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Abstract

We consider a random network evolving in continuous time in which new nodes

are born and old may die, and where undirected edges between nodes are created

randomly and may also disappear. The node population is Markovian and so is the

creation and deletion of edges, given the node population. Each node is equipped

with a random social index and the intensity at which a node creates new edges

is proportional to the social index, and the neighbour is either chosen uniformly

or proportional to the its social index in a modification of the model. We derive

properties of the network as time and the node population tends to infinity. The

degree distribution is shown to have a mixed Poisson distribution which may exhibit

a heavy tail if the social index distribution has a heavy tail.

Keywords: Random networks, dynamic networks, birth and death process, mixed Pois-
son distribution.

1 Introduction

With the increasing interest of analysing more and more complex networks the need for
suitable network models increases as well. For static network models the pioneering Erdős-
Rényi random graph model has been generalised successful in many ways, most recently
in [3, 4]. As for random graph models having time dynamics built in to them, the perhaps
most well-known time dynamic model is the preferential attachment model introduced by
Barabási and Albert in 1999 [1], which was elaborated on in [2]. This model is a model for
growing networks and it evolves in discrete time. As it was formulated, at each time step
a node is born with a number of edges which then are attached to the older nodes with a
probability proportional to their degrees. One of the key features of this model is that it
generates asymptotically heavy-tailed degree distributions, which is a feature often seen

∗Department of Mathematics, Stockholm University, SE-106 91 Stockholm, Sweden. E-mail:

tom.britton@math.su.se
†Department of Mathematics, Stockholm University, SE-106 91 Stockholm, Sweden. E-mail: lind-

holm@math.su.se

1



in empirical networks. Since the model was formulated in 1999 various generalisations
have been considered where e.g. edges as well as nodes may die, see e.g. [5, 6, 8].

In the present paper we consider a natural continuous time network model (defined in
Section 2), where both nodes and edges are born according to a Markovian mechanism.
The node population is modelled by a linear birth and death process assumed to be super-
critical. Nodes are born without edges and at the time of birth, each node is assigned a
(random) “social index”. This social index affects the rate with which the node “creates”
new edges. Once an edge is created, the other end of the edge is attached to another
node: in our original model the other node is picked uniformly at random, but we also
treat the case where the other node is selected with a probability being proportional to
the social index of the node. Edges disappear at constant rate.

In Section 3 and 4 we derive asymptotic properties of the network. On the part of the
sample space where the node population grows beyond all limits we derive the asymptotic
degree distribution and also show that, asymptotically, there will be no clustering or
degree correlation. The main result states that the asymptotic degree distribution is
mixed Poisson, which may have a heavy tail if the social index distribution does. The
probability distribution is not explicit, but we derive explicit expressions for the mean
and variance. We give some numerical examples of the asymptotic degree distribution for
a number of different social index distributions in Section. In Section 5 the asymptotic
findings are also compared with simulated networks, where the model is simulated until
the node population has reached a pre-specified number for the first time. For all studied
social-index distributions, the empirical degree distribution is close to the asymptotic
degree distribution already when simulations are stopped once thousand nodes are alive.

In Section 6 we discuss possible extensions of the model that may give clustering and
degree correlation.

2 The Markovian random network in a Markovian

dynamic population

Below we define a model which we denote the Markovian random network in a Markovian
dynamic population. In what follows a network denotes a finite set of nodes (the popula-
tion) together with undirected edges connecting pairs of nodes. Nodes that are directly
connected by an edge are called neighbours. The model is dynamic in the double sense
that nodes are born and may die, and the same applies to edges.

In sociological applications, which is what we have in mind, nodes correspond to individ-
uals, edges to some type of relation (e.g. friendship), and neighbours to friends, but in
what follows we use the notation “nodes”, “edges” and “neighbours”.

2.1 The model

The model consists of two parts: births and deaths of nodes and, given the node popula-
tion, births and deaths of edges.
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We first define the node population dynamics. Let Y (t) denote the number of nodes alive
at time t, and assume that Y (0) = 1. While alive, each node gives birth to new nodes at
the constant rate λ and each node lives for an Exp(µ) distributed time with mean 1/µ, so
each node dies at the rate µ. We assume that λ > µ implying that the expected number
of births during a life-span is larger than 1. This means that the node population is
modelled by a Markovian super critical branching process. Additional to this, each node
i is at birth given a random “social index” Si having distribution FS on R

+, independent
and identically distributed for different nodes. We will throughout assume that S has
finite mean E[S].

The model for births and deaths of edges is Markovian given the node population and
the social indices. At birth nodes are isolated, i.e. have no neighbours. During the life of
a node having social index s, new edges are created at rate αs, each time the neighbour
is chosen uniformly among all living nodes (below we also study a different model for
choosing neighbours). Each edge is removed, independently of everything else, at the rate
β. If a node dies all edges connected to the node in question are removed.

2.2 A modification of the model

As mentioned in the previous paragraph we also study a modification of the original
model defined above. This new model is the same as the original except in the way
that neighbours are chosen: instead of choosing neighbours uniformly the modified model
assumes that neighbours are chosen with probabilities proportional to their social index.
This modified model is inspired by the preferential attachment model [1], still being
different in that here the probability of receiving edges is determined at birth whereas it
is determined by random events during life in the preferential attachment model.

2.3 Comments on the model

The model has four parameters: the birth and death rates of nodes, λ and µ respectively,
and the death rate β of edges and α which is related to the birth rate of new edges. Beside
these four parameters there is the distribution FS for the social indices {Si} of nodes.

Note that the model allows for multiple edges and self-loops, but in the Appendix we
show that the proportion of such edges is asymptotically negligible if E[S] < ∞ for the
original model, and if E[S2] < ∞ for the modified model. As a consequence the network
will then have identical properties if loops and multiple edges are ignored or not allowed.

Some submodels are of particular interest. One is where there is no node-heterogeneity
and nodes have the same social index S ≡ s (for example set to 1 without loss of gener-
ality). Loosely speaking, allowing node-heterogeneity makes it possibly to achieve degree
distributions having heavy tails: if FS is heavy tailed there will be some nodes with very
high social indices that hence have a large number of neighbours. The case where µ = 0
and S ≡ 1 has been studied by Turova in [13, 14, 15, 16] who derive more results for this
submodel.
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2.4 Population properties of the model

The population of nodes is a simple Markovian super-critical branching process with
individual birth rate λ and death rate µ (we have assumed that λ > µ. Properties of this
type of model have been studied extensively, see e.g. [10]. For example, it is well-known
that the population may either die out or else it will grow at the exponential rate

Y (t) ∼ et(λ−µ).

In what follows we will only consider the part of the sample space where the population
grows B := {ω; Y (t) → ∞}, the “explosion event”. On this part of the sample space
the population will have what is called a stable age distribution. As t tends to infinity
(implying that the population size also tends to infinity) the age distribution of living
nodes will converge to the exponential distribution having mean 1/λ, i.e. a node picked
uniformly at random at t (→ ∞) will have age distribution Exp(λ), see e.g. Section 3.4
in [10].

3 The degree distribution

We are interested in the asymptotic degree distribution, i.e. the number of neighbours of
a randomly selected living node, selected at t → ∞ when the node population tends to
infinity and the population attains the stable age distribution. We let D be a random
variable having this distribution, specified by {pk; k ≥ 0}, where pk = P(D = k).

3.1 The degree distribution conditional on age and social index

Label the selected node i. Two properties of the selected node affects the distribution
of the number of neighbours it has: the social index Si of the node and the age Ai of
the node. The social index Si has distribution FS and the age Ai has the stable age
distribution Exp(λ). Condition on the social index of the node: Si = s. The node gets
new neighbours in two ways: either it creates new neighbours itself at rate αs, or it obtains
new neighbours from other nodes throwing edges to this particular node. At time t there
are Y (t) nodes (labelled 1, . . . , Y (t) say) and hence the over-all rate at which other nodes

throw out edges equals α
∑Y (t)

j=1 Sj .

Each time, node i receives such an edge with probability 1/Y (t), so the rate at which i
receives edges equals

α

Y (t)
∑

j=1

Sj

1

Y (t)
. (1)

But, since Y (t) → ∞ as t → ∞ (on the explosion event B), it follows that Y −1(t)
∑Y (t)

j=1 Sj →
E[S] as t → ∞ by the law of large numbers. From this it follows that, asymptotically,
node i attains edges from other nodes at rate αE[S] and it creates new edges at rate αs
implying that the overall rate equals

α(s + E[S]).
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An edge can be removed for two reasons: either the edge “dies”, or one of the neighbouring
nodes “dies”. During the life of node i, each edge is hence removed if the edge dies or
if the neighbour connected by the edge dies. The rate at which a given edge is removed
hence equals β + µ, and all edges are removed independently at the same rate.

The above reasoning implies that the number of neighbours of a fixed living node having
social index s can be modelled by a birth and death process (e.g. [12]) with (constant)
birth rate λn = α(s + E[S]) and (linear) death rate µn = n(β + µ). If Xs(a) denotes the
number of neighbours of our node (with social index s) at age a, then, during the life of
the node, Xs(u) is hence a birth and death process with the rates specified above and
with initial condition Xs(0) = 0. We now claim that this implies that Xs(a) is Poisson
distributed for the following reason. The number of edges that connect to the node up
until a is Poisson distributed with mean α(s+E[S])a (new edges connect at constant rate
α(s + E[S])). Each such edge will remain at time a independently of other edges, so the
remaining number of edges will be a thinned Poisson distribution which is also a Poisson
distribution. To compute the probability for this event (for an edge that has attached
during (o, a) to remain at time a) we condition on the time that the edge attaches, a time
which is uniformly distributed between 0 and a. The probability for the edge to remain
at a if attached at x is e−(β+µ)(a−x) implying that the unconditional probability equals

P(remain at a) =

∫ a

0

e−(β+µ)(a−x) 1

a
dx =

1 − e−(β+µ)a

a(β + µ)
.

To conclude, we have shown that

Xs(a) ∼ Po

(

α(s + E[S])
(

1 − e−(β+µ)a
)

β + µ

)

. (2)

(The result that a birth and death process with constant birth rates and linear death
rates starting at 0 has Poisson distributed number of individuals at time a is not new, see
e.g. Feller [9, p. 481] who obtained the result through solving a certain partial differential
equation.)

3.2 The unconditional degree distribution

In the task of obtaining the unconditional degree distribution, recall that the age of a node
picked uniformly at random follows the stable age distribution A ∼ Exp(λ). Uncondi-
tionally, the number of edges our node is connected to Xs(A), hence has a mixed Poisson
distribution where A is exponentially distributed and where the degree distribution given
A = a is the one given in (2). Finally, removing also the conditioning on S = s we obtain
the community degree distribution D = XS(A), which hence also has a mixed Poisson
distribution:

XS(A) ∼ MixPo

(

α(S + E[S])
(

1 − e−(β+µ)A
)

β + µ

)

, (3)

where A ∼ Exp(λ) and S ∼ FS are independent. This simply means that, conditional on
A = a and S = s, Xs(a) has the Poisson distribution defined in (2). This specifies the
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degree distribution {pk} completely. The probabilities pk = P(D = k) = P(XS(A) = k)
can be obtained by integrating the Poisson probability over the age- and social-index-
distribution. A description of the (unconditional) degree distribution may also be given
using the probability generating function gXS(A)(u) = E

[

uXS(A)
]

. Unfortunately, neither
of these ways lead to any closed form expressions, in Section 5 we give some numerical
illustrations.

It is worth mentioning that the effect of β and µ on the whole distribution of XS(A), and
hence also on its mean and variance, is only through their sum β + µ. Further, looking
at the conditional degree distribution (2) and remembering that A is exponential with
parameter µ, we see that the tail of the distribution of XS(A) will have the same form as
the tail of S. If for example S has a power-law distribution, so will XS(A).

3.3 Moments of the degree distribution

We now derive explicit expression for the mean and variance of D = XS(A). To simplify
notation we define θ = β + µ and µS = E[S]. From Equation (2) we know that the
conditional distribution of Xs(a) is Poisson. It follows that

E[Xs(a)] = V[Xs(a)] =
α(s + µS)(1 − e−θa)

θ
.

Removing the conditioning on A, which is distributed according to Exp(λ), we get

E[Xs(A)] =

∫

∞

0

α(s + E[S])(1 − e−θa)

θ
λe−λada =

α(s + µS)

λ + θ
.

From this we get the unconditional mean:

E[XS(A)] =
2α

λ + θ
µS. (4)

For the variance we recall that if Z ∼ Po(τ) it holds that E[Z2] = τ+τ 2. As a consequence,
removing the conditioning on the age A, we get

E[X2
s (A)] =

∫

∞

0

E[X2
s (a)]λe−λada

=

∫

∞

0

(

α(s + µS)(1 − e−(θ)a)

θ
+

(

α(s + µS)(1 − e−θa)

θ

)2
)

λe−λada

=
α(s + µS)

λ + θ
+

(

α(s + µS)

θ

)2 [

1 − 2
λ

λ + θ
+

λ

λ + 2θ

]

.

After removing the condition on the social index s and some simplifications we get

E[X2
S(A)] =

2αµS

λ + θ
+

2α2
E[(S + µS)2]

(λ + θ)(λ + 2θ)
.

Finally, using that V[XS(A)] = E[XS(A)2] − (E[XS(A)])2 and simplifying the expression
we get the following formula for the variance:

V[XS(A)] =
2α

λ + θ
µS +

4λα2

(λ + θ)2(λ + 2θ)
µ2

S +
2α2

(λ + θ)(λ + 2θ)
V[S]. (5)
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From (4) we see that the mean degree distribution E[D] = E[XS(A)] is proportional to
the mean social index µS and to α, the birth rate of edges. Further, the mean degree
distribution decreases with θ = β + µ, where β is the rate at which edges are removed
and µ is the rate at which nodes (and there adjacent edges) are removed. More surprising
is perhaps the fact that E[D] = E[XS(A)] decreases with λ, the birth rate of nodes. An
explanation to this is that a high λ implies a young stable age distribution, which in turn
implies that nodes will tend to have low degree.

As for the variance V[XS(A)] we see from (5) that it is increasing in the birth rate of
edges, α, and decreasing in both the death rate of edges and nodes, β and µ respectively
(recall that θ = β + µ). How the variance depends on the birth rate of nodes could go
either way, or not be monotone, depending on the relation between µS = E[S] and V[S].
Finally, V[XS(A)] is increasing both in µS = E[S] and V[S], and the variance is infinite if
S has infinite variance.

3.4 The degree distribution for the modified model

Recall that the difference between the modified model and the original is that, in the
modified model, a created edge (by some node) is attached to a given node with a prob-
ability proportional to the social index of that node. In the same notation as above and
conditioning on {Sj}, this means that an edge created by i will connect to node j with
probability

Sj
∑Y (t)

k=1 Sk

. (6)

This modification will not change the over-all rate that node i creates new edges; it is
still αSi. However, the rate at node i receives edges is now changed, since the probability
of receiving an edge now equals Si/

∑Y (t)
k=1 Sk as opposed to 1/Y (t) in the original model.

The over-all rate with which node i receives edges is hence changed to

α

Y (t)
∑

j=1

Sj

Si
∑Y (t)

k=1 Sk

= αSi, (7)

(cf. Equation 3.1 for the original model), i.e. the same rate as the rate of creating edges.
The over-all rate of getting new neighbours is hence 2αSi.

Beside this modification the same analysis applies to the modified model. Conditional on
the social index being s and the age being a, the number of neighbours node i has at age
u (0 ≤ u ≤ a) is described by a birth and death process with constant birth rate λn2αs
and linear death rate µn = n(β + µ) =: nθ. The same analysis as for the original model
goes through, thus showing that the conditional degree distribution is

Xs(a) ∼ Po

(

2αs
(

1 − e−θa
)

θ

)

. (8)

Similarly, the unconditional degree distribution is mixed Poisson:

XS(A) ∼ MixPo

(

2αS
(

1 − e−θA
)

θ

)

, (9)

7



where A ∼ Exp(λ) and S ∼ FS are independent. From this it can be shown that the
mean of the modified model is the same as for the original model (recall that θ := β + µ)

E[XS(A)] =
2α

λ + θ
µS, (10)

but having a different variance:

V[XS(A)] =
2α

λ + θ
µS +

4λα2

(λ + θ)2(λ + 2θ)
µ2

S +
8α2

(λ + θ)(λ + 2θ)
V[S]. (11)

If we compare this variance with the variance for the original model (5) we see that the
first two terms are identical and the last term is a factor 4 larger here as compared with
(5). This hence implies that the degree distribution for the modified model has the same
mean but a strictly larger variance (unless S is nonrandom, S ≡ k, when the two models
are in fact identical). It should not come as a surprise that the modified model has larger
variance: by selecting neighbours with probabilities proportional to their social index, the
effect will be that nodes with high social index will get many edges and nodes with low
social index will get less, thus making the degree distribution more skew.

4 Other network properties

In the previous section it was shown that the asymptotic degree distribution of our model
(and the modified model) is quite flexible by choosing an appropriate distribution for
the social index. Two other features of interest in many applications of network models
(e.g. [11]) are clustering, measuring the frequency of triangles, and the degree correlation,
measuring the correlation of node degrees of connected nodes, a positive degree correlation
being termed an assortative network and and negatively correlated networks being called
disassortative. We refer to Newman [11] for exact definitions of these quantities, but the
essence of them are that the clustering coefficient c equals the probability that two nodes
that are connected by a third node, are connected directly, and the degree correlation ρ
is the correlation between the degrees of the nodes of a randomly selected edge.

Unfortunately, the present model (or the modified model) cannot produce networks having
positive clustering nor any degree correlation asymptotically. That c = 0 asymptotically
follows from the fact that each edges is connected between edges independently of other
edges present in the network, implying that there is no increased chance that edges be-
tween nodes connected by a third node will appear. That ρ = 0 follows because each
node that creates an edge, selects its neighbour edge in the same way independent of its
social index and present degree.

In the Section 6 we discuss some possible extensions which might allow for positive clus-
tering (c > 0) and degree correlation different from 0 (ρ 6= 0).

5 Examples and illustrations

In the present section we compute the degree distribution numerically for some particular
parameter choices. This distribution is of asymptotic nature and it is hence of practical
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interest to try and quantify how large t must be in order for the asymptotics to be valid.
In order to do this we compare simulations of the network model and their associated
empirical degree distributions with the numerical evaluations of the theoretical degree
distribution. We also compare the original model, see Section 2.1, with the extended
model, see Section 2.2.

Throughout this section we will consider the following set of parameter values: λ =
1.55/80, µ = 1/80, α = 1 and β = 1/2. These parameter values can be given some
sociological justification. The choice of µ = 1/80 corresponds to that the average life-
length of an individual is 80 years, and the choice of λ gives us a doubling time for the
node population which is approximately 100 years. The choice of α is however somewhat
more arbitrary but it corresponds to that each individual makes roughly one new friend
per year, and the value of β corresponds to that each such friendship on average lasts for
two years. Moreover, we have restricted all examples to the following distributions for the
social indices:

(i) S ≡ 1,

(ii) S ∼ Exp(1),

(iii) S ∼ Γ(1/2, 1/2),

(iv) S ∼ Pareto(1/2, 2).

In common for all these distributions are that µS = 1. Further, they are ordered in
increasing variance with the Pareto distribution having infinite variance.

5.1 Numerical evaluation of the degree distribution

The degree distributions for the original model and the modified model are both of mixed
Poisson type. We have already seen that the two distributions have the same mean, but
the variance is greater for the latter model. In Figure 1 and 2 we have used the above
mentioned parameter values and evaluated the theoretical degree distribution numerically
for each of the four different choices of distributions of social indices (i) − (iv).

For these particular parameter values we see that the tails of the degree distribution for
both models are heaviest when the social indices follows the Pareto distribution. It is
however worth noting that in the original model the probability of having degrees of ≈ 30
is still higher when S is gamma distributed. For the modified model this seems to be
true for degrees up to ≈ 50, but due to instability of the numerical integration for degrees
larger than ≈ 30 these results should be treated with some caution.

5.2 Simulations of dynamic network

In our simulations we let the network develop until the first time point when there are
1000 nodes alive starting from a single node with no edges. This corresponds to that the
node population has evolved for approximately 1000 years. This procedure has then been
repeated 50 times for each of the distributions (i) − (iv) and with the above discussed
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Figure 1: The degree distribution pk = P (XS(A) = k) for the original model (numerically
evaluated) for four different choices of distributions for the social indices: S ≡ 1 (“dia-
monds”), S ∼ Exp(1) (“triangles”), S ∼ Γ(1/2, 1/2) (“squares”) and S ∼ Pareto(1/2, 2)
(“stars”). The top figure are for small k, the middle for intermediate k and the bottom
for large k (note the different scales on the y-axis).
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Figure 2: The degree distribution pk = P (XS(A) = k) for the modified model (numerically
evaluated) for four different choices of distributions for the social indices: S ≡ 1 (“dia-
monds”), S ∼ Exp(1) (“triangles”), S ∼ Γ(1/2, 1/2) (“squares”) and S ∼ Pareto(1/2, 2)
(“stars”). The top figure are for small k and the bottom figure are for large k (note the
different scales on the y-axis).
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Table 1: Empirical mean and variance for the original model
Distribution Y (t) = 1000 Y (t) = ∞
S ≡ 1, E[XS(A)] ≈ 3.7437 3.7603

V(XS(A)) ≈ 4.0471 4.0226
S ∼ Exp(1), E[XS(A)] ≈ 3.7596 3.7603

V(XS(A)) ≈ 7.6113 7.6231
S ∼ Γ(1/2, 2), E[XS(A)] ≈ 3.7518 3.7603

V(XS(A)) ≈ 11.1136 11.2236
S ∼ Pareto(1/2, 2), E[XS(A)] ≈ 3.7165 3.7603

V(XS(A)) ≈ 12.1321 ∞

Table 2: Empirical mean and variance for the modified model
Distribution Y (t) = 1000 Y (t) = ∞
S ≡ 1, E[XS(A)] ≈ 3.7560 3.7603

V(XS(A)) ≈ 4.0364 4.0226
S ∼ Exp(1), E[XS(A)] ≈ 3.7637 3.7603

V(XS(A)) ≈ 18.4698 18.4246
S ∼ Γ(1/2, 2), E[XS(A)] ≈ 3.7757 3.7603

V(XS(A)) ≈ 34.4582 32.8267
S ∼ Pareto(1/2, 2), E[XS(A)] ≈ 3.6579 3.7603

V(XS(A)) ≈ 173.2699 ∞

parameter values. The resulting empirical means and variances for both models are tab-
ulated in Table 1 and 2. It is worth noting that the empirical means and variances are in
good agreement with the theoretical ones except for the situation when S ∼ Pareto. In
this situation the theoretical variance of S, and hence the theoretical variance of the de-
gree distribution, is infinite. But, as can be seen from Table 1, the difference between the
variance when S follows a gamma distribution and when S follows a Pareto distribution
is marginal for the original model. This is however not the case for the modified model.
This behaviour seems to be an artefact of the finiteness of the node population and the
weight of the tail of the degree distribution.

In Figure 3 we have plotted the empirical degree distribution for one simulated realization
with the theoretical distribution for the case S ∼ Pareto(1/2, 2) (other distributions show
similar result), both for the original and the modified model. We can again see that the
agreement between the simulations and the numerically evaluated theoretical results are
good for both models.

In the Appendix the number of multiple edges and loops is analysed. It is shown that the
fraction of such edges will be small if E[S] < ∞ in the original model, and if E[S2] < ∞
in the modified model. These results are confirmed by simulations where the number
of loops and multiple edges is small in all cases except for the modified model when
S ∼ Pareto(1/2, 2). To illustrate this we picked one ”typical” simulation of both the
original model and the modified model for the case that S ∼ Pareto(1/2, 2). The original
model had 4 loops and 24 multiple edges out of 1738 edges. The fraction of multiple edges
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Figure 3: Comparison between the empirical degree distribution (“circles”) and the cor-
responding theoretically evaluated one (“stars”) for S ∼ Pareto(1/2, 2); top figure shows
the original model and the bottom figure shows the modified model.
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and loops is hence 1.6%. The modified model has a markedly higher fraction: there were
50 loops and 366 multiple edges out of 1908 edges in total, giving 21.8% of the edges being
multiple or loops. This hence agrees well with the asymptotic results since E[S] < ∞ but
E[S2] = ∞ for the Pareto(1/2, 2)-distribution. One can also remark that out of the 50
loops 48 of these were multiple loops connected to the same node, a node with degree
306. The other S-distributions were also examined and showed small fractions of loops
and multiple edges, as suggested by the theoretical results.

6 Discussion

The present model is a simple continuous time Markovian network model in which nodes
give birth to new nodes and old nodes die, and in which edges between existing nodes are
created and disappear. A special feature of the model is that, at birth, nodes are given
i.i.d. social indices, and by choosing an appropriate distribution for these social indices,
the asymptotic degree is rather flexible.

It would be interesting to extend the present model to allow also for positive clustering
and/or having degree correlation different from 0. One possibility for obtaining positive
clustering would be to let newborn individuals (i.e. nodes) ”inherit” edges from the mother
as well as having a node from the mother, thus creating triangles at birth. This is a
variation of a mechanism described in [7]. A perhaps more elegant way of creating a
positive fraction of triangles would be to add an extra rate for creating edges between
nodes connected by a third node. However, we believe this second model is harder to
analyse. As regards to degree correlation this can be achieved by letting the probability

for a node to select a given neighbour to depend not only on the social index of the
neighbour, but also on the social index of the node itself. If this probability is given by
p(s, s′) for some kernel function, a kernel with high probability mass near the diagonal
should produce positive degree correlation (assortativity) whereas high probability mass
on the off-diagonal should result in negative degree correlation (disassortativity). This
might be done using similar arguments as in Bollobás et al. [3] and [4]

As mentioned in the Section 2.3 a special case of the original formulation of this model
given in Section 2.1 has been treated in Turova [13, 14, 15, 16]. The model treated by
Turova corresponds to that µ in our model is set to 0 and that S ≡ 1. Among other
things, Turova analyse the size of the giant component and derive conditions for when it
may emerge. In [16] the methods of [3] are discussed, and a continuation of the present
work may hence be to see to what extent the methods of Turova and [3] are applicable to
the current situation.
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Appendix: Multiple edges and loops

As previously mentioned the degree of a node, and hence also the degree distribution,
may include multiple edges and/or loops. We now show that the fraction of such edges is
negligible under certain conditions on the social index distribution FS, thus making the
degree distribution excluding such edges, which is a more reasonable quantity, asymptot-
ically the same. As a consequence, if the model is modified such that multiple edges and
loops are not allowed, this model will have the same asymptotic degree distribution.

The original model

We start with the original model in which neighbours are chosen uniformly. Pick t and
consider the next edge to appear in the dynamic network. We now show that the proba-
bility that this edge will be a multiple edge or a loop converges to 0 as t tends to infinity
under a certain moment condition. This implies that the fraction of edges at 2t that are
loops or multiple will tend to 0 in probability since nearly all edges at 2t will have been
created after t, thus giving the desired result.

First we condition on Y (t), the number of nodes alive at t, and their social indices {Sj}.
Then we condition on the node i that creates the next edge, the probability of this
event being equal to Si/

∑

j Sj . The degree Di of this node i has distribution XSi
(A)

described in the beginning of Section 3.2, a mixed Poisson distribution. This distribution
is stochastically smaller than a Poisson distribution with mean parameter α(Si+E[S])/(β+
µ), since the random component 1 − exp(−(β + µ)A) is always smaller than 1. Given
the degree Di, the probability that the next edge is a multiple edge or a loop is at most
(Di +1)/Y (t) (with equality if there are no loops or multiple edges from i). If M denotes
the event that the next edge is a multiple edge or loop this gives the following:

P(M |{Sj}, {Dj}, Y (t)) =

Y (t)
∑

i=1

P(M |{Sj}, {Dj}, Y (t), i selected)P(i selected|{Sj}, {Dj}, Y (t))

≤

Y (t)
∑

i=1

Di + 1

Y (t)

Si
∑Y (t)

j=1 Sj

.

By taking expectations we then get that

P(M) ≤ E





Y (t)
∑

i=1

Di + 1

Y (t)

Si
∑Y (t)

j=1 Sj





= E



E





Y (t)
∑

i=1

Di + 1

Y (t)

Si
∑Y (t)

j=1 Sj

∣

∣

∣

∣

∣

{Sj}, Y (t)









≤ E





Y (t)
∑

i=1

Si
∑Y (t)

j=1 Sj

α(Si + E[S])/(β + µ) + 1

Y (t)





= E

[

1

Y (t)

(

c1

∑Y (t)
i=1 S2

i
∑Y (t)

j=1 Sj

+ c2

)]

,
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where c1 and c2 are the appropriate constants.

We now claim that this tends to 0 as t (and Y (t)) tends to infinity if E[S] < ∞. To begin
with the first term c2/Y (t) will clearly tend to 0, since Y (t) → ∞ as t → ∞. We rewrite
the expression:

E

[

1

Y (t)

∑Y (t)
i=1 S2

i
∑Y (t)

j=1 Sj

]

= E





1

Y (t)

Y (t)
∑

i=1

E

[

S2
i

∑Y (t)
j=1 Sj

∣

∣

∣

∣

∣

Y (t)

]



 = E

[

S2
1

∑Y (t)
j=1 Sj

]

,

where the last equality is true since all terms in the sum to the left are identically dis-
tributed and hence have the same mean. If we introduce the sequence of random variables

Zn :=
S2

1
∑n

j=1 Sj

=
S2

1

S1 +
∑n

j=2 Sj

we hence want to show that E[ZY (t)] → 0. But, since Y (t) → ∞ as t → ∞ we only
need to show that Zn → Z as n → ∞ in order for ZY (t) → Z to hold. Thus, we want
to show that Zn → 0 and then use dominated convergence to obtain the desired result.
First we observe that Z1 = S1 so E[Z1] = E[S1] = µS < ∞ by assumption. Second, since
all Sj’s are positive we have that Zn is decreasing. Finally, since S > 0 E[S] > 0 which
in turn implies that

∑n
j=2 Sj will be close to nµS. This together with the fact that S1 is

bounded in probability (like any finite random variable) implies that Zn will tend to 0 in
probability, and we can hence use dominated convergence. This completes the proof that
the fraction of edges that are loops or multiple edges is negligible for the original model
if E[S] < ∞.

The modified model

We now show the same type of result for the modified model, but now we also have to
assume that E[S2] < ∞ for the result to be true. We can use the same type of reasoning
as for the original model, but because new edges are attached to nodes proportionally
to their social indices in the modified model we need to keep track of Vi, the indices of
node i’s neighbours. It is important to note that |Vi| ≤d Di, since Di is the total number
of edges (which may be multiple). Hence, the new edge created by i will be multiple if
any of the vertices with indices in Vi is selected. Along the lines of the arguments for the
original model we hence get

P(M |{Sj}, {Vj}, Y (t)) =

Y (t)
∑

i=1

P(M |{Sj}, {Vj}, Y (t), i selected)P(i selected|{Sj}, {Vj}, Y (t))

=

Y (t)
∑

i=1

(

Si
∑Y (t)

j=1 Sj

+
∑

u∈Vi

Su
∑Y (t)

j=1 Sj

)

Si
∑Y (t)

j=1 Sj

=

Y (t)
∑

i=1

S2
i

(

∑Y (t)
j=1 Sj

)2 +

Y (t)
∑

i=1

Si
∑Y (t)

j=1 Sj

∑

u∈Vi

Su
∑Y (t)

j=1 Sj

.
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But, the social indices amongst the neighbours of node i will typically be larger than a
randomly picked social index because neighbours are selected with a probability propor-
tional to their social index. In fact, the probability that a neighbour node has social index
(close to) s is proportional to sfS(s) (assuming S has a continuous distribution). This
is true since the probability of selecting a given individual having social index s is pro-
portional to s and the fraction of individuals having such social indices is proportional to
fS(s). This implies that the neighbours in Vi will have independent social indices {S̃i,u},
all with density f̃S defined as f̃S(s) = sfS(s)/

∫

tfS(t)dt (i.e. the size biased distribution
of S). This together with that |Vi| ≤ Di for all i gives us

P(M) = E







Y (t)
∑

i=1

S2
i

(

∑Y (t)
j=1 Sj

)2 +

Y (t)
∑

i=1

Si
∑Y (t)

j=1 Sj

∑

u∈Vi

Su
∑Y (t)

j=1 Sj







≤ E







∑Y (t)
i=1 S2

i
(

∑Y (t)
j=1 Sj

)2






+ E







Y (t)
∑

i=1

Si

∑Di

u=1 S̃i,u
(

∑Y (t)
j=1 Sj

)2






.

By using the independence between {S̃i,u} and the other random variables together with
that E[Di|Si] = c3Si + c4, for some constants c3 and c4, one can after some simplifications
obtain

P(M) ≤ E







∑Y (t)
i=1 Si

(

∑Y (t)
j=1 Sj

)2







(

1 + c3E[S̃]
)

+ c4E[S̃]E

[

1
∑Y (t)

j=1 Sj

]

.

By noting that the expressions inside of the first and last expectations are bounded from
above by 1, a similar dominated convergence argument as that which was used for the
original model can be applied, implying that P(M) → 0 as t → ∞ if E[S̃] = E[S2]/µ2

S < ∞.
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