N((νs?, νi?), νΣ) in quasi-stationarity. In Figure 3 we plot the level
curves of this distribution together with a trajectory simulated from Table 1, using the
parameter values from Section 4. We start the simulation in (s?, i?) and discard the first
106 transitions ensuring that we are indeed in quasi-stationarity. The simulated trajectory
seem to fit well with the approximate distribution.
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Figure 3: Level curves of the approximating distribution together with a simulated tra-
jectory.

We may also, from Eq. (5.9), calculate the autocorrelation of the number of sus-
ceptibles and infectives, respectively. We plot these functions in Figure 4, showing an
oscillatory behaviour with a period of about 2 years. These oscillations are easily seen
when plotting the marginals of the above trajectory against time, as in Figure 5.

6 Time to extinction

We would like to find an approximation for the distribution of the time to extinction
from quasi-stationarity, τq. Following [8] we write the forward equation in the state
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Figure 4: Plot of the autocorrelation function for the number of susceptible (solid) and
infectious (dashed).
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Figure 5: Simulated marginal trajectory.

(S(t), I(t)) = (s, 0)

p′s,0(t) = ps−1,0(t)µ(s− 1) + ps+1,0(t)δ(s + 1)

+ ps,1(t)(δ + η) + ps−1,1(t)γ − ps,0(t)(µs + δs).

12



We also define

p′·,0(t) ≡
∞∑

s=0

p′s,0(t) = p·,1(t)(δ + η + γ). (6.1)

We define the quasi-stationary distribution, qs,i(t) as the stationary distribution, condi-
tioned on not being extinct, i.e.

qs,i(t) ≡ P (S(t) = s, I(t) = i|I(t) 6= 0) =
ps,i(t)

1− p·,0(t)
.

Differentiating this we obtain

q′s,i(t) =
p′s,i(t)

1− p·,0(t)
+

ps,i(t)

1− p·,0(t)

p′·,0(t)

1− p·,0(t)

=
p′s,i(t)

1− p·,0(t)
+

ps,i(t)

1− p·,0(t)

p·,1(t)

1− p·,0(t)
(δ + η + γ)

=
p′s,i(t)

1− p·,0(t)
+

ps,i(t)

1− p·,0(t)
q·,1(t)(δ + η + γ).

Now, in stationarity we should have q′s,i(t) = 0, giving us the differential equation

p′s,i(t) = −(δ + η + γ)q·,1ps,i(t), ps,i(0) = qs,i,

with the solution
ps,i(t) = qs,ie

−(δ+η+γ)q·,1t.

Summing over s, we get
p·,i(t) = q·,ie

−(δ+η+γ)q·,1t,

which we insert in (6.1) to get

p′·,0(t) = p·,1(t)(δ + η + γ) = q·,1(δ + η + γ)e−(δ+η+γ)q·,1t.

With the initial condition p·,0(0) = 0 we get the solution

p·,0(t) = 1− e−(δ+η+γ)q·,1t.

That is the time to extinction is exponentially distributed with expectation

E[τQ] =
1

(δ + η + γ)q·,1

Using our diffusion approximation we know that the number of infectives in stationarity
has an approximately normal distribution with mean Ī = νi? and standard deviation
σI =

√
νΣ22. Since we necessarily have a non-negative number of infectives we condition

the above normal distribution on being non-negative and obtain, employing continuity
correction,

q·i =
P (I = i)

P (I > 0)
≈ P (I = i)

P (I > 1/2)
≈ 1

σI

φ((Ī − i)/σI)

Φ((Ī − 0.5)/σI)
. (6.2)
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We therefore get that

E[τq] =
1

(δ + η + γ)q·1
≈ σI

δ + η + γ

Φ((Ī − 0.5)/σI)

φ((Ī − 1)/σI)
. (6.3)

We think of this as the inverse of the probability of being in the state with a single infected
times the intensity by which this infective becomes susceptible or deceased.

To emphasise the dependence on the parameters and in particular the coefficient of
variation of the number of susceptibles cv = σI/Ī, we use the approximation

Φ(x) ≈ 1− 1

x
√

2π
e−

x2

2 ,

which is good for large x, see e.g. p. 450 of [13]. We then get that

E[τQ] ≈ cv
ν(µ− δ)

β(δ + η − µ)

Φ(1/cv)

φ(1/cv)
≈ cv

ν(µ− δ)

β(δ + η − µ)
(
√

2πe1/2c2 − cv). (6.4)

The main conclusion being the exponentially increasing time to extinction as the coeffi-
cient of variation decreases.

We may also simulate the time to extinction for different values of ν. We are restricted
to fairly small ν to keep the simulation times reasonably short. The same parameter
values as before are used, except for η = 2, this to shorten the simulation times. To
ensure quasi-stationarity we discard the 50% shortest extinction times and restart the
clock. Plotting the results together with the two approximations in Figure 6 we see that
both approximations agree well with the simulations.

7 Discussion

In this paper we analyse an open population SIS epidemic model. We were able to derive
good approximations for the initial outbreak of the disease following introduction through
a coupling argument. We also determined the behaviour of the epidemic process when
it reaches the endemic state. In this phase it behaves as a two-dimensional Ornstein-
Uhlenbeck process, fluctuating around the stationary point of susceptibles and infectives,
for which we where able to derive the drift and covariance matrices. These matrices
determines the dynamics of the limiting process and work as a good approximation for
the dynamics of the epidemic process in a large but finite population. Finally we derived
the exponential distribution of the time to extinction of the disease given that the process
is started in quasi-stationarity.

Further generalisations can be made by including more complex individual hetero-
geneities and mixing patterns. Another interesting continuation of this work might be to
calibrate the model, i.e. estimate the model parameters for some known disease.
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Figure 6: Time to extinction from quasi-stationarity, simulated with 95% confidence
interval approximation (6.3) (−−−) and approximation (6.4) (− · −).
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