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Abstract

This paper is a survey paper on stochastic epidemic models. A simple stochas-
tic epidemic model is defined and exact and asymptotic model properties (relying
on a large community) are presented. The purpose of modelling is illustrated by
studying effects of vaccination and also in terms of inference procedures for impor-
tant parameters, such as the basic reproduction number and the critical vaccination
coverage. Several generalizations towards realism, e.g. multitype and household
epidemic models, are also presented, as is a model for endemic diseases.
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1 Introduction

Early modelling contributions for infectious disease spread were often for specific diseases.
For example Bernoulli (1760) aimed at evaluating the effectiveness a certain technique of
variolation against smallpox, and Ross (1911) modelled the transmission of malaria. One
of the first more general and rigorous study was made by Kermack and McKendrick
(1927). Later important contributions were for example by Bartlett (1949) and Kendall
(1956), both also considering stochastic models.

Early models were often deterministic and the type of questions that were adressed were
for example: Is it possible that there is a big outbreak infecting a positive fraction of the
community?, How many will get infected if the epidemic takes off?, What are the effects
of vaccinating a given community fraction prior to the arrival of the disease?, What is the
endemic level? As problems were resolved, the simple models were generalised in several
ways towards making them more realistic. Some such extensions were for example to allow
for a community where there are different types of individual, allowing for non-uniform
mixing between individuals (i.e. infectious individuals don’t infect all individuals equally
likely), for example due to social or spatial aspects, and to allow seasonal variations.
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Another generalisation of the initial simple deterministic epidemic model was to study
stochastic epidemic models. A stochastic model is of course preferable when studying a
small community. But, even when considering a large community, which deterministic
models primarily are aimed for, some additional questions can be raised when considering
stochastic epidemic models. For example: What is the probability of a major outbreak?,
and for models describing an endemic situation: How long is the disease likely to persist
(with or without intervention)? Later stochastic models have also shown to be advan-
tageous when the contact structure in the community contains small complete graphs;
households and other local social networks being common examples. Needless to say,
both deterministic and stochastic epidemic models have their important roles to play
however, the focus in the present paper is on stochastic epidemic models.

In the present paper we will study a fairly simple class of stochastic epidemic models in
a closed community, and present properties of the model. These are both small popula-
tion properties, and approximations assuming a large community: early stage behaviour
of the epidemic, final epidemic size distribution and the duration of the epidemic. The
main large-population approximation results can be summarized as follows. Assuming
a large population, the early stages of the epidemic can be approximated by a branch-
ing process, where ”giving birth” corresponds to ”infecting someone”. If the branching
process/epidemic is super-critical it is possible that a large epidemic outbreak occurs (cor-
responding to the branching process growing beyond all limits). If this happens, a balance
equation determines the final number of infected added with some Gaussian fluctuation
of smaller order. As regards to the duration of a major outbreak the whole outbreak is di-
vided into three sections: the beginning (up to when a small fraction have been infected),
the main part (in which nearly all infections take place), and the end (when the last small
fraction of people get infected), and these parts last for durations of order log n, 1 and
log n respectively, thus making the total duration of order log n.

We will also describe how the models can be applied to answer epidemiological questions,
for example how to estimate important epidemiological parameters from outbreak data
and how to study effects of interventions such as vaccination. We then describe many
important extensions of stochastic epidemic models aiming at making them more realistic
and give some key references. The paper is however not claiming to be a complete reference
guide to all important contributions in stochastic epidemic models.

In Section 2 we first define the deterministic general epidemic model and derive some
properties of it, then describe some cases where a deterministic model is insufficient, and
end by defining what we call the standard stochastic SIR-epidemic model. In Section 3 we
present properties of the model, both exact for a small population, and approximations
relying on a large community. In Section 4 we describe how the models can be used
to answers epidemiological questions, and in Section 5 we describe a number of model
generalizations and also a model for an endemic infectious disease.
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2 Stochastic epidemic models – why?

2.1 Deterministic epidemic models

One simple model, the deterministic general epidemic model (e.g. Bailey, 1975, Ch. 6.2),
can be defined by two differential equations. It is assumed that at any time point an
individual is either susceptible (s), infected and infectious (i) or recovered and immune
(r). Such individuals are from now one called susceptibles, infectives and recovered re-
spectively.

The model makes the following assumptions: only susceptible individuals can get infected
and, after having been infectious for some time, an individual recovers and becomes
completely immune for the remainder of the study period. Finally, we assume there are
no births, deaths, immigration or emigration during the study period; the community is
said to be closed. A consequence of the assumptions is that individuals can only make
two moves: from S to I and from I to R. For this reason the model is said to be an SIR-
epidemic model. Models having no immunity (individuals that recover become susceptible
immediately) are called SIS-models, models having a latent state when infected, before
becoming infectious, are often called SEIR (“E” for exposed but not infectious), models
where immunity wanes after some time are called SIRS-models, and so forth. Models that
allow for births/deaths/immigration/emigration are referred to as having demography or
having a dynamic community. The focus in this paper is on SIR models in a closed
community; see however Section 5.3 for a model allowing births and deaths, and Section
5.4 for a discussion about latency periods.

Let s(t), i(t) and r(t), respectively denote the community fractions of susceptibles, infec-
tives and recovered. Since these are fractions and the community is closed we assume that
s(t) + i(t) + r(t) = 1 for all t ≥ 0. From the assumptions mentioned above, together with
the assumption of the community being homogeneous and people mixing homogeneously,
the deterministic general epidemic model is defined by the following set of differential
equations:

s′(t) = −λs(t)i(t),

i′(t) = λs(t)i(t) − γi(t), (1)

r′(t) = γi(t).

These differential equations, together with the starting configuration s(0) = 1−ε, i(0) = ε
and r(0) = 0 defines the model.

The initial fraction infectives ε > 0 is often assumed to be small as indicated by the
notation ε, it must however be positive – otherwise all differential equations are constant
and equal to 0. The reason for assuming that r(0) = 0 is that initially immune individuals
play no part in the dynamics so, up to a normalizing constant, initially immune individuals
may simply be ignored. Some authors choose to let s(0) = 1, i(0) = ε and r(0) = 0. The
use of “fraction” is then somewhat misleading, but s(t) has the interpretation of being the
fraction still susceptible among the initially susceptibles at t. When ε is small (as we will
nearly always assume) there is hardly any difference between the two parametrisations.

The term λs(t)i(t) in Equation (1) comes from the fact that susceptibles must have
contact with infectives in order to get infected, so the assumption about uniform mixing
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(mass-action) implies that infections occur at a rate proportional to s(t)i(t). This term
is non-linear which makes the solution of the system of differential equations non-trivial.
Finally, it is worth pointing out that since s(t) + i(t) + r(t) = 1 it is actually enough to
keep track of two of the quantities.

By studying the differential equations it is straightforward to show that s(t) is monotoni-
cally decreasing down to s(∞) say, and r(t) is monotonically increasing up to r(∞). The
differential equation for i(t) can be written as i′(t) = i(t)(λs(t) − γ). So, if λs(0) > γ,
then i(t) initially increases, but eventually, when s(t) has decreased enough, i(t) starts
decreasing. If on the other hand λs(0) < γ, then i(t) decreases already from the start
with the effect that little will happen as t tends to infinity (in both cases it can be
shown that i(∞) = 0). This dichotomy is illustrated in Figure 1 where we have plotted
(s(t), i(t), r(t)). To the left this is done for the case λ = 1.5, and γ = 1, and to the right
for λ = 0.5 and γ = 1, both having initial configuration (s(0), i(0), r(0)) = (0.99, 0.01, 0).
In the left a substantial fraction (58.3%) eventually get infected, whereas in the right fig-
ure this fraction is negligible (only an additional 0.9% get infected), we say that a major
outbreak has occurred in the first case and a minor outbreak occurred in the latter case.
Since i(0) is assumed small (and s(0) being close to 1), the critical value separating the
two very different scenarios is R0 := λ/γ = 1.
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Figure 1: Solution of the differential system defined in (1), s(t): ·−, i(t): —, r(t): − −.
Both figures have initial configuration s(0) = 0.99, i(0) = 0.01. To the left is the case
with λ = 1.5 and γ = 1 (so R0 = 1.5), and to the right is the case λ = 0.5 and γ = 1 (so
R0 = 0.5).

The ratio R0 = λ/γ is hence of fundamental importance and can be interpreted as the
average number of new infections caused by an infectious individual before recovering.
The ratio is often referred to as the basic reproduction number (a term with its origin
in demography – the average number of individuals that one individual reproduces) and
denoted by R0:

R0 =
λ

γ
. (2)

When R0 > 1 the epidemic takes off and when R0 < 1 there is no (big) epidemic. The
differential equations (1) can also be used to obtain a balance equation for the final state
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(s(∞), 0, r(∞)). By dividing the first equation by the last we get ds/dr = −R0s, which
implies that s(t) = s(0)e−R0r(t). The fact that i(∞) = 0 implies that s(∞) = 1−r(∞); at
the end of the epidemic there are no infectives, only susceptibles and recovered (immune).
From this we get a balance equation determining the fraction z = r(∞) that at the end
of the epidemic were infected:

1 − z = (1 − ε)e−R0z. (3)

The balance equation can be interpreted as follows: in order not to have been infected
(which a fraction 1 − z satisfy) you must belong to those not initially infected (the first
factor on the right) and you must escape the infection pressure R0 caused by those z
who were infected. In Figure 2 we have plotted the solution z as a function of R0, when
starting with a negligible fraction initially infectives. The threshold value of 1 is clearly
seen to be the value above which a positive fraction gets infected.
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Figure 2: The final size of the epidemic as a function of R0 for the deterministic epidemic
model. The initial fraction of infectives is approximated to equal i0 = 0.

The above results will also be useful when considering a related stochastic epidemic model
for a large community.

2.2 When are deterministic models insufficient?

In the previous subsection we analysed the deterministic general epidemic model and
showed that: if R0 < 1 there will only be a small outbreak, and if R0 > 1 there will be
a major outbreak infecting a substantial fraction of the community, and how big fraction
is determined by Equation (3). The results rely on that the community is homogeneous
and that individuals mix uniformly with each other.

Even if the assumption of a homogeneous uniformly mixing community are accepted this
model may not be suitable in some cases. For example, if considering a small community
like an epidemic outbreak in day care center or school it seems reasonable to assume
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some uncertainty/randomness in the final number infected. Also, even if R0 > 1 and the
community is large but the outbreak is initiated by only one (or a few) initial infectives
it should be possible that, by chance, the epidemic never takes off. These two arguments
motivate the definition of a related stochastic epidemic model. Later we will also show
two other reasons motivating the use of stochastic epidemic models: it enables parameter
estimates from disease outbreak data to be equipped with standard errors and, when
studying epidemic diseases, the question of disease extinction is better suited for stochastic
models.

2.3 A simple stochastic SIR epidemic model

We now define the standard stochastic SIR epidemic model. Just like for the deterministic
general epidemic model we assume a closed homogeneous uniformly mixing community,
and let n denote the size of the community.

Let S(t), I(t) and R(t) respectively denote the number of susceptibles, infectives and re-
covered at time t, and suppose that at time t = 0 these numbers are given by S(0) = n−m,
I(t) = m and R(0) = 0. The dynamics of the model are defined as follows. Infectious
individuals have ”close contact” with other individuals randomly in time at constant rate
λ, and each such contact is with a randomly selected individual, all contacts of differ-
ent infectives being defined to be mutually independent. By ”close contact” is meant a
contact close enough to result in infection if the other individual is susceptible, other-
wise the contact has no effect. Any susceptible that receives such a contact immediately
becomes infected and infectious and starts spreading the disease according to the same
rules. Infected individuals remain infectious for a random time I (the infectious period)
after which they stop being infectious, recover and become immune to the disease. The
infectious periods are defined to be independent and identically distributed (also inde-
pendent of the contact processes) having distribution FI and mean E(I) = 1/γ (to agree
with the determinist model).

The epidemic starts at time t = 0. As the epidemic evolves, according to the rules above,
new individuals (may) get infected and eventually recover, up until the first time T when
there are no infectives in the community. Then no further individuals can get infected
implying that the epidemic stops. The final state of the epidemic is described by the
ultimate number R(T ) infected (recall that that I(T ) = 0, so S(T ) = n − R(T ) make
up the rest of the community). The final number of infected R(T ) will consist of those
m who were initially infected plus those Z, say, who were infected during the outbreak.
Later we will study the exact and approximate distribution of Z = R(T ) − m.

Two choices of distributions for the infectious periods have (for mathematical reasons) re-
ceived special attention in the literature. The first is where FI is exponentially distributed
with intensity parameter γ, which goes under the name the stochastic general epidemic
model (e.g. Bailey, 1975, Ch. 6.3). Then the model is Markovian and the Markov process
(S(t), I(t), R(t)) has jump-intensities much related to Equation (1) of the deterministic
general epidemic. The second choice of infectious period is where I is non-random (and
equal to 1/γ). This choice is called the continuous-time version of the Reed-Frost model.
An equivalent (for the final outcome) version is where it is assumed that all infections
take place exactly at the end of the infectious period, and this model was initially defined
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by Reed and Frost 1928 in a series of lectures (unpublished). The Reed-Frost model has
the mathematical tractability that whether or not an individual makes contact with two
separate individuals are independent events. This in turn implies that the Reed-Frost
model can be analysed by an Erdős-Rényi graph (e.g. Bollobás, 2001) where each pair of
individual has an edge between them independently, with probability p = 1 − e−λ/nγ.

3 Model properties

We now explain some important properties of the standard stochastic SIR epidemic model.
In Section 3.1 we derive some exact results; the rest of this section is devoted to approxi-
mations assuming a large community.

3.1 Exact distribution

No matter what infectious period distribution FI is considered it is not possible to derive
an exact and simple closed form expressions for the time dynamics of the epidemic. How-
ever, it is possible to derive a recursive formula for the final size of the epidemic, Equation
(8) below, and this formula, which we now explain, is based on the fact that in order not
get infected an individual must ”escape” infection from all those who did get infected
during the outbreak. This has been done in several ways (e.g. Picard and Lefèvre, 1990),
but our outline follows that of Ball (1986) where more details can be found.

The derivation of the recursive formula for the final size uses two main ideas: a Wald’s
identity for the final size and the total infection pressure, and the interchangeability of
individuals making it possible to express the probability of getting i additional infections
among the initially m − n in terms of getting i infected in a smaller subset.

We start with the latter result. To this end, fix n and write λ′ = λ/n. Let Z denote
the final number infected excluding the initial infectives, so the possible values for Z are
0, . . . , n−m. Since individuals are interchangeable we can label the individuals according
to the order in which they get infected. The initial infectives are labelled −(m−1), . . . , 0,
then according to time of infection: 1, . . . , Z, and those who avoid infection according to
any order Z + 1, . . . , n − m. With this labelling we define the total infection pressure A
by

A = λ′

Z
∑

i=−(m−1)

Ii (4)

i.e. the infection pressure, exerted on any individual, during the outbreak (sometimes also
called the ”total cost” of the epidemic).

Now, let p
(n−m)
i = P (Z(n−m) = i) denote the probability that exactly i susceptibles

get infected during the outbreak, explicitly showing the number of initial susceptibles
but suppressing the dependence on the initial number of infectives m. Then, using the
interchangeability of individuals and reasoning in terms of subsets among the initially
susceptibles, it can be shown (Ball, 1986) that for any i ≤ k ≤ n − m, it holds that

p
(n−m)
i
(

n−m
i

) =
p

(k)
i
(

k
i

)E
(

e−(n−m−k)A(k)|Z(k) = i
)

; (5)
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the probability that i get infected among the initially m − n initially susceptibles equals
the product of the probability of having i infected in a smaller subset of size k (k ≤ m−n)
multiplied by the probability that no one in the remaining set gets infected conditioning
on the first event. The notation A(k) and Z(k) are hence the total pressure and final size
starting with k susceptibles (and m infectives).

We now show a Wald’s identity for Z(k) and A(k). Let φ(θ) = E(e−θI) denote the Laplace
transform of the infectious period I. We then have the following Wald’s identity (Ball,
1986):

E

(

e−θA(k)

(φ(θλ′))m+Z(k)

)

= 1, θ ≥ 0. (6)

The following steps proves the result

(φ(θλ′))m+k = E



exp



−θλ′

k
∑

i=−(m−1)

Ii









= E



exp



−θ



A(k) + λ′

k
∑

i=Z(k)+1

Ii













= E
[

e−θA(k)

(φ(θλ′)k−Z(k)
]

,

where the last identity follows because the k − Z(k) infectious periods IZ(k)+1, . . . Ik, are
mutually independent and also independent of A(k) (which only depends on the first Z(k)

infectious periods and the contact processes of these individuals). Dividing both sides by
(φ(θλ′))m+k gives the desired result.

If we use Wald’s identity with θ = n − m − k and condition on the value of Z(k) we get

k
∑

i=0

E
(

e−(n−m−k)A(k)|Z(k) = i
)

(φ((n − m − k)λ′))m+i
p

(k)
i = 1. (7)

Using Equation (5) in the equation above we get

k
∑

i=0

(

k
i

)

p
(n−m)
i

(

n−m
i

)

(φ((n − m − k)λ′))m+i
= 1.

Simplifying the equation, returning to λ = λ′n and putting p
(m−n)
k on one side, we obtain

the recursive formula for the final size distribution p
(n−m)
k , k = 0, . . . , n − m:

Exact final size distribution:

P
(n−m)
k =

(

n − m

k

)

[φ((n−m−k)λ/n)]m+k−
k−1
∑

i=0

(

n − m − i

k − i

)

[φ((n−m−k)λ/n)]k−ip
(n−m)
i .

(8)
Note that this is a recursive formula. For example, solving Equation (8) for k = 0 and
then for k = 1 gives, after some algebra,

p
(n−m)
0 = (φ(λ))m,

p
(n−m)
1 = nφ((n − 1)λ/n)

(

[φ((n − 1)λ/n)]m − [φ(λ)]m
)

.
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In order to compute p
(n−m)
k using (8) it is hence necessary to sequentially compute p

(n−m)
0

up to p
(n−m)
k−1 . As a consequence the formula is not very enlightening and it may be

numerically very unstable when k (and hence n − m ≥ k) is large. Even when it is

possible to compute p
(n−m)
k using (8) with n − m being large, an approximative formula

can be more informative. For this reason we devote the rest of this section to the case
where n − m is large.

3.2 Early stage approximation

We start by deriving an approximation for the early stages of an outbreak. The approx-
imation relies on that the initial number n − m of susceptibles is large. The key reason
for having an approximation during the early stages of an outbreak when there are many
initial susceptibles is that it is then very unlikely that any of the first number of infectious
contacts happen to be with the same susceptible individual. Conversely, it is very likely

that all of the first set of infectious contacts happen with distinct individuals. As a conse-
quence, the number of individuals that distinct infectives infect (during the early stages)
are independent and identically distributed random variables. This hence suggests that
the epidemic process may be approximated by a suitable branching process (e.g. Haccou
et al., 2005). In this subsection we make the approximation more precise and derive re-
sults for when a major outbreak (infecting a non-negligible fraction) is possible, and if so,
also what the probability of a major outbreak is.

Assume that the initial number of infectives m ≥ 1 is fixed and that n−m is large (later
we will take limits as n → ∞). One way of constructing the epidemic is as follows. Label
the n individuals −(m−1), . . . , n−m, where the first m individuals refer to the initial in-
fectives and the remaining n−m refer to the initial susceptibles, but otherwise arbitrary –
note that here the labelling is not according to order of infection. Let I−(m−1), . . . , In−m be
i.i.d. with distribution FI (the infectious periods), χ−(m−1)(·), . . . , χn−m(·) being i.i.d. Pois-
son processes all having constant intensity λ (the contact processes), and let U1, . . . , Un−m

be i.i.d. uniform random variables on the unit interval (to be used for determining who
is contacted when a close contact occurs). The epidemic process is defined using these
random variables as follows. Start at t = 0. The contact processes of the initial infec-
tives χ−(m−1)(·), . . . , χ0(·) are ”activated” and the infectious periods of these individuals
start. Time increases without anything happening until the first time point t1 when ei-
ther one of the activated contact processes has an ”event”, or one of the infectious periods
I−(m−1), . . . , I0 stops. If the latter happens the corresponding contact process is deacti-
vated and that persons infectious period stops and the individual recovers and becomes
immune. If the former happens the corresponding individual has an infectious contact.
Which person that is contacted is determined by U1: the person being contacted has
index ⌊nU1⌋− (m−1), where ⌊·⌋ denotes the integer part, implying that each individual i
(i = −(m− 1), . . . , n−m) is selected with equal probability 1/n. If the contacted person
is still susceptible he/she gets infected and the corresponding infectious period is started
and the contact process activated, and if the contacted person has already been infected
nothing happens. Time then moves on until either an infectious period is terminated or a
contact among the activated contact processes occur. Depending on what happens an in-
fectious period is terminated or a randomly selected individual is contacted (and infected
unless it has already been infected). This goes on until the first (random) time point T
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when there are no activated contact processes and all initiated infectious periods have
stopped. Since there are finite number of individuals, all having finite infectious periods
with probability 1, T will be finite with probability 1.

It is straightforward to check that this construction gives the desired epidemic model:
individuals have infectious periods distributed according to FI and while infectious each
individual has contacts with randomly selected individuals at rate λ. Another nice feature
with this construction is that it is in fact possible to construct a sequences of epidemics,
indexed by the initial number of infectives, as well as a homogeneous branching process
with life-lengths distributed according to FI and constant birth rate λ, using the same set
of random variables. This can be used to couple the whole sequence of epidemics and the
limiting branching process and to show that they agree up to some random point. We
refer to Ball (1983) for a more detailed study about this – here we just give the heuristics.

The branching process is simply constructed without the uniform numbers, so in the
branching process a new individual is ”born” whenever a contact occurs. The same
applies to the epidemic (having n − m initially susceptible) with ”born” replaced by
”infected” except when a contact in the epidemic is with an already infected individual.
As a consequence, the epidemic and the branching process agrees up until the first time
point when a contact is with an already infected in the epidemic, denoted a ghost contact
in Mollison (1977). Initially there are n−m susceptible and m infected, so the probability
that the first contact is not a ghost contact equals (n − m)/n which is close to 1 when
n is large. Given this, the second contact is also a non-ghost-contact with probability
(n − m − 1)/n, and so on; note the resemblance with the well-known birthday problem.
From this it follows that the branching process and epidemic agrees at least up until the
k’th contact (i.e. no ghost contact has occurred) with probbility

P (no ghost among first k contacts) =
(n − m)k

nk
, (9)

where rj := r(r − 1) . . . (r − j + 1). Recalling that m and k are much smaller than n and
using the well-known approximation 1 − ε ≈ e−ε, we get the following approximation for
the probability in (9):

P (no ghost among first k contacts) ≈ e−(m

n
+···+m+k−1

n
) = e−k(k−1+m)/2n.

For large n this probability is close to 1 whenever k = o(
√

n). From this it follows that,
with large probability, the epidemic and the branching process agrees at least up until
there has been k contacts, where k is small in relation to

√
n.

The above heuristics (made precise in Ball, 1983) motivate that we can approximate the
epidemic with the branching process up until k births have occurred. The advantage with
this approximation is that branching processes are well-studied (e.g. Haccou et al., 2005).
For instance, our branching process (with life-length distribution I ∼ FI and constant
birth rate λ) has mean offspring distribution λE(I) = λ/γ, a quantity previously denoted
by R0 (= λ/γ). The branching process is sub-critical if R0 < 1, critical if R0 = 1 and
supercritical if R0 > 1. The total progeny Z∞, the number of individuals ever born in
the branching process, is known to be finite (the branching process goes extinct) with
probability 1 if R0 ≤ 1. And, if R0 > 1 then Z∞ has a finite part, and is infinite (grows
beyond all limits) with a strictly positive probability ρ that can be determined. In either
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case, the distribution of the finite part of Z∞ has a well-defined distribution depending
on m, λ and FI , cf. Jagers (1975, Ch 2.11).

Due to the approximation outlined above, the branching process and the epidemic coincide
on the part of the sample space where the branching process goes extinct (whether sub-
critical or not), with arbitrary large probability if n is large enough. As a consequence,
we may approximate P (Zn = j) with P (Z∞ = j) for small and moderate j, a distribution
which is quite complicated except for some special cases. To compute an expression for
ρ = P (Z∞ = ∞) is however easier. We compute the opposite, i.e. the probability 1 − ρ
that the branching process, starting with m individuals, goes extinct. For this to happen
all m initial lineages must go extinct. So if q denotes the probability that one lineage goes
extinct it follows that 1 − ρ = qm. In order to obtain an expression for q we condition
on the number of births X the initial individual gives birth to before dying. Given that
X = j all these j offspring must have lineages that go extinct, an event that happens
with probability qj. It follows that q must satisfy q = E(qX). The number X that an
individual gives birth to during the life-length I ∼ FI of course depends on I. Given
this duration: I = y, the number of births is Poisson distributed with mean parameter
λy since contacts occur according to a Poisson process having rate λ. So, if we denote
the Laplace transform of the infectious period I by φ(s) = E(e−sI), then the following
relation must hence hold for q:

q = E(qX) = E(E(qX |I)) = E(e−λI(1−q)) = φ(λ(1 − q)), (10)

where the third equality uses the Laplace transform of a Poisson variable. It is in fact
known (e.g. Jagers, 1975, p 9) that q is the smallest solution to this equation.

Early stage approximation. To summarize, when n is large, the initial phase of the
epidemic can be approximated by a homogeneous branching process with birth rate λ
and life-distribution I ∼ FI having Laplace transform φ(s). If R0 := λE(I) = λ/γ ≤ 1
the final size of the epidemic is bounded in probability, whereas if R0 > 1 it is not. The
approximation further tells us that when R0 > 1 the epidemic will be ”minor” (bounded)
with a probability qm and ”major” (unbounded) with probability ρ = 1 − qm, where q is
the smallest solution to (10). The distribution of outbreak sizes in the ”minor” case can
also be determined from branching process theory.

We end this section with an example illustrating our results. In the section to follow we
return to the situation where the branching process grows beyond all limits, corresponding
to a major outbreak in the epidemic.

Example. Suppose the epidemic is initiated with m = 1 individual and that there are
n − 1 = 999 initial susceptibles. Further we treat the case where the infectious period
is FI = Exp(γ), the exponential distribution with rate parameter γ (i.e. the general
stochastic epidemic). When I ∼ Exp(γ) then φ(s) = E(e−sI) = γ/(γ + s). This implies
that q is the smallest solution to q = γ/(γ + λ(1 − q)). Solving this quadratic equation
shows that q = γ/λ = 1/R0 if R0 > 1 and otherwise q = 1. This means that there
will be a minor epidemic outbreak with probability 1/R0, and a major outbreak with the
remaining probability 1−1/R0. Further, it can be shown that for this particular infectious
period/life-length distribution (computations omitted) the outbreak probabilities are well
approximated by the corresponding total progeny distribution

P (Zn = j) ≈
(

2j

j

)

1

(j + 1)!

(

1

1 + R0

)j+1(
R0

1 + R0

)j

, j = 0, 1, . . . .
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Note that for fixed λ and γ (and hence R0 = λ/γ) both q and P (Zn = j) can be
computed numerically. However, the approximation for P (Zn = j) relies on that not too
many individuals have been infected – then the branching process approximation breaks
down – so it should only be used for j up to around 20 (

√
n ≈ 31.6).

3.3 Final size approximation

In the previous subsection it was shown that when n is large the epidemic is well-
approximated by a branching process up until approximately

√
n individuals have been

born. If the branching process goes extinct this will never happen when n is large enough,
but when the branching process grows beyond all limits (hence implicitly assuming that
R0 > 1) the approximation breaks down. The question is of course what happens with
the epidemic in this case; something which we now briefly outline. The outline is based
on results in Scalia Tomba (1985, 1990) which uses the elegant Sellke construction (Sellke,
1983).

When we are only interested in the final number infected we may introduce a different time
scale as follows. Each initially susceptible individual is given a so-called resistance having
Exp(1) distribution. In the first time step we let each initially infective i ”throw out” its
infection pressure λIi (defined as the contact rate multiplied by the length of the infectious
period) uniformly in the community (so λIi/n on each individual). Those individuals with
resistances smaller than this infection pressure then become infected and in turn throw
out their infection pressure uniformly, thus increasing the accumulated infection pressure.
This procedure goes on until the first time step when there are no new infections; then
the epidemic stops. It can be shown that this gives the correct final size distribution – the
only difference with this representation lies in the order and time at which individuals get
infected. The advantage with the construction (the Sellke construction) is that, at each
time step we add a random number of i.i.d. random variables (the infection pressures),
and this is done until the first time point the accumulated sum no longer exceeds another
sum of random variables (the resistances). Scalia Tomba (1985, 1990) uses this, together
with an embedding argument, to show that the final size distribution coincides with that
of the crossing time of a stochastic process with a straight line. Because the random
process is made up of i.i.d. contributions it obeys a law of large number and central limit
theorem.

The above description is perhaps not very enlightening, but to show the complete result
is quite technical. Something which is easier to explain is an argument for the expression
of the limiting final fraction infected z in case there is a major outbreak. We do this by
deriving a balance equation for z. Neglecting the difference between n and n−m (remem-
ber that n is large and m fixed), we have that nz is the final number infected. Further,
the probability of escaping infection from one infected individual i (with infectious period
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Ii) equals E(e−λIi/n). We then have the following set of approximations

1 − z = fraction not getting infected

≈ probability of not getting infected

≈ probability of escaping infection from all nz getting infected

≈ E(e−λI1/n) · · · · · E(e−λInz/n)

= E
(

e−
λ

n

P

zn

i=1 Ii

)

≈ e−λzE(I) = e−R0z,

where the last approximation is simply the law of large numbers. The limiting fraction
infected in case there is a major outbreak should hence be a solution to the equation

1 − z = e−R0z. (11)

Note that this is the same equation as for the deterministic model (3), except that we now
assume a negligible fraction initially infected (i.e. ε = 0). It is not hard to show that this
equation always has the solution z = 0 (corresponding to a minor outbreak) and, when
R0 > 1, there is another unique solution z∗ between 0 and 1 (corresponding to a major
outbreak). In Figure 2 of Section 2.3, the largest solution z∗ is plotted as a function of
R0.

The above heuristics indicates that the final fraction infected Z/n will lie close to either
0 or else, if R0 > 1, close to z∗. This can in fact be shown rigorously. Moreover, a central
limit theorem can be shown for the case where there is a major outbreak. The following
theorem summarizes the result for both a minor and a major outbreak (see Andersson
and Britton, 2000a, Ch 4, and references therein, e.g. von Bahr and Martin-Löf, 1980).

Threshold theorem for the final size of the epidemic: Consider the standard
epidemic model with m (fixed) initial infectives and n−m initial susceptibles. If R0 ≤ 1,
then Z̄n := Zn/n → 0 in probability as n → ∞. On the other hand, if R0 > 1, then
Z̄n → ζ in distribution, where ζ is a two point distribution defined by P (ζ = 0) = qm and
P (ζ = z∗) = 1 − qm, where q was defined in the previous subsection and z∗ is the unique
strictly positive solution to (11). Finally, on the part of the sample space where Z̄n → z∗

we have that

√
n
(

Z̄n − z∗
)

→ N

(

0,
z∗(1 − z∗) (1 + r2(1 − z∗)R2

0)

(1 − (1 − z∗)R0)2

)

, (12)

where the second parameter in the normal distribution denotes the variance, in which
r2 = V (I)/(E(I))2 is the squared coefficient of variation of the infectious period.

To illustrate our results we have simulated an epidemic in a community of n = 1000
individuals, starting with m = 1 initially infective, and having λ = 1.5 and I ∼ Exp(1).
Before looking at the simulations we compute the theoretical values. For our model and
parameter choices we have R0 = λE(I) = 1.5 and r2 = V (I)/(E(I))2 = 1/1 = 1. Using
results from the previous subsection we conclude that the probability of a minor outbreak
equals q1 = 1/R0 ≈ 0.667, and using (11) we find that z∗ ≈ 0.583. The standard deviation
of Zn equals

√
n
√

z∗(1 − z∗) (1 + r2(1 − z∗)R0)/(1 − (1 − z∗)R0) ≈ 53.1.
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To see how our limiting results apply to this particular finite case we have simulated
10 000 such epidemics. In Figure 3 we show the resulting histogram for the final outbreak
sizes. The conclusion is that the limiting results apply quite well with the simulations.
First, the proportion of simulations resulting in minor outbreaks (as seen from the figure
there is a clear distinction between minor and major outbreaks) equals 0.678, which is to
be compared with the theoretical value of 2/3 ≈ 0.667. Further, by simple examination
it looks as if the remaining part (the major outbreaks) have a normal distribution with
a mean close to nz∗ ≈ 583 as suggested by the limiting result. Finally, the standard
deviation is of course harder to ”see”, but nearly all observations seem to lie within
100 from the mean, which agrees well with the theoretical value of 53 for the standard
deviation.
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Figure 3: Empirical distribution of final size from 10 000 simulations of the general
stochastic epidemic with R0 = 1.5 in a community with 1000 individuals and one initial
infective.

3.4 Duration of epidemic

In the previous sections we have studied the questions of main interest: can an outbreak
occur, and if so, with what probability and how large will these major outbreaks be.
Another questions of interest could be to understand how long it will take for the epidemic
to peak and eventually to die out. Below we sketch some results in his direction. For
details we refer to Barbour (1975).

If there is only a minor outbreak (which happens with certainty if R0 ≤ 1, but also with
positive probability qm if R0 > 1), then the disease will disappear after a short time. We
hence focus on the case where we have a major outbreak (hence assuming R0 > 1) and
study how the time to extinction T = Tn depends on the population size n.

It was seen that the initial stages of the epidemic could be approximated by a supercritical
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branching process up until approximately
√

n individuals have been infected. Since a
branching process has exponential growth, this will take a time of order log n. Once a
large number of individuals have been infected, the epidemic process may be approximated
by the deterministic counter part defined in (1). The time for this process, starting in
an arbitrary small fraction initially infectives i0 to first grow and the decrease down to
some small value i(t) = ε has a duration which does not grow with n. The last part
of the epidemic is where close to a fraction z∗ have already been infected. The epidemic
then behaves like a branching process where individual infect on average R0z

∗ individuals.
It can be shown that this number is smaller than 1 when R0 > 1 as we have assumed.
It follows that the end of the epidemic can be approximated by a subcritical branching
process starting with nε infectives. The duration for such a process to go extinct is also
of order log n.

To summarize, we have made it plausible that the duration of the epidemic Tn, assuming
a major outbreak, has a distribution of the form

Tn = c1 log n + c2 + c3 log n + Z, (13)

where c1, c2, c3 are constants and Z is a random variable, all depending on the model
parameters. To show this result is quite technical, see Barbour (1975).

4 Applications

There are many applications to modelling of infectious disease spread. Some diseases that
have received much modelling attention over the last decades are for example HIV, Small-
pox (the threat for terrorist attacks), foot and mouth disease, SARS and most recently
the new (H1N1) influenza. Below we describe some specific methodological questions that
are often addressed.

4.1 Vaccination and other interventions

One reason for modelling infectious disease spread is to understand how an outbreak can
be prevented. This can be achieved in several different ways. When it comes to new
emerging severe infections like SARS, drastic measures like isolation, closing of schools
and travel restrictions are often put into place. All these measures aim at reducing
contact rates, i.e. to reduce R0. The effect of a specific preventive measure depends on
the particular disease and also on the community under consideration.

A somewhat different preventive measure is vaccination. This does not change R0, but
instead it reduces the pool of susceptibles by making individuals immune. We now describe
how to model this and study its effect on the outbreak.

Suppose a vaccine is available prior to the arrival of the disease, and assume a fraction v
are vaccinated. Suppose further that the vaccine is perfect in the sense that all vaccinated
individuals get completely immune (see Section 5.4 for extensions).

This will have one effect on the model: the number of initially susceptibles is reduced
from n−m to n(1− v)−m =: n′ −m. Other than that the model is the same. However,
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the contact rate with a given individual still equals λ/n, so if we want to use n′ instead we
get λ/n = λ(1 − v)/n′ =: λ′/n′. We can hence compute the exact final size distribution
using results in Section 3.1, for example Equation (8) with n′ = n(1− v) instead of n and
λ′ = λ(1−v) instead of λ. Similarly, the early stages of the epidemic can be approximated
by a branching process with birth rate λ′ and mean life-length 1/γ. It follows that the
reproduction number after a fraction v has been vaccinated, denoted Rv, satisfies

Rv = λ′/γ = λ(1 − v)/γ = (1 − v)R0. (14)

From the results of Section 3.2 we hence conclude that if Rv ≤ 1 there will be no major
outbreak, whereas if Rv > 1 there will be a major outbreak with probability 1 − (q′)m,
where q′ is the smallest solution to Equation (10), but with λ′ = λ(1 − v) instead of λ.

From Section 3.3 we also conclude that if Rv > 1, the major outbreak will be approxi-
mately n′z′∗, where z′∗ is the unique positive solution to Equation (11) with Rv replacing
R0. The central limit theorem also applies, so in case there is a major outbreak the total
number of infected is normally distributed as stated in (12), but wit n′ and λ′ and Rv

instead of n, λ and R0.

The most important of these results from an applied point of view is (14), i.e. that
the reproduction number after having vaccinated a fraction v in the community satisfies
Rv = R0(1 − v), and the fact that a major outbreak is impossible if Rv ≤ 1. In terms of
v this is equivalent to v ≥ 1 − 1/R0. The critical vaccination coverage, denoted vC and
defined as the fraction necessary to vaccinate in order to surely prevent a major outbreak,
hence satisfies

vC = 1 − 1

R0

. (15)

For the numerical example given above, with R0 = 1.5 it hence follows that vC = 1 −
1/1.5 ≈ 0.33. This means that it is enough to vaccinate 33% of the community to prevent
a major outbreak. By vaccinating only 33% the whole community is hence protected, a
state denoted herd immunity.

4.2 Estimation

So far we have been interested in (stochastic) modelling, i.e. given a model and its param-
eters we have studied properties of the epidemic. It was shown that the most important
parameter is the basic reproduction number R0, defined as the average number of in-
dividuals a (typical) infective infects during the early stages of the outbreak, where we
by ”early stages” mean that few individuals have been infected so the vast majority of
the community is still susceptible. When aiming at preventing an outbreak, another
important quantity is the critical vaccination coverage vC defined in (15).

In a particular situation it is hence important to know what these parameters are. We
now describe how to estimate R0 and vC from observing one epidemic outbreak. One
advantage of stochastic modelling is that it not only enables point estimates, but also
standard errors as is now illustrated.

Suppose a major epidemic outbreak occurs in a community of n individuals, n−m being
susceptible and a small number m being externally infected. Let zn denote the number
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of individuals that were infected during the outbreak (excluding the m index cases), and
let z̄n = zn/n denote the corresponding fraction. We want to estimate R0 (and vC) based
on this information. From (11) we know that R0 satisfies

R0 =
− log(1 − z∗)

z∗
.

We also know that, in case of a major outbreak, Z̄n is asymptotically normally distributed
around z∗, with standard deviation

√

z∗(1 − z∗) (1 + r2(1 − z∗)R0)√
n(1 − (1 − z∗)R0)

.

From this it follows that a consistent and asymptotically normally distributed estimator
of R0 is given by

R̂0 =
− log(1 − z̄n)

z̄n

. (16)

The standard deviation of the estimator can be obtained using the delta method (e.g.
Cox, 1998). Let f(z) = − log(1 − z)/z, then f ′(z∗) = 1/(z∗(1 − z∗)) − R0/z

∗. It follows
that the asymptotic variance of R̂0 hence equals

V (R̂0) ≈ (f ′(z∗))2V (Z̄n) ≈
(

1

z∗(1 − z∗)
− R0

z∗

)2
z∗(1 − z∗) (1 + r2(1 − z∗)R2

0)

n(1 − (1 − z∗)R0)2

=
1 + r2(1 − z∗)R2

0

nz∗(1 − z∗)
.

A standard error for R̂0 is obtained by taking the square root of this and replacing R0 by
R̂0 and z∗ by z̄n:

s.e.(R̂0) =

√

1 + r2(1 − z̄n)R̂2
0

nz̄n(1 − z̄n)
. (17)

The standard error above still contains one unknown quantity: r2 = V (I)/(E(I))2, the
squared coefficient of variation of the infectious period. From final size data it is impossible
to infer anything about the distribution of the infectious period. The only way to proceed,
unless some prior information is available, is to replace it by some conservative upper
bound, for example r2 = 1.

Estimation of the critical vaccination vC is also straightforward. Since vC is defined by
(15) the natural estimator for vC is

v̂C = 1 − 1

R̂0

= 1 − z̄n

− log(1 − z̄n)
. (18)

Just like R̂0 the estimator v̂C is consistent and asymptotically normally distributed around
the true value vC . The asymptotic variance can also be obtained using the delta method.
We have g(x) = 1 − 1/x, which hence satisfies g′(R0) = 1/R2

0. The asymptotic variance
of v̂C then equals V (R̂0)/R

4
0. A standard error for v̂C is given by

s.e.(v̂C) =

√

1 + r2(1 − z̄n)R̂2
0

nR̂4
0z̄n(1 − z̄n)

. (19)
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As a numerical example we assume that zn = 583 individuals in a community of n = 1000
were infected during an outbreak. Using (16) and (17) we get R̂0 = 1.50 with standard
error s.e.(R̂0) = 0.09 using the conservative upper bound r2 = 1. As for the critical
vaccination coverage the corresponding estimate and standard error are given by v̂C =
0.333 and s.e.(v̂C) = 0.04. Both estimators are asymptotically normally distributed.

In the inference procedure presented above we only made use of the final number infected.
If the epidemic process (S(t), I(t), R(t)) is observed continuously we have more detailed
information and we should hence be able to make more precise inference. This is true
although the gain in precision is moderate. We omit this type of inference (involving
martingales using counting process theory) and refer to Andersson and Britton (2000a,
Ch 9).

5 Extensions

The standard stochastic epidemic model of Section 2.3 was defined as a stochastic version
of the deterministic general epidemic model of Section 2.1. The population is finite, and
infectious individuals make contacts randomly in time according to a Poisson process
with intensity λ, each time the person being contacted is chosen randomly, and the length
of the infectious period I is a random variable with distribution I. Despite these more
realistic model features, the model still contains several simplifying assumptions. In the
present section we touch upon a number of extensions that have been analysed in the
literature. Most of these extensions do not alter the qualitative behaviour of the spread
of infection, but indeed quantitative properties.

5.1 Individual heterogeneity: multitype models

One assumption in the standard stochastic epidemic model is that all individuals are
similar, except the possibility that they have different length of the infectious period. In
reality most populations are heterogeneous, for example with respect to susceptibility, the
degree of social activity and/or how infectious they become if infected. The heterogeneities
may be unknown to some extent, but quite often it is possible to group individuals into
different types of individual, where individuals of the same type have (nearly) identical
behaviour. This separation into different types might for example be different age groups,
gender, previous experience to the disease (giving partial immunity) etcetera.

In such situations it is common to define a multitype epidemic model as follows. Suppose
there are k types of individuals, labelled 1, . . . , k, and that the community fractions of the
different types equal π1, . . . , πk. Type i individuals have i.i.d. infectious periods Ii with
distribution Fi having mean 1/γi. During the infectious period, an i-individual has close
contacts with a given j-individual at rate λij/n, i, j = 1, . . . , n.

If the population, i.e. n, is large, the epidemic may be approximated by a multitype
branching process. The mean offspring matrix has elements (mij), where mij = λijπj/γi.
The basic reproduction number R0 is the largest eigenvalue to the mean offspring matrix
(mij). The case where mij = αiβjπj, referred to as proportionate, or separable mixing, cf.
Diekmann and Heesterbeek (2000, Ch 5.3), has received special attention for two reasons.
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First, this implies that αi can be interpreted as the (average) infectivity of i-individuals
and βj as the (average) susceptibility of j-individuals. Secondly, the basic reproduction
then has the simpler form R0 =

∑

i αiβiπi.

As for the homogeneous case only minor outbreaks are possible if R0 ≤ 1 whereas a large
outbreak may occur if R0 > 1. There is a related threshold limit theorem stating what
the probability of a major outbreak is, and a central limit theorem for the final number
of infected of the different types in case the epidemic takes off. The expressions are more
involved as are the proofs giving the desired results, why we refer to Ball and Clancy
(1993) for details.

5.2 Mixing heterogeneity: household and network models

Perhaps even more important than allowing individuals to be different in terms of sus-
ceptibility and infectivity is to allow for non-uniform mixing, meaning that an individual
has different (average) contacts rates with different individuals. The multitype epidemic
model of the previous section may include some such non-uniform mixing in the sense
that contacts with different types of individuals may be different. However, an assump-
tion of the contact rates between specific pairs of individuals in the multitype model is
that they are all of order 1/n. In many real-life situations individuals tend to have a few
other individuals with which they mix at a much higher rate. Epidemic models taking
such type of mixing behaviour into account are often referred to as two-level or multilevel
mixing epidemic models. The two most common examples are household epidemics and
network epidemics.

In a household epidemic individuals are grouped into small groups (households) and it is
assumed that the contact rate between pairs of individuals of the same household equals
λH and contact rates between pairs of individuals of different households equals λG/n
(and all individuals have i.i.d. infectious periods I with mean 1/γ). Large population
properties for this model was first rigorously analysed by Ball et al. (1997). There they
show that it is necessary take into account the random distribution of the total number
of infected in a household outbreak. During the initial phase of an outbreak, external
infections are nearly always with not yet infected households, so by treating households as
”super-individuals” the initial phase of the epidemic may be approximated by a multitype
branching process, where the different types refer to household size and also the size of
the household outbreak. The basic reproduction number (now having a more complicated
definition but still having the value of 1 as its threshold) equals R0 = (λ/γ)µH , where
µH is the mean size of a household outbreak where the size of the selected household
has a size biased distribution due to the fact that larger households are more likely to be
externally infected as more individuals reside in them.

As before, major outbreaks are only possible if R0 > 1, and when this happens Ball et al.
(1997) show a law of large numbers for the number of households of different sizes and
outbreak sizes using a balance equation. With some additional effort they also derive a
central limit theorem for the final size in case of a major outbreak.

Another type of epidemic model having a local structure with much higher (or all) con-
tact rates between ”neighbours” are called network epidemic models (e.g. Newman, 2003).
The network, an undirected graph, specifies the social structure in the community upon
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which an epidemic spreads. Quite often the network is assumed to be random but having
some pre-specified properties. These could for example be the degree-distribution (the
distribution of the number of neighbours), the clustering coefficient (specifying how fre-
quent close cycles are present), and the degree correlation of neighbours. Given such a
network and a stochastic epidemic model ”on” the network, it is of interest to see if a
major outbreak can occur, and if so what is its probability and what is the size of such an
outbreak. There are still many open problems to be solved in this area (in particular when
considering a dynamic network) but see for example Britton et al. (2007) for some results.
In general, the social structure in the community are more influential for diseases which
are not highly infectious. One such class of diseases are sexually transmitted infections –
in this case an edge between two individuals in the network correspond a sexual relation.

5.3 Models for endemicity

The focus of the present paper has been SIR epidemic models for a closed population, i.e.
not allowing deaths or that new individuals enter the community during the outbreak.
This is of course an approximation of real life but, if focus is on short time behaviour it
is sensible to make such an approximation. Some infectious diseases are endemic in many
countries, and a question of interest (e.g. Anderson and May, 1991) for such disease are
to understand their dynamics; to understand why certain diseases are endemic and others
not, and why a given disease may be endemic in one country but not in another, and it
is of course also of interest to determine which preventive measure that has the potential
of eradicating the disease. We now give a brief outline to this problem area and refer the
reader the literature for more details; e.g. Anderson and May (1991, pp 128) and N̊asell
(1999), and, when studying measles in particular, e.g. Conlan and Grenfell (2007). We
now define the Markovian SIR epidemic model with demography (N̊asell, 1999).

The population dynamics are very simple: new (susceptible) individuals enter the popu-
lation according to the time points of a homogeneous Poisson process at rate nµ, and each
individuals lives for an exponentially distributed time with mean 1/µ. In words, there is
a steady and constant influx of susceptibles at rate µn and each individuals dies at rate
µ, so the population size will fluctuate around the equilibrium state n, which hence can
be interpreted as ”population size”.

The disease dynamics are just like for the Markovian version of the standard stochastic
epidemic model: an infectious individual has close contacts with each other individual at
rate λ/n: if such a contact is with a susceptible individual this individual gets infected
and infectious immediately, and each infectious individual recovers at rate γ and becomes
immune for the rest of its life. Each individual dies at rate µ irrespective of the infection
status. The epidemic process {S(t), I(t), R(t); t ≥ 0} is initiated by (S(0), I(0), R(0)) =
(s0, i0, r0), where, as before, we assume that i0 > 0. In Figure 4 the various jump rates of
the model are given in the (s, i)-plane. As before it is enough to keep track the number
of susceptibles and infectives, since recovered and immune individuals play no further roll
in the disease dynamics. A question of interest is to study properties of this model when
n is large; we do this by first studying the corresponding deterministic system defined by
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Figure 4: Jump rates for the SIR epidemic model with demography. All jumps are one
unit of length except the jump to the north west in which s decreases and i increases by
one unit (due to someone getting infected).

the differential equations:

s′(t) = µ − λs(t)i(t) − µs(t),

i′(t) = λs(t)i(t) − γi(t) − µi(t), (20)

r′(t) = γi(t) − µr(t).

By equating all derivatives in (20) to 0 we get the equilibrium state(s). It is straightfor-
ward to show that (s(t), i(t), r(t)) = (1, 0, 0), the disease free state, is always a point of
equilibrium. The basic reproduction number R0, defined as the expected number of indi-
viduals a typical individual infects during the early stages of an outbreak, equals λ/(γ+µ)
since now there are two possible reasons for leaving the infectious state: recovering and
dying. Additional to the disease free equilibrium (which is stable if R0 ≤ 1 and unstable
otherwise) there is another stable equilibrium whenever R0 > 1:

(s(t), i(t), r(t)) = (ŝ, î, r̂) = (
1

R0

,
R0 − 1

R0/δ
, 1 − 1/δ + R0 − 1

R0/δ
), (21)

where δ = µ/(γ+µ) is the (small) average fraction of a life that an individual is infectious.
This state is called the endemic level.

For the stochastic counterpart it is possible to reach the state I(t) = 0 from any other given
state in finite time with positive probability. This observation together with the fact that
the state I(t) = 0 is absorbing – once the disease disappears it can never return – makes
all other states transient. As a consequence there is only one stationary equilibrium:
the disease free state in which all individuals (fluctuating around the number n) are
susceptible. However, when R0 > 1 and n is large there is a drift of (S(t), I(t), R(t))
towards the endemic level (nŝ, nî, nr̂). So, even though the disease eventually will go
extinct, this may take a long time, and in the mean time the epidemic process will
fluctuate around the endemic level. This type of behaviour is known as quasi-stationarity

(e.g. van Doorn, 1991). Questions of interest are for example, given the population size
n and the parameters λ, γ and µ (or equivalently µ, R0 and δ) how long will it take for
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the disease to go extinct? Or, phrased in another way, how big must the population be
for a given disease to persist in the community, and which features of the disease are
most influential in determining this so called critical community size? Another important
question is to study effects of introducing vaccination in the model. We refer to for
example N̊asell (1999) and Andersson and Britton (2000b) for stochastic methodological
work in the area of endemic diseases.

5.4 Other extensions

We have focused on presenting results for a fairly simple stochastic epidemic model; the
reason being that even in simple models results are far from trivial. Reality is of course
much more complicated. There are many features that affect the spread of infections that
have not been discussed in the paper - below we list some such features, but the are also
many others.

It is well-known that seasonal effects play an important roll in disease dynamics. One
reason is that certain viruses or bacteria reproduce at higher speed under certain seasons,
e.g. influenza virus prefers cold weather, but perhaps even more important is the change
in social behaviour over the year. The classical example is school semester and the school
start in September being the event that triggered measles outbreaks in for example Eng-
land prior to vaccination (e.g. Anderson and May, 1991, Ch 6). One of the most recent
illustrations of effects of schools is by Cauchemez et al. (2008), where the influence of
transmission within school is estimated by comparing over-all transmission during the
school semester with over-all transmission during holidays.

The model studied in the present paper lacks a spatial component. Even though travel has
increased dramatically the last century there is of course still a spatial component in the
spreading of infections, both between and within countries. In larger modelling/simulation
studies of specific diseases, like the new influenza pandemic, space is always taken into
account (e.g. Yang et al., 2009, and Fraser et al., 2009). This is done by assuming that the
probability to infect a given individual decays with the distance between the individuals.
The main effect of introducing space into the model is that the epidemic growth is slower:
more linear than exponential.

In the model it was assumed that the infection rate λ was constant during the infectious
period. This rate can be thought of as the product of two quantities: the rate of having
contact with other individuals and the probability of transmission upon such a contact.
In reality both of these quantities typically vary over the infectious period. First there
is often a latency period when an infected individual hardly is infectious, then there is
often a period where the individual is highly infectious but still have few or no symptoms.
Eventually the individual has symptoms thus reducing the social activity, and finally the
infectiousness starts dropping down to 0. This behaviour will clearly affect the dynamics
of the disease (a disease having a long latency period of course slows down the epidemic
growth), but it has been shown (Ball, 1983 and 1986) that final size results of the present
model still applies. The total infectivity of an infectious period in the present model
equals the random quantity λI. For a model in which the infection rate t time units after
infection equals C(t)ι(t), where C(t) and ι(t) are stochastic processes describing social
activity and infectiousness, then the new model may be analysed with the present model
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if the distribution of λI is replaced by the distribution of
∫

∞

0
C(t)ι(t)dt. In particular, a

latency period of arbitrary length has no effect on the distribution of the final size.

In the section about modelling vaccination it was assumed that the vaccine was perfect
in the sense that it gave complete immunity to the disease. In reality this is rarely the
case. There are several more realistic models for vaccine response in which the vaccine
reduces susceptibility, symptoms and/or infectivity in case of being infected, where all
these reductions are random (e.g. Halloran et al., 2003, and Becker et al., 2006). For
example, a vaccine which reduces susceptibility by a factor e, so the average relative
susceptibility is (1 − e) as compared with unvaccinated, but has no effect on infectivity
in case an infection occurs, has a new (higher) critical vaccination coverage

vc =
1

e

(

1 − 1

R0

)

.

This true if all individuals have the same reduction e (so-called leaky vaccines) as well as
if a fraction e of the vaccinated become completely immune and the rest are unaffected by
the vaccine (all-or-nothing vaccines), or something in-between. Having models for vaccine
efficacy is of course not enough for making conclusions in specific situations – it is equally
important to estimate the various vaccine efficacies. This is most often done in clinical
trials, and it is usually harder to estimate reduction in infectivity because this has to be
done indirectly since actual infections are rarely observed, see for example Becker et al.
(2006) and the forth coming book by Halloran et al. (2010).

Discussion

Even when trying to include as many realistic features in a model as possible there is a
limit to how close a model can get to reality, and models can never completely predict
what will happen in a given situation. It is for example nearly impossible to predict
how people will adapt and change behaviour as a disease starts spreading. Having said
this, models can still be (and are!) very useful as guidance for health professionals when
deciding about preventive measures aiming at reducing the spread of a disease.

Stochastic epidemic models, or minor modifications of them, can be used also in other
areas. A classic example is models for the spread of rumours or knowledge (e.g. Daley
and Gani, 1999, Ch 5). More recently, the world wide web have several aspects resem-
bling epidemic models: for example computer viruses (which even use terminology from
infectious diseases) and spread of information.

The present paper only gives a short introduction to this rather big research field. There
are several monographs about mathematical models for infectious disease spread: Ander-
son and May (1991) is probably the most well-known, Diekmann and Heesterbeek (2000)
has a higher mathematical level, and Keeling and Rohani (2008) also explicitly considers
disease spread among animals. When it comes to stochastic epidemic models there are
for example the classic book by Bailey (1975), and Andersson and Britton (2000a) who
also cover inference; a topic which Becker (1989) focuses on.
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[33] Picard, P. and Lefèvre, C. (1990). A unified analysis of the final size and severity
distribution in collective Reed-Frost epidemic processes. Adv. Appl. Prob., 22, 269–
294.

[34] Ross, R (1911). The prevention of malaria, 2nd ed.. London: Murray.

[35] Scalia-Tomba, G. (1985). Asymptotic final size distribution for some chain-binomial
processes. Adv. Appl. Prob., 17, 477-495.

[36] Scalia-Tomba, G. (1990). On the asymptotic final size distribution of epidemics in
heterogeneous populations. In in Stochastic Processes in Epidemic Theory, Gabriel,
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