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Abstract

When England & Verrall (1999) and England (2002) introduced bootstrapping in
claims reserving it soon became a popular method in practise as well as in the liter-
ature. However, even though bootstrapping has been hailed as a flexible tool to find
the precision of complex reserve estimators, much focus so far has been on developing
resampling schemes for, in particular, the chain-ladder method.

In this thesis we first develop the chain-ladder bootstrap to obtain a procedure that
works for other development factor methods as well. This bootstrap procedure is
then extended to be applicable for the separation method.
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"...friends who suggested names more colorful than Bootstrap, including Swiss
Army Knife, Meat Axe, Swan-Dive, Jack-Rabbit, and my personal favorite, the
Shotgun, which, to paraphrase Tukey, "can blow the head off any problem if the
statistician can stand the resulting mess"."

Bradley Efron, 1979.
Bootstrap Methods: Another Look at the Jackknife.
The Annals of Statistics, vol. 7.
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1 Introduction

One item appearing on the liability side of the non-life insurance company’s balance sheet
is the provision for outstanding claims — henceforth the claims reserve. The insurance
company has put aside this amount for the future compensation of policy holders which is
expected on the business written to date. It is indeed important that the claims reserve is
carefully calculated; if it is underestimated the insurance company will not be able to fulfill
its undertakings and if it is overestimated the insurance company unnecessarily holds the
excess capital instead of using it for other purposes, e.g. for investments with higher risk
and, hence, potentially higher return. Moreover, since the claims reserve usually constitutes
a large share of the firm’s total holdings even small miscalculations can imply considerable

amounts of money.

On the basis of historical data the actuary can obtain estimates — or rather predictions —
of the expected outstanding claims and the claims reserve. However, due e.g. to poor data
quality, or sometimes even lack of data, unexpectedly large claim payments, changes in
inflation regime or in the discount rate and even legal and political factors, the uncertainty
of the actuary’s best estimate can be quite high. Obviously, there is a risk that the claims
reserve will not suffice to pay all claims in the end or, in the one year perspective, that
we get a negative run-off result in the income statement the next accounting year. In
order to monitor and manage this risk it is important that the actuary’s best estimate is
complemented by some measure of variability which can be followed up by the insurance

company.

The literature provides an abundance of methods for the actuary to choose amongst for
reserving purposes, see e.g. the Claims Reserving Manual by the Faculty and Institute
of Actuaries (1997). The reserving methods used in practice are frequently deterministic.
For instance, the claims reserve is often obtained according to case estimation of individual

claims by claims handlers. A popular statistical method is the chain-ladder method, see



Taylor (2000), which originally was deterministic. Many ad hoc adjustments are applied as
well, e.g. the projection of payments into the future can sometimes be done by extrapolating
by eye. Hence, there is a long tradition of actuaries calculating reserve estimates without

explicit reference to a stochastic model.

However, stochastic models are needed in order to assess the variability of the claims
reserve. The standard statistical approach would be to first specify a model, then find an
estimate of the outstanding claims under that model, e.g. by maximum likelihood, and
finally the model could be used to find the precision of the estimate. As a compromise
between this approach and the actuary’s way of working without reference to a model
the object of the research area called stochastic claims reserving has mostly been to first
construct a model and a method that produces the actuary’s best estimate and then use
this model in order to assess the uncertainty of the estimate. In particular the object of
several papers has been to find a model under which the best estimate is the one given
by the chain-ladder method, see e.g. Verrall (2000), Mack & Venter (2000) and Verrall &
England (2000).

Once the model has been chosen the variability of the claims reserve can be obtained
either analytically or by simulation. For instance, the mean squared error of prediction
for the chain-ladder method was first calculated analytically by Mack (1993). The reserve
estimators are often complex functions of the observations and, hence, it might be difficult
to derive analytical expressions. Therefore bootstrapping became a popular method when
it was introduced for the chain-ladder by England & Verrall (1999) and England (2002).
However, since the existing bootstrap techniques adopt the statistical assumptions in the
literature, they have been constructed to give a measure of the precision of the actuary’s

best estimate post festum, i.e. without the possibility of changing the estimate itself

The purpose of Paper I is to develop a bootstrap technique which can be used in order
to assess the variability of other development factor methods than the chain-ladder. This

bootstrap technique is then extended in Paper II to be applicable for the separation method,



see Taylor (1977).

2 Claims reserving

2.1 Data

Large insurance companies often have quite extensive data bases with historical information
on incurred claims. Such information can include the numbers of claims reported and
settled, the origin year of the events, the paid amounts, the year of the payments and case
estimates. The actuary can regularly analyze the data in order to predict the outstanding

claims and, hence, the claims reserve.

The analysis is typically done in the following way. To begin with, the actuary separates
the data into risk homogenous groups such as lines of business, e.g. Motor, Property and
Liability. A finer segmentation can be applied if the groups or the subgroups contain a
sufficient number of observations. The actuary might also choose to divide some group
according to the severity of the claims. The large claims can then be reserved according to
case estimates while the subgroup consisting of smaller, but frequently occurring, claims

can be reserved by some statistical method.

When the risk classification is established the actuary usually aggregates the data within
the groups into development triangles. We now consider such an incremental triangle
of paid claims {Cj;;i,j € V}, where the business has been observed during t years, i.e.
V={i=0,...,t;j =0,...,t—i}. The suffixes i and j of the paid claims refer to the origin
year and the payment year, respectively, see Table 2.1. In addition, the suffix k =1+ j is

used for the calendar years, i.e. the diagonals of V.

If we assume that the claims are settled within the ¢ observed years the actuary’s goal is
to predict the sum of the delayed claim amounts in the lower, unobserved future triangle

{Cijii,7 € A}, where A = {i =1,...,¢;j =t —i+1,...,t}, see Table 2.2. We write



Development year
Accident year |0 1 2 e t—1 8
0 Coo Coi Co2 -+ Coui—1 Coy
1 Cho Cu Cip -+ Ciia
2 Cao Coy Cop -
t—1 Cic1ip Cioia
t Cio

Table 2.1: The triangle V of observed incremental payments.

R =" A Cj; for this sum, which is the outstanding claims for which the insurance company

must hold a reserve.

Development year
Accident year |0 1 2 e t—1 t
0
1 Ciy
2 Cor—1 Cay
t—1 Cicig - Cimigm1 Gy
t Cia Ci2 o Chga Ciy

Table 2.2: The triangle A of unobserved future claim costs.

Moreover, we assume that the actuary can sum up a triangle of incremental observations of
the numbers of claims {N;;;4,j € V} corresponding to the same portfolio as in Table 2.1,
i.e. the observations in Table 2.3. The ultimate number of claims relating to the period of
origin year ¢ is then

N; = Z Nij + Z Nij, (2.1)

JEV; JEN;
where V; and A; denotes the rows corresponding to origin year ¢ in the upper triangle V

and the lower triangle A, respectively.

When the paid amounts are presented as in Table 2.1 the payment patterns for the origin



Development year
Accident year |0 1 2 e t—1
0 Noo Noy Noz --+ Noi—1 Nos
1 Nig Ny Nig -+ Niga
2 Nag Noy Nop -
t—1 Nie—1o Neia
t Nio

Table 2.3: The triangle V of observed incremental numbers of reported claims.

years emerge along the rows, while the columns provide the pattern for the accident years.
Moreover, the diagonals show calendar year effects. Hence, regularities as well as irregular-
ities become apparent to the actuary. For instance, occurrence of growth or run-off of the
business, claims inflation or rare large claims can usually be detected in the development
triangle and the actuary can then decide how to deal with these issues. If the business
is growing or if it is in run-off the actuary can disregard the earliest origin years which
have another payment pattern than the later ones. In case of inflation the payments can
be adjusted to current value by some relevant index or a reserving method which models
the inflation can be chosen. Claims originating from large events and catastrophes can be

excluded from the triangle and treated separately.

Note that if observations are missing for some years the data in Table 2.1 will have another
shape. Henceforth we assume that the data has the shape of a complete triangle. However,
despite a complete triangle the information can still be inadequate if the business has not
been observed during a sufficient time period. This is usually a problem for long-tailed
lines of business, such as Motor TPL, where it can take several decades to settle the claims.
We then have no origin year with finalized claims in Table 2.1. When needed, the model
can be extended so that the unknown claims extend beyond ¢ in a tail of length u, i.e. over

the development years ¢t,¢ +1,...,1t + u.

It is worth bearing in mind that sometimes the data quality may be increased and the



reserving process may be refined, but only at a cost. In practise the amount of time and
the cost of improving the processes have to be related to the benefits, but even if faster
and cheaper approximations are chosen it is still important that the actuary is aware of

e.g. imperfections in the data and how they affect the results.

2.2 The chain-ladder and other age-to-age development factor meth-
ods

The chain-ladder method is probably the most popular reserving technique in practise.
According to Taylor (2000) its lineage can be traced to the mid-60’s and the name should
refer to the chaining of a sequence of age-to-age development factors into a ladder of fac-
tors by which one can climb from the observations to date to the predicted ultimate claim
cost. The chain-ladder was originally deterministic, but in order to assess the variability
of the estimate it has developed into a stochastic method. Taylor (2000) presents diffe-
rent derivations of the chain-ladder procedure; one of them is deterministic while another
one is stochastic and based on the assumption that the incremental observations are Pois-
son distributed. Verrall (2000) provides several models which under maximum likelihood

estimation reproduce the chain-ladder estimate.

The chain-ladder method operates on cumulative observations

J
£=0

rather than incremental observations X;;, where X;; can be e.g. paid claims Cj; or the
numbers of claims N;;. Let v;; = E(A;;) and &; = E(X;;). Development factors g; are
then estimated for j =0,1,...,t —1 by

t—j—1
~ Zz':o Ai,j+1

g- = — (23)
’ S Ay

yielding the projections

Vij = Ait—i Gt—i Gt—it1 - - - Jj—1 (2.4)



and
Eii = Dij— Uij1 (2.5)

for A.

The actuary might want to make some ad hoc adjustments of the chain-ladder method in
order to deal with the trends and occurrences of the influences discussed in Section 2.1. The
reserving method is then usually referred to as an age-to-age development factor method
and since it will be unique for the particular data set under analysis it is impossible to
describe it in general terms. However, Paper I provides the following example of a procedure

that might fit our scheme when a development triangle of paid claims is available.

We denote the cumulative claims by D;; = Zé:l Cy and let p;; = E(D;;).

1. The chain-ladder method is used to produce development factors f] that are estimates
of f; = pij+1/1ij, perhaps after excluding the oldest observations and/or sole outliers

in V.

2. For 3 < j < t, say, the fj’s are smoothed by some method, say exponential smoothing,
i.e. they are replaced by estimates obtained from a linear regression of log(fj - 1)
on j. By extrapolation in the linear regression, this also yields fj for the tail 7 =
t,t+1...,t+u. The original fj’s are kept for 7 < 3 and the smoothed ones used for

all 7 > 3.
3. Now estimates fi;; for A are computed as in the standard chain-ladder method.

4. Estimates of fi;; for V are obtained by the process of backwards recursion described

in England & Verrall (1999).

5. Finally, the obtained claim values may be discounted by some interest rate curve, or
inflated by assumed claims inflation. The latter of course requires that the observa-

tions where recalculated to fixed prices in the first place.



2.3 The separation method

In the Encyclopedia of Actuarial Science (2004) one can read that the separation method
was developed by Taylor (1977) while he was employed at the Department of Trade, the
supervisory authority in the UK. During the the mid-70’s the inflation was high and un-
stable and the Department of Trade had been experimenting with the inflation-adjusted
version of the chain-ladder, see e.g. Taylor (2000). However, the specification of the future
inflation caused problems, since it was extremely controversial for a supervisory tool. As
an attempt to forecast the inflation mechanically Taylor (1977) constructed the separa-
tion method on the basis of a technique introduced in the reinsurance context by Verbeek

(1972).

Paper II provides a description of the separation method at a bit more detailed level than

the one given in Taylor (1977). The original assumption underlying the method is

E (?v) — 5 A (2.6)

where 7; is a parameter relating to the payment pattern for the development years, while
Ar 1s considered as an index that relates to the calendar year k£ during which the claims
are paid. In this way the separation method separates the claim delay distribution from
influences affecting the calendar years, e.g. claims inflation. Furthermore, it is assumed

that the claims are fully paid by year ¢ and we then have the constraint

If N; is estimated separately, e.g. by the chain-ladder if a triangle of claim counts is pro-
vided, it can be treated as known. Consequently, estimates 7; and A\, can be obtained

using the observed values

Sij = | s (28)

and the method of moments equations

~

Sk0+8k_171—|—...—|—80k:(’f’o—l—...—l—fk))\k, k’ZO,...,t (29)



for the diagonals of V and

~

Soj 4514 siii =+ A, §=0,...,t (2.10)
for the columns of V.

Taylor (1977) shows that the equations (2.9) - (2.10) have a unique solution under (2.7)

which can be obtained recursively. This yields

k

3 2 i—0 Sijk—i
P Y Y (2.11)
1_E§'=k+1rj
and
=g
D= LI N (2.12)

= t = 5
Zk:j Ak

where 3°%_; ., 7 is interpreted as zero when k = t.

Estimates 1;; of the expectations m;; = E(C;;) for cells in V are now given by
My = N; T A (2.13)

but in order to obtain the estimates of A it remains to predict A\, for t +1 < k < 2t e.g.

by extrapolation.

3 Bootstrapping for claims reserve uncertainty
3.1 Bootstrap techniques for the chain-ladder in the literature

When England & Verrall (1999) and England (2002) introduced bootstrapping in claims
reserving it soon became a popular method in practise as well as in the literature. However,
even though bootstrapping has been hailed as a flexible tool to find the precision of the
complex reserve estimators it has developed to be the opposite in the literature. Instead of
finding general techniques where the actuary can change and adjust the reserving method,
the object of the research area has been to find techniques for, in particular, the chain-

ladder. In practise this could be quite frustrating since the actuary then has to measure the



uncertainty of her estimate by a bootstrap procedure fitted for chain-ladder even though

she actually has used some other reserving method to calculate the claims reserve.

The bootstrap procedures in the literature are based on the resampling of residuals, see
e.g. England & Verrall (1999), England (2002) and Pinheiro et al. (2003). In order to
define the residuals some model assumption has to be adopted for the observations. The
common choice is to use a generalized linear model (GLM) with an over-dispersed Poisson
distribution (ODP) and a logarithmic link function for the incremental observations VC

in Table 2.1, i.e.

E(C;;) =my; and  Var(Cyj) = ¢my;
log(mij) = mij
nij=c+toi+05, on=p5=0. (3-)

The reason of the frequent use of this particular GLM is that Renshaw & Verrall (1998)
have shown that it produces the same expected claims by maximum likelihood estimation
of the parameters in the GLM as the chain-ladder method, provided that the column
sums of the triangle are positive. Thus, the expectations of the claims can be obtained
either by maximum likelihood estimation or by the chain-ladder, while the variances, which
are needed for the residuals, are given by the assumption of the GLM. However, if the
bootstrap procedure is constructed according to this particular model it only holds for the

chain-ladder and, hence, the reserving algorithm cannot be changed.

In contrast to England & Verrall (1999) and England (2002), Pinheiro et al. (2003) adopts
the model in (3.1) together with the plug-in-principle, see Efron & Tibshirani (1993), and,
hence, the calculation of the estimators in the real world is repeated on the pseudo-data in
the bootstrap world. This opens up for extended bootstrap procedures applicable to other

reserving algorithms than the chain-ladder and therefore we focus on Pinheiro’s method.



3.2 Paper I: Non-parametric and parametric bootstrap techniques
for arbitrary age-to-age development factor methods in stochas-
tic claims reserving

The purpose of this paper is to find a reasonable model that fits the data instead of using a
model which happens to reproduce a particular estimate for the bootstrap procedure. We
therefore consider the log-additive assumption in (3.1) as unnecessary strong, but besides
of that we continue to follow England & Verrall (1999), England (2002) and Pinheiro et al.

(2003) assuming independent claims C;; and a variance function in terms of the means, i.e.

E(C;j) =my; and Var(Cy;) = ¢m?; (3.2)

)

for some p > 0. We let the actuary’s age-to-age development factor method implicitly
specify the structure of all m;; and produce estimates of 77;;. Then, if the non-parametric
bootstrap approach of Pinheiro et al. (2003) is used, it only remains to specify the variance
function. We suggest that p is estimated for the particular data set under analysis and we
provide a simple and straightforward way of doing it. Furthermore, since the standardized
prediction errors in Pinheiro et al. (2003) sometimes are undefined in the bootstrap world
we also investigate a bootstrap procedure which is based on the unstandardized prediction

errors.

As a complement to the non-parametric predictive bootstrap we define a parametric ver-
sion of Pinheiro’s approach that requires more distributional assumptions. Hence, in-
stead of resampling the residuals we sample pseudo-observations from a full distribution

F = F(my;, ¢mj;) consistently with (3.2).

3.3 Paper II: Bootstrapping the separation method in claims re-
serving

In this paper we adopt the parametric predictive bootstrap procedure in Paper I and

extend it in order to handle VN as well as V(' for the separation method. To this end,



we introduce a parametric framework for the separation method where claim counts are
Poisson distributed and claim amounts are gamma distributed conditionally on the ultimate

claim counts. This enables joint resampling of claim counts and claim amounts.

Hence, we let n;; = E(N;;) and assume

Nij S Po(nij) (33)
and
N;
01]|Nz el <E,’f’j)\k¢> . (34)

We then have a model for the claim amounts where
E(Ci|N;) = Nirj A\, (3.5)

which is consistent with the separation method assumption (2.6) when N; is estimated

separately. Moreover, we have
Var(Ci;|N;) = ¢ N; (r; )2 (3.6)

According to the parametric predictive bootstrap procedure in Paper I and the plug-in-
principle we then let the separation method produce estimates of 7; and Ay in the bootstrap

world as in the real world.

The separation model is based on the assumption that N; is considered as known at the
moment when the reserving is being done, but in (3.3) IV; is a random variable. In order
to get a view of how much uncertainty N; contributes to the predictive distribution of the
claims reserve we also consider the special case when N is treated as deterministic in (3.4),

4 Reserve risk in a business model

So far the insurance business as well as the authorities’ supervision have been based on

a general conservativeness regarding the liabilities to the policy holders. There are laws



that dictate how much capital the firms must hold and how it may be invested, see e.g.
Forsiakringsrorelselagen by Sveriges Riksdag (1982) for the regulations applied in Sweden
today. However, the current regulations rather consider the volume than the risk of the

business in the calculation of the required amount of capital.

In order to capture the individual characteristics of the firms the regulations are being
modernized within EU. According to the Solvency II Draft Framework Directive by EU
Commission (2007), the required capital will instead be calculated by quantifying the risks
of the firm under market-like assumptions. The authorities will provide a standard formula
which consider the major risks that an insurance company is exposed to, but own internal
models will also be allowed. For instance, the firms will have to quantify premium and
reserve risk, catastrophe risk, market risks such as e.g. equity risk, interest rate risk and
currency risk, counterparty default risk and operational risk. For Solvency II purposes the
internal models will have to be stochastic, a one-year time perspective should be adopted
and the risks should be measured according to a 99.5% confidence level. Furthermore, the
purpose of an internal model is not only to be a supervisory tool - it has to be used in the
business as well in order to show its trustworthiness. Potential areas of use could be e.g.

business planning, investment strategies, reinsurance purchase and pricing.

The analysis of the business by such an internal simulation model is often referred to as
Dynamic Financial Analysis (DFA) in general insurance. Kaufmann et al. (2001) gives an

introduction to DFA and also provides an example of a basic model.

Thus, regarding the reserve risk for Solvency II purposes we have to model the amount
of capital that the insurance company must hold in order to be able to handle a negative
run-off result the next accounting year with 99.5% probability. The one year run-off result
is defined as the difference between the opening reserve at the beginning of the year and
the sum of payments during the year and the closing reserve of the same portfolio at the
end of the year. Thus, if we at the end of year £ want to make predictions of the run-off

result at the end of the unobserved year ¢ + 1, and if we do not add neither a new accident



year nor a new development year, we have to find the predictive distribution of
A t A
R — (Z Ciiroi + BT, (4.1)
i=2

where R' and R are the estimated reserves at the end of year t and ¢t + 1 respectively.

Paper I briefly discusses how the predictive distribution of the one year reserve risk can be
obtained by bootstrapping, while Ohlsson & Lauzeningks (2008) provides more details for

the one year reserve risk as well as the one year premium risk.

5 Discussion
5.1 Conclusions

In Paper I the parametric bootstrap procedure is numerically compared to Pinheiro’s non-
parametric procedure for the chain-ladder. The study shows that the two approaches give
almost the same results. Moreover, in Paper II the parametric bootstrap procedure for the
separation method is numerically compared to a parametric procedure for the chain-ladder
for different assumptions of the future inflation rate. The study shows that the result is
more affected by the assumption of the future claims inflation rate than the choice between

the chain-ladder and the separation method.

The numerical analysis has revealed that the variability of the estimation error, when chain-
ladder as well as the separation method is used, is much larger than the variability of the
process error. Furthermore, the unstandardized bootstrap results in lower percentiles than
the standardized one, seemingly due to the fact that the standardization makes the distri-
bution more symmetric than the unstandardized case, where the predictive distribution is

skewed to the left.



5.2 Future research

Several interesting topics for future research have been discovered during the development
of the bootstrap procedures described in Paper I - II. For instance, estimation of the
dispersion parameter p for the variance function and the feasible use of non-integer values
should be analyzed further, the modeling of the future inflation rate of the separation
method could be refined in order to improve the bootstrap procedure, the relative size
of the estimation and process errors is indeed an interesting topic to explore and the
double bootstrap, which is an improved version of the standardized bootstrap, should be
investigated numerically. Furthermore, the bootstrap procedure could be extended for
models which explicitly take into consideration the reporting year as well as the payment
year of the claims, see e.g. Jessen et al. (2007). In the future it is also important to
provide a guideline of how the actuary should choose between the standardized and the

unstandardized bootstrap procedure.
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1 Introduction

The provision for outstanding claims — henceforth the claims reserve — is a major contributor
to the total risk of an insurance company, especially for long-tailed lines of business. In order
to estimate the risk that the provisions will not suffice to pay all claims in the end, the
actuary’s best estimate of the outstanding claims needs to be complemented by its predictive
distribution; this is the ultimo perspective. For solvency control and risk management with
Dynamic Financial Analysis we are also interested in a shorter period, say the one year risk.
The reserving risk is then the risk of a negative run-off result, due to unexpectedly large claims

payments, changes in inflation regime or in the discount rate in the simulated forecast year.

A well-known method for calculating the uncertainty of the claims reserve, obtained by chain-
ladder, in meeting ultimate claims, or at least its mean squared error of prediction, is the one
introduced by Mack (1993) and recently treated by Buchwalder et al. (2006) and Mack et al.
(2006). Another popular method is bootstrapping, as introduced in this context by England
& Verrall (1999) and England (2002). The latter method gives a full predictive distribution
without further assumptions and can easily be used also for the purpose of finding the risk in

the run-off result. Therefore, we focus on bootstrap methods here.

A standard statistical approach to claims reserving would be to first specify a model, then
find an estimate of outstanding claims under the model, e.g. by maximum likelihood. Finally,
the model could be used to find the precision of the estimate, possibly by bootstrapping if an

analytic solution was untractable.

In practice, there is a long tradition of actuaries calculating reserve estimates without explicit
reference to a model. The object of the research area called stochastic claims reserving, has
mostly been to find a model and a method of giving a measure of the precision of the actuary’s

best estimate post festum, i.e. without the possibility of changing the estimate itself.

In particular the object of several papers on stochastic claims reserving has been to find a

model under which the best estimate is the one given by the chain-ladder method; indeed,
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there has been a discussion of which method is underlying the chain-ladder, see in particular
Verrall (2000), Mack & Venter (2000) and Verrall & England (2000). So even though the
actuary did not use a model to pick her best estimate, these articles try to find a model that
would make her work consistent with the standard approach of statistics: to specify the model
before finding the estimate. In Verrall (2000) several underlying models, which produce the
same reserve estimates as the chain-ladder method, are suggested, and it is also remarked on
the importance of careful examination of the assumptions of the model and how the chosen

model effects the outstanding claims.

In this paper we question the need to bootstrap an underlying model with claim distributions
fully specified, which happens to reproduce the actuary’s best estimate. Instead, we develop
a bootstrap methodology for the data with as few model assumptions as possible, applicable
to any age-to-age development factor method. We assume that the bootstrap procedure only
depends on the mean and variance of the claims and that the chosen reserving algorithm
implicitly specifies the mean structure and therefore the only additional assumption concerns
the variance function. Furthermore, we discuss the non-parametric vs the parametric boot-
strap and standardized vs unstandardized prediction errors. Finally, the suggested bootstrap

procedures are applied to development triangles of different types.

Section 2 contains the definitions and gives an example of an age-to-age development factor
method, that might be used in practise. In Section 3 the non-parametric bootstrap procedure
of Pinheiro et al. (2003) is discussed and an alternative parametric procedure is suggested,
as well as bootstrap procedures, which can be used to find the predictive distribution of any
age-to-age development factor method. The double bootstrap is discussed, some details of
the implementation of the bootstrap procedures are commented and finally the run-off result
is defined and a sketch of a method of obtaining it’s predictive distribution is provided. In

Section 4 the bootstrap procedures are compared on four different development triangles.
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2 A basic model

We consider data in the form of a triangle of n incremental observations {Cj;;,j € V}, where
V denotes the upper, observational triangle V.= {i = 1,...,t;5 =1,...,t —i+ 1} and Cj;
is e.g. paid claims, the number of claims, claims incurred or some other quantity of interest
of origin year ¢ in development year j, see Table 2.1. For the time being we discuss paid
claims. The actuary’s goal is then to predict the sum of the delayed claim amounts in the
lower, unobserved future triangle {C;;;i,j € A}, where A={i=2,... t;j =t—i+2,...,t},
see Table 2.2. We write R =), Cj; for this sum, which is the outstanding claims for which

the insurance company must hold a reserve.

Dewvelopment year
Accident year | 1 2 3 e t—1 t
1 Cui Ci2 Ciz -+ Cri—1 Ciyg
2 Ca C22 Coz -+ Coyq
3 Cs1 Cs2 Cs3 -
t—1 Ci—11 Ci12
t Ct71

Table 2.1: The triangle V of observed incremental payments.

Development year
Accident year |1 2 3 e t—1 t
1
2 Cat
3 C3i-1 O3y
t—1 Cic1z -+ G- Cioay
t Ci2 Ci3 o Cri Cit

Table 2.2: The triangle A of unobserved future claim costs.

Above we have implicitly made the common assumption that claims are settled within the
t observed years. In long-tailed business such as Motor TPL we often have no origin year

with finalized claims; when needed, we extend the model so that the unknown claims extend
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beyond t in a tail of length w, i.e. over the development years t, ¢4 1,...,t 4 u, see Table 2.3.

For simplicity, we use the notation A for the set of unobserved claims in this case, too.

In practice, the actuary has used some method to calculate an estimate of the outstanding
claims R; in statistical terminology this is rather a prediction of R. We assume that the
method gives estimates ;; of the cell expectations m;; = E(Cj;) for all claims in both V
and A and that these estimates are functions of our observations VC = {Cj;;4,5 € V} only.
(We will use the notation Vz to denote the V collection of any variable z, and similar for
Az.) The estimate of outstanding claims is then R= Y- A m;j. This is the case for age-to-age
development factor methods. Note in particular that we do not assume that the reserving
method is based on an explicit statistical model, in our experience this is seldom the case in

practice.

Some reserving methods operate on cumulative claims D;; = ZZ:l C;y rather than incremental
claims Cjj. Let p;; = E(D;j). Here is an example of an age-to-age development factor method

that fits our scheme:

1. The chain-ladder method, see Taylor (2000), is used to produce development factors fj
that are estimates of f; = p; j+1/pij, perhaps after excluding the oldest observations

and/or sole outliers in V.

2. For 3 < j < t, say, the fj’s are smoothed by some method, say exponential smoothing,

Development year
Accident year |1 2 3 et t+1 e t4u
1 Crivr o Ciiqu
2 Cor Copp1 - Copqu
3 C3t Czp41 - C344
t—1 Ci—13 -+ Ci—1ip Ci—ig41 - Cictpqu
t Ci2 Ci3 o Gy Chv1 o Critu

Table 2.3: The long tail case, with the triangle A of unobserved future claim costs extended
with a rectangle beyond t.
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i.e. they are replaced by estimates obtained from a linear regression of log(fj—l) on j. By
extrapolation in the linear regression, this also yields fj for the tail j =t,t+1...,t+u.

The original fj’s are kept for ;7 < 3 and the smoothed ones used for all j > 3.
3. Now estimates fi;; for A are computed as in the standard chain-ladder method.

4. Estimates of fi;; for V are obtained by the process of backwards recursion described in

England & Verrall (1999).

5. Finally, the obtained claim values may be discounted by some interest rate curve, or
inflated by assumed claims inflation. The latter of course requires that the observations

where recalculated to fixed prices in the first place.

We now have an estimator R = h(VC) for some possibly quite complex function h, that
might be specified only by an algorithm as in the example. Our primary object is to find the

bootstrap estimate of the predictive distribution of R.

3 Bootstrap methods

The basic idea of bootstrapping is to work with the Bootstrap world in order to make inference
on the Real world, see Efron & Tibshirani (1993). This is done by investigating the result
of B simulations in the bootstrap world and assuming that the conclusions from these are
approximately valid in the real world; this is the so-called plug-in-principle, Efron & Tibshirani
(1993). With the outstanding claims in consideration this means that a relation between the
true outstanding claims R and its estimator R in the real world can be substituted in the
bootstrap world by their bootstrap counterparts. This makes it possible to approximate the

variance of the prediction error R — R as well as the predictive distribution of R.

Pinheiro et al. (2003) use the plug-in-principle to obtain the predictive distribution of R by
a non-parametric bootstrap technique consistent with the statistical assumptions underlying

the chain-ladder method in the literature. Our purpose is to modify it to a non-parametric
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bootstrap procedure which works for any age-to-age development factor method used in prac-
tise, e.g. the one described in the previous section. We also suggest a completely parametric

approach consistent with, and as a complement to, the non-parametric procedure.

3.1 Bootstrapping data with a generalized linear model using standardized
prediction errors

Some assumptions about the model structure of VC have to be imposed in order to bootstrap
the data. In the literature a common choice is to use a generalized linear model, in particular
an over-dispersed Poisson distribution with a logarithmic link function. A consequence of this
underlying model is that the expected claims obtained by maximum likelihood estimation of
the parameters in the generalized linear model equal the ones obtained by the chain-ladder
method, if the column sums of the triangle are positive, see Renshaw & Verrall (1998). Thus,
the expectations of the claims can be obtained either by maximum likelihood estimation or
by the chain-ladder, while the variances, which are needed for the residuals, are given by the
assumption of the generalized linear model. The bootstrap methods described by England &
Verrall (1999), England (2002) and Pinheiro et al. (2003) are all based on generalized linear

models.

The method discussed in Pinheiro et al. (2003) assumes the following log additive structure

of the n =t (t + 1)/2 incremental observations in VC

E(Ci;) =my; and Var(Cjj) = qﬁmfj

log(mi;) = i

nj=c+ai+B;, a=p=0 (3.1)

The fitted values Vi and the forecasts Am are calculated by maximum quasi likelihood
estimation of the ¢ = 2t — 1 model parameters ¢, a; and 3}, e.g. under the assumption of an
over-dispersed Poisson distribution, i.e. p = 1, or a gamma distribution, i.e. p = 2. Estimators
of the outstanding claims are then obtained by summing per accident year R = ZjeAi mj,

where A; denotes the row corresponding to accident year 7 in Am. The estimator of the grand
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total is R = 3 1h45.

The residuals are needed for the resampling process and the common choice is to use the
Pearson residuals
P G~ iy , (3.2)
,
which should have approximately zero mean and constant variance. Pinheiro et al. (2003), as
well as England & Verrall (1999) and England (2002), work under the assumption that the

residuals are independent and identically distributed, an assumption that can be questioned,

see e.g. Larsen (2007) and Appendix 1. Nevertheless, we shall adhere to this assumption.

There are two ways of adjusting the Pearson residuals. England & Verrall (1999) and England

(2002) use a global adjusting factor

PA n_ P
i = n—gq Tijs (3.3)

whereas Pinheiro et al. (2003) argue that the hat matrix standardized Pearson residuals are

a better choice. They are given by

rr

PA L4}
= (3.4)

where the h;;:s are the diagonal elements of the n x n hat matrix H, which for generalized
linear models is given by

H=XXTwx)"'xTw, (3.5)

where X is an n x ¢ design matrix and the generic elements W;; ;; of the n x n diagonal matrix

W are

Wy = (V(mis) () 39

and V is the variance function.

This choice of residual correction is in accordance with Davison & Hinkley (1997). The result
of the comparison in Pinheiro et al. (2003) does not indicate a big difference to the correction

in (3.3).
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Note that the residuals are also used to produce the Pearson estimate of the unknown ¢,

b= S = S SR (3.7

”’L_
qV \Y%

where the last equality is exact when (3.3) is used and an approximation for (3.4).

The next step is to get B new triangles of residuals Vr* by drawing samples with replacement
from the collection of residuals in (3.3) or (3.4). This procedure means sampling from the
empirical distribution function of the approximately independent and identically distributed

residuals r.

Then B pseudo-triangles VC* are generated by computing
Cz*] = 1y + T;kj\/mfj for 4,7€V (3.8)

and for these B pseudo-triangles the future values Arn* are forecasted by the same method
as above, i.e. by estimating the parameters of the generalized linear model. Estimators for

~

the outstanding claims in the bootstrap world are then derived by R} = ZjeAi m;‘j and

In order to get the random outcome of the true outstanding claims in the bootstrap world, i.e.
Ry =3 e, Cff and R* =3\ CFF, the resampling is done once more from the empirical

% 17

distribution function of the residuals to get B triangles of Ar** and then solving
C:;* =My + rfj,/mfj for i,57€ A (3.9)
to get AC**.

The final step is to calculate the B prediction errors and in Pinheiro et al. (2003) this is done
by the following equations
R — R _
pef* = % and pe** = (310)
Var(R;™) Var(R*)

The predictive distributions of the outstanding claims R; and R are then obtained by plotting

R =R +pej\/Var(R)  and  R™=R+pe™\/Var(R) (3.11)
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for each B.

We tacitly assume that the mean and variance of all bootstrapped quantities are conditional
on the observed data VC'. For instance, the variance of the bootstrapped outstanding claims

are

Var(R™) = ¢ Z and Var(R™) = ¢ Z i (3.12)

JEA;
since the variance of the bootstrapped residuals conditional on V(' is qAﬁ according to (3.3),

(3.4) and (3.7). Since Pinheiro et al. (2003), as well as England (2002), consider ¢ as constant

for the data, the estimates of (3.12) appearing in (3.10) are

Var(R) = ¢ Z n;;  and Var(R™) = Z (% (3.13)
JEA; A

and hence computable from the bootstrap world data VC*. Nevertheless, ¢ is unknown and

therefore

Var(R™*) = ¢* Z n; and Var(R™) = ¢* Z n.y (3.14)
JEA;

should rather be used, see Davison & Hinkley (1997). This is in analogy with the estimated
variances of the true claims reserves
Var =¢ Z and T7a\7‘(R) =¢ mej, (3.15)
JEA; A

which are computable from the real data VC, as opposed to Var(R;) and Var(R).

As a complement to the non-parametric procedure described above we suggest a parametric
approach. In addition to the assumptions in (3.1) we assume a full distribution F', parametrised
by the mean and variance, so that we may write F' = F(mij,qﬁmfj). Instead of resampling
the residuals, we draw C}; from F(my;, gbm ) for all 4,j € V and thereby we directly get the
pseudo-triangles VC*. The bootstrap estimates R;-k = ZjeAi my; and R* = YA m;; are then
calculated for each simulation by estimating the parameters of the generalized linear model.
In order to get R;* = deA Cyrand R™ =3\ CFF we sample once again from F(ri;, ésmfj)
to get C7* for all i,j € A . Finally, the B observations of (3.10) and (3.13) are inserted into

(3.11) to yield the sought predictive distribution.
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These methods of bootstrapping for claims reserve uncertainty are described in Figure 1 and

are referred to as the non-parametric and the parametric standardized predictive bootstrap.

England & Verrall (1999) and England (2002) use other bootstrap approaches, which are
described in Appendix 2. In England (2002) the bootstrap counterparts of the outstanding
claims in the real world are obtained by another simulation conditional on the one in Substage
2.1 in Figure 1. In this way the process error R — E(R) is bootstrapped differently from

Substage 2.2, while Substage 2.1 bootstraps the estimation error R—E(R). Thus, B triangles

*

Al are obtained by sampling a random observation mjj from a distribution with mean 77

and variance ¢my; for all 4,7 € A. The predictive distribution of the outstanding claims R
in real world is then obtained by plotting the B values of Rf = YA mzj England (2002)
suggests using e.g. an over-dispersed Poisson distribution, a negative binomial or a Gamma

distribution as the process distribution.

England & Verrall (2006) comment on the approach of including the process error by sampling
from a separate distribution, by noting that the non-parametric standardized predictive boot-
strap in Pinheiro et al. (2003) cannot give larger extremes of the process error than the most
extreme residuals observed. Nevertheless, we see no reason to assume separate distributions
for the process error and the estimation error. Either we believe in the chosen distribution
on the whole and use a parametric predictive bootstrap or we do not and continue to use a

non-parametric predictive bootstrap.
3.2 The double bootstrap

It would be preferable to use

pe* = [T R (3.16)

Var(R™ — R*)

and

R™ = R+ pe™*\/Var(R - R) (3.17)

instead of (3.10) and (3.11), in particular if the estimation error is much larger than the process

error. Although this is more complicated it can be achieved by means of a double bootstrap.
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Stage 1 - Real world

- Estimate the parameters in the generalized linear model in equation (3.1).

- Forecast the future expected values Am and calculate the fitted values V.
- Calculate the residuals for the non-parametric bootstrap and ¢ for the
parametric bootstrap.

- Calculate the outstanding claims R; =} A, ij and 2 = 37 A 1.

Stage 2 - Bootstrap world
Substage 2.1 - The estimated outstanding claims

- Resample residuals (3.3) or (3.4) with replacement and insert into (3.8)

together with Vi or sample from F'(1, gEmfj) for 4,5 € V to obtain the pseudo-
reality in VC*.

- Estimate the parameters in the generalized linear model with the pseudo-triangles.
- Forecast the future expected values Am*.

- Calculate the estimated outstanding claims R* = > jen, My; and R*=3A ;.

Substage 2.2 - The true outstanding claims

- Resample residuals (3.3) or (3.4) with replacement and insert into (3.9)
together with A or sample from F'(rh;;, émfj) for 4,5 € A to obtain the pseudo-
reality in AC**.

- Calculate the true outstanding claims R = > 1 CfF and R™ =3\ ;.

- Store the prediction errors pe;* and pe** in (3.10).

- Return to the beginning of the bootstrap loop and repeat it B times.

Stage 3 - Analysis of the simulations

- Obtain the predictive distribution of R; and R, the true outstanding claims in the
real world, by plotting the B values in (3.11).

Figure 1: The procedure of the non-parametric and the parametric standardized predictive
bootstrap.
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However, the computational complexity of this approach is quite prohibitive because of the
nested bootstrap loop and therefore the double bootstrap is not included in our numerical

study.

For each of the B bootstrap replicates, we generate B double bootstrap claims reserves R%
and estimated claims reserves R? in analogy with R** and R* in Section 3.1, the difference

being that we use VC* as our data rather than VC. Then

Var(R — R) = Var(R™ — R*|VC) (3.18)
and
Var(R™ — R*) = Var(R? — RYvC™), (3.19)

where the last variance is approximated by the sample variance of all B double bootstrap

replicates.

An alternative to (3.18) and (3.19) is to use the variance of the process and the estimation

errors in (5.2) in Appendix 2, i.e.

Var(R— R) = Var(R) + Var(R) (3.20)
and
Var(R™ — R*) = Var(R*) + Var(R*), (3.21)

where the process errors are estimated by

Var(R) = ¢ Y k), (3.22)
A
and
Var(R™) = ¢" Y m?. (3.23)
A
The estimation errors are approximated by the sample variance of the corresponding bootstrap
replicates
Var(R) = Var(RY) (3.24)
and

Var(R*) = Var(R?). (3.25)
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3.3 Bootstrapping data with a simple underlying model and a reserving
algorithm using unstandardized prediction errors

For the purpose of obtaining the predictive distribution of the claims reserve by bootstrapping,
the assumption of a generalized linear model in (3.1) is unnecessarily strong. In practise the
actuary seldom assumes any model for VC and AC, but only uses a reserving algorithm in
order to estimate Vm and Arh. Thus, when using the plug-in-principle we just need to make
an assumption of the model that generates VC* and AC** from the data VC, while the

reserving algorithm can be used in bootstrap world too in order to estimate Am*.

We follow England & Verrall (1999), England (2002) and Pinheiro (2003) and assume inde-

pendent claims Cj; and a variance function in terms of the means, i.e.

E(C;j) =mi; and Var(Cj;) = ¢m? (3.26)

ij
for some p > 0. Thus the mean and variance of Cj; are still related as in (3.1), but m;; need
no longer satisfy the log-additive conditions in (3.1). Instead the chosen reserving algorithm
implicitly specifies the structure of all m;; and produces estimates of 77;;. The bootstrap
procedures are then performed as in Section 3.1 with the exception that the residuals (3.3)
are used rather than (3.4). The interpretation of n and ¢ as the number of observations and
model parameters is still the same. Using the pure chain-ladder method together with the
backwards recursive operation described in England & Verrall (1999) implies that ¢ = 2t — 1,
as for the generalized linear model in (3.1), since this procedure demands the estimation of
t — 1 development factors as well as the ¢ starting values of the backwards recursive operation.
Adding exponential smoothing of the development factors, like in the example in Section 2, can
indeed complicate the determination of the number of model parameters but the correction
factor in (3.3) can be considered as an approximation, although the number of parameters ¢

typically depends on the amount of smoothing.

Standardized prediction errors may still be used, since (3.10) - (3.15) continue to hold. Indeed,
it is well known that for many bootstrap procedures, resampling of standardized quantities

often increases accuracy compared to using unstandardized quantities, see e.g. Hall (1995).
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Nevertheless, the unstandardized prediction errors
pel* = R — R} and pe** = R™ — R* (3.27)

are useful, in particular for the purpose of studying the estimation and the process errors, but
also since they are always defined. On the contrary, the denominators of (3.10) may sometimes
be non-positive, yielding undefined or imaginary standardized prediction errors, see Section
3.5. The predictive distributions of the outstanding claims R; and R are then obtained by
plotting

R* = R; + pel™ and R* = R 4 pe** (3.28)

for each B. These prediction errors are used in Li (2006).

The alternative bootstrap procedures discussed above are described in detail in Figure 2 and

are referred to as the non-parametric and the parametric unstandardized predictive bootstrap.
3.4 Estimation of p

In the literature the most frequent choice of dispersion parameter is p = 1 in order to reproduce
the chain-ladder estimates under the assumption of a generalized linear model, but as indicated
in the method example in Section 2, a pure chain-ladder is seldomly used in practise. Thus,

another approach would be to choose the p that best fits the data.

A straightforward way of obtaining a suitable value of p is to use the unstandardized residuals

n A
A Ve (Cij — 1) (3.29)

The following relation then holds approximatively

E(r};) = Var(Cyj) = ¢mj; (3.30)

and minimizing the function

Fp.d) =Y wij (rf; — omk))?, (3.31)
,J
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Stage 1 - Actuary’s best estimate in the real world

- Choose an appropriate reserving method e.g. the one described in Section 2.
- Forecast the future expected values A and calculate the fitted values V.
- Calculate the residuals for the non-parametric bootstrap and ¢ for the
parametric bootstrap.

- Calculate the outstanding claims R; = ZjeAi mi; and R =Y A my;.

Stage 2 - Bootstrap world
Substage 2.1 - The estimated outstanding claims

- Resample residuals (3.3) with replacement and insert into (3.8) together

with Vi or sample from F'(rh;;, ¢m§’j) for i, € V to obtain the pseudo-reality
in VC*.

- Apply the chosen reserving method to VC* to obtain the forecasts Am*.

- Calculate the estimated outstanding claims R} = > . A, mJ; and R* =37\ mj;.

Substage 2.2 - The true outstanding claims

- Resample residuals (3.3) with replacement and insert into (3.9) together

with A or sample from F'(rh;;, (ngfj) for 7,7 € A to obtain the pseudo-reality
in AC**.

- Calculate the true outstanding claims R* =3, 5 O and R™ =37\ C7F.
- Store the prediction errors pe;* and pe** in (3.27).

- Return to the beginning of the bootstrap loop and repeat it B times.

Stage 3 - Analysis of the simulations

- Obtain the predictive distribution of R; and R, the true outstanding claims in the
real world, by plotting the B values in (3.28).

Figure 2: The procedure of the non-parametric and the parametric unstandardized bootstrap.
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where w;; is a weight for observation Cj;, with respect to p and ¢ yields an estimator for
p. Once a reasonable value of p is chosen and the residuals for the resampling process are
defined, ¢ is estimated by (3.7). The simplest choice is to use uniform wights w;; = 1 in (3.31).
Another possibility is inverse variance weighting, w;; = @’(r?j)_l. In order to specify these

weights, further model assumptions would be needed though.
3.5 Implementation details

There are some major problems with the process of resampling the residuals for the non-
parametric bootstrap procedures. Firstly, the bootstrap world is hardly a good approximation
of the real world if the claims triangle is small. Furthermore, the basic assumption of iden-
tically distributed residuals is certainly violated for p = 1, i.e. for an over-dispersed Poisson
distribution, see Appendix 1. Depending on the chosen reserving method and the value of p,
the standardized residuals in (3.2) sometimes imply a limitation of the set of triangles that
can be analyzed, since the residual will be undefined or imaginary whenever a fitted value in
Vi is non-positive. Finally, using the residuals to solve equation (3.8) sometimes results in

undesirable negative increments in the pseudo-triangles.

Thus, if the claims triangle VC' is small, a parametric bootstrap procedure seems preferable.
On the other hand, if we know nothing about F' and have a large triangle, a non-parametric
bootstrap procedure would be our first choice. Note, however, that a parametric bootstrap
procedure does not solve the problem with undefined residuals since they are needed in order
to estimate ¢ as well. Furthermore, a parametric bootstrap procedure should be used if
negative increments in the pseudo-triangles are unacceptable and a gamma distribution should
particularly be used if it is undesirable that the increments only take on the values zero and

multiples of ¢, which is the case for the over-dispersed Poisson distribution.

The choice of prediction errors causes another problem. The standardized ones in (3.10) are
sensitive to pseudo-triangles where the row sums of the outstanding claims are non-positive.

An ad hoc solution is simply to cut out these pseudo-triangles from the simulation process if
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they are rare, another solution is to use the unstandardized prediction errors in (3.27) instead.
The unstandardized ones, on the other hand, result in a predictive distribution which is more
skewed to the left than the distribution obtained by the standardized prediction errors, see

Section 4 for more details.

Since England & Verrall (1999), England (2002) and Pinheiro et al. (2003) replace the maxi-
mum likelihood estimation of the parameters in (3.1) by chain-ladder when p = 1, the same
method is adopted here for the standardized predictive distribution in Figure 1, even though

the non-positive column sums of the pseudo-triangles make the estimates disagree.

In this paper, the estimated value of p in Section 3.4 is just considered as an indicator of
whether p = 1 or p = 2 should be used in the non-parametric bootstrap and whether an
over-dispersed Poisson distribution or a gamma distribution should be chosen in a parametric
bootstrap. The distributions of the residuals corresponding to different choices of p € (1,2)

should indeed be investigated, but this is beyond the scope of this paper.
3.6 Dynamic Financial Analysis and the one year run-off result

See Kaufmann et al. (2001) for an introduction to Dynamic Financial Analysis. Here the
movements of the claims reserve are of particular interest. The one year run-off result is the
change in the reserve during the financial year and is defined as the difference between the
opening reserve at the beginning of the year and the sum of payments during the year and
the closing reserve of the same portfolio at the end of the year. Thus, if we at the end of year
t want to make predictions of the run-off result at the end of the unobserved year ¢ + 1, and
if we do not add neither a new accident year nor a new development year, we have to find the

predictive distribution of

t
R = () Cipami+ R, (3.32)
=2

where R' and R'*! are the estimated outstanding claims at the end of year ¢ and ¢t 4+ 1

respectively.

One method to obtain the predictive distribution of the one year run-off result is to condition
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on the claims triangle VC. R is then considered fixed, while the predictive distribution of the
payments corresponding to the forecast year t + 1 is obtained by B times simulating the new
diagonal {(4,7); i +j = t + 2} by one of the bootstrap procedures discussed above. This is
done by storing e.g. the unstandardized prediction errors pej; = C7* — C’Z’; of each increment
in the new diagonal and then adding them to the corresponding estimated values C’ij in the
real world to obtain C‘Z*j* = C’ij + pe;;’. In this way B pseudo-triangles, consisting of the fixed
triangle VC known at the end of year ¢ and a new simulated diagonal C**, are generated and

the outstanding claims are then recalculated by the same reserving method as before, in order

to obtain B records of R‘*1* = R*1(VC U C**). Finally the B values of
t
R — () Cia i+ RYIM|VC, (3.33)
i=2
are investigated in order to estimate the predictive distribution of the one year run-off result.

De Felice & Moriconi (2003) use a similar method in order to analyze R**!, but in the simu-
lation process the oldest accident year is removed, while a new accident year, corresponding

to the year t + 1, is added to the pseudo-triangle.

4 Numerical study

The purpose of the numerical study is to compare the non-parametric and the parametric
bootstrap procedures under different choices of p, F' and prediction errors. Since the actuary
chooses an age-to-age development factor method that fits the particular development triangle
under analysis, it is difficult to find one single algorithm that works for all situations. Therefore
we only use the pure chain-ladder method in the comparisons, even though the bootstrap
procedures allow the use of any age-to-age development factor method as well. From now on
B = 10000 simulations are used for each prediction. The upper 95 percent limits are studied
due to higher robustness than, e.g., the 99.5 percentile, which is perhaps the most frequent

choice in practise. The coefficients of variation are also presented.
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4.1 The triangle from Taylor & Ashe (1983)

4.1.1 Comparison with Pinheiro et al. (2003)

First, the well-known triangle from Taylor & Ashe (1983), called Data 1 in Table 4.1, is ana-
lyzed by the non-parametric standardized predictive bootstrap procedure, i.e. the bootstrap
procedure described in Pinheiro et al. (2003). The estimated reserves and the upper 95 per-
cent limits for p = 1 and p = 2 are presented in Table 4.2. The second accident year is left out
from the tabulation of results when p = 1 since a negative increment in the northeast corner
of a pseudo-triangle causes a situation with an imaginary prediction error for that year. The

remaining accident years are not as sensitive to negative increments as this year.

The results of the standardized predictive bootstrap procedure are in accordance with Pinheiro
et al. (2003). As we can see, for earlier accident years, the p = 2 percentiles are smaller than
the p = 1 percentiles, whereas the opposite is true for later accident years. This is natural,
since most of the future claims Cj; of later years have large m;; and hence larger variance for

p = 2 than for p = 1.

1 2 3 4 5 6 7 8 9 10
1 | 357 848 766 940 610 542 482 940 527 326 574 398 146 342 139 950 227 229 67 948
2 | 352118 884 021 933 894 1183289 445 745 320 996 527 804 266 172 425 046
3| 290 507 1001 799 926 219 1016 654 750 816 146 923 495 992 280 405
4 | 310 608 1108 250 776 189 1562 400 272 482 352 053 206 286
5 | 443 160 693 190 991 983 769 488 504 851 470 639
6 | 396 132 937 085 847 498 805 037 705 960
7 | 440 832 847 631 1131 398 1 063 269
8 | 359480 1061 648 1443 370
9 | 376 686 986 608
10 | 344 014

Table 4.1: Data 1 from Taylor & Ashe (1983).

4.1.2 The choice of ngb or ngb*

We continue to use the non-parametric standardized predictive bootstrap and Data 1, but we
now replace (3.13) with (3.14) in Substage 2.2 in Figure 1. Thus, we do not consider ¢ as
constant for the data and therefore we replace qAS by QAS* The results are presented in Table

4.3. As we can see, the replacement hardly affects the results.
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Note that since p = 1 occasionally yields m;‘j < 0 the corresponding Pearson residuals in the
bootstrap world are imaginary while ngb* is real. Since the assumption of an over-dispersed
Poisson distribution for the parametric procedure occasionally yields mfj = 0, the correspond-

ing Pearson residuals in the bootstrap world are undefined and as a result, <;3* is undefined as

well. Thus, in the sequel we use (3.13) in all simulations.

Estimated 95% | Estimated 95%

Year reserve p=1 reserve p=2
2 94 634 93 316 222 789

3 469 511 903 221 446 504 799 700

4 709 638 1 187 641 611 145 992 585

D 984 889 1527 903 992 023 1497 633

6| 1419459 2076496 | 1453085 2170 480

71 2177641 3034860 | 2186 161 3 284 490

81| 3920301 5277768 | 3665066 5692 764

9| 4278972 6139286 | 4122398 6975 123

10 | 4625811 9760 307 | 4516 073 9 286 282
Total | 18 680 856 23 681 062 | 18 085 772 23 033 968

Table 4.2: The estimated reserves and the 95 percentiles of the non-parametric standardized
predictive bootstrap with (3.13) used in Substage 2.2 of Figure 1 for Data 1. Chain-ladder is

used for p =1 and maximum likelithood estimation for p = 2.

Estimated 95% | Estimated 95%

Year reserve p=1 reserve p=2
2 94 634 93 316 216 698

3 469 511 889 639 446 504 796 146

4 709 638 1 186 623 611 145 978 315

D 984 889 1533 399 992 023 1497 722

6| 1419459 2082287 | 1453085 2136 423

71 2177641 3041716 | 2186 161 3 290 061

81 3920301 5290 749 | 3665 066 5 738 496

9| 4278972 6181331 | 4122398 6 795 927

10 | 4625811 9328277 | 4516 073 9476 343
Total | 18 680 856 23 603 123 | 18 085 772 23 042 954

Table 4.3: The estimated reserves and the 95 percentiles of the non-parametric standardized
predictive bootstrap when (3.13) is replaced by (3.14) in Substage 2.2 in Figure 1 for Data 1.
Chain-ladder is used for p =1 and mazimum likelithood estimation for p = 2.
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4.1.3 Maximum likelihood estimation vs chain-ladder when p = 2

The next step is to replace the maximum likelihood estimator of the model parameters by
the chain-ladder for the non-parametric standardized predictive bootstrap when p = 2. (We
already use the chain-ladder when p = 1, cf. Section 3.5.) Consequently, the estimated

reserves in Table 4.4 are the same as when p = 1 in Table 4.2 whereas the percentiles in Table

4.4 are consistently higher than in Table 4.2.

This is an example of bootstrapping under a model that does not produce the estimator
actually employed, a model which might nevertheless be quite realistic for paid claims. We

will use the chain-ladder in all remaining numerical studies, since it is popular and simple.

Estimated 95%

Year reserve p=2
2 94 634 236 850

3 469 511 875 382

4 709 638 1 156 050

5 984 889 1503 685

6| 1419459 2141470

7| 2177 641 3 308 805

8 3920301 6 199 841

9| 4278972 7646 140

10 | 4625811 10 698 797
Total | 18 680 856 23 991 584

Table 4.4: The estimated reserve and the 95 percentiles of the non-parametric standardized
predictive bootstrap with (3.13) used in Substage 2.2 in Figure 1 for Data 1. Chain-ladder is
used for p = 2.

4.1.4 Non-parametric bootstrap vs parametric bootstrap

For the purpose of comparing the non-parametric and the parametric bootstrap procedures
we continue to use the standardized predictive bootstrap with chain-ladder for Data 1. See
Table 4.5 for the upper 95 percent limits and Table 4.6 for the coefficients of variation, i.e.
\/Var(R:*)/R; and \/Var(R**)/R. (In the tables ODP denotes the over-dispersed Poisson

distribution.)
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The results of the parametric bootstrap coincide well with the results of the non-parametric
bootstrap except for the last accident year. It is well-known that the chain-ladder estimate
of the outstanding claims for the last accident year is extremely sensitive to outliers in the
south corner of the upper triangle. If C}] happens to be small in the pseudo-triangle then the
corresponding reserve RZ‘ will be small compared to R;f*, which affects the prediction error
in (3.10). The parametric bootstrap generates more stable C};:s than the non-parametric
bootstrap, consequently there is a discrepancy in the results of the last accident year for the
non-parametric and the parametric bootstrap procedures in Tables 4.5 - 4.6. The conclusion

is that the parametric bootstrap may be preferable in some cases.

Estimated Non-parametric Parametric Non-parametric Parametric

Year Reserve p=1 ODP p=2 Gamma
2 94 634 236 850 220 643

3 469 511 903 221 920 956 875 382 866 833

4 709 638 1 187 641 1 215 254 1 156 050 1162 942

) 984 889 1527 903 1 537 266 1 503 685 1516 868

6| 1419 459 2 076 496 2 096 805 2 141 470 2 150 441

7| 2177 641 3 034 860 3 057 599 3 308 805 3 309 838

8| 3920 301 5 277 768 5 308 472 6 199 841 6 192 286

9| 4278972 6 139 286 6 192 655 7 646 140 7272 012

10 | 4625 811 9 760 307 9 163 520 10 698 797 9 222 470
Total | 18 680 856 23 681 062 23 685 724 23 991 584 24 095 302

Table 4.5: The estimated reserve and the 95 percentiles of the non-parametric and the para-
metric standardized predictive bootstrap with (3.13) used in Substage 2.2 in Figures 1- 2 for
Data 1. Chain-ladder is used in both cases.

4.1.5 Standardized prediction errors vs unstandardized prediction errors

From now on the unstandardized predictive bootstrap procedures are used in all tables; the
results for Data 1 are presented in Tables 4.7 - 4.8. As we can see, the percentiles for the
unstandardized predictive bootstrap in Table 4.7 are lower than for the standardized predictive
bootstrap in Table 4.5, and the same goes for the coefficients of variation. Note that there
is a large discrepancy in the coefficients of variation, in Table 4.8, for the two choices of
distribution for year 2. The reason for the extreme values, when p = 1 or an over-dispersed

Poisson distribution is assumed, is discussed in Section 4.3.
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In Figures 3 (c) - (d) and 4 (c) - (d) the predictive distributions of the total claims re-
serve are plotted when assuming p = 1 for the non-parametric bootstrap procedures and an
over-dispersed Poisson distribution for the parametric bootstrap procedures. The predictive
distribution obtained by the unstandardized bootstrap in (c) is slightly skewed to the left
compared to the one obtained by the standardized bootstrap in (d), which is almost symmet-
ric. This follows since the process component (Figures 3 (a) and 4 (a)) has smaller variability
than the estimation component (Figures 3 (b) and 4 (b)), and the latter is slightly skewed to
the right. This skewness is to a large extent removed for the standardized prediction errors
(3.10), because of the denominator, but not for the unstandardized prediction errors (3.27).
Furthermore, from Figures 3 (a) and 4 (a), it does not seem to matter whether we use a
non-parametric or parametric approach for the process error, even though England & Ver-
rall (2006) argue that the former choice cannot give larger extremes than the most extreme

residual observed. The same holds for p = 2 or a gamma distribution (results not shown here).

4.1.6 Estimation of p

Estimation of p by minimizing the (unweighted) sum in (3.31) yields p = 0.7280. Thus, p =1

or an over-dispersed Poisson distribution seems to be more reasonable for this development

triangle.
Estimated Non-parametric Parametric Non-parametric Parametric
Year Reserve p=1 ODP p=2 Gamma
2 94 634 76 62
3 469 511 50 50 43 42
4 709 638 37 38 32 32
5 984 889 31 31 27 28
6| 1419 459 27 27 26 26
T 2177 641 23 23 27 26
8| 3920 301 20 20 30 29
9| 4278972 24 25 38 35
10 | 4625 811 53 50 64 48
Total | 18 680 856 16 16 15 16

Table 4.6: The estimated reserve and the coefficients of variation of the simulations (in %)
of the non-parametric and the parametric standardized predictive bootstrap with (3.13) used in
Substage 2.2 in Figures 1- 2 for Data 1. Chain-ladder is used in both cases.
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Estimated Non-parametric Parametric Non-parametric Parametric

Year Reserve p=1 ODP p=2 Gamma
2 94 634 274 891 252 438 168 132 167 585

3 469 511 823 274 814 256 750 175 754 646

4 709 638 1 148 468 1125 650 1 055 135 1 064 059

5 984 889 1 486 951 1 475 088 1414 799 1403 919

6| 1419 459 2040 277 2019 093 1995 397 1982 611

71 2177 641 2 983 269 2 979 860 3 043 356 3 049 215

81 3920 301 5 201 768 5171 112 5 579 973 D 564 848

9| 4278972 5 916 186 5 910 048 6 363 139 6 257 000

10 | 4625 811 7 755 623 7 517 443 7 387 885 7 088 050
Total | 18 680 856 23 264 493 23 122 056 23109 992 23 107 180

Table 4.7: The estimated reserve and the 95 percentiles of the non-parametric and the para-
metric unstandardized predictive bootstrap when chain-ladder is used for Data 1.

Estimated Non-parametric Parametric Non-parametric Parametric

Year Reserve p=1 ODP p=2 Gamma
2 94 634 121 118 52 50

3 469 511 47 46 39 38

4 709 638 38 37 31 31

5 984 889 31 31 28 27

6| 1419 459 27 26 26 26

71 2177 641 23 23 26 26

81 3920 301 21 21 28 27

9| 4278 972 25 25 32 32

10 | 4625 811 46 44 40 38
Total | 18 680 856 17 16 17 16

Table 4.8: The estimated reserve and the coefficients of variation of the simulations (in %) of
the non-parametric and the parametric unstandardized predictive bootstrap when chain-ladder
1s used for Data 1.
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Figure 3: Density charts of R** (a), R* (b) and R** for the unstandardized (¢) and standardized
(d) non-parametric predictive bootstrap procedures for Data 1 when p = 1.
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Figure 4: Density charts of R** (a), R* (b) and R** for the unstandardized (¢) and standardized
(d) parametric predictive bootstrap procedures for Data 1 under the assumption of an over-
dispersed Poisson distribution.
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4.2 A small triangle of claim counts

The non-parametric and the parametric unstandardized predictive bootstrap procedures are
now compared on a triangle of claim counts appearing in Taylor (2000). Because of the shape
of the data and in order to avoid non-positive column sums we use just the later part of
the original triangle, see Table 4.9. This is reasonable since the claim counts from previous
accident years are almost finalized.

1 2 3 4
1989 | 589 210 29 17 1
1990 | 564 196 23 12
1991 | 607 203 29 9
1992 | 674 169 20 12
1993 | 619 190 41

1994 | 660 161

1995 | 660

~N © | ot
T | Oy
O~

Table 4.9: Data 2 from Taylor (2000).

Estimation of p yields p = 0.5596, which indicates that p = 1 is a better choice than p = 2 for
the non-parametric bootstrap and an over-dispersed Poisson distribution is preferable for the
parametric bootstrap, as expected for claim counts. Nevertheless, the results for both choices
are presented in Tables 4.10 - 4.11 and, as we can see, the results of the parametric bootstrap

coincides well with the results of the non-parametric one.

The density charts of R** and R* are plotted in Figure 5. The variability of the estimation
error is larger than the variability of the process error for Data 2 too, but the difference is not

as extreme as for Data 1 in Figures 3 - 4.

4.3 A small triangle of paid claims from a short-tailed line of business

Table 4.12 shows a triangle of paid claims, provided by the Swedish insurance company

AFA Férsikring, for the short-tailed line of business Severance Grant.

The results of the bootstrap procedures are presented in Tables 4.13 - 4.14. The percentiles

for year 1996 are very different for the two choices of distribution. This is a consequence
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Estimated Non-parametric Parametric Non-parametric Parametric
Year Reserve p=1 ODP p=2 Gamma
1990 8 19 18 14 14
1991 14 26 26 20 20
1992 24 40 39 34 34
1993 36 56 55 51 50
1994 65 90 89 91 90
1995 269 323 321 400 399
Total 417 500 496 555 554

Table 4.10: The estimated reserve and the 95 percentiles of the non-parametric and the para-
metric unstandardized predictive bootstrap when chain-ladder is used for Data 2.

Estimated Non-parametric Parametric Non-parametric Parametric
Year Reserve p=1 ODP p=2 Gamma
1990 8 74 71 43 42
1991 14 57 55 35 33
1992 24 40 39 29 28
1993 36 32 31 26 25
1994 65 23 22 25 25
1995 269 12 12 32 31
Total 417 12 12 22 21

Table 4.11: The estimated reserve and the coefficients of variation of the simulations (in %) of
the non-parametric and the parametric unstandardized predictive bootstrap when chain-ladder
1s used for Data 2.
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Figure 5: Density charts of R** (a) and R* (b) for the unstandardized non-parametric predic-
tive bootstrap procedures for Data 2 when p = 1.
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of occasional non-positive 7m;;

caused by the resampling process. Tables 4.15 - 4.16 show
examples of pseudo-triangles when p = 1 for the non-parametric bootstrap procedure and
an over-dispersed Poisson distribution is assumed for the parametric bootstrap procedure.
By (3.27) and (3.28) these particular simulations yield Rijy, = 2614 and Rije = 2876,
respectively, which is not reasonable. Thus, even though p = 1.1915, a comparison of the
results for p = 1 and p = 2 indicates that p = 2 might be a better choice for this triangle.

Another alternative might be to use a truncated over-dispersed Poisson distribution to exclude

zero values, but this is outside the scope of the present paper.

The density charts of R* and R* are plotted in Figure 6 and, as for previous data, the

variability of the estimation error is larger than the variability of the process error.

4.4 A large triangle of paid claims from a long-tailed line of business

Finally the two bootstrap procedures are applied to a development triangle for Motor TPL,

a typically long-tailed line of business, where there are still unreported claims. Due to an

1 2 3 4 ) 6 7
1995 | 48 545 56 786 32659 12973 4005 1696 490
1996 | 58 294 79 824 38 287 15957 4617 1427

1997 | 73 859 73237 35281 13960 3854

1998 | 65 707 67 632 32832 12 158

1999 | 92 901 80931 36 508

2000 | 66 834 47 630

2001 | 45 838

Table 4.12: Data 8 provided by the Swedish insurance company AFA Forsdkring.

Estimated Non-parametric Parametric Non-parametric Parametric
Year Reserve p=1 ODP p=2 Gamma
1996 621 2 369 2124 873 862
1997 2 408 5 377 5 382 3128 3116
1998 6 317 10 763 10 823 8 027 7 960
1999 25 536 34 668 34 673 32 242 32 163
2000 46 196 59 249 58 820 58 910 58 395
2001 82 821 107 213 105 455 110 188 108 440
Total 163 898 195 586 195 097 195 876 193 573

Table 4.13: The estimated reserve and the 95 percentiles of the non-parametric and the para-
metric unstandardized predictive bootstrap when chain-ladder is used for Data 3.
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Estimated Non-parametric Parametric Non-parametric Parametric
Year Reserve p=1 ODP p=2 Gamma
1996 621 173 169 26 25
1997 2 408 7 74 19 18
1998 6 317 44 42 17 16
1999 25 536 22 22 17 16
2000 46 196 17 17 17 17
2001 82 821 17 17 21 20
Total 163 898 12 12 12 12

Table 4.14: The estimated reserve and the coefficients of variation of the simulations (in %) of
the non-parametric and the parametric unstandardized predictive bootstrap when chain-ladder
1s used for Data 3.

47 952

16 480
30 487 11 674
16 537 14 875

604
6 116
2 527
2 315

2 007
3 300
2 838
1924

640

757
-746
326
1108
-948
-368

40 247

2 653

17 954 3 478

26 073 11 364 2 201
18 232 7947 1539

-1

1949 -1

1561 -1

2046 -1
1295
905

236
367
095
435
-908
-635

Table 4.15: An example of pseudo-triangles when p = 1; the left triangle is AC™ and the right
triangle is Am*.

42 085

18 788
30 061 12 024
27 055 9 770

3 758
2 255
3 006
2 255

1 503
3 006
3 006

752
2 255

2 255
2 255
0

2 255
752
752

55 292

16 892
28 929 12 041
28 841 12 004

4919
5 385
3 838
3 827

1712
1716
1 878
1339
1335

oOCcC o CoC

Table 4.16: An example of pseudo-triangles when an over-dispersed Poisson distribution is
assumed; the left triangle is AC*™ and the right triangle is Am*.
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Figure 6: Density charts of R** (a) and R* (b) for the unstandardized non-parametric predic-
tive bootstrap procedures for Data 3 when p = 1.
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outlier in the oldest accident year (1987) we exclude this year from the original triangle in

Naziropoulou (2005), see Table 4.17 for Data 4.

Estimation of p yields p = 0.7773 and the results of the bootstrap procedures are presented
in Tables 4.18 - 4.19. The conclusions are the same as in the earlier examples. The density
charts of R** and R* are plotted in Figure 7 and for Data 4 the variability of the estimation

error is again larger than the variability of the process error.
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Figure 7: Density charts of R** (a) and R* (b) for the unstandardized non-parametric predic-
tive bootstrap procedures for Data 4 when p = 1.

5 Conclusions

So far most papers concerning bootstrapping for claims reserve uncertainty focus on obtai-
ning the predictive distribution for the chain-ladder method by assuming underlying models,
which reproduce the chain-ladder estimates. However, the assumption of an underlying model
is generally not made in practise for the purpose of estimating the claims reserve, since the
actuary rather uses somewhat complex reserving algorithms, without reference to statistical
models. In this paper we suggest using either a non-parametric or a parametric bootstrap

methodology with as few model assumptions as possible in order to make the bootstrap pro-



0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
1988 | 13 286 9064 2260 1271 1295 1007 1484 150 1110 598 780 1262 1470 350 881 496 170
1989 | 12 428 9740 2387 1751 1261 902 1054 108 1378 1983 634 1129 1346 700 844 1142
1990 | 13 292 8996 2615 1493 1462 834 1102 734 1297 1160 781 2021 997 416 417
1991 | 13 174 9023 2476 1586 1361 1056 758 955 972 1468 1029 2483 599 996
1992 | 12 300 8562 2444 1282 1444 637 1474 1 368 944 1328 1013 1250 1009
1993 | 12 710 TT7AT 2242 2164 1478 1263 1069 2160 962 3 870 803 475
1994 | 11 935 8340 2814 1870 1464 1107 1221 1214 1617 1310 15891
1995 | 11 959 9377 2804 2488 1746 1466 3168 1832 1763 2051
1996 | 11 518 8953 3269 1865 1522 1753 1770 1717 2084
1997 | 11 621 8233 3705 2091 2080 1697 1800 2418
1998 | 12 416 8518 2670 1951 1861 1365 1874
1999 | 12 957 8917 3172 2550 2141 2116
2000 | 12964 10432 3060 2382 1606
2001 | 14959 12404 4017 2663
2002 | 16 890 11 899 3 633
2003 | 17 167 11 629
2004 | 17 658

Table 4.17: Data 4 from Naziropoulou (2005).
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Estimated Non-parametric Parametric Non-parametric Parametric
Year Reserve p=1 ODP p=2 Gamma
1989 184 551 608 311 314
1990 1 000 1785 1 810 1528 1538
1991 1765 2 783 2773 2 523 2 530
1992 2 250 3 401 3 386 3 084 3 080
1993 3 586 5 010 5 002 4 798 4 819
1994 4 947 6 611 6 563 6 576 6 580
1995 6 811 8 805 8 761 9014 8 952
1996 8 245 10 607 10 523 10 902 10 886
1997 9 865 12 444 12 460 13 060 12 988
1998 10 797 13 455 13 493 14 131 14 245
1999 13 529 16 623 16 531 17 759 17 764
2000 14 933 18 240 18 179 19 716 19 661
2001 19 798 23 719 23 700 26 008 26 280
2002 22 920 27 141 27 176 30 525 30 771
2003 26 757 31 598 31 539 36 447 36 359
2004 40 854 48 032 48 283 61 070 60 315
Total 188 242 207 770 207 461 218 375 217 784

Table 4.18: The estimated reserve and the 95 percentiles of the non-parametric and the para-
metric unstandardized predictive bootstrap when chain-ladder is used for Data 4.

Estimated Non-parametric Parametric Non-parametric Parametric
Year Reserve p=1 ODP p=2 Gamma
1989 184 131 129 48 47
1990 1 000 49 49 35 34
1991 1765 36 36 28 28
1992 2 250 31 31 24 24
1993 3 586 25 24 22 22
1994 4 947 21 21 22 21
1995 6 811 18 18 21 20
1996 8 245 16 16 20 20
1997 9 865 15 15 20 20
1998 10 797 14 15 20 20
1999 13 529 13 13 20 20
2000 14 933 13 13 21 20
2001 19 798 12 12 21 21
2002 22 920 11 11 22 22
2003 26 757 11 11 24 24
2004 40 854 11 11 34 33
Total 188 242 6 6 11 10

Table 4.19: The estimated reserve and the coefficients of variation of the simulations (in %) of
the non-parametric and the parametric unstandardized predictive bootstrap when chain-ladder
15 used for Data 4.
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cedures more consistent with the actuary’s way of working. It is assumed that the bootstrap
procedures only depend on the mean and variance of the claims, while the actuary’s choice
of reserving algorithm implicitly specifies the mean structure. Consequently, the suggested
bootstrap procedures can be used to obtain the predictive distribution of any age-to-age de-
velopment factor method. The non-parametric and the parametric bootstrap procedures are
compared to techniques described in Pinheiro et al. (2003), as well as in England (2002), and

finally they are applied to four development triangles of different types.

We have seen that the results of the parametric standardized predictive bootstrap are consis-
tent with the results of its non-parametric counterpart in Pinheiro et al. (2003). Furthermore,
the unstandardized predictive bootstrap procedures have revealed that the variability of the
estimation error, when chain-ladder is used, is larger than the variability of the process error
for all four investigated development triangles and for the two largest of them the difference is
considerable. Finally, our simulation results are almost the same for the non-parametric and

the parametric approach.

Since resampling of standardized quantities often increases accuracy compared to using un-
standardized quantities, the standardized predictive bootstrap is in theory preferable to the
unstandardized one. We have seen that the standardized case yields higher estimated risk,
seemingly due to the fact that it makes the distribution more symmetric than the unstan-
dardized case, where the predictive distribution is skewed to the left. A disadvantage of
the standardized predictive bootstrap is that the denominators of (3.10) may sometimes be
non-positive, yielding undefined or imaginary prediction errors. In principle, this could be
corrected by the double bootstrap, which provides a better estimation of the variance since it
includes the estimation error as well as the process error. Therefore, it would be interesting,
in a future paper, to analyze the behaviour of the double bootstrap method both for simulated

and real data sets.

Finally, a somewhat surprising result of the numerical studies is that the estimation error is

consistently larger than the process error. This could be the case for further study.
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Appendix 1

The basic assumption of the resampling process of the non-parametric bootstrap is indepen-
dent and identically distributed residuals. We will now motivate that the model in (3.1) gives
approximately identically distributed residuals r;; for the majority of residuals (3.2) or (3.3)
in the upper triangle (not close to any of the corners) when p = 2 (gamma distribution), but
not for p = 1 (over-dispersed Poisson distribution). By large triangles we mean that ¢ — oo
and hence also n — oo. For each fixed ij, m;; is a consistent estimate of m;; as n grows, and

g/n — 0. Hence, for large n, the residuals can be written as

Since the moment generating function of a I'(a, §) distribution is M(t) = (1 — ft)~ and
p = 2 is equivalent to Cj; € F(é, ¢ mij;), the residuals r;; are identically distributed according

to

Y t

ng

(t) = e Moy, (—) = e7H(1 — ¢ 1) 5.

ij
The moment generating function of a Po()) distribution is M(t) = e*€¢'~1_ but since p = 1
implies an over-dispersed Poisson distribution we need a help variable X;; in order to find the

distribution of the residuals. The underlying model is fulfilled if Cj; = ¢ X;;, X;; € Po(%)

and the residuals are distributed according to

! ) =e "V My, ( i )Ze_t\/m_“e%(e\/m_ﬁ_l),

M \/m—”

M,

7””

(t) = e WM Mcij (

The distributions of the residuals 7;; depend on m;; and consequently the residuals cannot be

identically distributed.
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Appendix 2

In order to find the variability of the claims reserve obtained by the chain-ladder method
England & Verrall (1999) assume the model structure in (3.1) and on the basis of the standard

error of prediction of a single future value C;; in AC, i.e.

SEP(Ciy) = \/ B(Cyy — Cip)2 2\ Var(Cyy) + Var(Cy), (5.1)

an expression for the standard error of prediction of the total claims reserve is derived as

SEP(R) = +/Var(R— R) ~\/Var(R) + Var(R) (5.2)
= Var(}_ Ciy) +Var(d_ Cy)
A A
~ Z ¢m€] + Z i Var (i) + 2 Z My Mgy COV(liyjy Ninja) »

A A A, i 1o
where 7);; is the estimate of n;; appearing in (3.1). The first term provides for the variance of
the process error and can easily be estimated analytically, while the two last terms, providing
for the variance of the estimation error, can be obtained by bootstrapping. When p = 1,

England & Verrall (1999) replace equation (5.2) by the bootstrap standard error of prediction

SEPy(R) = /& R+ (SEps(R))?, (5.3)

where SEbS(R*) is the standard error of the B simulated values of R* obtained by the non-
parametric standardized bootstrap procedure in Substage 2.1 in Figure 1. However, England
& Verrall (1999) substitute the maximum likelihood estimates of the model parameters in

Figure 1 by the chain-ladder method.

In order to obtain a complete predictive distribution England (2002) extended the method
in England & Verrall (1999) by replacing the analytic calculation of the process error by
another simulation conditional on the bootstrap simulation. The process error is included to

the B triangles Arm* by sampling a random observation from a process distribution with mean

mfj and variance ¢m* to obtain the future claims Amf. The predictive distribution of the

outstanding claims is then obtained by plotting the B values of R = YA m - and finally the
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standard deviation of the simulations gives the standard error of prediction of the outstanding

claims.

England (2002) presents no justification of this procedure, but sampling from over-dispersed

Poisson distributions with mean m;.*j and variance ¢ mfj will indeed provide us with a predictive

distribution of R consistent with (5.3). Since

BE(RY| i) = > E(ml| M) = il = R
A

and

Var(R'| Am*) ZV(LT‘ L|Am*):2¢3m*:¢§1§?*
A
the variance of the simulated predlctlve distribution is

Var(RY) = E[Var(R'| Ain*)] + Var[E(R'| Am*)]

= E(¢R*)+ Var(R*) = ¢ E(R*) + Var(R*) ~ ¢ R + Var(R*),

where, in the last step, we used E(R*) ~ R and (3.12).






Paper 11






- . O Stockholm University
& W 7~ Research Report 2009:2,

Bootstrapping the separation method in claims
reserving

Susanna Bjorkwall* Ola Hossjer! Esbjorn Ohlsson?

Januari 2009

Abstract

The separation method was introduced by Verbeek (1972) in order to forecast numbers
of excess claims and it was developed further by Taylor (1977) to be applicable to the
average claim cost. The separation method differs from the chain-ladder in that when
the chain-ladder only assumes claim proportionality between the development years,
the separation method also separates the claim delay distribution from influences
affecting the calendar years, e.g. inflation. Since the inflation contributes to the
uncertainty in the estimate of the claims reserve it is important to consider its impact
in the context of risk management, too.

In this paper we present a method for assessing the prediction error distribution of
the separation method. To this end we introduce a parametric framework within the
separation model which enables joint resampling of claim counts and claim amounts.
As a result, the variability of Taylor’s predicted reserves can be assessed by extending
the parametric bootstrap techniques of Bjorkwall et al. (2008). The performance of
the bootstrapped separation method and chain-ladder is compared for a real data set.

Keywords

Bootstrap; Chain-ladder; Development triangle; Inflation; Separation method; Stochas-
tic claims reserving.

*Mathematical Statistics, Stockholm University. E-mail: sbj@student.su.se
"Mathematical Statistics, Stockholm University.
Lansforsikringar Alliance, Stockholm.



1 INTRODUCTION 2

1 Introduction

One issue for the reserving actuary is how to deal with inflation, which contributes to
the uncertainty in the estimate of the claims reserve. Even though some proper reserving
techniques are suggested in the literature, little has been said about how to approach
this issue when it comes to finding the variability of the actuary’s best estimate either

analytically or by bootstrapping.

Due to external forces the average cost per claim will change from one calendar year to
another. Typically this claims inflation is specific to each line of business and depends
on the economic inflation, which usually can be tied to some relevant index, as well as on
factors like legislation and attitudes to policy holder compensation. The latter result in so

called superimposed claims inflation.

The chain-ladder method makes implicit allowance for claims inflation since it projects the
inflation present in the past data into the future, see e.g. Taylor (2000). Consequently, it
only works properly when the inflation rate is constant. When the economic inflation rate
is non-constant, the past paid losses can be converted to current value by some relevant
index before they are projected into the future by the chain-ladder, but still there is no

allowance for superimposed claims inflation.

Another approach of dealing with claims inflation is to incorporate it into the model un-
derlying the reserving method. In this way the past inflation rate can be estimated and
the future inflation rate can be predicted within the model. Verbeek (1972) introduced
such a method in the reinsurance context and Taylor (1977) developed it further to be
applicable to the average claim cost in a general context. The reserving technique is called
the separation method. However, the separation method has, unlike its famous relative,
remained quite anonymous in the literature on stochastic claims reserving. For instance,
the mean squared error of prediction for the chain-ladder was analytically calculated by

Mack (1993) and revisited by Buchwalder et al. (2006) and Mack et al. (2006) and a full
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predictive distribution was obtained for the chain-ladder by bootstrapping in England &
Verrall (1999), England (2002) and Pinheiro et al. (2003). Recently the variability of other
reserving methods has been investigated as well, e.g. the Bornhuetter-Ferguson method by
analytical approximation in Mack (2008) and the Munich chain-ladder, see Quarg & Mack
(2004), by bootstrapping of two correlated quantities in Liu & Verrall (2008).

The object of this paper is to analyze the variability of the separation method. Since boot-
strapping easily gives a full predictive distribution and can also be used in risk management
with Dynamic Financial Analysis (DFA) we develop a bootstrap procedure for the sepa-
ration method. For this purpose we use an extended version of the parametric bootstrap
technique described in Bjorkwall et al. (2008). To this end, we introduce a parametric
framework within the separation model, in which claim counts are Poisson distributed and
claim amounts are gamma distributed conditionally on the ultimate claim counts. This

enables joint resampling of claim counts and claim amounts.

Section 2 contains the definitions and the theory behind the separation method. In Section
3 the suggested bootstrap methodology is discussed and it is studied numerically for the
well-known data set from Taylor & Ashe (1983) in Section 4. Finally, Section 5 contains a

discussion.

2 The separation method

Assume that we have a triangle of incremental observations of paid claims {Cj;;4,j € V},
where V denotes the upper, observational triangle V.= {i =0,...,¢;5 =0,...,t—i}. The
suffixes ¢ and j refer to the origin year and the development year, respectively, see Table
2.1. In addition, the suffix £k = + j is used for the calendar years, i.e. the diagonals of V.
The purpose is to predict the sum of the delayed claim amounts in the lower, unobserved
future triangle {C;;;7,7 € A}, where A ={i =1,...,t;j =t —i+1,...,t}, see Table
2.2. We write R = > A Cj; for this sum, which is the outstanding claims for which the
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insurance company must hold a reserve. Furthermore, assume that we have a triangle of
the incremental observations of the numbers of claims {N;;;4, j € V} corresponding to the
same portfolio as in Table 2.1, i.e. the observations in Table 2.3. The ultimate number of
claims relating to period of origin year ¢ is then
N; = Z Nij + Z Nij, (2.1)
JEV; JEA;
where V; and A; denotes the rows corresponding to origin year ¢ in the upper triangle V

and the lower triangle A, respectively.

The separation method is based on the assumption that NV; is considered as known. Since
the number of claims is often finalized quite early even for long-tailed business, N; may

very well be estimated separately, e.g. by the chain-ladder if a triangle of claim counts

Development year
Accident year |0 1 2 e t—1 8
0 Coo Co1 Co2 -+ Coim1 Coy
1 Cho Cn Cip -+ Ciy
2 Cao Can Cy -
t—1 Ci—1o Cio1
t qu()

Table 2.1: The triangle V of observed incremental payments.

Development year
Accident year |0 1 2 e t—1 t
0
1 Ciy
2 Cor1 Oy
t—1 Cicig - Cioigmr Gy
t Cia Cia - Ciyr Cy

Table 2.2: The triangle A of unobserved future claim costs.
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is provided, and then be treated as known. Henceforth estimates 7;; of the expectations
n;; = E(N;;) is obtained by the chain-ladder for all cells in both V and A. The estimated

ultimate number of claims relating to origin year ¢ is then

JEV; JEA;
The chain-ladder method operates on cumulative claim counts
J
=0

rather than incremental claim counts N;;. Let v;; = E(A;;). Development factors g; are

estimated for j = 0,1,...,t—1 by

t—j
im0 A

9j = S| A, (2.4)
yielding
Vij = Ait—i Gt—i Gt—ig1 - - - Gj—1 (2.5)
and
Nij = Vij — Vij-1 (2.6)

for A, while estimates of 7;; for V are obtained by the process of backwards recursion

described in England & Verrall (1999).

Development year
Accident year |0 1 2 e t—1
0 Noo Noy Noz -+ Noi1 Nog
1 Ny Ny Nig -+ Ny
2 Ny Ny Nyy -
t—1 Ni—1o N
t Nmo

Table 2.3: The triangle V of observed incremental numbers of reported claims.
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While the chain-ladder only assumes claim proportionality between the development years,
the separation method in Taylor (1977) separates the claim delay distribution from influ-
ences effecting the calendar years, e.g. inflation. In the separation model we first assume
that the proportion of the average claim amount paid in development year j is constant
over %; denote this proportion by r;. If the claims are fully paid by year ¢ we have the

constraint
t
=0

We then make a further assumption that the claim amount is proportional to some index,
say g, that relates to the calendar year k£ during which the claims are paid. The expected

claim cost for development year j and calendar year £ is then proportional to 7; .

Development year
Accident year |0 1 2 e t—1 t
0 ToAo T Tode o Ti1 A1 Ti N
1 ToAL  T1 A2 ToA3 ot TN
2 To >\2 ™ )\3 T2 >\4
t—1 To >\t—1 ™ )\t
t To >\t

Table 2.4: The triangle V of expected paid claims.

The separation model can be given the following formulation, which is at a bit more
detailed level than the one given in Taylor (1977). Let C;; denote the amount paid during
calendar year k for the [:th individual claim incurred in origin year 7 and assume that Cj;
are conditionally independent for all 7, j and [ given N;. According to the discussion above

we also assume that

E(CZJI‘NZ) =Tj )\k (28)

Since the total amount paid during calendar year k for claims incurred in origin year 7 is

N;
Cij = Cij (2.9)
=1
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we obtain

E(CijN> ! %E(C IN;) ! i A A (2.10)
il = 37 ijl|4Vi) = =+ Ti AL =T5 Ak .
Ni N; =1 ! N; =1 ! !

for the conditional expectation of the average claim costs given the ultimate number of

claims and this relation is the basic assumption of the separation method. The expectations

in equation (2.10) now build up the triangle in Table 2.4.

If N; is estimated separately by (2.2), it follows from (2.8) and (2.9) that

B <C:w E(E(C'Z-j|NiA, VN)|VN)
f N;
(Xv, Nij + X, ni5)
(Xw, Nij + X4, 1ij)
Tk (2.11)

vN) -

= ’f’j)\k

where in the last equality we used n;; ~ n;;.

Estimates 7; and A, of the parameters in the triangle in Table 2.4 can now be obtained

using the corresponding triangle Vs of observed values

Sij = ?v , (2.12)
and the method of moments equations
Skt Sk1a sk =(Fo+ ...+,  k=0,...t (2.13)
for the diagonals of V and
S0 F 815 s =G F AR, G=0,..,t (2.14)

for the columns of V.

Taylor (1977) shows that the equations (2.13) - (2.14), with the side constraint (2.7), have
a unique solution that can be obtained recursively, starting with & = ¢ in (2.13) to solve
for Ay, then j = ¢ in (2.14) to solve for 7, k =t — 1 in (2.13) to solve for \,_; and so on.

This yields
N Efzo Sik—i

A = 0Tt (2.15)
1_E§'=k+1rj
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-

Py Zi:f) Sij

J T —t L
Zk:j >\k

where >2%_; | 7; is interpreted as zero when k = t.

j=0,....t, (2.16)

Estimates 7;; of the expectations m;; = E(C;;) for cells in V are now given by
m; = N; T M (2.17)

but in order to obtain the estimates of A it remains to predict Ay for t +1 < k£ < 2, which

requires some inflation assumption.

If there is a trend in the inflation indexes j\k for £ <t then smoothing and extrapolation
could be used in order to forecast the future inflation. An alternative is to use an average
of the past indexes. In any case, with an inflation assumption of, say, K%, the forecasted
Ar+1 can be obtained as 5\“1 =(1+ %) j\k for t <k <2t —1. The cell expectations of
AC;; are then estimated by equation (2.17) and estimators of the outstanding claims are
obtained by summing per accident year R, = > jen, Mij. The estimator of the total reserve

is ﬁ = ZA 'ﬁlw

The separation model described by Taylor (1977) is more general than the one discussed
in this paper, since the original model do not presume that N; is the number of claims; it
could be some other exposure relating to origin year ¢ as well. However, in this paper we

stick to the number of claims.

3 A conditional parametric bootstrap approach

For the purpose of obtaining the predictive distribution of the claims reserve R estimated
by the separation method the bootstrap technique described in Pinheiro et al. (2003) and,
in particular, the parametric approach in Bjorkwall et al. (2008) is used. For the sampling
process we model the paid claims C;; conditionally on NN; in accordance with (2.11). We

provide models for the assumption of stochastic N; as well as for the case when N; is
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considered as known. The former assumption demands that we develop the technique

described in Bjorkwall et al. (2008) in order to handle VN as well as VC'

3.1 Stochastic Poisson distributed claim counts

Verbeek (1972) adopted a Poisson distribution for the claim counting variable, while the
method described in Taylor (1977) is distribution-free. However, the assumption of inde-

pendent and Poisson distributed claim counts
Nij S Po(nij) (31)
yields a very reasonable model for the sampling process.

In addition we assume that the conditionally independent claims C;j;|N; in (2.8) are gamma

distributed. We use the notation

Ciju|N; €T (%,Tj Ak ¢> ) (3.2)

where 1/¢ is the so called index parameter and r; \; ¢ is the scale, so that the expected

value is 7; A\, Moreover, ¢ > 0.
Recalling (2.9) and the independence of the C;; we find that

Cij‘Ni el <%77’j Ak ¢> ) (3-3)

which is consistent with (2.10) since

The variance of the amounts in (3.3) is

Ci| N;)

2 B

which corresponds to a weighted generalized linear model under the assumption of a loga-

rithmic link function and a gamma distribution. We use a Pearson type estimate of ¢, cf.
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McCullagh & Nelder (1989),

o1 SR, (G — E(CylN:))? 1 SN (Cis — Nm Ar)?
|V| —4q v E2(Clj‘NZ) |V| ) v (NZ ] >\k)2

. (36)

where |V| = (t+1) (t+2)/2 is the number of observations in VC, the estimators N;, \; and
7; are obtained from (2.2), (2.15) and (2.16) and ¢ = 2t + 1 is the number of parameters
that have to be estimated by the separation method, i.e. r; for j =0,1,...,t —1 and A
for k=0,1,...,¢t

Notice that (3.3) could be interpreted as follows; given N; claims we allocate claim amounts
independently over the development years j according to the proportions ry, ..., r; before
the inflation is considered. According to (3.2) we not only allocate claim amounts but
individual claims as well. This interpretation is consistent with the assumptions discussed

in Section 2.

We adopt the bootstrap technique described in Pinheiro et al. (2003) and, in particular, the
parametric approach in Bjorkwall et al. (2008). The relation between the true outstanding
claims R and its estimator R in the real world is, by the plug-in-principle, substituted in
the bootstrap world by their bootstrap counterparts. Hence, the process error is included
in R™, i.e. the true outstanding claims in the bootstrap world, while the estimation error
is included in R*, i.e. the estimated outstanding claims in the bootstrap world. Henceforth
we use the index * for random variables or plug-in estimators in the bootstrap world which
correspond to observations or estimators in the real world, while the index *x is used
for random variables in the bootstrap world when the counterparts in the real world are

unobserved.

The parametric bootstrap approach in Bjorkwall et al. (2008) can now be implemented for
the separation method using (3.1) and (3.3) in the following way. We draw N5 and N}
from

N;; € Po(iy;) and N € Po(i;) (3.7)

B times for all 7,5 € V and i, 7 € A, respectively. We thereby get the B pseudo-triangles
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VN* and AN**. The ultimate number of claims per origin year in the bootstrap world is

then given by
Ni** = Z N;} + Z N;}* (3-8)

JEV JEA;

according to (2.1).

Once N;* is calculated, C7; is sampled B times from

koK

N o
CLIN™ €T <—f,fj Ak gb) ) (3.9)
)
for all 7,5 € V yielding the B pseudo-triangles VC*. Here A, and 7; are obtained from
(2.15) and (2.16).

The heuristic estimation process described in Section 2 is then repeated B times for each

pair of pseudo-triangles. The claim counts are first forecasted by An*, obtained by the

chain-ladder from VN*, in order to estimate the ultimate number of claims per origin year
Ny =Y N+ > A (3.10)

JEV; JEA;

according to (2.2). The future payments are then forecasted by estimating Am* according

to (2.12) - (2.17). Finally, estimators for the outstanding claims in the bootstrap world

are obtained by R} = Y,ca, mf; and R* = Y5 ;.

In order to generate a random outcome of the true outstanding claims in the bootstrap
world, i.e. Rj* = 3 cn, CfF and R™ = Y5 Cff, we sample once again from (3.9) for all
1,j € A to get B triangles AC**.

The final step is to calculate the B prediction errors

pe;’ = ———— and pe’ = ————. (3.11)
Var(R:) Var(R*)
The predictive distributions of the outstanding claims R; and R are then obtained by
plotting

R = R; + pe*\/Var(R;) and R™ = R + pe*™*\/Var(R) (3.12)
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for each B.
The conditional independence of C;; for all i and j given N; (3.3) implies that

= F (Z ON; (rj)\k)Z) + Var (Z Nirj)\k)

JEA; JEA;

= (bE (Nz) Z (Tj)\k)2 —|—VCL’/’ (Nz> (Z ’/’j)\k>

JEA; JEA;

= (cb S () + (Z rjAk) ) ( > n]) (3.13)
JEA; JEA; FEV,UA;

JEVUA;

since

By plugging in the estimates we find
2
Var (R Y (mk) IO Sy (3.15)
JEA; JEA; JEVUA;

and

Var (R) Z (¢ 3 (mk) + (Z fjxk) ) ( 3 n]) . (3.16)

JEA; JEA;

Analogously, the variances appearing in (3.11) are

Var (R™) = <¢ 3y (Ak) + (Z f;X;) ) ( 3 ﬁ;.;.) (3.17)

JEA; JEA; JEVUA;
and )
A JEA; JEA; JEVUA;
where
~ 1 . (C* N* Ak >‘k)
|V|—qzv: (N* *)‘k)

in accordance with (3.6).
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It is remarked in Bjorkwall et al. (2008) that for many bootstrap procedures, resamp-
ling of standardized quantities often increases accuracy compared to using unstandardized

quantities. Nevertheless, the unstandardized prediction errors
pel* = R — R} and pe* = R — R* (3.20)

are useful, e.g. for the purpose of studying the estimation and the process errors, but also

since they are always defined.

The predictive distributions of the outstanding claims R; and R are then obtained by

plotting the B quantities

R =R;+pej* and  R™=R+pe”. (3.21)

The parametric predictive bootstrap procedure is described in Figure 1 and according to
Bjorkwall et al. (2008) we will refer to it as standardized or unstandardized depending on

which prediction errors that are used.

3.2 Known claim counts

In Section 2 it was remarked that the separation model is based on the assumption that
N; is considered as known at the moment when the reserving is being done. This can often
be a reasonable assumption since the numbers of claims are usually finalized quite early
even for long-tailed business. In Section 3.1 IV; was a random variable; in order to get a
view of how much uncertainty N; contributes to the predictive distribution of the claims
reserve we now consider the special case when N; is treated as deterministic, in contrast

to (3.1). Consequently, N; = N, in all equations above.

Assumption (3.3) can still be used and ¢ is estimated as in (3.6), but the sampling process

changes. We do not have to generate pseudo-triangles of claim counts in the bootstrap
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Stage 1 - Real world
Substage 1.1 - The triangle of claim counts VN

- Forecast the future expected values An and calculate the fitted values V7 by chain-ladder.
- Calculate the estimated ultimate claim count per origin year N;.

Substage 1.2 - The triangle of paid claims VC

. Use N; from Substage 1.1 for the purpose of forecasting the future expected values Am
and calculating the fitted values Vi by the separation method.

- Calculate ¢ for the sampling process.

- Calculate the outstanding claims R; = ZjeAi mi; and R =) ;.

Stage 2 - Bootstrap world
Substage 2.1 - The estimated outstanding claims
Substage 2.1.1 - The pseudo-triangle of claim counts VN*

- Sample from (3.7) for 7,7 € V to obtain the pseudo-reality in VN*.
- Forecast the future expected values An* by chain-ladder.
- Calculate the estimated ultimate claim count per origin year N;*.

Substage 2.1.2 - The pseudo-triangle of paid claims VC*

- Sample from (3.7) for i, 7 € A to obtain the pseudo-reality in AN**.

- Calculate the ultimate claim count per origin year N, using VN* from Substage 2.1.1
and AN,

- Sample from (3.9) for i, j € V to obtain the pseudo-reality in VC* conditionally on AN;*.
- Use NZ* from Substage 2.1.1. for the purpose of forecasting the future expected values Am*
by the separation method.

- Calculate the estimated outstanding claims R = > jen, M and R =3 A ;-

Substage 2.2 - The true outstanding claims

- Sample from (3.9) for 7,7 € A to obtain the pseudo-reality in AC** conditionally

on AN/,

- Calculate the true outstanding claims R = . 5 C7f and R™ =3\ C}".

- Store either the standardized prediction errors in (3.11) or the unstandardized ones in (3.20).
- Return to the beginning of the bootstrap loop in Stage 2 and repeat B times.

Stage 3 - Analysis of the simulations

- Obtain the predictive distribution of R; and R, the true outstanding claims in the real world,
by plotting the B values in either (3.12) or (3.21).

Figure 1: The procedure of the parametric predictive bootstrap for the separation method.



4 NUMERICAL STUDY 15

world, i.e. VN* and AN™, since N; is considered as known. Thus, we just draw C}; from
N;
i € D(— 3 .75 A ¢) (3.22)

B times for all 7,7 € V yielding VC*. The estimation process of the separation method
is then repeated for each VC* using N; as the exposure in the bootstrap world as well.

Finally, we sample once again B times from (3.22) for all 4,j € A to get AC**.

The prediction errors and the predictive distributions are as earlier obtained by (3.11) and

(3.12), respectively, but since Var(lV;) = 0, we obtain the estimators
Var(R;) = ¢N; Z i) (3.23)

and
Var(R Z¢N Z (3.24)

instead of (3.15) and (3.16).

Analogously, the estimators appearing in (3.11) are

Var(Ry) = 6" N; Y (7:0;)? (3.25)
Ay
and
Var(R™) Zgb N; Z (3.26)

where ¢* is estimated by (3.19).

The unstandardized prediction errors in (3.20) can of course be used as well. The predictive

distributions are then obtained by (3.21).

This simplified approach is summarized in Figure 2.

4 Numerical study

The purpose of the numerical study is to illustrate the parametric bootstrap procedure for

the separation method and to compare it to the approach for the chain-ladder described in
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Stage 1 - Real world
Substage 1.1 - The triangle of claim counts VN

- Forecast the future expected values An by chain-ladder.
- Calculate the estimated ultimate claim count per origin year N;.

Substage 1.2 - The triangle of paid claims VC'

- Use N; from Substage 1.1 for the purpose of forecasting the future expected values Am
and calculating the fitted values Vm by the separation method.

- Calculate ¢ for the sampling process.

- Calculate the outstanding claims R; = ZjeAi mi; and R =Y 5 myj.

Stage 2 - Bootstrap world

Substage 2.1 - The estimated outstanding claims

- Sample from (3.22) for i,j € V to obtain the pseudo-reality in VC™.

- Use N; for the purpose of forecasting the future expected values Am* by the separation

method.
- Calculate the estimated outstanding claims R} =37, A 1y and R* = Y 5 ;.

Substage 2.2 - The true outstanding claims

- Sample from (3.22) for i,j € A to obtain the pseudo-reality in AC™**.

- Calculate the true outstanding claims R} = ZjeAi C;and R™ =) | CFF.

- Store either the standardized prediction errors in (3.11) or the unstandardized ones in (3.20).
- Return to the beginning of the bootstrap loop in Stage 2 and repeat B times.

Stage 3 - Analysis of the simulations

- Obtain the predictive distribution of R; and R, the true outstanding claims in the real world,
by plotting the B values in either (3.12) or (3.21).

Figure 2: The procedure of the simplified parametric predictive bootstrap for the separation
method.
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Bjorkwall et al. (2008). From now on B = 10000 simulations are used for each prediction.

The upper 95 percent limits are studied and the coefficients of variation, i.e. \/Var(R;**)/}A%i

and \/Var(R*)/R, are presented as well.

We use the well-known data from Taylor & Ashe (1983), who also provide observations of
number of claims. The triangles of paid claims V' and claim counts VN are presented in

Table 4.1 and Table 4.2, respectively.

4.1 The estimate of the claims reserve and the payment pattern

The assumption of the future inflation rate has great impact on the claims reserve estimated
by the separation method. The future inflation rate can of course be modeled by more
refined approaches, but this is beyond the scope of this paper and we just consider a
constant or the mean rate observed so far. In Table 4.3 the estimators are shown under
three different assumptions. The inflation rate 11,01% corresponds to the mean inflation
rate observed so far, while 5% and 15% are chosen just for comparison. The estimated

claims reserves obtained by the chain ladder are presented as well.

Table 4.4 shows the expected cumulative payment proportions

T Yo Yo i
Obviously, a higher future inflation rate tends to delay the payments.
0 1 2 3 4 5 6 7 8 9

357 848 766 940 610 542 482 940 527 326 574 398 146 342 139 950 227 229 67 948
3562 118 884 021 933 894 1183 289 445 745 320996 527 804 266 172 425 046

290 507 1 001 799 926 219 1016 654 750 816 146 923 495 992 280 405

310 608 1 108 250 776 189 1 562 400 272 482 352 053 206 286

443 160 693 190 991 983 769 488 504 851 470 639

396 132 937 085 847 498 805 037 705 960

440 832 847 631 1131398 1063 269

359 480 1 061 648 1 443 370

376 686 986 608

344 014

©C 0o~ UdWN~O

Table 4.1: Observations of paid claims VC' from Taylor €& Ashe (1983).
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0 1 2 3 4 5 6 7 8 9
40 124 157 93 141 22 14 10 3 2
37 186 130 239 61 26 23 6 6
35 158 243 153 48 26 14 5
41 155 218 100 67 17 6
30 187 166 120 55 13
33 121 204 87 37
32 115 146 103
43 111 83
17 92
22

©C 00N UdlWN O

Table 4.2: Observations of claim counts VN from Taylor € Ashe (1983).

4.2 Predictive bootstrap results for the chain-ladder

In order to compare the separation method to the chain-ladder we summarize the results
of the parametric predictive bootstrap procedures described in Bjorkwall et al. (2008),
where data is bootstrapped according to the plug-in-principle under the assumption of a
gamma distribution; see the reference for details. Tables 4.5 - 4.6 show the results for the

standardized as well as the unstandardized approach.

Future inflation Future inflation Future inflation Chain-ladder
Year i rate 5.00% rate 11.01% rate 15.00%
1 84 339 89 163 92 371 94 634
2 473 893 506 151 527 909 469 511
3 720 846 794 132 845 099 709 638
4 1 144 208 1 288 308 1391 323 984 889
5 1 497 489 1722 883 1 888 356 1419 459
6 2 095 131 2 448 039 2 713 372 2 177 641
7 2 793 640 3 269 931 3 634 088 3 920 301
8 3 636 785 4 314 184 4 841 171 4 278 972
9 4 990 729 6 043 441 6 879 216 4 625 811
Total 17 437 060 20 476 232 22 812 905 18 680 856

Table 4.3: The estimated claims reserves under the chain-ladder, compared to the separation

method with different inflation assumptions.

11,01%.

The mean inflation rate observed so far is
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Development | Future inflation Future inflation Future inflation Chain-ladder
year j rate 5.00% rate 11.01% rate 15.00%
0 7.1 6.7 6.4 6.9
1 25.2 23.9 23.0 24.2
2 44.5 42.5 41.0 42.2
3 63.3 60.9 59.1 61.5
4 73.7 71.3 69.5 72.2
5 81.2 79.0 77.4 79.7
6 87.7 86.0 84.7 86.6
7 92.3 91.0 90.1 91.3
8 98.6 98.3 98.1 98.3
9 100.0 100.0 100.0 100.0

19

Table 4.4: The expected cumulative payment proportion (in %) under the chain-ladder,
compared to the separation method with different inflation assumptions. The mean inflation
rate observed so far is 11,01%.

Standardized Unstandardized

Year ¢ Gamma Gamma
1 219 178 168 756

2 861 781 756 634

3 1169 041 1062 783

4 1 519 540 1409 034

5 2 127 947 1975 222

6 3 358 037 3 038 732

7 6 253 164 5 562 133

8 7 386 412 6 284 020

9 9 247 043 7 148 120
Total 23 991 467 23 123 593

Table 4.5: The 95 percentiles of the parametric predictive bootstrap procedures described in
Bjorkwall et al. (2008) for the chain-ladder. We work under the assumption of a gamma
distribution and the procedure is either standardized or unstandardized.
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4.3 The standardized predictive bootstrap for the separation method

The results for the procedure described in Section 3.1, when the standardized prediction
errors are used, are presented in Table 4.7 for the three different assumptions of the future
inflation rate. Two of these are mean inflation rates observed so far, either treated as
a constant (11.01%) or as stochastic in the bootstrap world. According to the plug-in-
principle the inflation rate should be treated as stochastic, i.e. recomputed from {5\,’;}
for each resample, but the former alternative is shown as well for comparison. Table 4.8
contains the coefficients of variation. Tables 4.7 - 4.8 also include the results obtained by

the chain-ladder for comparison.

As we can see the results are strongly affected by the inflation assumption and the coef-
ficients of variation are naturally higher when the mean inflation is treated as stochastic,
in particular for the grand total. As expected the coefficients of variation of the latest
origin year are lower for the separation method than for the chain-ladder, since the ex-
treme sensitivity to outliers for the chain-ladder in the south corner of the upper triangle

is removed for the separation method. Less expected is that the separation method has

Standardized Unstandardized

Year ¢ Gamma Gamma
1 65 50

2 41 38

3 32 31

4 28 27

5 26 25

6 27 25

7 29 27

8 35 32

9 47 38
Total 15 16

Table 4.6: The coefficients of variation of the simulations (in %) of the parametric predic-
tive bootstrap procedures described in Bjorkwall et al. (2008) for the chain-ladder. We work
under the assumption of a gamma distribution and the procedure is either standardized or
unstandardized.
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Inflation Inflation Inflation Inflation Chain Ladder

Year 4 5.00% 11.01% Mean 15.00% Gamma
1 197 907 201 184 190 418 208 028 219 178

2 839 849 882 300 858 679 926 020 861 781

3| 1137848 1253445 1204288 1336139 1169 041

41 1704374 1908980 1859360 2066 985 1 519 540

51 2178 017 2513476 2446 109 2 751 393 2 127 947

6| 3033630 3526976 3516529 3901 976 3 358 037

71 4223019 4893910 4807925 5359 921 6 253 164

8| 5564419 6540 182 6489 287 7 239 800 7 386 412

9| 8261189 9852469 9540 033 11 081 546 9 247 043
Total | 23 412 570 27 442 696 27 659 095 30 692 578 23 991 467

21

Table 4.7: The 95 percentiles of the standardized predictive bootstrap procedure under the
chain-ladder, compared to the separation method with different inflation assumptions. Two
of these are mean inflation rates observed so far, either treated as a constant (11.01 %) or
as stochastic (Mean,).

Inflation Inflation Inflation Inflation Chain Ladder

Year ¢ 5.00%  11.01% Mean  15.00% Gamma
1 63 61 57 60 65

2 38 38 37 38 41

3 30 29 30 30 32

4 26 25 27 25 28

5 24 24 27 24 26

6 24 23 28 23 27

7 26 26 31 25 29

8 28 27 32 26 35

9 33 32 37 31 47
Total 18 18 25 17 15

Table 4.8: The coefficients of variation of the simulations (in %) of the standardized pre-
dictive bootstrap procedure under the chain-ladder, compared to the separation method with
different inflation assumptions. Two of these are mean inflation rates observed so far,
either treated as a constant (11.01 %) or as stochastic (Mean).
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lower coefficients of variation for years 1-3.

4.4 The unstandardized predictive bootstrap for the separation
method

In order to study the estimation and the process error we also investigate the procedure
described in Section 3.1 when the unstandardized prediction errors are used. The results

are shown in Tables 4.9 - 4.10.

Inflation Inflation Inflation Inflation Chain Ladder

Year ¢ 5.00% 11.01% Mean 15.00% Gamma
1 152 189 158 866 158 108 163 797 168 756

2 765 412 803 966 792 018 840 344 756 634

3| 1071483 1180997 1150577 1262227 1 062 783

41 1632010 1825048 1780637 1967 326 1409 034

51 2082197 2413236 2340 763 2 644 546 1975 222

6| 2916401 3389043 3327822 3754270 3038 732

71 4024333 4666419 4547122 5125 141 5 562 133

8| 5270015 6180526 6027989 6 874 970 6 284 020

9| 7528152 9024898 8 787 987 10 208 677 7 148 120
Total | 22 281 683 26 091 962 26 145 893 29 117 165 23 123 593

Table 4.9: The 95 percentiles of the unstandardized predictive bootstrap procedure under
the chain-ladder, compared to the separation method with different inflation assumptions.
Two of these are mean inflation rates observed so far, either treated as a constant (11.01
%) or as stochastic (Mean,).

As remarked in Bjorkwall et al. (2008) the percentiles of the unstandardized predictive
bootstrap tend to be lower than for the standardized one. This was explained by the left
skewness of the predictive distribution of the unstandardized bootstrap compared to the
distribution obtained by the standardized bootstrap. According to Figure 3 this seems to
hold for the separation method too. Figure 3 (c¢) - (d) show the predictive distributions
of the total claims reserve under the assumption of a stochastic future inflation rate corre-
sponding to the mean inflation rate observed so far. The predictive distribution obtained
by the unstandardized bootstrap in (c¢) is skewed to the left compared to the one obtained
by the standardized bootstrap in (d), which is slightly skewed to the right. This follows
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since the process component in Figure 3 (a) has smaller variability than the estimation
component in Figure 3 (b), and the latter is skewed to the right. The left skewness is
to a large extent removed for the standardized prediction errors (3.11), because of the

denominator, but not for the unstandardized prediction errors (3.20).

Recomputing the future inflation rate from {A} for each resample in the bootstrap world
yields some rates which are unreasonably high. These rates affect the estimation compo-
nent, which become more skewed to the right than for a constant future inflation rate.
Consequently, the predictive distribution of the outstanding claims is more skewed to the
left for the stochastic future inflation rate than for the constant. This explains why most

of the percentiles in Tables 4.7 and 4.9 are lower for stochastic inflation.

4.5 Known claim counts

In Tables 4.11 - 4.12 we present the results of the simplified approach in Section 3.2 where
we treat IV; as known. As expected the variability has decreased compared to the results in

Tables 4.7 - 4.8, but the difference is notably small. This is consistent with the separation

Inflation Inflation Inflation Inflation Chain Ladder

Year ¢ 5.00%  11.01% Mean  15.00% Gamma
1 49 48 50 48 50

2 36 36 38 35 38

3 29 29 33 29 31

4 25 25 32 25 27

5 24 24 34 24 25

6 24 23 36 23 25

7 26 26 39 25 27

8 27 26 43 26 32

9 33 32 52 31 38
Total 18 18 35 17 16

Table 4.10: The coefficients of variation of the simulations (in %) of the unstandardized
predictive bootstrap procedure under the chain-ladder, compared to the separation method
with different inflation assumptions. Two of these are mean inflation rates observed so far,
either treated as a constant (11.01 %) or as stochastic (Mean).
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method assumption that the numbers of claims usually are finalized early enough to be
considered as known. This is interesting, since Table 4.2 reveals that the data here is
actually an example when claim numbers are not finalized very fast. As expected, the
difference is largest for the last origin year, i.e. where we predict the ultimate number of

claims based on one single observation.

() (b)

2500 ; ; ; : ; ; ; 2500
2000} 1 2000}
1500} {1 1500}
1000} {1 1000}
500} 1 s00f
2 0 1 2 3 4 5 6 -2 -1 0 5 6
x 10 x 10
() (d)
2500 T T T T T T T 2500 T T T T
2000} 1 2000}
1500} {1 1500}
1000} {1 1000}
500} 1 s00f
2 0 1 2 3 4 5 6 -2 -1 0 1 2 3 4 5 6
x 10 x 10

Figure 3: Density charts of R (a), R* (b) and R* for the unstandardized (c) and stan-
dardized (d) predictive bootstrap procedure under the assumption of a stochastic future
inflation rate corresponding to the mean inflation rate observed so far.
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Inflation Inflation Inflation Inflation Chain Ladder

Year ¢ 5.00% 11.01% Mean 15.00% Gamma
1 192 618 203 666 194 659 211 058 219 178

2 838 502 897 770 875 334 934 584 861 781

31 1142097 1243302 1195689 1332776 1169 041

41 1697879 1918643 1858 748 2074 808 1 519 540

51 2200470 2525290 2451200 2726 575 2 127 947

6| 3032494 3577632 3481789 3914571 3 358 037

71 4250351 4871638 4819584 5 386 039 6 253 164

8| 5532888 6507485 6421 424 7 227 340 7 386 412

9| 7461845 9023231 8859782 10 108 297 9 247 043
Total | 23 398 840 27 417 470 27 783 761 30 304 007 23 991 467

25

Table 4.11: The 95 percentiles of the simplified standardized predictive bootstrap procedure
under the chain-ladder, compared to the separation method when N; is considered as known.

We work under different inflation assumptions.

observed so far, either treated as a constant (11.01 %) or as stochastic (Mean).

Inflation Inflation Inflation Inflation Chain Ladder

Year ¢ 5.00%  11.01% Mean  15.00% Gamma
1 63 62 57 61 65

2 39 39 39 39 41

3 30 29 30 29 32

4 26 26 27 25 28

5 24 24 27 24 26

6 24 24 27 23 27

7 27 26 31 25 29

8 27 26 32 25 35

9 26 25 32 24 47
Total 17 17 24 17 15

Two of these are mean inflation rates

Table 4.12: The coefficients of variation of the simulations (in %) of the simplified stan-
dardized predictive bootstrap procedure under the chain-ladder, compared to the separation
method when N; is considered as known. We work under three different inflation assump-
tions. Two of these are mean inflation rates observed so far, either treated as a constant

(11.01 %) or as stochastic (Mean).
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5 Conclusions

The separation method is a useful reserving technique for the purpose of modeling claims
inflation, which contributes to the uncertainty of the claims reserve and therefore should
be considered in risk management. This paper provides a parametric bootstrap procedure,
which can be used to assess the uncertainty of the separation method. It is of course
difficult to forecast the future inflation and in this paper simple assumptions have been
used. We believe that the future inflation for real applications should be modeled by more

refined approaches.

In one example we saw that whether we consider IV; as stochastic or known in the bootstrap
procedure the results are still at the same level. Of course, the situation might be different

in another example.

Furthermore, when we compare the percentiles obtained for the separation method with
the ones for the chain-ladder in Tables 4.7 and 4.9 we can see that the result is more affected
by the assumption of the future claims inflation rate than the choice between the chain
ladder and the separation method. Since the separation method, under the assumption of
a future inflation rate corresponding to the mean rate observed so far, indicates a higher
risk than predicted by the chain-ladder the question of which method is preferable in a
given situation immediately arises. Therefore, in a future paper, it would be interesting to
compare the two methods in more situations than the one in Section 4 and in particular

for long-tailed data.

The bootstrap approach for the separation method can also be used in a DFA context
to simulate the reserve risk. However, as remarked by England & Verrall (2006), a DFA
model usually includes an economic scenario generator (ESG), which simulates the future
inflation, and it is important that the dependence between reserve risk and the inflation
from the ESG is incorporated in the DFA model. Therefore, England & Verrall (2006)

suggest that the data is adjusted to remove effects of the economic inflation before applying
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a reserving method, which use calendar year components to model superimposed claims
inflation, is applied to forecast the future payments. Once the future payments has been

simulated they are re-adjusted according to the inflation obtained from the ESG.
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