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"...friends who suggested names more olorful than Bootstrap, inluding SwissArmy Knife, Meat Axe, Swan-Dive, Jak-Rabbit, and my personal favorite, theShotgun, whih, to paraphrase Tukey, "an blow the head o� any problem if thestatistiian an stand the resulting mess"." Bradley Efron, 1979.Bootstrap Methods: Another Look at the Jakknife.The Annals of Statistis, vol. 7.
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1 IntrodutionOne item appearing on the liability side of the non-life insurane ompany's balane sheetis the provision for outstanding laims � heneforth the laims reserve. The insuraneompany has put aside this amount for the future ompensation of poliy holders whih isexpeted on the business written to date. It is indeed important that the laims reserve isarefully alulated; if it is underestimated the insurane ompany will not be able to ful�llits undertakings and if it is overestimated the insurane ompany unneessarily holds theexess apital instead of using it for other purposes, e.g. for investments with higher riskand, hene, potentially higher return. Moreover, sine the laims reserve usually onstitutesa large share of the �rm's total holdings even small misalulations an imply onsiderableamounts of money.On the basis of historial data the atuary an obtain estimates � or rather preditions �of the expeted outstanding laims and the laims reserve. However, due e.g. to poor dataquality, or sometimes even lak of data, unexpetedly large laim payments, hanges inin�ation regime or in the disount rate and even legal and politial fators, the unertaintyof the atuary's best estimate an be quite high. Obviously, there is a risk that the laimsreserve will not su�e to pay all laims in the end or, in the one year perspetive, thatwe get a negative run-o� result in the inome statement the next aounting year. Inorder to monitor and manage this risk it is important that the atuary's best estimate isomplemented by some measure of variability whih an be followed up by the insuraneompany.The literature provides an abundane of methods for the atuary to hoose amongst forreserving purposes, see e.g. the Claims Reserving Manual by the Faulty and Instituteof Atuaries (1997). The reserving methods used in pratie are frequently deterministi.For instane, the laims reserve is often obtained aording to ase estimation of individuallaims by laims handlers. A popular statistial method is the hain-ladder method, see



Taylor (2000), whih originally was deterministi. Many ad ho adjustments are applied aswell, e.g. the projetion of payments into the future an sometimes be done by extrapolatingby eye. Hene, there is a long tradition of atuaries alulating reserve estimates withoutexpliit referene to a stohasti model.However, stohasti models are needed in order to assess the variability of the laimsreserve. The standard statistial approah would be to �rst speify a model, then �nd anestimate of the outstanding laims under that model, e.g. by maximum likelihood, and�nally the model ould be used to �nd the preision of the estimate. As a ompromisebetween this approah and the atuary's way of working without referene to a modelthe objet of the researh area alled stohasti laims reserving has mostly been to �rstonstrut a model and a method that produes the atuary's best estimate and then usethis model in order to assess the unertainty of the estimate. In partiular the objet ofseveral papers has been to �nd a model under whih the best estimate is the one givenby the hain-ladder method, see e.g. Verrall (2000), Mak & Venter (2000) and Verrall &England (2000).One the model has been hosen the variability of the laims reserve an be obtainedeither analytially or by simulation. For instane, the mean squared error of preditionfor the hain-ladder method was �rst alulated analytially by Mak (1993). The reserveestimators are often omplex funtions of the observations and, hene, it might be di�ultto derive analytial expressions. Therefore bootstrapping beame a popular method whenit was introdued for the hain-ladder by England & Verrall (1999) and England (2002).However, sine the existing bootstrap tehniques adopt the statistial assumptions in theliterature, they have been onstruted to give a measure of the preision of the atuary'sbest estimate post festum, i.e. without the possibility of hanging the estimate itselfThe purpose of Paper I is to develop a bootstrap tehnique whih an be used in orderto assess the variability of other development fator methods than the hain-ladder. Thisbootstrap tehnique is then extended in Paper II to be appliable for the separation method,



see Taylor (1977).2 Claims reserving2.1 DataLarge insurane ompanies often have quite extensive data bases with historial informationon inurred laims. Suh information an inlude the numbers of laims reported andsettled, the origin year of the events, the paid amounts, the year of the payments and aseestimates. The atuary an regularly analyze the data in order to predit the outstandinglaims and, hene, the laims reserve.The analysis is typially done in the following way. To begin with, the atuary separatesthe data into risk homogenous groups suh as lines of business, e.g. Motor, Property andLiability. A �ner segmentation an be applied if the groups or the subgroups ontain asu�ient number of observations. The atuary might also hoose to divide some groupaording to the severity of the laims. The large laims an then be reserved aording toase estimates while the subgroup onsisting of smaller, but frequently ourring, laimsan be reserved by some statistial method.When the risk lassi�ation is established the atuary usually aggregates the data withinthe groups into development triangles. We now onsider suh an inremental triangleof paid laims {Cij; i, j ∈ ∇}, where the business has been observed during t years, i.e.
∇ = {i = 0, . . . , t; j = 0, . . . , t−i}. The su�xes i and j of the paid laims refer to the originyear and the payment year, respetively, see Table 2.1. In addition, the su�x k = i + j isused for the alendar years, i.e. the diagonals of ∇.If we assume that the laims are settled within the t observed years the atuary's goal isto predit the sum of the delayed laim amounts in the lower, unobserved future triangle
{Cij; i, j ∈ ∆}, where ∆ = {i = 1, . . . , t; j = t − i + 1, . . . , t}, see Table 2.2. We write



Development yearAident year 0 1 2 · · · t − 1 t
0 C00 C01 C02 · · · C0,t−1 C0,t

1 C10 C11 C12 · · · C1,t−1

2 C20 C21 C22 · · ·... ... ... ...
t − 1 Ct−1,0 Ct−1,1

t Ct,0Table 2.1: The triangle ∇ of observed inremental payments.
R =

∑

∆ Cij for this sum, whih is the outstanding laims for whih the insurane ompanymust hold a reserve. Development yearAident year 0 1 2 · · · t − 1 t
0
1 C1,t

2 C2,t−1 C2,t... ... ...
t − 1 Ct−1,2 · · · Ct−1,t−1 Ct−1,t

t Ct,1 Ct,2 · · · Ct,t−1 Ct,tTable 2.2: The triangle ∆ of unobserved future laim osts.Moreover, we assume that the atuary an sum up a triangle of inremental observations ofthe numbers of laims {Nij ; i, j ∈ ∇} orresponding to the same portfolio as in Table 2.1,i.e. the observations in Table 2.3. The ultimate number of laims relating to the period oforigin year i is then
Ni =

∑

j∈∇i

Nij +
∑

j∈∆i

Nij , (2.1)where ∇i and ∆i denotes the rows orresponding to origin year i in the upper triangle ∇and the lower triangle ∆, respetively.When the paid amounts are presented as in Table 2.1 the payment patterns for the origin



Development yearAident year 0 1 2 · · · t − 1 t
0 N00 N01 N02 · · · N0,t−1 N0,t

1 N10 N11 N12 · · · N1,t−1

2 N20 N21 N22 · · ·... ... ... ...
t − 1 Nt−1,0 Nt−1,1

t Nt,0Table 2.3: The triangle ∇ of observed inremental numbers of reported laims.years emerge along the rows, while the olumns provide the pattern for the aident years.Moreover, the diagonals show alendar year e�ets. Hene, regularities as well as irregular-ities beome apparent to the atuary. For instane, ourrene of growth or run-o� of thebusiness, laims in�ation or rare large laims an usually be deteted in the developmenttriangle and the atuary an then deide how to deal with these issues. If the businessis growing or if it is in run-o� the atuary an disregard the earliest origin years whihhave another payment pattern than the later ones. In ase of in�ation the payments anbe adjusted to urrent value by some relevant index or a reserving method whih modelsthe in�ation an be hosen. Claims originating from large events and atastrophes an beexluded from the triangle and treated separately.Note that if observations are missing for some years the data in Table 2.1 will have anothershape. Heneforth we assume that the data has the shape of a omplete triangle. However,despite a omplete triangle the information an still be inadequate if the business has notbeen observed during a su�ient time period. This is usually a problem for long-tailedlines of business, suh as Motor TPL, where it an take several deades to settle the laims.We then have no origin year with �nalized laims in Table 2.1. When needed, the modelan be extended so that the unknown laims extend beyond t in a tail of length u, i.e. overthe development years t, t + 1, . . . , t + u.It is worth bearing in mind that sometimes the data quality may be inreased and the



reserving proess may be re�ned, but only at a ost. In pratise the amount of time andthe ost of improving the proesses have to be related to the bene�ts, but even if fasterand heaper approximations are hosen it is still important that the atuary is aware ofe.g. imperfetions in the data and how they a�et the results.2.2 The hain-ladder and other age-to-age development fator meth-odsThe hain-ladder method is probably the most popular reserving tehnique in pratise.Aording to Taylor (2000) its lineage an be traed to the mid-60's and the name shouldrefer to the haining of a sequene of age-to-age development fators into a ladder of fa-tors by whih one an limb from the observations to date to the predited ultimate laimost. The hain-ladder was originally deterministi, but in order to assess the variabilityof the estimate it has developed into a stohasti method. Taylor (2000) presents di�e-rent derivations of the hain-ladder proedure; one of them is deterministi while anotherone is stohasti and based on the assumption that the inremental observations are Pois-son distributed. Verrall (2000) provides several models whih under maximum likelihoodestimation reprodue the hain-ladder estimate.The hain-ladder method operates on umulative observations
Aij =

j
∑

ℓ=0

Xiℓ (2.2)rather than inremental observations Xij , where Xij an be e.g. paid laims Cij or thenumbers of laims Nij . Let νij = E(Aij) and ξij = E(Xij). Development fators gj arethen estimated for j = 0, 1, . . . , t − 1 by
ĝj =

∑t−j−1

i=0 Ai,j+1
∑t−j−1

i=0 Aij

(2.3)yielding the projetions
ν̂ij = Ai,t−i ĝt−i ĝt−i+1 . . . ĝj−1 (2.4)



and
ξ̂i,j = ν̂i,j − ν̂i,j−1 (2.5)for ∆.The atuary might want to make some ad ho adjustments of the hain-ladder method inorder to deal with the trends and ourrenes of the in�uenes disussed in Setion 2.1. Thereserving method is then usually referred to as an age-to-age development fator methodand sine it will be unique for the partiular data set under analysis it is impossible todesribe it in general terms. However, Paper I provides the following example of a proedurethat might �t our sheme when a development triangle of paid laims is available.We denote the umulative laims by Dij =

∑j
ℓ=1 Ciℓ and let µij = E(Dij).1. The hain-ladder method is used to produe development fators f̂j that are estimatesof fj = µi,j+1/µij, perhaps after exluding the oldest observations and/or sole outliersin ∇.2. For 3 < j < t, say, the f̂j 's are smoothed by some method, say exponential smoothing,i.e. they are replaed by estimates obtained from a linear regression of log(f̂j − 1)on j. By extrapolation in the linear regression, this also yields f̂j for the tail j =

t, t +1 . . . , t+ u. The original f̂j 's are kept for j ≤ 3 and the smoothed ones used forall j > 3.3. Now estimates µ̂ij for ∆ are omputed as in the standard hain-ladder method.4. Estimates of µ̂ij for ∇ are obtained by the proess of bakwards reursion desribedin England & Verrall (1999).5. Finally, the obtained laim values may be disounted by some interest rate urve, orin�ated by assumed laims in�ation. The latter of ourse requires that the observa-tions where realulated to �xed pries in the �rst plae.



2.3 The separation methodIn the Enylopedia of Atuarial Siene (2004) one an read that the separation methodwas developed by Taylor (1977) while he was employed at the Department of Trade, thesupervisory authority in the UK. During the the mid-70's the in�ation was high and un-stable and the Department of Trade had been experimenting with the in�ation-adjustedversion of the hain-ladder, see e.g. Taylor (2000). However, the spei�ation of the futurein�ation aused problems, sine it was extremely ontroversial for a supervisory tool. Asan attempt to foreast the in�ation mehanially Taylor (1977) onstruted the separa-tion method on the basis of a tehnique introdued in the reinsurane ontext by Verbeek(1972).Paper II provides a desription of the separation method at a bit more detailed level thanthe one given in Taylor (1977). The original assumption underlying the method is
E
(

Cij

Ni

)

= rj λk , (2.6)where rj is a parameter relating to the payment pattern for the development years, while
λk is onsidered as an index that relates to the alendar year k during whih the laimsare paid. In this way the separation method separates the laim delay distribution fromin�uenes a�eting the alendar years, e.g. laims in�ation. Furthermore, it is assumedthat the laims are fully paid by year t and we then have the onstraint

t
∑

j=0

rj = 1. (2.7)If Ni is estimated separately, e.g. by the hain-ladder if a triangle of laim ounts is pro-vided, it an be treated as known. Consequently, estimates r̂j and λ̂k an be obtainedusing the observed values
sij =

Cij

N̂i

, (2.8)and the method of moments equations
sk0 + sk−1,1 + . . . + s0k = (r̂0 + . . . + r̂k) λ̂k , k = 0, . . . , t (2.9)



for the diagonals of ∇ and
s0j + s1j + . . . + st−j,j = (λ̂j + . . . + λ̂t) r̂j , j = 0, . . . , t (2.10)for the olumns of ∇.Taylor (1977) shows that the equations (2.9) - (2.10) have a unique solution under (2.7)whih an be obtained reursively. This yields

λ̂k =

∑k
i=0 si,k−i

1 −
∑t

j=k+1 r̂j

, k = 0, . . . , t (2.11)and
r̂j =

∑t−j
i=0 sij

∑t
k=j λ̂k

, j = 0, . . . , t , (2.12)where ∑t
j=k+1 r̂j is interpreted as zero when k = t.Estimates m̂ij of the expetations mij = E(Cij) for ells in ∇ are now given by

m̂ij = N̂i r̂j λ̂k , (2.13)but in order to obtain the estimates of ∆ it remains to predit λk for t + 1 ≤ k ≤ 2 t e.g.by extrapolation.3 Bootstrapping for laims reserve unertainty3.1 Bootstrap tehniques for the hain-ladder in the literatureWhen England & Verrall (1999) and England (2002) introdued bootstrapping in laimsreserving it soon beame a popular method in pratise as well as in the literature. However,even though bootstrapping has been hailed as a �exible tool to �nd the preision of theomplex reserve estimators it has developed to be the opposite in the literature. Instead of�nding general tehniques where the atuary an hange and adjust the reserving method,the objet of the researh area has been to �nd tehniques for, in partiular, the hain-ladder. In pratise this ould be quite frustrating sine the atuary then has to measure the



unertainty of her estimate by a bootstrap proedure �tted for hain-ladder even thoughshe atually has used some other reserving method to alulate the laims reserve.The bootstrap proedures in the literature are based on the resampling of residuals, seee.g. England & Verrall (1999), England (2002) and Pinheiro et al. (2003). In order tode�ne the residuals some model assumption has to be adopted for the observations. Theommon hoie is to use a generalized linear model (GLM) with an over-dispersed Poissondistribution (ODP) and a logarithmi link funtion for the inremental observations ∇Cin Table 2.1, i.e.
E(Cij) = mij and Var(Cij) = φmij

log(mij) = ηij

ηij = c + αi + βj, α1 = β1 = 0 . (3.1)The reason of the frequent use of this partiular GLM is that Renshaw & Verrall (1998)have shown that it produes the same expeted laims by maximum likelihood estimationof the parameters in the GLM as the hain-ladder method, provided that the olumnsums of the triangle are positive. Thus, the expetations of the laims an be obtainedeither by maximum likelihood estimation or by the hain-ladder, while the varianes, whihare needed for the residuals, are given by the assumption of the GLM. However, if thebootstrap proedure is onstruted aording to this partiular model it only holds for thehain-ladder and, hene, the reserving algorithm annot be hanged.In ontrast to England & Verrall (1999) and England (2002), Pinheiro et al. (2003) adoptsthe model in (3.1) together with the plug-in-priniple, see Efron & Tibshirani (1993), and,hene, the alulation of the estimators in the real world is repeated on the pseudo-data inthe bootstrap world. This opens up for extended bootstrap proedures appliable to otherreserving algorithms than the hain-ladder and therefore we fous on Pinheiro's method.



3.2 Paper I: Non-parametri and parametri bootstrap tehniquesfor arbitrary age-to-age development fator methods in stohas-ti laims reservingThe purpose of this paper is to �nd a reasonable model that �ts the data instead of using amodel whih happens to reprodue a partiular estimate for the bootstrap proedure. Wetherefore onsider the log-additive assumption in (3.1) as unneessary strong, but besidesof that we ontinue to follow England & Verrall (1999), England (2002) and Pinheiro et al.(2003) assuming independent laims Cij and a variane funtion in terms of the means, i.e.
E(Cij) = mij and Var(Cij) = φ mp

ij (3.2)for some p > 0. We let the atuary's age-to-age development fator method impliitlyspeify the struture of all mij and produe estimates of m̂ij . Then, if the non-parametribootstrap approah of Pinheiro et al. (2003) is used, it only remains to speify the varianefuntion. We suggest that p is estimated for the partiular data set under analysis and weprovide a simple and straightforward way of doing it. Furthermore, sine the standardizedpredition errors in Pinheiro et al. (2003) sometimes are unde�ned in the bootstrap worldwe also investigate a bootstrap proedure whih is based on the unstandardized preditionerrors.As a omplement to the non-parametri preditive bootstrap we de�ne a parametri ver-sion of Pinheiro's approah that requires more distributional assumptions. Hene, in-stead of resampling the residuals we sample pseudo-observations from a full distribution
F = F (mij, φ mp

ij) onsistently with (3.2).3.3 Paper II: Bootstrapping the separation method in laims re-servingIn this paper we adopt the parametri preditive bootstrap proedure in Paper I andextend it in order to handle ∇N as well as ∇C for the separation method. To this end,



we introdue a parametri framework for the separation method where laim ounts arePoisson distributed and laim amounts are gamma distributed onditionally on the ultimatelaim ounts. This enables joint resampling of laim ounts and laim amounts.Hene, we let nij = E(Nij) and assume
Nij ∈ Po(nij) (3.3)and

Cij |Ni ∈ Γ

(

Ni

φ
, rj λk φ

)

. (3.4)We then have a model for the laim amounts where
E(Cij|Ni) = Ni rj λk , (3.5)whih is onsistent with the separation method assumption (2.6) when Ni is estimatedseparately. Moreover, we have

V ar(Cij|Ni) = φ Ni (rj λk)
2 . (3.6)Aording to the parametri preditive bootstrap proedure in Paper I and the plug-in-priniple we then let the separation method produe estimates of rj and λk in the bootstrapworld as in the real world.The separation model is based on the assumption that Ni is onsidered as known at themoment when the reserving is being done, but in (3.3) Ni is a random variable. In orderto get a view of how muh unertainty Ni ontributes to the preditive distribution of thelaims reserve we also onsider the speial ase when Ni is treated as deterministi in (3.4),i.e. N̂i ≡ Ni.4 Reserve risk in a business modelSo far the insurane business as well as the authorities' supervision have been based ona general onservativeness regarding the liabilities to the poliy holders. There are laws



that ditate how muh apital the �rms must hold and how it may be invested, see e.g.Försäkringsrörelselagen by Sveriges Riksdag (1982) for the regulations applied in Swedentoday. However, the urrent regulations rather onsider the volume than the risk of thebusiness in the alulation of the required amount of apital.In order to apture the individual harateristis of the �rms the regulations are beingmodernized within EU. Aording to the Solveny II Draft Framework Diretive by EUCommission (2007), the required apital will instead be alulated by quantifying the risksof the �rm under market-like assumptions. The authorities will provide a standard formulawhih onsider the major risks that an insurane ompany is exposed to, but own internalmodels will also be allowed. For instane, the �rms will have to quantify premium andreserve risk, atastrophe risk, market risks suh as e.g. equity risk, interest rate risk andurreny risk, ounterparty default risk and operational risk. For Solveny II purposes theinternal models will have to be stohasti, a one-year time perspetive should be adoptedand the risks should be measured aording to a 99.5% on�dene level. Furthermore, thepurpose of an internal model is not only to be a supervisory tool - it has to be used in thebusiness as well in order to show its trustworthiness. Potential areas of use ould be e.g.business planning, investment strategies, reinsurane purhase and priing.The analysis of the business by suh an internal simulation model is often referred to asDynami Finanial Analysis (DFA) in general insurane. Kaufmann et al. (2001) gives anintrodution to DFA and also provides an example of a basi model.Thus, regarding the reserve risk for Solveny II purposes we have to model the amountof apital that the insurane ompany must hold in order to be able to handle a negativerun-o� result the next aounting year with 99.5% probability. The one year run-o� resultis de�ned as the di�erene between the opening reserve at the beginning of the year andthe sum of payments during the year and the losing reserve of the same portfolio at theend of the year. Thus, if we at the end of year t want to make preditions of the run-o�result at the end of the unobserved year t+1, and if we do not add neither a new aident



year nor a new development year, we have to �nd the preditive distribution of
R̂t − (

t
∑

i=2

Ci,t+2−i + R̂t+1) , (4.1)where R̂t and R̂t+1 are the estimated reserves at the end of year t and t + 1 respetively.Paper I brie�y disusses how the preditive distribution of the one year reserve risk an beobtained by bootstrapping, while Ohlsson & Lauzeningks (2008) provides more details forthe one year reserve risk as well as the one year premium risk.5 Disussion5.1 ConlusionsIn Paper I the parametri bootstrap proedure is numerially ompared to Pinheiro's non-parametri proedure for the hain-ladder. The study shows that the two approahes givealmost the same results. Moreover, in Paper II the parametri bootstrap proedure for theseparation method is numerially ompared to a parametri proedure for the hain-ladderfor di�erent assumptions of the future in�ation rate. The study shows that the result ismore a�eted by the assumption of the future laims in�ation rate than the hoie betweenthe hain-ladder and the separation method.The numerial analysis has revealed that the variability of the estimation error, when hain-ladder as well as the separation method is used, is muh larger than the variability of theproess error. Furthermore, the unstandardized bootstrap results in lower perentiles thanthe standardized one, seemingly due to the fat that the standardization makes the distri-bution more symmetri than the unstandardized ase, where the preditive distribution isskewed to the left.



5.2 Future researhSeveral interesting topis for future researh have been disovered during the developmentof the bootstrap proedures desribed in Paper I - II. For instane, estimation of thedispersion parameter p for the variane funtion and the feasible use of non-integer valuesshould be analyzed further, the modeling of the future in�ation rate of the separationmethod ould be re�ned in order to improve the bootstrap proedure, the relative sizeof the estimation and proess errors is indeed an interesting topi to explore and thedouble bootstrap, whih is an improved version of the standardized bootstrap, should beinvestigated numerially. Furthermore, the bootstrap proedure ould be extended formodels whih expliitly take into onsideration the reporting year as well as the paymentyear of the laims, see e.g. Jessen et al. (2007). In the future it is also important toprovide a guideline of how the atuary should hoose between the standardized and theunstandardized bootstrap proedure.
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1 INTRODUCTION 21 IntrodutionThe provision for outstanding laims � heneforth the laims reserve � is a major ontributorto the total risk of an insurane ompany, espeially for long-tailed lines of business. In orderto estimate the risk that the provisions will not su�e to pay all laims in the end, theatuary's best estimate of the outstanding laims needs to be omplemented by its preditivedistribution; this is the ultimo perspetive. For solveny ontrol and risk management withDynami Finanial Analysis we are also interested in a shorter period, say the one year risk.The reserving risk is then the risk of a negative run-o� result, due to unexpetedly large laimspayments, hanges in in�ation regime or in the disount rate in the simulated foreast year.A well-known method for alulating the unertainty of the laims reserve, obtained by hain-ladder, in meeting ultimate laims, or at least its mean squared error of predition, is the oneintrodued by Mak (1993) and reently treated by Buhwalder et al. (2006) and Mak et al.(2006). Another popular method is bootstrapping, as introdued in this ontext by England& Verrall (1999) and England (2002). The latter method gives a full preditive distributionwithout further assumptions and an easily be used also for the purpose of �nding the risk inthe run-o� result. Therefore, we fous on bootstrap methods here.A standard statistial approah to laims reserving would be to �rst speify a model, then�nd an estimate of outstanding laims under the model, e.g. by maximum likelihood. Finally,the model ould be used to �nd the preision of the estimate, possibly by bootstrapping if ananalyti solution was untratable.In pratie, there is a long tradition of atuaries alulating reserve estimates without expliitreferene to a model. The objet of the researh area alled stohasti laims reserving, hasmostly been to �nd a model and a method of giving a measure of the preision of the atuary'sbest estimate post festum, i.e. without the possibility of hanging the estimate itself.In partiular the objet of several papers on stohasti laims reserving has been to �nd amodel under whih the best estimate is the one given by the hain-ladder method; indeed,



1 INTRODUCTION 3there has been a disussion of whih method is underlying the hain-ladder, see in partiularVerrall (2000), Mak & Venter (2000) and Verrall & England (2000). So even though theatuary did not use a model to pik her best estimate, these artiles try to �nd a model thatwould make her work onsistent with the standard approah of statistis: to speify the modelbefore �nding the estimate. In Verrall (2000) several underlying models, whih produe thesame reserve estimates as the hain-ladder method, are suggested, and it is also remarked onthe importane of areful examination of the assumptions of the model and how the hosenmodel e�ets the outstanding laims.In this paper we question the need to bootstrap an underlying model with laim distributionsfully spei�ed, whih happens to reprodue the atuary's best estimate. Instead, we developa bootstrap methodology for the data with as few model assumptions as possible, appliableto any age-to-age development fator method. We assume that the bootstrap proedure onlydepends on the mean and variane of the laims and that the hosen reserving algorithmimpliitly spei�es the mean struture and therefore the only additional assumption onernsthe variane funtion. Furthermore, we disuss the non-parametri vs the parametri boot-strap and standardized vs unstandardized predition errors. Finally, the suggested bootstrapproedures are applied to development triangles of di�erent types.Setion 2 ontains the de�nitions and gives an example of an age-to-age development fatormethod, that might be used in pratise. In Setion 3 the non-parametri bootstrap proedureof Pinheiro et al. (2003) is disussed and an alternative parametri proedure is suggested,as well as bootstrap proedures, whih an be used to �nd the preditive distribution of anyage-to-age development fator method. The double bootstrap is disussed, some details ofthe implementation of the bootstrap proedures are ommented and �nally the run-o� resultis de�ned and a sketh of a method of obtaining it's preditive distribution is provided. InSetion 4 the bootstrap proedures are ompared on four di�erent development triangles.



2 A BASIC MODEL 42 A basi modelWe onsider data in the form of a triangle of n inremental observations {Cij ; i, j ∈ ∇}, where
∇ denotes the upper, observational triangle ∇ = {i = 1, . . . , t; j = 1, . . . , t − i + 1} and Cijis e.g. paid laims, the number of laims, laims inurred or some other quantity of interestof origin year i in development year j, see Table 2.1. For the time being we disuss paidlaims. The atuary's goal is then to predit the sum of the delayed laim amounts in thelower, unobserved future triangle {Cij ; i, j ∈ ∆}, where ∆ = {i = 2, . . . , t; j = t− i+2, . . . , t},see Table 2.2. We write R =

∑

∆ Cij for this sum, whih is the outstanding laims for whihthe insurane ompany must hold a reserve.Development yearAident year 1 2 3 · · · t − 1 t

1 C11 C12 C13 · · · C1,t−1 C1,t

2 C21 C22 C23 · · · C2,t−1

3 C31 C32 C33 · · ·... ... ... ...
t − 1 Ct−1,1 Ct−1,2

t Ct,1Table 2.1: The triangle ∇ of observed inremental payments.Development yearAident year 1 2 3 · · · t − 1 t

1
2 C2,t

3 C3,t−1 C3,t... ... ...
t − 1 Ct−1,3 · · · Ct−1,t−1 Ct−1,t

t Ct,2 Ct,3 · · · Ct,t−1 Ct,tTable 2.2: The triangle ∆ of unobserved future laim osts.Above we have impliitly made the ommon assumption that laims are settled within the
t observed years. In long-tailed business suh as Motor TPL we often have no origin yearwith �nalized laims; when needed, we extend the model so that the unknown laims extend



2 A BASIC MODEL 5beyond t in a tail of length u, i.e. over the development years t, t + 1, . . . , t + u, see Table 2.3.For simpliity, we use the notation ∆ for the set of unobserved laims in this ase, too.In pratie, the atuary has used some method to alulate an estimate of the outstandinglaims R; in statistial terminology this is rather a predition of R. We assume that themethod gives estimates m̂ij of the ell expetations mij = E(Cij) for all laims in both ∇and ∆ and that these estimates are funtions of our observations ∇C
.
= {Cij ; i, j ∈ ∇} only.(We will use the notation ∇x to denote the ∇ olletion of any variable x, and similar for

∆x.) The estimate of outstanding laims is then R̂ =
∑

∆ m̂ij. This is the ase for age-to-agedevelopment fator methods. Note in partiular that we do not assume that the reservingmethod is based on an expliit statistial model, in our experiene this is seldom the ase inpratie.Some reserving methods operate on umulative laims Dij =
∑j

ℓ=1
Ciℓ rather than inrementallaims Cij . Let µij = E(Dij). Here is an example of an age-to-age development fator methodthat �ts our sheme:1. The hain-ladder method, see Taylor (2000), is used to produe development fators f̂jthat are estimates of fj = µi,j+1/µij , perhaps after exluding the oldest observationsand/or sole outliers in ∇.2. For 3 < j < t, say, the f̂j's are smoothed by some method, say exponential smoothing,Development yearAident year 1 2 3 · · · t t + 1 · · · t + u

1 C1,t+1 · · · C1,t+u

2 C2,t C2,t+1 · · · C2,t+u

3 C3,t C3,t+1 · · · C3,t+u... ... ... ... ...
t − 1 Ct−1,3 · · · Ct−1,t Ct−1,t+1 · · · Ct−1,t+u

t Ct,2 Ct,3 · · · Ct,t Ct,t+1 · · · Ct,t+uTable 2.3: The long tail ase, with the triangle ∆ of unobserved future laim osts extendedwith a retangle beyond t.



3 BOOTSTRAP METHODS 6i.e. they are replaed by estimates obtained from a linear regression of log(f̂j−1) on j. Byextrapolation in the linear regression, this also yields f̂j for the tail j = t, t+1 . . . , t+u.The original f̂j's are kept for j ≤ 3 and the smoothed ones used for all j > 3.3. Now estimates µ̂ij for ∆ are omputed as in the standard hain-ladder method.4. Estimates of µ̂ij for ∇ are obtained by the proess of bakwards reursion desribed inEngland & Verrall (1999).5. Finally, the obtained laim values may be disounted by some interest rate urve, orin�ated by assumed laims in�ation. The latter of ourse requires that the observationswhere realulated to �xed pries in the �rst plae.We now have an estimator R̂ = h(∇C) for some possibly quite omplex funtion h, thatmight be spei�ed only by an algorithm as in the example. Our primary objet is to �nd thebootstrap estimate of the preditive distribution of R̂.3 Bootstrap methodsThe basi idea of bootstrapping is to work with the Bootstrap world in order to make infereneon the Real world, see Efron & Tibshirani (1993). This is done by investigating the resultof B simulations in the bootstrap world and assuming that the onlusions from these areapproximately valid in the real world; this is the so-alled plug-in-priniple, Efron & Tibshirani(1993). With the outstanding laims in onsideration this means that a relation between thetrue outstanding laims R and its estimator R̂ in the real world an be substituted in thebootstrap world by their bootstrap ounterparts. This makes it possible to approximate thevariane of the predition error R − R̂ as well as the preditive distribution of R.Pinheiro et al. (2003) use the plug-in-priniple to obtain the preditive distribution of R bya non-parametri bootstrap tehnique onsistent with the statistial assumptions underlyingthe hain-ladder method in the literature. Our purpose is to modify it to a non-parametri



3 BOOTSTRAP METHODS 7bootstrap proedure whih works for any age-to-age development fator method used in pra-tise, e.g. the one desribed in the previous setion. We also suggest a ompletely parametriapproah onsistent with, and as a omplement to, the non-parametri proedure.3.1 Bootstrapping data with a generalized linear model using standardizedpredition errorsSome assumptions about the model struture of ∇C have to be imposed in order to bootstrapthe data. In the literature a ommon hoie is to use a generalized linear model, in partiularan over-dispersed Poisson distribution with a logarithmi link funtion. A onsequene of thisunderlying model is that the expeted laims obtained by maximum likelihood estimation ofthe parameters in the generalized linear model equal the ones obtained by the hain-laddermethod, if the olumn sums of the triangle are positive, see Renshaw & Verrall (1998). Thus,the expetations of the laims an be obtained either by maximum likelihood estimation orby the hain-ladder, while the varianes, whih are needed for the residuals, are given by theassumption of the generalized linear model. The bootstrap methods desribed by England &Verrall (1999), England (2002) and Pinheiro et al. (2003) are all based on generalized linearmodels.The method disussed in Pinheiro et al. (2003) assumes the following log additive strutureof the n = t (t + 1)/2 inremental observations in ∇C

E(Cij) = mij and Var(Cij) = φmp
ij

log(mij) = ηij

ηij = c + αi + βj , α1 = β1 = 0 (3.1)The �tted values ∇m̂ and the foreasts ∆m̂ are alulated by maximum quasi likelihoodestimation of the q = 2t − 1 model parameters c, αi and βj, e.g. under the assumption of anover-dispersed Poisson distribution, i.e. p = 1, or a gamma distribution, i.e. p = 2. Estimatorsof the outstanding laims are then obtained by summing per aident year R̂i =
∑

j∈∆i
m̂ij,where ∆i denotes the row orresponding to aident year i in ∆m̂. The estimator of the grand



3 BOOTSTRAP METHODS 8total is R̂ =
∑

∆ m̂ij.The residuals are needed for the resampling proess and the ommon hoie is to use thePearson residuals
rP
ij =

Cij − m̂ij
√

m̂p
ij

, (3.2)whih should have approximately zero mean and onstant variane. Pinheiro et al. (2003), aswell as England & Verrall (1999) and England (2002), work under the assumption that theresiduals are independent and identially distributed, an assumption that an be questioned,see e.g. Larsen (2007) and Appendix 1. Nevertheless, we shall adhere to this assumption.There are two ways of adjusting the Pearson residuals. England & Verrall (1999) and England(2002) use a global adjusting fator
rPA
ij =

√

n

n − q
rP
ij , (3.3)whereas Pinheiro et al. (2003) argue that the hat matrix standardized Pearson residuals area better hoie. They are given by

rPA
ij =

rP
ij

√

1 − hij

, (3.4)where the hij :s are the diagonal elements of the n x n hat matrix H, whih for generalizedlinear models is given by
H = X(XT WX)−1XT W, (3.5)where X is an n x q design matrix and the generi elements Wij,ij of the n x n diagonal matrix

W are
Wij,ij = (V (mij)(

∂ηij

∂mij

)2)−1 (3.6)and V is the variane funtion.This hoie of residual orretion is in aordane with Davison & Hinkley (1997). The resultof the omparison in Pinheiro et al. (2003) does not indiate a big di�erene to the orretionin (3.3).



3 BOOTSTRAP METHODS 9Note that the residuals are also used to produe the Pearson estimate of the unknown φ,
φ̂ =

1

n − q

∑

∇

(rP
ij)

2 =
1

n

∑

∇

(rPA
ij )2 , (3.7)where the last equality is exat when (3.3) is used and an approximation for (3.4).The next step is to get B new triangles of residuals ∇r∗ by drawing samples with replaementfrom the olletion of residuals in (3.3) or (3.4). This proedure means sampling from theempirial distribution funtion of the approximately independent and identially distributedresiduals r.Then B pseudo-triangles ∇C∗ are generated by omputing

C∗
ij = m̂ij + r∗ij

√

m̂p
ij for i, j ∈ ∇ (3.8)and for these B pseudo-triangles the future values ∆m̂∗ are foreasted by the same methodas above, i.e. by estimating the parameters of the generalized linear model. Estimators forthe outstanding laims in the bootstrap world are then derived by R̂∗

i =
∑

j∈∆i
m̂∗

ij and
R̂∗ =

∑

∆ m̂∗
ij .In order to get the random outome of the true outstanding laims in the bootstrap world, i.e.

R∗∗
i =

∑

j∈∆i
C∗∗

ij and R∗∗ =
∑

∆ C∗∗
ij , the resampling is done one more from the empirialdistribution funtion of the residuals to get B triangles of ∆r∗∗ and then solving

C∗∗
ij = m̂ij + r∗∗ij

√

m̂p
ij for i, j ∈ ∆ (3.9)to get ∆C∗∗.The �nal step is to alulate the B predition errors and in Pinheiro et al. (2003) this is doneby the following equationspe∗∗i =

R∗∗
i − R̂∗

i
√

̂V ar(R∗∗
i )

and pe∗∗ =
R∗∗ − R̂∗

√

̂V ar(R∗∗)
. (3.10)The preditive distributions of the outstanding laims Ri and R are then obtained by plotting

R̃∗∗
i = R̂i + pe∗∗i √

̂V ar(Ri) and R̃∗∗ = R̂ + pe∗∗√ ̂V ar(R) (3.11)



3 BOOTSTRAP METHODS 10for eah B.We taitly assume that the mean and variane of all bootstrapped quantities are onditionalon the observed data ∇C. For instane, the variane of the bootstrapped outstanding laimsare
V ar(R∗∗

i ) = φ̂
∑

j∈∆i

m̂p
ij and V ar(R∗∗) = φ̂

∑

∆

m̂p
ij , (3.12)sine the variane of the bootstrapped residuals onditional on ∇C is φ̂ aording to (3.3),(3.4) and (3.7). Sine Pinheiro et al. (2003), as well as England (2002), onsider φ as onstantfor the data, the estimates of (3.12) appearing in (3.10) are

̂V ar(R∗∗
i ) = φ̂

∑

j∈∆i

m̂∗p
ij and ̂V ar(R∗∗) = φ̂

∑

∆

m̂∗p
ij (3.13)and hene omputable from the bootstrap world data ∇C∗. Nevertheless, φ is unknown andtherefore

̂V ar(R∗∗
i ) = φ̂∗

∑

j∈∆i

m̂∗p
ij and ̂V ar(R∗∗) = φ̂∗

∑

∆

m̂∗p
ij (3.14)should rather be used, see Davison & Hinkley (1997). This is in analogy with the estimatedvarianes of the true laims reserves

̂V ar(Ri) = φ̂
∑

j∈∆i

m̂p
ij and ̂V ar(R) = φ̂

∑

∆

m̂p
ij , (3.15)whih are omputable from the real data ∇C, as opposed to V ar(Ri) and V ar(R).As a omplement to the non-parametri proedure desribed above we suggest a parametriapproah. In addition to the assumptions in (3.1) we assume a full distribution F , parametrisedby the mean and variane, so that we may write F = F (mij , φmp

ij). Instead of resamplingthe residuals, we draw C∗
ij from F (m̂ij, φ̂m̂p

ij) for all i, j ∈ ∇ and thereby we diretly get thepseudo-triangles ∇C∗. The bootstrap estimates R̂∗
i =

∑

j∈∆i
m̂∗

ij and R̂∗ =
∑

∆ m̂∗
ij are thenalulated for eah simulation by estimating the parameters of the generalized linear model.In order to get R∗∗

i =
∑

j∈∆i
C∗∗

ij and R∗∗ =
∑

∆ C∗∗
ij we sample one again from F (m̂ij , φ̂m̂p

ij)to get C∗∗
ij for all i, j ∈ ∆ . Finally, the B observations of (3.10) and (3.13) are inserted into(3.11) to yield the sought preditive distribution.



3 BOOTSTRAP METHODS 11These methods of bootstrapping for laims reserve unertainty are desribed in Figure 1 andare referred to as the non-parametri and the parametri standardized preditive bootstrap.England & Verrall (1999) and England (2002) use other bootstrap approahes, whih aredesribed in Appendix 2. In England (2002) the bootstrap ounterparts of the outstandinglaims in the real world are obtained by another simulation onditional on the one in Substage2.1 in Figure 1. In this way the proess error R − E(R) is bootstrapped di�erently fromSubstage 2.2, while Substage 2.1 bootstraps the estimation error R̂−E(R). Thus, B triangles
∆m̂† are obtained by sampling a random observation m̂†

ij from a distribution with mean m̂∗
ijand variane φ m̂∗

ij for all i, j ∈ ∆. The preditive distribution of the outstanding laims Rin real world is then obtained by plotting the B values of R̃† =
∑

∆ m†

ij. England (2002)suggests using e.g. an over-dispersed Poisson distribution, a negative binomial or a Gammadistribution as the proess distribution.England & Verrall (2006) omment on the approah of inluding the proess error by samplingfrom a separate distribution, by noting that the non-parametri standardized preditive boot-strap in Pinheiro et al. (2003) annot give larger extremes of the proess error than the mostextreme residuals observed. Nevertheless, we see no reason to assume separate distributionsfor the proess error and the estimation error. Either we believe in the hosen distributionon the whole and use a parametri preditive bootstrap or we do not and ontinue to use anon-parametri preditive bootstrap.3.2 The double bootstrapIt would be preferable to use pe∗∗ =
R∗∗ − R̂∗

√

̂V ar(R∗∗ − R̂∗)

(3.16)and
R̃∗∗ = R̂ + pe∗∗√ ̂V ar(R − R̂) (3.17)instead of (3.10) and (3.11), in partiular if the estimation error is muh larger than the proesserror. Although this is more ompliated it an be ahieved by means of a double bootstrap.



3 BOOTSTRAP METHODS 12
Stage 1 - Real world
· Estimate the parameters in the generalized linear model in equation (3.1).
· Foreast the future expeted values ∆m̂ and alulate the �tted values ∇m̂.
· Calulate the residuals for the non-parametri bootstrap and φ̂ for theparametri bootstrap.
· Calulate the outstanding laims R̂i =

∑

j∈∆i
m̂ij and R̂ =

∑

∆ m̂ij .Stage 2 - Bootstrap worldSubstage 2.1 - The estimated outstanding laims
· Resample residuals (3.3) or (3.4) with replaement and insert into (3.8)together with ∇m̂ or sample from F (m̂ij, φ̂m̂p

ij) for i, j ∈ ∇ to obtain the pseudo-reality in ∇C∗.
· Estimate the parameters in the generalized linear model with the pseudo-triangles.
· Foreast the future expeted values ∆m̂∗.
· Calulate the estimated outstanding laims R̂∗

i =
∑

j∈∆i
m̂∗

ij and R̂∗ =
∑

∆ m̂∗
ij .Substage 2.2 - The true outstanding laims

· Resample residuals (3.3) or (3.4) with replaement and insert into (3.9)together with ∆m̂ or sample from F (m̂ij, φ̂m̂p
ij) for i, j ∈ ∆ to obtain the pseudo-reality in ∆C∗∗.

· Calulate the true outstanding laims R∗∗
i =

∑

j∈∆i
C∗∗

ij and R∗∗ =
∑

∆ C∗∗
ij .

· Store the predition errors pe∗∗i and pe∗∗ in (3.10).
· Return to the beginning of the bootstrap loop and repeat it B times.Stage 3 - Analysis of the simulations
· Obtain the preditive distribution of Ri and R, the true outstanding laims in thereal world, by plotting the B values in (3.11).Figure 1: The proedure of the non-parametri and the parametri standardized preditivebootstrap.



3 BOOTSTRAP METHODS 13However, the omputational omplexity of this approah is quite prohibitive beause of thenested bootstrap loop and therefore the double bootstrap is not inluded in our numerialstudy.For eah of the B bootstrap repliates, we generate B̃ double bootstrap laims reserves Rdand estimated laims reserves R̂d in analogy with R∗∗ and R̂∗ in Setion 3.1, the di�erenebeing that we use ∇C∗ as our data rather than ∇C. Then
̂V ar(R − R̂) = V ar(R∗∗ − R̂∗|∇C) (3.18)and

̂V ar(R∗∗ − R̂∗) = V ar(Rd − R̂d|∇C∗), (3.19)where the last variane is approximated by the sample variane of all B̃ double bootstraprepliates.An alternative to (3.18) and (3.19) is to use the variane of the proess and the estimationerrors in (5.2) in Appendix 2, i.e.̂
V ar(R − R̂) = ̂V ar(R) + ̂V ar(R̂) (3.20)and

̂V ar(R∗∗ − R̂∗) = ̂V ar(R∗∗) + ̂V ar(R̂∗), (3.21)where the proess errors are estimated by
̂V ar(R) = φ̂

∑

∆

m̂p
ij (3.22)and

̂V ar(R∗∗) = φ̂∗
∑

∆

m̂∗p
ij . (3.23)The estimation errors are approximated by the sample variane of the orresponding bootstraprepliates

̂V ar(R̂) = V ar(R̂∗) (3.24)and
̂V ar(R̂∗) = V ar(R̂d). (3.25)



3 BOOTSTRAP METHODS 143.3 Bootstrapping data with a simple underlying model and a reservingalgorithm using unstandardized predition errorsFor the purpose of obtaining the preditive distribution of the laims reserve by bootstrapping,the assumption of a generalized linear model in (3.1) is unneessarily strong. In pratise theatuary seldom assumes any model for ∇C and ∆C, but only uses a reserving algorithm inorder to estimate ∇m̂ and ∆m̂. Thus, when using the plug-in-priniple we just need to makean assumption of the model that generates ∇C∗ and ∆C∗∗ from the data ∇C, while thereserving algorithm an be used in bootstrap world too in order to estimate ∆m̂∗.We follow England & Verrall (1999), England (2002) and Pinheiro (2003) and assume inde-pendent laims Cij and a variane funtion in terms of the means, i.e.
E(Cij) = mij and Var(Cij) = φmp

ij (3.26)for some p > 0. Thus the mean and variane of Cij are still related as in (3.1), but mij needno longer satisfy the log-additive onditions in (3.1). Instead the hosen reserving algorithmimpliitly spei�es the struture of all mij and produes estimates of m̂ij. The bootstrapproedures are then performed as in Setion 3.1 with the exeption that the residuals (3.3)are used rather than (3.4). The interpretation of n and q as the number of observations andmodel parameters is still the same. Using the pure hain-ladder method together with thebakwards reursive operation desribed in England & Verrall (1999) implies that q = 2t − 1,as for the generalized linear model in (3.1), sine this proedure demands the estimation of
t−1 development fators as well as the t starting values of the bakwards reursive operation.Adding exponential smoothing of the development fators, like in the example in Setion 2, anindeed ompliate the determination of the number of model parameters but the orretionfator in (3.3) an be onsidered as an approximation, although the number of parameters qtypially depends on the amount of smoothing.Standardized predition errors may still be used, sine (3.10) - (3.15) ontinue to hold. Indeed,it is well known that for many bootstrap proedures, resampling of standardized quantitiesoften inreases auray ompared to using unstandardized quantities, see e.g. Hall (1995).



3 BOOTSTRAP METHODS 15Nevertheless, the unstandardized predition errorspe∗∗i = R∗∗
i − R̂∗

i and pe∗∗ = R∗∗ − R̂∗ (3.27)are useful, in partiular for the purpose of studying the estimation and the proess errors, butalso sine they are always de�ned. On the ontrary, the denominators of (3.10) may sometimesbe non-positive, yielding unde�ned or imaginary standardized predition errors, see Setion3.5. The preditive distributions of the outstanding laims Ri and R are then obtained byplotting
R̃∗∗

i = R̂i + pe∗∗i and R̃∗∗ = R̂ + pe∗∗ (3.28)for eah B. These predition errors are used in Li (2006).The alternative bootstrap proedures disussed above are desribed in detail in Figure 2 andare referred to as the non-parametri and the parametri unstandardized preditive bootstrap.3.4 Estimation of pIn the literature the most frequent hoie of dispersion parameter is p = 1 in order to reproduethe hain-ladder estimates under the assumption of a generalized linear model, but as indiatedin the method example in Setion 2, a pure hain-ladder is seldomly used in pratise. Thus,another approah would be to hoose the p that best �ts the data.A straightforward way of obtaining a suitable value of p is to use the unstandardized residuals
rij =

√

n

n − q
(Cij − m̂ij) . (3.29)The following relation then holds approximatively

E(r2
ij) ≈ V ar(Cij) = φmp

ij (3.30)and minimizing the funtion
f(p, φ) =

∑

i,j

wij (r2
ij − φ m̂p

ij)
2, (3.31)



3 BOOTSTRAP METHODS 16
Stage 1 - Atuary's best estimate in the real world
· Choose an appropriate reserving method e.g. the one desribed in Setion 2.
· Foreast the future expeted values ∆m̂ and alulate the �tted values ∇m̂.
· Calulate the residuals for the non-parametri bootstrap and φ̂ for theparametri bootstrap.
· Calulate the outstanding laims R̂i =

∑

j∈∆i
m̂ij and R̂ =

∑

∆ m̂ij .Stage 2 - Bootstrap worldSubstage 2.1 - The estimated outstanding laims
· Resample residuals (3.3) with replaement and insert into (3.8) togetherwith ∇m̂ or sample from F (m̂ij , φ̂m̂p

ij) for i, j ∈ ∇ to obtain the pseudo-realityin ∇C∗.
· Apply the hosen reserving method to ∇C∗ to obtain the foreasts ∆m̂∗.
· Calulate the estimated outstanding laims R̂∗

i =
∑

j∈∆i
m̂∗

ij and R̂∗ =
∑

∆ m̂∗
ij.Substage 2.2 - The true outstanding laims

· Resample residuals (3.3) with replaement and insert into (3.9) togetherwith ∆m̂ or sample from F (m̂ij , φ̂m̂p
ij) for i, j ∈ ∆ to obtain the pseudo-realityin ∆C∗∗.

· Calulate the true outstanding laims R∗∗
i =

∑

j∈∆i
C∗∗

ij and R∗∗ =
∑

∆ C∗∗
ij .

· Store the predition errors pe∗∗i and pe∗∗ in (3.27).
· Return to the beginning of the bootstrap loop and repeat it B times.Stage 3 - Analysis of the simulations
· Obtain the preditive distribution of Ri and R, the true outstanding laims in thereal world, by plotting the B values in (3.28).Figure 2: The proedure of the non-parametri and the parametri unstandardized bootstrap.



3 BOOTSTRAP METHODS 17where wij is a weight for observation Cij, with respet to p and φ yields an estimator for
p. One a reasonable value of p is hosen and the residuals for the resampling proess arede�ned, φ is estimated by (3.7). The simplest hoie is to use uniform wights wij ≡ 1 in (3.31).Another possibility is inverse variane weighting, wij = ̂V ar(r2

ij)
−1. In order to speify theseweights, further model assumptions would be needed though.3.5 Implementation detailsThere are some major problems with the proess of resampling the residuals for the non-parametri bootstrap proedures. Firstly, the bootstrap world is hardly a good approximationof the real world if the laims triangle is small. Furthermore, the basi assumption of iden-tially distributed residuals is ertainly violated for p = 1, i.e. for an over-dispersed Poissondistribution, see Appendix 1. Depending on the hosen reserving method and the value of p,the standardized residuals in (3.2) sometimes imply a limitation of the set of triangles thatan be analyzed, sine the residual will be unde�ned or imaginary whenever a �tted value in

∇m̂ is non-positive. Finally, using the residuals to solve equation (3.8) sometimes results inundesirable negative inrements in the pseudo-triangles.Thus, if the laims triangle ∇C is small, a parametri bootstrap proedure seems preferable.On the other hand, if we know nothing about F and have a large triangle, a non-parametribootstrap proedure would be our �rst hoie. Note, however, that a parametri bootstrapproedure does not solve the problem with unde�ned residuals sine they are needed in orderto estimate φ as well. Furthermore, a parametri bootstrap proedure should be used ifnegative inrements in the pseudo-triangles are unaeptable and a gamma distribution shouldpartiularly be used if it is undesirable that the inrements only take on the values zero andmultiples of φ, whih is the ase for the over-dispersed Poisson distribution.The hoie of predition errors auses another problem. The standardized ones in (3.10) aresensitive to pseudo-triangles where the row sums of the outstanding laims are non-positive.An ad ho solution is simply to ut out these pseudo-triangles from the simulation proess if



3 BOOTSTRAP METHODS 18they are rare, another solution is to use the unstandardized predition errors in (3.27) instead.The unstandardized ones, on the other hand, result in a preditive distribution whih is moreskewed to the left than the distribution obtained by the standardized predition errors, seeSetion 4 for more details.Sine England & Verrall (1999), England (2002) and Pinheiro et al. (2003) replae the maxi-mum likelihood estimation of the parameters in (3.1) by hain-ladder when p = 1, the samemethod is adopted here for the standardized preditive distribution in Figure 1, even thoughthe non-positive olumn sums of the pseudo-triangles make the estimates disagree.In this paper, the estimated value of p in Setion 3.4 is just onsidered as an indiator ofwhether p = 1 or p = 2 should be used in the non-parametri bootstrap and whether anover-dispersed Poisson distribution or a gamma distribution should be hosen in a parametribootstrap. The distributions of the residuals orresponding to di�erent hoies of p ∈ (1, 2)should indeed be investigated, but this is beyond the sope of this paper.3.6 Dynami Finanial Analysis and the one year run-o� resultSee Kaufmann et al. (2001) for an introdution to Dynami Finanial Analysis. Here themovements of the laims reserve are of partiular interest. The one year run-o� result is thehange in the reserve during the �nanial year and is de�ned as the di�erene between theopening reserve at the beginning of the year and the sum of payments during the year andthe losing reserve of the same portfolio at the end of the year. Thus, if we at the end of year
t want to make preditions of the run-o� result at the end of the unobserved year t + 1, andif we do not add neither a new aident year nor a new development year, we have to �nd thepreditive distribution of

R̂t − (

t
∑

i=2

Ci,t+2−i + R̂t+1) , (3.32)where R̂t and R̂t+1 are the estimated outstanding laims at the end of year t and t + 1respetively.One method to obtain the preditive distribution of the one year run-o� result is to ondition



4 NUMERICAL STUDY 19on the laims triangle ∇C. R̂t is then onsidered �xed, while the preditive distribution of thepayments orresponding to the foreast year t + 1 is obtained by B times simulating the newdiagonal {(i, j); i + j = t + 2} by one of the bootstrap proedures disussed above. This isdone by storing e.g. the unstandardized predition errors pe∗∗ij = C∗∗
ij − Ĉ∗

ij of eah inrementin the new diagonal and then adding them to the orresponding estimated values Ĉij in thereal world to obtain C̃∗∗
ij = Ĉij + pe∗∗ij . In this way B pseudo-triangles, onsisting of the �xedtriangle ∇C known at the end of year t and a new simulated diagonal C̃∗∗, are generated andthe outstanding laims are then realulated by the same reserving method as before, in orderto obtain B reords of R̂t+1 ∗ = R̂t+1(∇C ∪ C̃∗∗). Finally the B values of

R̂t − (

t
∑

i=2

C̃∗∗
i,t+2−i + R̂t+1 ∗)|∇C , (3.33)are investigated in order to estimate the preditive distribution of the one year run-o� result.De Felie & Morioni (2003) use a similar method in order to analyze R̂t+1, but in the simu-lation proess the oldest aident year is removed, while a new aident year, orrespondingto the year t + 1, is added to the pseudo-triangle.4 Numerial studyThe purpose of the numerial study is to ompare the non-parametri and the parametribootstrap proedures under di�erent hoies of p, F and predition errors. Sine the atuaryhooses an age-to-age development fator method that �ts the partiular development triangleunder analysis, it is di�ult to �nd one single algorithm that works for all situations. Thereforewe only use the pure hain-ladder method in the omparisons, even though the bootstrapproedures allow the use of any age-to-age development fator method as well. From now on

B = 10000 simulations are used for eah predition. The upper 95 perent limits are studieddue to higher robustness than, e.g., the 99.5 perentile, whih is perhaps the most frequenthoie in pratise. The oe�ients of variation are also presented.



4 NUMERICAL STUDY 204.1 The triangle from Taylor & Ashe (1983)4.1.1 Comparison with Pinheiro et al. (2003)First, the well-known triangle from Taylor & Ashe (1983), alled Data 1 in Table 4.1, is ana-lyzed by the non-parametri standardized preditive bootstrap proedure, i.e. the bootstrapproedure desribed in Pinheiro et al. (2003). The estimated reserves and the upper 95 per-ent limits for p = 1 and p = 2 are presented in Table 4.2. The seond aident year is left outfrom the tabulation of results when p = 1 sine a negative inrement in the northeast ornerof a pseudo-triangle auses a situation with an imaginary predition error for that year. Theremaining aident years are not as sensitive to negative inrements as this year.The results of the standardized preditive bootstrap proedure are in aordane with Pinheiroet al. (2003). As we an see, for earlier aident years, the p = 2 perentiles are smaller thanthe p = 1 perentiles, whereas the opposite is true for later aident years. This is natural,sine most of the future laims Cij of later years have large mij and hene larger variane for
p = 2 than for p = 1.1 2 3 4 5 6 7 8 9 101 357 848 766 940 610 542 482 940 527 326 574 398 146 342 139 950 227 229 67 9482 352 118 884 021 933 894 1 183 289 445 745 320 996 527 804 266 172 425 0463 290 507 1 001 799 926 219 1 016 654 750 816 146 923 495 992 280 4054 310 608 1 108 250 776 189 1 562 400 272 482 352 053 206 2865 443 160 693 190 991 983 769 488 504 851 470 6396 396 132 937 085 847 498 805 037 705 9607 440 832 847 631 1 131 398 1 063 2698 359 480 1 061 648 1 443 3709 376 686 986 60810 344 014 Table 4.1: Data 1 from Taylor & Ashe (1983).4.1.2 The hoie of φ̂ or φ̂∗We ontinue to use the non-parametri standardized preditive bootstrap and Data 1, but wenow replae (3.13) with (3.14) in Substage 2.2 in Figure 1. Thus, we do not onsider φ asonstant for the data and therefore we replae φ̂ by φ̂∗. The results are presented in Table4.3. As we an see, the replaement hardly a�ets the results.



4 NUMERICAL STUDY 21Note that sine p = 1 oasionally yields m̂∗
ij < 0 the orresponding Pearson residuals in thebootstrap world are imaginary while φ̂∗ is real. Sine the assumption of an over-dispersedPoisson distribution for the parametri proedure oasionally yields m̂∗

ij = 0, the orrespond-ing Pearson residuals in the bootstrap world are unde�ned and as a result, φ̂∗ is unde�ned aswell. Thus, in the sequel we use (3.13) in all simulations.Estimated 95% Estimated 95%Year reserve p = 1 reserve p = 22 94 634 93 316 222 7893 469 511 903 221 446 504 799 7004 709 638 1 187 641 611 145 992 5855 984 889 1 527 903 992 023 1 497 6336 1 419 459 2 076 496 1 453 085 2 170 4807 2 177 641 3 034 860 2 186 161 3 284 4908 3 920 301 5 277 768 3 665 066 5 692 7649 4 278 972 6 139 286 4 122 398 6 975 12310 4 625 811 9 760 307 4 516 073 9 286 282Total 18 680 856 23 681 062 18 085 772 23 033 968Table 4.2: The estimated reserves and the 95 perentiles of the non-parametri standardizedpreditive bootstrap with (3.13) used in Substage 2.2 of Figure 1 for Data 1. Chain-ladder isused for p = 1 and maximum likelihood estimation for p = 2.Estimated 95% Estimated 95%Year reserve p = 1 reserve p = 22 94 634 93 316 216 6983 469 511 889 639 446 504 796 1464 709 638 1 186 623 611 145 978 3155 984 889 1 533 399 992 023 1 497 7226 1 419 459 2 082 287 1 453 085 2 136 4237 2 177 641 3 041 716 2 186 161 3 290 0618 3 920 301 5 290 749 3 665 066 5 738 4969 4 278 972 6 181 331 4 122 398 6 795 92710 4 625 811 9 328 277 4 516 073 9 476 343Total 18 680 856 23 603 123 18 085 772 23 042 954Table 4.3: The estimated reserves and the 95 perentiles of the non-parametri standardizedpreditive bootstrap when (3.13) is replaed by (3.14) in Substage 2.2 in Figure 1 for Data 1.Chain-ladder is used for p = 1 and maximum likelihood estimation for p = 2.



4 NUMERICAL STUDY 224.1.3 Maximum likelihood estimation vs hain-ladder when p = 2The next step is to replae the maximum likelihood estimator of the model parameters bythe hain-ladder for the non-parametri standardized preditive bootstrap when p = 2. (Wealready use the hain-ladder when p = 1, f. Setion 3.5.) Consequently, the estimatedreserves in Table 4.4 are the same as when p = 1 in Table 4.2 whereas the perentiles in Table4.4 are onsistently higher than in Table 4.2.This is an example of bootstrapping under a model that does not produe the estimatoratually employed, a model whih might nevertheless be quite realisti for paid laims. Wewill use the hain-ladder in all remaining numerial studies, sine it is popular and simple.Estimated 95%Year reserve p = 22 94 634 236 8503 469 511 875 3824 709 638 1 156 0505 984 889 1 503 6856 1 419 459 2 141 4707 2 177 641 3 308 8058 3 920 301 6 199 8419 4 278 972 7 646 14010 4 625 811 10 698 797Total 18 680 856 23 991 584Table 4.4: The estimated reserve and the 95 perentiles of the non-parametri standardizedpreditive bootstrap with (3.13) used in Substage 2.2 in Figure 1 for Data 1. Chain-ladder isused for p = 2.4.1.4 Non-parametri bootstrap vs parametri bootstrapFor the purpose of omparing the non-parametri and the parametri bootstrap proedureswe ontinue to use the standardized preditive bootstrap with hain-ladder for Data 1. SeeTable 4.5 for the upper 95 perent limits and Table 4.6 for the oe�ients of variation, i.e.
√

V ar(R̃∗∗
i )/R̂i and √

V ar(R̃∗∗)/R̂. (In the tables ODP denotes the over-dispersed Poissondistribution.)



4 NUMERICAL STUDY 23The results of the parametri bootstrap oinide well with the results of the non-parametribootstrap exept for the last aident year. It is well-known that the hain-ladder estimateof the outstanding laims for the last aident year is extremely sensitive to outliers in thesouth orner of the upper triangle. If C∗
t1 happens to be small in the pseudo-triangle then theorresponding reserve R̂∗

t will be small ompared to R∗∗
t , whih a�ets the predition errorin (3.10). The parametri bootstrap generates more stable C∗

t1:s than the non-parametribootstrap, onsequently there is a disrepany in the results of the last aident year for thenon-parametri and the parametri bootstrap proedures in Tables 4.5 - 4.6. The onlusionis that the parametri bootstrap may be preferable in some ases.Estimated Non-parametri Parametri Non-parametri ParametriYear Reserve p = 1 ODP p = 2 Gamma2 94 634 236 850 220 6433 469 511 903 221 920 956 875 382 866 8334 709 638 1 187 641 1 215 254 1 156 050 1 162 9425 984 889 1 527 903 1 537 266 1 503 685 1 516 8686 1 419 459 2 076 496 2 096 805 2 141 470 2 150 4417 2 177 641 3 034 860 3 057 599 3 308 805 3 309 8388 3 920 301 5 277 768 5 308 472 6 199 841 6 192 2869 4 278 972 6 139 286 6 192 655 7 646 140 7 272 01210 4 625 811 9 760 307 9 163 520 10 698 797 9 222 470Total 18 680 856 23 681 062 23 685 724 23 991 584 24 095 302Table 4.5: The estimated reserve and the 95 perentiles of the non-parametri and the para-metri standardized preditive bootstrap with (3.13) used in Substage 2.2 in Figures 1- 2 forData 1. Chain-ladder is used in both ases.4.1.5 Standardized predition errors vs unstandardized predition errorsFrom now on the unstandardized preditive bootstrap proedures are used in all tables; theresults for Data 1 are presented in Tables 4.7 - 4.8. As we an see, the perentiles for theunstandardized preditive bootstrap in Table 4.7 are lower than for the standardized preditivebootstrap in Table 4.5, and the same goes for the oe�ients of variation. Note that thereis a large disrepany in the oe�ients of variation, in Table 4.8, for the two hoies ofdistribution for year 2. The reason for the extreme values, when p = 1 or an over-dispersedPoisson distribution is assumed, is disussed in Setion 4.3.



4 NUMERICAL STUDY 24In Figures 3 () - (d) and 4 () - (d) the preditive distributions of the total laims re-serve are plotted when assuming p = 1 for the non-parametri bootstrap proedures and anover-dispersed Poisson distribution for the parametri bootstrap proedures. The preditivedistribution obtained by the unstandardized bootstrap in () is slightly skewed to the leftompared to the one obtained by the standardized bootstrap in (d), whih is almost symmet-ri. This follows sine the proess omponent (Figures 3 (a) and 4 (a)) has smaller variabilitythan the estimation omponent (Figures 3 (b) and 4 (b)), and the latter is slightly skewed tothe right. This skewness is to a large extent removed for the standardized predition errors(3.10), beause of the denominator, but not for the unstandardized predition errors (3.27).Furthermore, from Figures 3 (a) and 4 (a), it does not seem to matter whether we use anon-parametri or parametri approah for the proess error, even though England & Ver-rall (2006) argue that the former hoie annot give larger extremes than the most extremeresidual observed. The same holds for p = 2 or a gamma distribution (results not shown here).4.1.6 Estimation of pEstimation of p by minimizing the (unweighted) sum in (3.31) yields p = 0.7280. Thus, p = 1or an over-dispersed Poisson distribution seems to be more reasonable for this developmenttriangle. Estimated Non-parametri Parametri Non-parametri ParametriYear Reserve p = 1 ODP p = 2 Gamma2 94 634 76 623 469 511 50 50 43 424 709 638 37 38 32 325 984 889 31 31 27 286 1 419 459 27 27 26 267 2 177 641 23 23 27 268 3 920 301 20 20 30 299 4 278 972 24 25 38 3510 4 625 811 53 50 64 48Total 18 680 856 16 16 15 16Table 4.6: The estimated reserve and the oe�ients of variation of the simulations (in %)of the non-parametri and the parametri standardized preditive bootstrap with (3.13) used inSubstage 2.2 in Figures 1- 2 for Data 1. Chain-ladder is used in both ases.



4 NUMERICAL STUDY 25
Estimated Non-parametri Parametri Non-parametri ParametriYear Reserve p = 1 ODP p = 2 Gamma2 94 634 274 891 252 438 168 132 167 5853 469 511 823 274 814 256 750 175 754 6464 709 638 1 148 468 1 125 650 1 055 135 1 064 0595 984 889 1 486 951 1 475 088 1 414 799 1 403 9196 1 419 459 2 040 277 2 019 093 1 995 397 1 982 6117 2 177 641 2 983 269 2 979 860 3 043 356 3 049 2158 3 920 301 5 201 768 5 171 112 5 579 973 5 564 8489 4 278 972 5 916 186 5 910 048 6 363 139 6 257 00010 4 625 811 7 755 623 7 517 443 7 387 885 7 088 050Total 18 680 856 23 264 493 23 122 056 23 109 992 23 107 180Table 4.7: The estimated reserve and the 95 perentiles of the non-parametri and the para-metri unstandardized preditive bootstrap when hain-ladder is used for Data 1.
Estimated Non-parametri Parametri Non-parametri ParametriYear Reserve p = 1 ODP p = 2 Gamma2 94 634 121 118 52 503 469 511 47 46 39 384 709 638 38 37 31 315 984 889 31 31 28 276 1 419 459 27 26 26 267 2 177 641 23 23 26 268 3 920 301 21 21 28 279 4 278 972 25 25 32 3210 4 625 811 46 44 40 38Total 18 680 856 17 16 17 16Table 4.8: The estimated reserve and the oe�ients of variation of the simulations (in %) ofthe non-parametri and the parametri unstandardized preditive bootstrap when hain-ladderis used for Data 1.
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Figure 3: Density harts of R∗∗ (a), R̂∗ (b) and R̃∗∗ for the unstandardized () and standardized(d) non-parametri preditive bootstrap proedures for Data 1 when p = 1.
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Figure 4: Density harts of R∗∗ (a), R̂∗ (b) and R̃∗∗ for the unstandardized () and standardized(d) parametri preditive bootstrap proedures for Data 1 under the assumption of an over-dispersed Poisson distribution.



4 NUMERICAL STUDY 284.2 A small triangle of laim ountsThe non-parametri and the parametri unstandardized preditive bootstrap proedures arenow ompared on a triangle of laim ounts appearing in Taylor (2000). Beause of the shapeof the data and in order to avoid non-positive olumn sums we use just the later part ofthe original triangle, see Table 4.9. This is reasonable sine the laim ounts from previousaident years are almost �nalized. 1 2 3 4 5 6 7
1989 589 210 29 17 12 4 9
1990 564 196 23 12 9 5
1991 607 203 29 9 7
1992 674 169 20 12
1993 619 190 41
1994 660 161
1995 660Table 4.9: Data 2 from Taylor (2000).Estimation of p yields p̂ = 0.5596, whih indiates that p = 1 is a better hoie than p = 2 forthe non-parametri bootstrap and an over-dispersed Poisson distribution is preferable for theparametri bootstrap, as expeted for laim ounts. Nevertheless, the results for both hoiesare presented in Tables 4.10 - 4.11 and, as we an see, the results of the parametri bootstrapoinides well with the results of the non-parametri one.The density harts of R∗∗ and R̂∗ are plotted in Figure 5. The variability of the estimationerror is larger than the variability of the proess error for Data 2 too, but the di�erene is notas extreme as for Data 1 in Figures 3 - 4.4.3 A small triangle of paid laims from a short-tailed line of businessTable 4.12 shows a triangle of paid laims, provided by the Swedish insurane ompanyAFA Försäkring, for the short-tailed line of business Severane Grant.The results of the bootstrap proedures are presented in Tables 4.13 - 4.14. The perentilesfor year 1996 are very di�erent for the two hoies of distribution. This is a onsequene



4 NUMERICAL STUDY 29Estimated Non-parametri Parametri Non-parametri ParametriYear Reserve p = 1 ODP p = 2 Gamma1990 8 19 18 14 141991 14 26 26 20 201992 24 40 39 34 341993 36 56 55 51 501994 65 90 89 91 901995 269 323 321 400 399Total 417 500 496 555 554Table 4.10: The estimated reserve and the 95 perentiles of the non-parametri and the para-metri unstandardized preditive bootstrap when hain-ladder is used for Data 2.Estimated Non-parametri Parametri Non-parametri ParametriYear Reserve p = 1 ODP p = 2 Gamma1990 8 74 71 43 421991 14 57 55 35 331992 24 40 39 29 281993 36 32 31 26 251994 65 23 22 25 251995 269 12 12 32 31Total 417 12 12 22 21Table 4.11: The estimated reserve and the oe�ients of variation of the simulations (in %) ofthe non-parametri and the parametri unstandardized preditive bootstrap when hain-ladderis used for Data 2.
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Figure 5: Density harts of R∗∗ (a) and R̂∗ (b) for the unstandardized non-parametri predi-tive bootstrap proedures for Data 2 when p = 1.



4 NUMERICAL STUDY 30of oasional non-positive m̂∗
ij aused by the resampling proess. Tables 4.15 - 4.16 showexamples of pseudo-triangles when p = 1 for the non-parametri bootstrap proedure andan over-dispersed Poisson distribution is assumed for the parametri bootstrap proedure.By (3.27) and (3.28) these partiular simulations yield R̃∗∗

1996 = 2614 and R̃∗∗
1996 = 2876,respetively, whih is not reasonable. Thus, even though p̂ = 1.1915, a omparison of theresults for p = 1 and p = 2 indiates that p = 2 might be a better hoie for this triangle.Another alternative might be to use a trunated over-dispersed Poisson distribution to exludezero values, but this is outside the sope of the present paper.The density harts of R∗∗ and R̂∗ are plotted in Figure 6 and, as for previous data, thevariability of the estimation error is larger than the variability of the proess error.4.4 A large triangle of paid laims from a long-tailed line of businessFinally the two bootstrap proedures are applied to a development triangle for Motor TPL,a typially long-tailed line of business, where there are still unreported laims. Due to an1 2 3 4 5 6 71995 48 545 56 786 32 659 12 973 4 005 1 696 4901996 58 294 79 824 38 287 15 957 4 617 1 4271997 73 859 73 237 35 281 13 960 3 8541998 65 707 67 632 32 832 12 1581999 92 901 80 931 36 5082000 66 834 47 6302001 45 838Table 4.12: Data 3 provided by the Swedish insurane ompany AFA Försäkring.Estimated Non-parametri Parametri Non-parametri ParametriYear Reserve p = 1 ODP p = 2 Gamma1996 621 2 369 2 124 873 8621997 2 408 5 377 5 382 3 128 3 1161998 6 317 10 763 10 823 8 027 7 9601999 25 536 34 668 34 673 32 242 32 1632000 46 196 59 249 58 820 58 910 58 3952001 82 821 107 213 105 455 110 188 108 440Total 163 898 195 586 195 097 195 876 193 573Table 4.13: The estimated reserve and the 95 perentiles of the non-parametri and the para-metri unstandardized preditive bootstrap when hain-ladder is used for Data 3.



4 NUMERICAL STUDY 31Estimated Non-parametri Parametri Non-parametri ParametriYear Reserve p = 1 ODP p = 2 Gamma1996 621 173 169 26 251997 2 408 77 74 19 181998 6 317 44 42 17 161999 25 536 22 22 17 162000 46 196 17 17 17 172001 82 821 17 17 21 20Total 163 898 12 12 12 12Table 4.14: The estimated reserve and the oe�ients of variation of the simulations (in %) ofthe non-parametri and the parametri unstandardized preditive bootstrap when hain-ladderis used for Data 3. 7572 007 -746604 3 300 32616 480 6 116 2 838 1 10830 487 11 674 2 527 1 924 -94847 952 16 537 14 875 2 315 640 -368 -1 2361 949 -1 3672 653 1 561 -1 09517 954 3 478 2 046 -1 43526 073 11 364 2 201 1 295 -90840 247 18 232 7 947 1 539 905 -635Table 4.15: An example of pseudo-triangles when p = 1; the left triangle is ∆C∗∗ and the righttriangle is ∆m̂∗. 2 2551 503 2 2553 758 3 006 018 788 2 255 3 006 2 25530 061 12 024 3 006 752 75242 085 27 055 9 770 2 255 2 255 752 01 712 04 919 1 716 016 892 5 385 1 878 028 929 12 041 3 838 1 339 055 292 28 841 12 004 3 827 1 335 0Table 4.16: An example of pseudo-triangles when an over-dispersed Poisson distribution isassumed; the left triangle is ∆C∗∗ and the right triangle is ∆m̂∗.
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Figure 6: Density harts of R∗∗ (a) and R̂∗ (b) for the unstandardized non-parametri predi-tive bootstrap proedures for Data 3 when p = 1.



5 CONCLUSIONS 32outlier in the oldest aident year (1987) we exlude this year from the original triangle inNaziropoulou (2005), see Table 4.17 for Data 4.Estimation of p yields p̂ = 0.7773 and the results of the bootstrap proedures are presentedin Tables 4.18 - 4.19. The onlusions are the same as in the earlier examples. The densityharts of R∗∗ and R̂∗ are plotted in Figure 7 and for Data 4 the variability of the estimationerror is again larger than the variability of the proess error.
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Figure 7: Density harts of R∗∗ (a) and R̂∗ (b) for the unstandardized non-parametri predi-tive bootstrap proedures for Data 4 when p = 1.5 ConlusionsSo far most papers onerning bootstrapping for laims reserve unertainty fous on obtai-ning the preditive distribution for the hain-ladder method by assuming underlying models,whih reprodue the hain-ladder estimates. However, the assumption of an underlying modelis generally not made in pratise for the purpose of estimating the laims reserve, sine theatuary rather uses somewhat omplex reserving algorithms, without referene to statistialmodels. In this paper we suggest using either a non-parametri or a parametri bootstrapmethodology with as few model assumptions as possible in order to make the bootstrap pro-
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 161988 13 286 9 064 2 260 1 271 1 295 1 007 1 484 150 1 110 598 780 1 262 1 470 350 881 496 1701989 12 428 9 740 2 387 1 751 1 261 902 1 054 1 086 1 378 1 983 634 1 129 1 346 700 844 1 1421990 13 292 8 996 2 615 1 493 1 462 834 1 102 734 1 297 1 160 781 2 021 997 416 4171991 13 174 9 023 2 476 1 586 1 361 1 056 758 955 972 1 468 1 029 2 483 599 9961992 12 300 8 562 2 444 1 282 1 444 637 1 474 1 368 944 1 328 1 013 1 250 1 0091993 12 710 7 747 2 242 2 164 1 478 1 263 1 069 2 160 962 3 870 803 4751994 11 935 8 340 2 814 1 870 1 464 1 107 1 221 1 214 1 617 1 310 1 5911995 11 959 9 377 2 804 2 488 1 746 1 466 3 168 1 832 1 763 2 0511996 11 518 8 953 3 269 1 865 1 522 1 753 1 770 1 717 2 0841997 11 621 8 233 3 705 2 091 2 080 1 697 1 800 2 4181998 12 416 8 518 2 670 1 951 1 861 1 365 1 8741999 12 957 8 917 3 172 2 550 2 141 2 1162000 12 964 10 432 3 060 2 382 1 6062001 14 959 12 404 4 017 2 6632002 16 890 11 899 3 6332003 17 167 11 6292004 17 658 Table 4.17: Data 4 from Naziropoulou (2005).



5 CONCLUSIONS 34Estimated Non-parametri Parametri Non-parametri ParametriYear Reserve p = 1 ODP p = 2 Gamma1989 184 551 608 311 3141990 1 000 1 785 1 810 1 528 1 5381991 1 765 2 783 2 773 2 523 2 5301992 2 250 3 401 3 386 3 084 3 0801993 3 586 5 010 5 002 4 798 4 8191994 4 947 6 611 6 563 6 576 6 5801995 6 811 8 805 8 761 9 014 8 9521996 8 245 10 607 10 523 10 902 10 8861997 9 865 12 444 12 460 13 060 12 9881998 10 797 13 455 13 493 14 131 14 2451999 13 529 16 623 16 531 17 759 17 7642000 14 933 18 240 18 179 19 716 19 6612001 19 798 23 719 23 700 26 008 26 2802002 22 920 27 141 27 176 30 525 30 7712003 26 757 31 598 31 539 36 447 36 3592004 40 854 48 032 48 283 61 070 60 315Total 188 242 207 770 207 461 218 375 217 784Table 4.18: The estimated reserve and the 95 perentiles of the non-parametri and the para-metri unstandardized preditive bootstrap when hain-ladder is used for Data 4.Estimated Non-parametri Parametri Non-parametri ParametriYear Reserve p = 1 ODP p = 2 Gamma1989 184 131 129 48 471990 1 000 49 49 35 341991 1 765 36 36 28 281992 2 250 31 31 24 241993 3 586 25 24 22 221994 4 947 21 21 22 211995 6 811 18 18 21 201996 8 245 16 16 20 201997 9 865 15 15 20 201998 10 797 14 15 20 201999 13 529 13 13 20 202000 14 933 13 13 21 202001 19 798 12 12 21 212002 22 920 11 11 22 222003 26 757 11 11 24 242004 40 854 11 11 34 33Total 188 242 6 6 11 10Table 4.19: The estimated reserve and the oe�ients of variation of the simulations (in %) ofthe non-parametri and the parametri unstandardized preditive bootstrap when hain-ladderis used for Data 4.



5 CONCLUSIONS 35edures more onsistent with the atuary's way of working. It is assumed that the bootstrapproedures only depend on the mean and variane of the laims, while the atuary's hoieof reserving algorithm impliitly spei�es the mean struture. Consequently, the suggestedbootstrap proedures an be used to obtain the preditive distribution of any age-to-age de-velopment fator method. The non-parametri and the parametri bootstrap proedures areompared to tehniques desribed in Pinheiro et al. (2003), as well as in England (2002), and�nally they are applied to four development triangles of di�erent types.We have seen that the results of the parametri standardized preditive bootstrap are onsis-tent with the results of its non-parametri ounterpart in Pinheiro et al. (2003). Furthermore,the unstandardized preditive bootstrap proedures have revealed that the variability of theestimation error, when hain-ladder is used, is larger than the variability of the proess errorfor all four investigated development triangles and for the two largest of them the di�erene isonsiderable. Finally, our simulation results are almost the same for the non-parametri andthe parametri approah.Sine resampling of standardized quantities often inreases auray ompared to using un-standardized quantities, the standardized preditive bootstrap is in theory preferable to theunstandardized one. We have seen that the standardized ase yields higher estimated risk,seemingly due to the fat that it makes the distribution more symmetri than the unstan-dardized ase, where the preditive distribution is skewed to the left. A disadvantage ofthe standardized preditive bootstrap is that the denominators of (3.10) may sometimes benon-positive, yielding unde�ned or imaginary predition errors. In priniple, this ould beorreted by the double bootstrap, whih provides a better estimation of the variane sine itinludes the estimation error as well as the proess error. Therefore, it would be interesting,in a future paper, to analyze the behaviour of the double bootstrap method both for simulatedand real data sets.Finally, a somewhat surprising result of the numerial studies is that the estimation error isonsistently larger than the proess error. This ould be the ase for further study.
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39Appendix 1The basi assumption of the resampling proess of the non-parametri bootstrap is indepen-dent and identially distributed residuals. We will now motivate that the model in (3.1) givesapproximately identially distributed residuals rij for the majority of residuals (3.2) or (3.3)in the upper triangle (not lose to any of the orners) when p = 2 (gamma distribution), butnot for p = 1 (over-dispersed Poisson distribution). By large triangles we mean that t → ∞and hene also n → ∞. For eah �xed ij, m̂ij is a onsistent estimate of mij as n grows, and
q/n → 0. Hene, for large n, the residuals an be written as

rij =
Cij − mij

√

mp
ij

.Sine the moment generating funtion of a Γ(α, β) distribution is M(t) = (1 − β t)−α and
p = 2 is equivalent to Cij ∈ Γ( 1

φ
, φmij), the residuals rij are identially distributed aordingto

Mrij
(t) = e−t MCij

(
t

mij

) = e−t(1 − φ t)−
1

φ .The moment generating funtion of a Po(λ) distribution is M(t) = eλ(et−1), but sine p = 1implies an over-dispersed Poisson distribution we need a help variable Xij in order to �nd thedistribution of the residuals. The underlying model is ful�lled if Cij = φXij , Xij ∈ Po(
mij

φ
)and the residuals are distributed aording to

Mrij
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√
mij MCij
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.The distributions of the residuals rij depend on mij and onsequently the residuals annot beidentially distributed.



40Appendix 2In order to �nd the variability of the laims reserve obtained by the hain-ladder methodEngland & Verrall (1999) assume the model struture in (3.1) and on the basis of the standarderror of predition of a single future value Cij in ∆C, i.e.
SEP (Cij) =

√

̂E(Cij − Ĉij)2 ∼=

√

̂V ar(Cij) + ̂V ar(Ĉij), (5.1)an expression for the standard error of predition of the total laims reserve is derived as
SEP (R) =

√

̂V ar(R − R̂) ≈

√

̂V ar(R) + ̂V ar(R̂) (5.2)
=

√

̂V ar(
∑

∆

Cij) + ̂V ar(
∑

∆

Ĉij)

≈

√

∑

∆

φ̂ m̂p
ij +

∑

∆

m̂ij
̂V ar(η̂ij) + 2

∑

∆, i1j1 6=i2j2

m̂i1j1 m̂i2j2
̂Cov(η̂i1j1 η̂i2j2) ,where η̂ij is the estimate of ηij appearing in (3.1). The �rst term provides for the variane ofthe proess error and an easily be estimated analytially, while the two last terms, providingfor the variane of the estimation error, an be obtained by bootstrapping. When p = 1,England & Verrall (1999) replae equation (5.2) by the bootstrap standard error of predition

SEPbs(R) =

√

φ̂ R̂ + (SEbs(R̂∗))2, (5.3)where SEbs(R̂
∗) is the standard error of the B simulated values of R̂∗ obtained by the non-parametri standardized bootstrap proedure in Substage 2.1 in Figure 1. However, England& Verrall (1999) substitute the maximum likelihood estimates of the model parameters inFigure 1 by the hain-ladder method.In order to obtain a omplete preditive distribution England (2002) extended the methodin England & Verrall (1999) by replaing the analyti alulation of the proess error byanother simulation onditional on the bootstrap simulation. The proess error is inluded tothe B triangles ∆m̂∗ by sampling a random observation from a proess distribution with mean

m̂∗
ij and variane φ m̂∗

ij to obtain the future laims ∆m†. The preditive distribution of theoutstanding laims is then obtained by plotting the B values of R̃† =
∑

∆ m†

ij and �nally the



41standard deviation of the simulations gives the standard error of predition of the outstandinglaims.England (2002) presents no justi�ation of this proedure, but sampling from over-dispersedPoisson distributions with mean m̂∗
ij and variane φ m̂∗

ij will indeed provide us with a preditivedistribution of R onsistent with (5.3). Sine
E(R†|∆m̂∗) =

∑

∆

E(m†

ij |∆m̂∗) =
∑

∆

m̂∗
ij = R̂∗and Var(R†|∆m̂∗) =

∑

∆

V ar(m†

ij |∆m̂∗) =
∑

∆

φ̂ m̂∗
ij = φ̂ R̂∗the variane of the simulated preditive distribution isVar(R†) = E[Var(R†|∆m̂∗)] + Var[E(R†|∆m̂∗)]

= E(φ̂ R̂∗) + Var(R̂∗) = φ̂ E(R̂∗) + Var(R̂∗) ≈ φ̂ R̂ + Var(R̂∗),where, in the last step, we used E(R̂∗) ≈ R̂ and (3.12).
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1 INTRODUCTION 21 IntrodutionOne issue for the reserving atuary is how to deal with in�ation, whih ontributes tothe unertainty in the estimate of the laims reserve. Even though some proper reservingtehniques are suggested in the literature, little has been said about how to approahthis issue when it omes to �nding the variability of the atuary's best estimate eitheranalytially or by bootstrapping.Due to external fores the average ost per laim will hange from one alendar year toanother. Typially this laims in�ation is spei� to eah line of business and dependson the eonomi in�ation, whih usually an be tied to some relevant index, as well as onfators like legislation and attitudes to poliy holder ompensation. The latter result in soalled superimposed laims in�ation.The hain-ladder method makes impliit allowane for laims in�ation sine it projets thein�ation present in the past data into the future, see e.g. Taylor (2000). Consequently, itonly works properly when the in�ation rate is onstant. When the eonomi in�ation rateis non-onstant, the past paid losses an be onverted to urrent value by some relevantindex before they are projeted into the future by the hain-ladder, but still there is noallowane for superimposed laims in�ation.Another approah of dealing with laims in�ation is to inorporate it into the model un-derlying the reserving method. In this way the past in�ation rate an be estimated andthe future in�ation rate an be predited within the model. Verbeek (1972) introduedsuh a method in the reinsurane ontext and Taylor (1977) developed it further to beappliable to the average laim ost in a general ontext. The reserving tehnique is alledthe separation method. However, the separation method has, unlike its famous relative,remained quite anonymous in the literature on stohasti laims reserving. For instane,the mean squared error of predition for the hain-ladder was analytially alulated byMak (1993) and revisited by Buhwalder et al. (2006) and Mak et al. (2006) and a full



2 THE SEPARATION METHOD 3preditive distribution was obtained for the hain-ladder by bootstrapping in England &Verrall (1999), England (2002) and Pinheiro et al. (2003). Reently the variability of otherreserving methods has been investigated as well, e.g. the Bornhuetter-Ferguson method byanalytial approximation in Mak (2008) and the Munih hain-ladder, see Quarg & Mak(2004), by bootstrapping of two orrelated quantities in Liu & Verrall (2008).The objet of this paper is to analyze the variability of the separation method. Sine boot-strapping easily gives a full preditive distribution and an also be used in risk managementwith Dynami Finanial Analysis (DFA) we develop a bootstrap proedure for the sepa-ration method. For this purpose we use an extended version of the parametri bootstraptehnique desribed in Björkwall et al. (2008). To this end, we introdue a parametriframework within the separation model, in whih laim ounts are Poisson distributed andlaim amounts are gamma distributed onditionally on the ultimate laim ounts. Thisenables joint resampling of laim ounts and laim amounts.Setion 2 ontains the de�nitions and the theory behind the separation method. In Setion3 the suggested bootstrap methodology is disussed and it is studied numerially for thewell-known data set from Taylor & Ashe (1983) in Setion 4. Finally, Setion 5 ontains adisussion.2 The separation methodAssume that we have a triangle of inremental observations of paid laims {Cij; i, j ∈ ∇},where ∇ denotes the upper, observational triangle ∇ = {i = 0, . . . , t; j = 0, . . . , t− i}. Thesu�xes i and j refer to the origin year and the development year, respetively, see Table2.1. In addition, the su�x k = i + j is used for the alendar years, i.e. the diagonals of ∇.The purpose is to predit the sum of the delayed laim amounts in the lower, unobservedfuture triangle {Cij ; i, j ∈ ∆}, where ∆ = {i = 1, . . . , t; j = t − i + 1, . . . , t}, see Table2.2. We write R =
∑

∆ Cij for this sum, whih is the outstanding laims for whih the



2 THE SEPARATION METHOD 4insurane ompany must hold a reserve. Furthermore, assume that we have a triangle ofthe inremental observations of the numbers of laims {Nij; i, j ∈ ∇} orresponding to thesame portfolio as in Table 2.1, i.e. the observations in Table 2.3. The ultimate number oflaims relating to period of origin year i is then
Ni =

∑

j∈∇i

Nij +
∑

j∈∆i

Nij , (2.1)where ∇i and ∆i denotes the rows orresponding to origin year i in the upper triangle ∇and the lower triangle ∆, respetively.The separation method is based on the assumption that Ni is onsidered as known. Sinethe number of laims is often �nalized quite early even for long-tailed business, Ni mayvery well be estimated separately, e.g. by the hain-ladder if a triangle of laim ountsDevelopment yearAident year 0 1 2 · · · t − 1 t
0 C00 C01 C02 · · · C0,t−1 C0,t

1 C10 C11 C12 · · · C1,t−1

2 C20 C21 C22 · · ·... ... ... ...
t − 1 Ct−1,0 Ct−1,1

t Ct,0Table 2.1: The triangle ∇ of observed inremental payments.Development yearAident year 0 1 2 · · · t − 1 t
0
1 C1,t

2 C2,t−1 C2,t... ... ...
t − 1 Ct−1,2 · · · Ct−1,t−1 Ct−1,t

t Ct,1 Ct,2 · · · Ct,t−1 Ct,tTable 2.2: The triangle ∆ of unobserved future laim osts.



2 THE SEPARATION METHOD 5is provided, and then be treated as known. Heneforth estimates n̂ij of the expetations
nij = E(Nij) is obtained by the hain-ladder for all ells in both ∇ and ∆. The estimatedultimate number of laims relating to origin year i is then

N̂i =
∑

j∈∇i

Nij +
∑

j∈∆i

n̂ij . (2.2)The hain-ladder method operates on umulative laim ounts
Aij =

j
∑

ℓ=0

Niℓ (2.3)rather than inremental laim ounts Nij . Let νij = E(Aij). Development fators gj areestimated for j = 0, 1, . . . , t − 1 by
ĝj =

∑t−j
i=0 Ai,j+1
∑t−j

i=0 Aij

(2.4)yielding
ν̂ij = Ai,t−i ĝt−i ĝt−i+1 . . . ĝj−1 (2.5)and

n̂i,j = ν̂i,j − ν̂i,j−1 (2.6)for ∆, while estimates of ν̂ij for ∇ are obtained by the proess of bakwards reursiondesribed in England & Verrall (1999).Development yearAident year 0 1 2 · · · t − 1 t
0 N00 N01 N02 · · · N0,t−1 N0,t

1 N10 N11 N12 · · · N1,t−1

2 N20 N21 N22 · · ·... ... ... ...
t − 1 Nt−1,0 Nt−1,1

t Nt,0Table 2.3: The triangle ∇ of observed inremental numbers of reported laims.



2 THE SEPARATION METHOD 6While the hain-ladder only assumes laim proportionality between the development years,the separation method in Taylor (1977) separates the laim delay distribution from in�u-enes e�eting the alendar years, e.g. in�ation. In the separation model we �rst assumethat the proportion of the average laim amount paid in development year j is onstantover i; denote this proportion by rj . If the laims are fully paid by year t we have theonstraint
t
∑

j=0

rj = 1. (2.7)We then make a further assumption that the laim amount is proportional to some index,say λk, that relates to the alendar year k during whih the laims are paid. The expetedlaim ost for development year j and alendar year k is then proportional to rj λk.Development yearAident year 0 1 2 · · · t − 1 t
0 r0 λ0 r1 λ1 r2 λ2 · · · rt−1 λt−1 rt λt

1 r0 λ1 r1 λ2 r2 λ3 · · · rt−1 λt

2 r0 λ2 r1 λ3 r2 λ4 · · ·... ... ... ...
t − 1 r0 λt−1 r1 λt

t r0 λtTable 2.4: The triangle ∇ of expeted paid laims.The separation model an be given the following formulation, whih is at a bit moredetailed level than the one given in Taylor (1977). Let Cijl denote the amount paid duringalendar year k for the l:th individual laim inurred in origin year i and assume that Cijlare onditionally independent for all i, j and l given Ni. Aording to the disussion abovewe also assume that
E(Cijl|Ni) = rj λk. (2.8)Sine the total amount paid during alendar year k for laims inurred in origin year i is

Cij =
Ni
∑

l=1

Cijl (2.9)



2 THE SEPARATION METHOD 7we obtain
E

(

Cij

Ni

∣

∣

∣

∣

∣

Ni

)

=
1

Ni

Ni
∑

l=1

E (Cijl|Ni) =
1

Ni

Ni
∑

l=1

rj λk = rj λk (2.10)for the onditional expetation of the average laim osts given the ultimate number oflaims and this relation is the basi assumption of the separation method. The expetationsin equation (2.10) now build up the triangle in Table 2.4.If Ni is estimated separately by (2.2), it follows from (2.8) and (2.9) that
E

(

Cij

N̂i

∣

∣

∣

∣

∣

∇N

)

=
E(E(Cij|Ni,∇N)|∇N)

N̂i

= rj λk

(
∑

∇i
Nij +

∑

∆i
nij)

(
∑

∇i
Nij +

∑

∆i
n̂ij)

≈ rj λk (2.11)where in the last equality we used n̂ij ≈ nij .Estimates r̂j and λ̂k of the parameters in the triangle in Table 2.4 an now be obtainedusing the orresponding triangle ∇s of observed values
sij =

Cij

N̂i

, (2.12)and the method of moments equations
sk0 + sk−1,1 + . . . + s0k = (r̂0 + . . . + r̂k) λ̂k , k = 0, . . . , t (2.13)for the diagonals of ∇ and
s0j + s1j + . . . + st−j,j = (λ̂j + . . . + λ̂t) r̂j , j = 0, . . . , t (2.14)for the olumns of ∇.Taylor (1977) shows that the equations (2.13) - (2.14), with the side onstraint (2.7), havea unique solution that an be obtained reursively, starting with k = t in (2.13) to solvefor λ̂t, then j = t in (2.14) to solve for r̂t, k = t − 1 in (2.13) to solve for λ̂t−1 and so on.This yields

λ̂k =

∑k
i=0 si,k−i

1 −
∑t

j=k+1 r̂j

, k = 0, . . . , t (2.15)
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r̂j =

∑t−j
i=0 sij

∑t
k=j λ̂k

, j = 0, . . . , t , (2.16)where ∑t
j=k+1 r̂j is interpreted as zero when k = t.Estimates m̂ij of the expetations mij = E(Cij) for ells in ∇ are now given by

m̂ij = N̂i r̂j λ̂k , (2.17)but in order to obtain the estimates of ∆ it remains to predit λk for t+1 ≤ k ≤ 2 t, whihrequires some in�ation assumption.If there is a trend in the in�ation indexes λ̂k for k ≤ t then smoothing and extrapolationould be used in order to foreast the future in�ation. An alternative is to use an averageof the past indexes. In any ase, with an in�ation assumption of, say, K%, the foreasted
λk+1 an be obtained as λ̂k+1 = (1 + K

100
) λ̂k for t ≤ k ≤ 2 t − 1. The ell expetations of

∆Cij are then estimated by equation (2.17) and estimators of the outstanding laims areobtained by summing per aident year R̂i =
∑

j∈∆i
m̂ij . The estimator of the total reserveis R̂ =

∑

∆ m̂ij.The separation model desribed by Taylor (1977) is more general than the one disussedin this paper, sine the original model do not presume that Ni is the number of laims; itould be some other exposure relating to origin year i as well. However, in this paper westik to the number of laims.3 A onditional parametri bootstrap approahFor the purpose of obtaining the preditive distribution of the laims reserve R estimatedby the separation method the bootstrap tehnique desribed in Pinheiro et al. (2003) and,in partiular, the parametri approah in Björkwall et al. (2008) is used. For the samplingproess we model the paid laims Cij onditionally on Ni in aordane with (2.11). Weprovide models for the assumption of stohasti Ni as well as for the ase when Ni is



3 A CONDITIONAL PARAMETRIC BOOTSTRAP APPROACH 9onsidered as known. The former assumption demands that we develop the tehniquedesribed in Björkwall et al. (2008) in order to handle ∇N as well as ∇C.3.1 Stohasti Poisson distributed laim ountsVerbeek (1972) adopted a Poisson distribution for the laim ounting variable, while themethod desribed in Taylor (1977) is distribution-free. However, the assumption of inde-pendent and Poisson distributed laim ounts
Nij ∈ Po(nij) (3.1)yields a very reasonable model for the sampling proess.In addition we assume that the onditionally independent laims Cijl|Ni in (2.8) are gammadistributed. We use the notation

Cijl|Ni ∈ Γ

(

1

φ
, rj λk φ

)

, (3.2)where 1/φ is the so alled index parameter and rj λk φ is the sale, so that the expetedvalue is rj λk. Moreover, φ > 0.Realling (2.9) and the independene of the Cijl we �nd that
Cij |Ni ∈ Γ

(

Ni

φ
, rj λk φ

)

, (3.3)whih is onsistent with (2.10) sine
E(Cij|Ni) = Ni rj λk . (3.4)The variane of the amounts in (3.3) is

V ar(Cij|Ni) = φ Ni (rj λk)
2 = φ

E2(Cij|Ni)

Ni

, (3.5)whih orresponds to a weighted generalized linear model under the assumption of a loga-rithmi link funtion and a gamma distribution. We use a Pearson type estimate of φ, f.



3 A CONDITIONAL PARAMETRIC BOOTSTRAP APPROACH 10MCullagh & Nelder (1989),
φ̂ =

1

|∇| − q

∑

∇

N̂i

(Cij − Ê(Cij|Ni))
2

Ê2(Cij |Ni)
=

1

|∇| − q

∑

∇

N̂i

(Cij − N̂i r̂j λ̂k)
2

(N̂i r̂j λ̂k)2
, (3.6)where |∇| = (t+1) (t+2)/2 is the number of observations in ∇C, the estimators N̂i, λ̂j and

r̂j are obtained from (2.2), (2.15) and (2.16) and q = 2 t + 1 is the number of parametersthat have to be estimated by the separation method, i.e. rj for j = 0, 1, . . . , t − 1 and λkfor k = 0, 1, . . . , t.Notie that (3.3) ould be interpreted as follows; given Ni laims we alloate laim amountsindependently over the development years j aording to the proportions r0, . . . , rt beforethe in�ation is onsidered. Aording to (3.2) we not only alloate laim amounts butindividual laims as well. This interpretation is onsistent with the assumptions disussedin Setion 2.We adopt the bootstrap tehnique desribed in Pinheiro et al. (2003) and, in partiular, theparametri approah in Björkwall et al. (2008). The relation between the true outstandinglaims R and its estimator R̂ in the real world is, by the plug-in-priniple, substituted inthe bootstrap world by their bootstrap ounterparts. Hene, the proess error is inludedin R∗∗, i.e. the true outstanding laims in the bootstrap world, while the estimation erroris inluded in R̂∗, i.e. the estimated outstanding laims in the bootstrap world. Heneforthwe use the index ∗ for random variables or plug-in estimators in the bootstrap world whihorrespond to observations or estimators in the real world, while the index ∗∗ is usedfor random variables in the bootstrap world when the ounterparts in the real world areunobserved.The parametri bootstrap approah in Björkwall et al. (2008) an now be implemented forthe separation method using (3.1) and (3.3) in the following way. We draw N∗
ij and N∗∗

ijfrom
N∗

ij ∈ Po(n̂ij) and N∗∗

ij ∈ Po(n̂ij) (3.7)
B times for all i, j ∈ ∇ and i, j ∈ ∆, respetively. We thereby get the B pseudo-triangles
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∇N∗ and ∆N∗∗. The ultimate number of laims per origin year in the bootstrap world isthen given by

N∗∗

i =
∑

j∈∇i

N∗

ij +
∑

j∈∆i

N∗∗

ij (3.8)aording to (2.1).One N∗∗
i is alulated, C∗

ij is sampled B times from
C∗

ij |N
∗∗

i ∈ Γ

(

N∗∗
i

φ̂
, r̂j λ̂k φ̂

)

, (3.9)for all i, j ∈ ∇ yielding the B pseudo-triangles ∇C∗. Here λ̂k and r̂j are obtained from(2.15) and (2.16).The heuristi estimation proess desribed in Setion 2 is then repeated B times for eahpair of pseudo-triangles. The laim ounts are �rst foreasted by ∆n̂∗, obtained by thehain-ladder from ∇N∗, in order to estimate the ultimate number of laims per origin year
N̂∗

i =
∑

j∈∇i

N∗

ij +
∑

j∈∆i

n̂∗

ij (3.10)aording to (2.2). The future payments are then foreasted by estimating ∆m̂∗ aordingto (2.12) - (2.17). Finally, estimators for the outstanding laims in the bootstrap worldare obtained by R̂∗
i =

∑

j∈∆i
m̂∗

ij and R̂∗ =
∑

∆ m̂∗
ij.In order to generate a random outome of the true outstanding laims in the bootstrapworld, i.e. R∗∗

i =
∑

j∈∆i
C∗∗

ij and R∗∗ =
∑

∆ C∗∗
ij , we sample one again from (3.9) for all

i, j ∈ ∆ to get B triangles ∆C∗∗.The �nal step is to alulate the B predition errorspe∗∗i =
R∗∗

i − R̂∗
i

√

̂V ar(R∗∗
i )

and pe∗∗ =
R∗∗ − R̂∗

√

̂V ar(R∗∗)
. (3.11)The preditive distributions of the outstanding laims Ri and R are then obtained byplotting

R̃∗∗

i = R̂i + pe∗∗i √̂V ar(Ri) and R̃∗∗ = R̂ + pe∗∗√̂V ar(R) (3.12)



3 A CONDITIONAL PARAMETRIC BOOTSTRAP APPROACH 12for eah B.The onditional independene of Cij for all i and j given Ni (3.3) implies that
V ar(Ri) = E (V ar (Ri|Ni)) + V ar (E (Ri|Ni))

= E





∑

j∈∆i

φNi (rjλk)
2



+ V ar





∑

j∈∆i

Nirjλk





= φE (Ni)
∑

j∈∆i

(rjλk)
2 + V ar (Ni)





∑

j∈∆i

rjλk





2

=





φ
∑

j∈∆i

(rjλk)
2 +





∑

j∈∆i

rjλk





2










∑

j∈∇i∪∆i

nij



 (3.13)sine
E(Ni) = V ar(Ni) =

∑

j∈∇i∪∆i

nij . (3.14)By plugging in the estimates we �nd
̂V ar (Ri) =





φ̂
∑

j∈∆i

(

r̂jλ̂k

)2

+





∑

j∈∆i

r̂jλ̂k





2










∑

j∈∇i∪∆i

n̂ij



 (3.15)and
̂V ar (R) =

∑

i





φ̂
∑

j∈∆i

(

r̂jλ̂k

)2

+





∑

j∈∆i

r̂jλ̂k





2










∑

j∈∇i∪∆i

n̂ij



 . (3.16)Analogously, the varianes appearing in (3.11) are
̂V ar (R∗∗

i ) =





φ̂∗
∑

j∈∆i

(

r̂∗j λ̂
∗

k

)2

+





∑

j∈∆i

r̂∗j λ̂
∗

k





2










∑

j∈∇i∪∆i

n̂∗

ij



 (3.17)and
̂V ar (R∗∗) =

∑

i





φ̂∗
∑

j∈∆i

(

r̂∗j λ̂
∗

k

)2

+





∑

j∈∆i

r̂∗j λ̂
∗

k





2










∑

j∈∇i∪∆i

n̂∗

ij



 (3.18)where
φ̂∗ =

1

|∇| − q

∑

∇

N̂∗

i

(C∗
ij − N̂∗

i r̂∗j λ̂∗
k)

2

(N̂∗
i r̂∗j λ̂∗

k)
2

. (3.19)in aordane with (3.6).



3 A CONDITIONAL PARAMETRIC BOOTSTRAP APPROACH 13It is remarked in Björkwall et al. (2008) that for many bootstrap proedures, resamp-ling of standardized quantities often inreases auray ompared to using unstandardizedquantities. Nevertheless, the unstandardized predition errorspe∗∗i = R∗∗

i − R̂∗

i and pe∗∗ = R∗∗ − R̂∗ (3.20)are useful, e.g. for the purpose of studying the estimation and the proess errors, but alsosine they are always de�ned.The preditive distributions of the outstanding laims Ri and R are then obtained byplotting the B quantities
R̃∗∗

i = R̂i + pe∗∗i and R̃∗∗ = R̂ + pe∗∗ . (3.21)The parametri preditive bootstrap proedure is desribed in Figure 1 and aording toBjörkwall et al. (2008) we will refer to it as standardized or unstandardized depending onwhih predition errors that are used.3.2 Known laim ountsIn Setion 2 it was remarked that the separation model is based on the assumption that
Ni is onsidered as known at the moment when the reserving is being done. This an oftenbe a reasonable assumption sine the numbers of laims are usually �nalized quite earlyeven for long-tailed business. In Setion 3.1 Ni was a random variable; in order to get aview of how muh unertainty Ni ontributes to the preditive distribution of the laimsreserve we now onsider the speial ase when Ni is treated as deterministi, in ontrastto (3.1). Consequently, N̂i ≡ Ni in all equations above.Assumption (3.3) an still be used and φ̂ is estimated as in (3.6), but the sampling proesshanges. We do not have to generate pseudo-triangles of laim ounts in the bootstrap



3 A CONDITIONAL PARAMETRIC BOOTSTRAP APPROACH 14Stage 1 - Real worldSubstage 1.1 - The triangle of laim ounts ∇N

· Foreast the future expeted values ∆n̂ and alulate the �tted values ∇n̂ by hain-ladder.
· Calulate the estimated ultimate laim ount per origin year N̂i.Substage 1.2 - The triangle of paid laims ∇C

· Use N̂i from Substage 1.1 for the purpose of foreasting the future expeted values ∆m̂and alulating the �tted values ∇m̂ by the separation method.
· Calulate φ̂ for the sampling proess.
· Calulate the outstanding laims R̂i =

∑

j∈∆i
m̂ij and R̂ =

∑

∆ m̂ij.Stage 2 - Bootstrap worldSubstage 2.1 - The estimated outstanding laimsSubstage 2.1.1 - The pseudo-triangle of laim ounts ∇N∗

· Sample from (3.7) for i, j ∈ ∇ to obtain the pseudo-reality in ∇N∗.
· Foreast the future expeted values ∆n̂∗ by hain-ladder.
· Calulate the estimated ultimate laim ount per origin year N̂∗

i .Substage 2.1.2 - The pseudo-triangle of paid laims ∇C∗

· Sample from (3.7) for i, j ∈ ∆ to obtain the pseudo-reality in ∆N∗∗.
· Calulate the ultimate laim ount per origin year N∗∗

i using ∇N∗ from Substage 2.1.1and ∆N∗∗.
· Sample from (3.9) for i, j ∈ ∇ to obtain the pseudo-reality in ∇C∗ onditionally on ∆N∗∗

i .
· Use N̂∗

i from Substage 2.1.1. for the purpose of foreasting the future expeted values ∆m̂∗by the separation method.
· Calulate the estimated outstanding laims R̂∗

i =
∑

j∈∆i
m̂∗

ij and R̂∗ =
∑

∆ m̂∗
ij .Substage 2.2 - The true outstanding laims

· Sample from (3.9) for i, j ∈ ∆ to obtain the pseudo-reality in ∆C∗∗ onditionallyon ∆N∗∗
i .

· Calulate the true outstanding laims R∗∗
i =

∑

j∈∆i
C∗∗

ij and R∗∗ =
∑

∆ C∗∗
ij .

· Store either the standardized predition errors in (3.11) or the unstandardized ones in (3.20).
· Return to the beginning of the bootstrap loop in Stage 2 and repeat B times.Stage 3 - Analysis of the simulations
· Obtain the preditive distribution of Ri and R, the true outstanding laims in the real world,by plotting the B values in either (3.12) or (3.21).Figure 1: The proedure of the parametri preditive bootstrap for the separation method.



4 NUMERICAL STUDY 15world, i.e. ∇N∗ and ∆N∗∗, sine Ni is onsidered as known. Thus, we just draw C∗
ij from

C∗

ij ∈ Γ(
Ni

φ̂
, r̂j λ̂k φ̂) (3.22)

B times for all i, j ∈ ∇ yielding ∇C∗. The estimation proess of the separation methodis then repeated for eah ∇C∗ using Ni as the exposure in the bootstrap world as well.Finally, we sample one again B times from (3.22) for all i, j ∈ ∆ to get ∆C∗∗.The predition errors and the preditive distributions are as earlier obtained by (3.11) and(3.12), respetively, but sine V ar(Ni) = 0, we obtain the estimators
̂V ar(Ri) = φ̂Ni

∑

∆i

(r̂jλ̂k)
2 (3.23)and

̂V ar(R) =
∑

i

φ̂Ni

∑

∆i

(r̂jλ̂k)
2 (3.24)instead of (3.15) and (3.16).Analogously, the estimators appearing in (3.11) are

̂V ar(R∗∗

i ) = φ̂∗Ni

∑

∆i

(r̂∗j λ̂
∗

k)
2 (3.25)and

̂V ar(R∗∗) =
∑

i

φ̂∗Ni

∑

∆i

(r̂∗j λ̂
∗

k)
2 , (3.26)where φ̂∗ is estimated by (3.19).The unstandardized predition errors in (3.20) an of ourse be used as well. The preditivedistributions are then obtained by (3.21).This simpli�ed approah is summarized in Figure 2.4 Numerial studyThe purpose of the numerial study is to illustrate the parametri bootstrap proedure forthe separation method and to ompare it to the approah for the hain-ladder desribed in
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Stage 1 - Real worldSubstage 1.1 - The triangle of laim ounts ∇N

· Foreast the future expeted values ∆n̂ by hain-ladder.
· Calulate the estimated ultimate laim ount per origin year N̂i.Substage 1.2 - The triangle of paid laims ∇C

· Use N̂i from Substage 1.1 for the purpose of foreasting the future expeted values ∆m̂and alulating the �tted values ∇m̂ by the separation method.
· Calulate φ̂ for the sampling proess.
· Calulate the outstanding laims R̂i =

∑

j∈∆i
m̂ij and R̂ =

∑

∆ m̂ij.Stage 2 - Bootstrap worldSubstage 2.1 - The estimated outstanding laims
· Sample from (3.22) for i, j ∈ ∇ to obtain the pseudo-reality in ∇C∗.
· Use N̂i for the purpose of foreasting the future expeted values ∆m̂∗ by the separationmethod.
· Calulate the estimated outstanding laims R̂∗

i =
∑

j∈∆i
m̂∗

ij and R̂∗ =
∑

∆ m̂∗
ij .Substage 2.2 - The true outstanding laims

· Sample from (3.22) for i, j ∈ ∆ to obtain the pseudo-reality in ∆C∗∗.
· Calulate the true outstanding laims R∗∗

i =
∑

j∈∆i
C∗∗

ij and R∗∗ =
∑

∆ C∗∗
ij .

· Store either the standardized predition errors in (3.11) or the unstandardized ones in (3.20).
· Return to the beginning of the bootstrap loop in Stage 2 and repeat B times.Stage 3 - Analysis of the simulations
· Obtain the preditive distribution of Ri and R, the true outstanding laims in the real world,by plotting the B values in either (3.12) or (3.21).Figure 2: The proedure of the simpli�ed parametri preditive bootstrap for the separationmethod.



4 NUMERICAL STUDY 17Björkwall et al. (2008). From now on B = 10 000 simulations are used for eah predition.The upper 95 perent limits are studied and the oe�ients of variation, i.e. √V ar(R̃∗∗
i )/R̂iand √V ar(R̃∗∗)/R̂, are presented as well.We use the well-known data from Taylor & Ashe (1983), who also provide observations ofnumber of laims. The triangles of paid laims ∇C and laim ounts ∇N are presented inTable 4.1 and Table 4.2, respetively.4.1 The estimate of the laims reserve and the payment patternThe assumption of the future in�ation rate has great impat on the laims reserve estimatedby the separation method. The future in�ation rate an of ourse be modeled by morere�ned approahes, but this is beyond the sope of this paper and we just onsider aonstant or the mean rate observed so far. In Table 4.3 the estimators are shown underthree di�erent assumptions. The in�ation rate 11, 01% orresponds to the mean in�ationrate observed so far, while 5% and 15% are hosen just for omparison. The estimatedlaims reserves obtained by the hain ladder are presented as well.Table 4.4 shows the expeted umulative payment proportions

ĉj =

∑j
l=0

∑t
i=0 m̂il

∑t
l=0

∑t
i=0 m̂il

. (4.1)Obviously, a higher future in�ation rate tends to delay the payments.0 1 2 3 4 5 6 7 8 90 357 848 766 940 610 542 482 940 527 326 574 398 146 342 139 950 227 229 67 9481 352 118 884 021 933 894 1 183 289 445 745 320 996 527 804 266 172 425 0462 290 507 1 001 799 926 219 1 016 654 750 816 146 923 495 992 280 4053 310 608 1 108 250 776 189 1 562 400 272 482 352 053 206 2864 443 160 693 190 991 983 769 488 504 851 470 6395 396 132 937 085 847 498 805 037 705 9606 440 832 847 631 1 131 398 1 063 2697 359 480 1 061 648 1 443 3708 376 686 986 6089 344 014Table 4.1: Observations of paid laims ∇C from Taylor & Ashe (1983).



4 NUMERICAL STUDY 180 1 2 3 4 5 6 7 8 90 40 124 157 93 141 22 14 10 3 21 37 186 130 239 61 26 23 6 62 35 158 243 153 48 26 14 53 41 155 218 100 67 17 64 30 187 166 120 55 135 33 121 204 87 376 32 115 146 1037 43 111 838 17 929 22Table 4.2: Observations of laim ounts ∇N from Taylor & Ashe (1983).4.2 Preditive bootstrap results for the hain-ladderIn order to ompare the separation method to the hain-ladder we summarize the resultsof the parametri preditive bootstrap proedures desribed in Björkwall et al. (2008),where data is bootstrapped aording to the plug-in-priniple under the assumption of agamma distribution; see the referene for details. Tables 4.5 - 4.6 show the results for thestandardized as well as the unstandardized approah.Future in�ation Future in�ation Future in�ation Chain-ladderYear i rate 5.00% rate 11.01% rate 15.00%1 84 339 89 163 92 371 94 6342 473 893 506 151 527 909 469 5113 720 846 794 132 845 099 709 6384 1 144 208 1 288 308 1 391 323 984 8895 1 497 489 1 722 883 1 888 356 1 419 4596 2 095 131 2 448 039 2 713 372 2 177 6417 2 793 640 3 269 931 3 634 088 3 920 3018 3 636 785 4 314 184 4 841 171 4 278 9729 4 990 729 6 043 441 6 879 216 4 625 811Total 17 437 060 20 476 232 22 812 905 18 680 856Table 4.3: The estimated laims reserves under the hain-ladder, ompared to the separationmethod with di�erent in�ation assumptions. The mean in�ation rate observed so far is
11, 01%.



4 NUMERICAL STUDY 19
Development Future in�ation Future in�ation Future in�ation Chain-ladderyear j rate 5.00% rate 11.01% rate 15.00%0 7.1 6.7 6.4 6.91 25.2 23.9 23.0 24.22 44.5 42.5 41.0 42.23 63.3 60.9 59.1 61.54 73.7 71.3 69.5 72.25 81.2 79.0 77.4 79.76 87.7 86.0 84.7 86.67 92.3 91.0 90.1 91.38 98.6 98.3 98.1 98.39 100.0 100.0 100.0 100.0Table 4.4: The expeted umulative payment proportion (in %) under the hain-ladder,ompared to the separation method with di�erent in�ation assumptions. The mean in�ationrate observed so far is 11, 01%.

Standardized UnstandardizedYear i Gamma Gamma1 219 178 168 7562 861 781 756 6343 1 169 041 1 062 7834 1 519 540 1 409 0345 2 127 947 1 975 2226 3 358 037 3 038 7327 6 253 164 5 562 1338 7 386 412 6 284 0209 9 247 043 7 148 120Total 23 991 467 23 123 593Table 4.5: The 95 perentiles of the parametri preditive bootstrap proedures desribed inBjörkwall et al. (2008) for the hain-ladder. We work under the assumption of a gammadistribution and the proedure is either standardized or unstandardized.



4 NUMERICAL STUDY 204.3 The standardized preditive bootstrap for the separation methodThe results for the proedure desribed in Setion 3.1, when the standardized preditionerrors are used, are presented in Table 4.7 for the three di�erent assumptions of the futurein�ation rate. Two of these are mean in�ation rates observed so far, either treated asa onstant (11.01%) or as stohasti in the bootstrap world. Aording to the plug-in-priniple the in�ation rate should be treated as stohasti, i.e. reomputed from {λ̂∗
k}for eah resample, but the former alternative is shown as well for omparison. Table 4.8ontains the oe�ients of variation. Tables 4.7 - 4.8 also inlude the results obtained bythe hain-ladder for omparison.As we an see the results are strongly a�eted by the in�ation assumption and the oef-�ients of variation are naturally higher when the mean in�ation is treated as stohasti,in partiular for the grand total. As expeted the oe�ients of variation of the latestorigin year are lower for the separation method than for the hain-ladder, sine the ex-treme sensitivity to outliers for the hain-ladder in the south orner of the upper triangleis removed for the separation method. Less expeted is that the separation method hasStandardized UnstandardizedYear i Gamma Gamma1 65 502 41 383 32 314 28 275 26 256 27 257 29 278 35 329 47 38Total 15 16Table 4.6: The oe�ients of variation of the simulations (in %) of the parametri predi-tive bootstrap proedures desribed in Björkwall et al. (2008) for the hain-ladder. We workunder the assumption of a gamma distribution and the proedure is either standardized orunstandardized.
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In�ation In�ation In�ation In�ation Chain LadderYear i 5.00% 11.01% Mean 15.00% Gamma1 197 907 201 184 190 418 208 028 219 1782 839 849 882 300 858 679 926 020 861 7813 1 137 848 1 253 445 1 204 288 1 336 139 1 169 0414 1 704 374 1 908 980 1 859 360 2 066 985 1 519 5405 2 178 017 2 513 476 2 446 109 2 751 393 2 127 9476 3 033 630 3 526 976 3 516 529 3 901 976 3 358 0377 4 223 019 4 893 910 4 807 925 5 359 921 6 253 1648 5 564 419 6 540 182 6 489 287 7 239 800 7 386 4129 8 261 189 9 852 469 9 540 033 11 081 546 9 247 043Total 23 412 570 27 442 696 27 659 095 30 692 578 23 991 467Table 4.7: The 95 perentiles of the standardized preditive bootstrap proedure under thehain-ladder, ompared to the separation method with di�erent in�ation assumptions. Twoof these are mean in�ation rates observed so far, either treated as a onstant (11.01 %) oras stohasti (Mean).
In�ation In�ation In�ation In�ation Chain LadderYear i 5.00% 11.01% Mean 15.00% Gamma1 63 61 57 60 652 38 38 37 38 413 30 29 30 30 324 26 25 27 25 285 24 24 27 24 266 24 23 28 23 277 26 26 31 25 298 28 27 32 26 359 33 32 37 31 47Total 18 18 25 17 15Table 4.8: The oe�ients of variation of the simulations (in %) of the standardized pre-ditive bootstrap proedure under the hain-ladder, ompared to the separation method withdi�erent in�ation assumptions. Two of these are mean in�ation rates observed so far,either treated as a onstant (11.01 %) or as stohasti (Mean).



4 NUMERICAL STUDY 22lower oe�ients of variation for years 1-3.4.4 The unstandardized preditive bootstrap for the separationmethodIn order to study the estimation and the proess error we also investigate the proeduredesribed in Setion 3.1 when the unstandardized predition errors are used. The resultsare shown in Tables 4.9 - 4.10.In�ation In�ation In�ation In�ation Chain LadderYear i 5.00% 11.01% Mean 15.00% Gamma1 152 189 158 866 158 108 163 797 168 7562 765 412 803 966 792 018 840 344 756 6343 1 071 483 1 180 997 1 150 577 1 262 227 1 062 7834 1 632 010 1 825 048 1 780 637 1 967 326 1 409 0345 2 082 197 2 413 236 2 340 763 2 644 546 1 975 2226 2 916 401 3 389 043 3 327 822 3 754 270 3 038 7327 4 024 333 4 666 419 4 547 122 5 125 141 5 562 1338 5 270 015 6 180 526 6 027 989 6 874 970 6 284 0209 7 528 152 9 024 898 8 787 987 10 208 677 7 148 120Total 22 281 683 26 091 962 26 145 893 29 117 165 23 123 593Table 4.9: The 95 perentiles of the unstandardized preditive bootstrap proedure underthe hain-ladder, ompared to the separation method with di�erent in�ation assumptions.Two of these are mean in�ation rates observed so far, either treated as a onstant (11.01%) or as stohasti (Mean).As remarked in Björkwall et al. (2008) the perentiles of the unstandardized preditivebootstrap tend to be lower than for the standardized one. This was explained by the leftskewness of the preditive distribution of the unstandardized bootstrap ompared to thedistribution obtained by the standardized bootstrap. Aording to Figure 3 this seems tohold for the separation method too. Figure 3 () - (d) show the preditive distributionsof the total laims reserve under the assumption of a stohasti future in�ation rate orre-sponding to the mean in�ation rate observed so far. The preditive distribution obtainedby the unstandardized bootstrap in () is skewed to the left ompared to the one obtainedby the standardized bootstrap in (d), whih is slightly skewed to the right. This follows



4 NUMERICAL STUDY 23sine the proess omponent in Figure 3 (a) has smaller variability than the estimationomponent in Figure 3 (b), and the latter is skewed to the right. The left skewness isto a large extent removed for the standardized predition errors (3.11), beause of thedenominator, but not for the unstandardized predition errors (3.20).Reomputing the future in�ation rate from {λ̂∗
k} for eah resample in the bootstrap worldyields some rates whih are unreasonably high. These rates a�et the estimation ompo-nent, whih beome more skewed to the right than for a onstant future in�ation rate.Consequently, the preditive distribution of the outstanding laims is more skewed to theleft for the stohasti future in�ation rate than for the onstant. This explains why mostof the perentiles in Tables 4.7 and 4.9 are lower for stohasti in�ation.4.5 Known laim ountsIn Tables 4.11 - 4.12 we present the results of the simpli�ed approah in Setion 3.2 wherewe treat Ni as known. As expeted the variability has dereased ompared to the results inTables 4.7 - 4.8, but the di�erene is notably small. This is onsistent with the separationIn�ation In�ation In�ation In�ation Chain LadderYear i 5.00% 11.01% Mean 15.00% Gamma1 49 48 50 48 502 36 36 38 35 383 29 29 33 29 314 25 25 32 25 275 24 24 34 24 256 24 23 36 23 257 26 26 39 25 278 27 26 43 26 329 33 32 52 31 38Total 18 18 35 17 16Table 4.10: The oe�ients of variation of the simulations (in %) of the unstandardizedpreditive bootstrap proedure under the hain-ladder, ompared to the separation methodwith di�erent in�ation assumptions. Two of these are mean in�ation rates observed so far,either treated as a onstant (11.01 %) or as stohasti (Mean).



4 NUMERICAL STUDY 24method assumption that the numbers of laims usually are �nalized early enough to beonsidered as known. This is interesting, sine Table 4.2 reveals that the data here isatually an example when laim numbers are not �nalized very fast. As expeted, thedi�erene is largest for the last origin year, i.e. where we predit the ultimate number oflaims based on one single observation.
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Figure 3: Density harts of R∗∗ (a), R̂∗ (b) and R̃∗∗ for the unstandardized () and stan-dardized (d) preditive bootstrap proedure under the assumption of a stohasti futurein�ation rate orresponding to the mean in�ation rate observed so far.
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In�ation In�ation In�ation In�ation Chain LadderYear i 5.00% 11.01% Mean 15.00% Gamma1 192 618 203 666 194 659 211 058 219 1782 838 502 897 770 875 334 934 584 861 7813 1 142 097 1 243 302 1 195 689 1 332 776 1 169 0414 1 697 879 1 918 643 1 858 748 2 074 808 1 519 5405 2 200 470 2 525 290 2 451 200 2 726 575 2 127 9476 3 032 494 3 577 632 3 481 789 3 914 571 3 358 0377 4 250 351 4 871 638 4 819 584 5 386 039 6 253 1648 5 532 888 6 507 485 6 421 424 7 227 340 7 386 4129 7 461 845 9 023 231 8 859 782 10 108 297 9 247 043Total 23 398 840 27 417 470 27 783 761 30 304 007 23 991 467Table 4.11: The 95 perentiles of the simpli�ed standardized preditive bootstrap proedureunder the hain-ladder, ompared to the separation method when Ni is onsidered as known.We work under di�erent in�ation assumptions. Two of these are mean in�ation ratesobserved so far, either treated as a onstant (11.01 %) or as stohasti (Mean).
In�ation In�ation In�ation In�ation Chain LadderYear i 5.00% 11.01% Mean 15.00% Gamma1 63 62 57 61 652 39 39 39 39 413 30 29 30 29 324 26 26 27 25 285 24 24 27 24 266 24 24 27 23 277 27 26 31 25 298 27 26 32 25 359 26 25 32 24 47Total 17 17 24 17 15Table 4.12: The oe�ients of variation of the simulations (in %) of the simpli�ed stan-dardized preditive bootstrap proedure under the hain-ladder, ompared to the separationmethod when Ni is onsidered as known. We work under three di�erent in�ation assump-tions. Two of these are mean in�ation rates observed so far, either treated as a onstant(11.01 %) or as stohasti (Mean).



5 CONCLUSIONS 265 ConlusionsThe separation method is a useful reserving tehnique for the purpose of modeling laimsin�ation, whih ontributes to the unertainty of the laims reserve and therefore shouldbe onsidered in risk management. This paper provides a parametri bootstrap proedure,whih an be used to assess the unertainty of the separation method. It is of oursedi�ult to foreast the future in�ation and in this paper simple assumptions have beenused. We believe that the future in�ation for real appliations should be modeled by morere�ned approahes.In one example we saw that whether we onsider Ni as stohasti or known in the bootstrapproedure the results are still at the same level. Of ourse, the situation might be di�erentin another example.Furthermore, when we ompare the perentiles obtained for the separation method withthe ones for the hain-ladder in Tables 4.7 and 4.9 we an see that the result is more a�etedby the assumption of the future laims in�ation rate than the hoie between the hainladder and the separation method. Sine the separation method, under the assumption ofa future in�ation rate orresponding to the mean rate observed so far, indiates a higherrisk than predited by the hain-ladder the question of whih method is preferable in agiven situation immediately arises. Therefore, in a future paper, it would be interesting toompare the two methods in more situations than the one in Setion 4 and in partiularfor long-tailed data.The bootstrap approah for the separation method an also be used in a DFA ontextto simulate the reserve risk. However, as remarked by England & Verrall (2006), a DFAmodel usually inludes an eonomi senario generator (ESG), whih simulates the futurein�ation, and it is important that the dependene between reserve risk and the in�ationfrom the ESG is inorporated in the DFA model. Therefore, England & Verrall (2006)suggest that the data is adjusted to remove e�ets of the eonomi in�ation before applying



5 CONCLUSIONS 27a reserving method, whih use alendar year omponents to model superimposed laimsin�ation, is applied to foreast the future payments. One the future payments has beensimulated they are re-adjusted aording to the in�ation obtained from the ESG.AknowledgementsThe authors are grateful to Björn Johansson, Länsförsäkringar Alliane, for his interpre-tation (2.8) - (2.9) of individually paid laims, whih inspired our suggested resamplingmethod.
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