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Abstra
tWhen England & Verrall (1999) and England (2002) introdu
ed bootstrapping in
laims reserving it soon be
ame a popular method in pra
tise as well as in the liter-ature. However, even though bootstrapping has been hailed as a �exible tool to �ndthe pre
ision of 
omplex reserve estimators, mu
h fo
us so far has been on developingresampling s
hemes for, in parti
ular, the 
hain-ladder method.In this thesis we �rst develop the 
hain-ladder bootstrap to obtain a pro
edure thatworks for other development fa
tor methods as well. This bootstrap pro
edure isthen extended to be appli
able for the separation method.KeywordsBootstrap; Chain-ladder; Development fa
tor method; Development triangle; In�a-tion; Separation method; Sto
hasti
 
laims reserving.
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"...friends who suggested names more 
olorful than Bootstrap, in
luding SwissArmy Knife, Meat Axe, Swan-Dive, Ja
k-Rabbit, and my personal favorite, theShotgun, whi
h, to paraphrase Tukey, "
an blow the head o� any problem if thestatisti
ian 
an stand the resulting mess"." Bradley Efron, 1979.Bootstrap Methods: Another Look at the Ja
kknife.The Annals of Statisti
s, vol. 7.
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1 Introdu
tionOne item appearing on the liability side of the non-life insuran
e 
ompany's balan
e sheetis the provision for outstanding 
laims � hen
eforth the 
laims reserve. The insuran
e
ompany has put aside this amount for the future 
ompensation of poli
y holders whi
h isexpe
ted on the business written to date. It is indeed important that the 
laims reserve is
arefully 
al
ulated; if it is underestimated the insuran
e 
ompany will not be able to ful�llits undertakings and if it is overestimated the insuran
e 
ompany unne
essarily holds theex
ess 
apital instead of using it for other purposes, e.g. for investments with higher riskand, hen
e, potentially higher return. Moreover, sin
e the 
laims reserve usually 
onstitutesa large share of the �rm's total holdings even small mis
al
ulations 
an imply 
onsiderableamounts of money.On the basis of histori
al data the a
tuary 
an obtain estimates � or rather predi
tions �of the expe
ted outstanding 
laims and the 
laims reserve. However, due e.g. to poor dataquality, or sometimes even la
k of data, unexpe
tedly large 
laim payments, 
hanges inin�ation regime or in the dis
ount rate and even legal and politi
al fa
tors, the un
ertaintyof the a
tuary's best estimate 
an be quite high. Obviously, there is a risk that the 
laimsreserve will not su�
e to pay all 
laims in the end or, in the one year perspe
tive, thatwe get a negative run-o� result in the in
ome statement the next a

ounting year. Inorder to monitor and manage this risk it is important that the a
tuary's best estimate is
omplemented by some measure of variability whi
h 
an be followed up by the insuran
e
ompany.The literature provides an abundan
e of methods for the a
tuary to 
hoose amongst forreserving purposes, see e.g. the Claims Reserving Manual by the Fa
ulty and Instituteof A
tuaries (1997). The reserving methods used in pra
ti
e are frequently deterministi
.For instan
e, the 
laims reserve is often obtained a

ording to 
ase estimation of individual
laims by 
laims handlers. A popular statisti
al method is the 
hain-ladder method, see



Taylor (2000), whi
h originally was deterministi
. Many ad ho
 adjustments are applied aswell, e.g. the proje
tion of payments into the future 
an sometimes be done by extrapolatingby eye. Hen
e, there is a long tradition of a
tuaries 
al
ulating reserve estimates withoutexpli
it referen
e to a sto
hasti
 model.However, sto
hasti
 models are needed in order to assess the variability of the 
laimsreserve. The standard statisti
al approa
h would be to �rst spe
ify a model, then �nd anestimate of the outstanding 
laims under that model, e.g. by maximum likelihood, and�nally the model 
ould be used to �nd the pre
ision of the estimate. As a 
ompromisebetween this approa
h and the a
tuary's way of working without referen
e to a modelthe obje
t of the resear
h area 
alled sto
hasti
 
laims reserving has mostly been to �rst
onstru
t a model and a method that produ
es the a
tuary's best estimate and then usethis model in order to assess the un
ertainty of the estimate. In parti
ular the obje
t ofseveral papers has been to �nd a model under whi
h the best estimate is the one givenby the 
hain-ladder method, see e.g. Verrall (2000), Ma
k & Venter (2000) and Verrall &England (2000).On
e the model has been 
hosen the variability of the 
laims reserve 
an be obtainedeither analyti
ally or by simulation. For instan
e, the mean squared error of predi
tionfor the 
hain-ladder method was �rst 
al
ulated analyti
ally by Ma
k (1993). The reserveestimators are often 
omplex fun
tions of the observations and, hen
e, it might be di�
ultto derive analyti
al expressions. Therefore bootstrapping be
ame a popular method whenit was introdu
ed for the 
hain-ladder by England & Verrall (1999) and England (2002).However, sin
e the existing bootstrap te
hniques adopt the statisti
al assumptions in theliterature, they have been 
onstru
ted to give a measure of the pre
ision of the a
tuary'sbest estimate post festum, i.e. without the possibility of 
hanging the estimate itselfThe purpose of Paper I is to develop a bootstrap te
hnique whi
h 
an be used in orderto assess the variability of other development fa
tor methods than the 
hain-ladder. Thisbootstrap te
hnique is then extended in Paper II to be appli
able for the separation method,



see Taylor (1977).2 Claims reserving2.1 DataLarge insuran
e 
ompanies often have quite extensive data bases with histori
al informationon in
urred 
laims. Su
h information 
an in
lude the numbers of 
laims reported andsettled, the origin year of the events, the paid amounts, the year of the payments and 
aseestimates. The a
tuary 
an regularly analyze the data in order to predi
t the outstanding
laims and, hen
e, the 
laims reserve.The analysis is typi
ally done in the following way. To begin with, the a
tuary separatesthe data into risk homogenous groups su
h as lines of business, e.g. Motor, Property andLiability. A �ner segmentation 
an be applied if the groups or the subgroups 
ontain asu�
ient number of observations. The a
tuary might also 
hoose to divide some groupa

ording to the severity of the 
laims. The large 
laims 
an then be reserved a

ording to
ase estimates while the subgroup 
onsisting of smaller, but frequently o

urring, 
laims
an be reserved by some statisti
al method.When the risk 
lassi�
ation is established the a
tuary usually aggregates the data withinthe groups into development triangles. We now 
onsider su
h an in
remental triangleof paid 
laims {Cij; i, j ∈ ∇}, where the business has been observed during t years, i.e.
∇ = {i = 0, . . . , t; j = 0, . . . , t−i}. The su�xes i and j of the paid 
laims refer to the originyear and the payment year, respe
tively, see Table 2.1. In addition, the su�x k = i + j isused for the 
alendar years, i.e. the diagonals of ∇.If we assume that the 
laims are settled within the t observed years the a
tuary's goal isto predi
t the sum of the delayed 
laim amounts in the lower, unobserved future triangle
{Cij; i, j ∈ ∆}, where ∆ = {i = 1, . . . , t; j = t − i + 1, . . . , t}, see Table 2.2. We write



Development yearA

ident year 0 1 2 · · · t − 1 t
0 C00 C01 C02 · · · C0,t−1 C0,t

1 C10 C11 C12 · · · C1,t−1

2 C20 C21 C22 · · ·... ... ... ...
t − 1 Ct−1,0 Ct−1,1

t Ct,0Table 2.1: The triangle ∇ of observed in
remental payments.
R =

∑

∆ Cij for this sum, whi
h is the outstanding 
laims for whi
h the insuran
e 
ompanymust hold a reserve. Development yearA

ident year 0 1 2 · · · t − 1 t
0
1 C1,t

2 C2,t−1 C2,t... ... ...
t − 1 Ct−1,2 · · · Ct−1,t−1 Ct−1,t

t Ct,1 Ct,2 · · · Ct,t−1 Ct,tTable 2.2: The triangle ∆ of unobserved future 
laim 
osts.Moreover, we assume that the a
tuary 
an sum up a triangle of in
remental observations ofthe numbers of 
laims {Nij ; i, j ∈ ∇} 
orresponding to the same portfolio as in Table 2.1,i.e. the observations in Table 2.3. The ultimate number of 
laims relating to the period oforigin year i is then
Ni =

∑

j∈∇i

Nij +
∑

j∈∆i

Nij , (2.1)where ∇i and ∆i denotes the rows 
orresponding to origin year i in the upper triangle ∇and the lower triangle ∆, respe
tively.When the paid amounts are presented as in Table 2.1 the payment patterns for the origin



Development yearA

ident year 0 1 2 · · · t − 1 t
0 N00 N01 N02 · · · N0,t−1 N0,t

1 N10 N11 N12 · · · N1,t−1

2 N20 N21 N22 · · ·... ... ... ...
t − 1 Nt−1,0 Nt−1,1

t Nt,0Table 2.3: The triangle ∇ of observed in
remental numbers of reported 
laims.years emerge along the rows, while the 
olumns provide the pattern for the a

ident years.Moreover, the diagonals show 
alendar year e�e
ts. Hen
e, regularities as well as irregular-ities be
ome apparent to the a
tuary. For instan
e, o

urren
e of growth or run-o� of thebusiness, 
laims in�ation or rare large 
laims 
an usually be dete
ted in the developmenttriangle and the a
tuary 
an then de
ide how to deal with these issues. If the businessis growing or if it is in run-o� the a
tuary 
an disregard the earliest origin years whi
hhave another payment pattern than the later ones. In 
ase of in�ation the payments 
anbe adjusted to 
urrent value by some relevant index or a reserving method whi
h modelsthe in�ation 
an be 
hosen. Claims originating from large events and 
atastrophes 
an beex
luded from the triangle and treated separately.Note that if observations are missing for some years the data in Table 2.1 will have anothershape. Hen
eforth we assume that the data has the shape of a 
omplete triangle. However,despite a 
omplete triangle the information 
an still be inadequate if the business has notbeen observed during a su�
ient time period. This is usually a problem for long-tailedlines of business, su
h as Motor TPL, where it 
an take several de
ades to settle the 
laims.We then have no origin year with �nalized 
laims in Table 2.1. When needed, the model
an be extended so that the unknown 
laims extend beyond t in a tail of length u, i.e. overthe development years t, t + 1, . . . , t + u.It is worth bearing in mind that sometimes the data quality may be in
reased and the



reserving pro
ess may be re�ned, but only at a 
ost. In pra
tise the amount of time andthe 
ost of improving the pro
esses have to be related to the bene�ts, but even if fasterand 
heaper approximations are 
hosen it is still important that the a
tuary is aware ofe.g. imperfe
tions in the data and how they a�e
t the results.2.2 The 
hain-ladder and other age-to-age development fa
tor meth-odsThe 
hain-ladder method is probably the most popular reserving te
hnique in pra
tise.A

ording to Taylor (2000) its lineage 
an be tra
ed to the mid-60's and the name shouldrefer to the 
haining of a sequen
e of age-to-age development fa
tors into a ladder of fa
-tors by whi
h one 
an 
limb from the observations to date to the predi
ted ultimate 
laim
ost. The 
hain-ladder was originally deterministi
, but in order to assess the variabilityof the estimate it has developed into a sto
hasti
 method. Taylor (2000) presents di�e-rent derivations of the 
hain-ladder pro
edure; one of them is deterministi
 while anotherone is sto
hasti
 and based on the assumption that the in
remental observations are Pois-son distributed. Verrall (2000) provides several models whi
h under maximum likelihoodestimation reprodu
e the 
hain-ladder estimate.The 
hain-ladder method operates on 
umulative observations
Aij =

j
∑

ℓ=0

Xiℓ (2.2)rather than in
remental observations Xij , where Xij 
an be e.g. paid 
laims Cij or thenumbers of 
laims Nij . Let νij = E(Aij) and ξij = E(Xij). Development fa
tors gj arethen estimated for j = 0, 1, . . . , t − 1 by
ĝj =

∑t−j−1

i=0 Ai,j+1
∑t−j−1

i=0 Aij

(2.3)yielding the proje
tions
ν̂ij = Ai,t−i ĝt−i ĝt−i+1 . . . ĝj−1 (2.4)



and
ξ̂i,j = ν̂i,j − ν̂i,j−1 (2.5)for ∆.The a
tuary might want to make some ad ho
 adjustments of the 
hain-ladder method inorder to deal with the trends and o

urren
es of the in�uen
es dis
ussed in Se
tion 2.1. Thereserving method is then usually referred to as an age-to-age development fa
tor methodand sin
e it will be unique for the parti
ular data set under analysis it is impossible todes
ribe it in general terms. However, Paper I provides the following example of a pro
edurethat might �t our s
heme when a development triangle of paid 
laims is available.We denote the 
umulative 
laims by Dij =

∑j
ℓ=1 Ciℓ and let µij = E(Dij).1. The 
hain-ladder method is used to produ
e development fa
tors f̂j that are estimatesof fj = µi,j+1/µij, perhaps after ex
luding the oldest observations and/or sole outliersin ∇.2. For 3 < j < t, say, the f̂j 's are smoothed by some method, say exponential smoothing,i.e. they are repla
ed by estimates obtained from a linear regression of log(f̂j − 1)on j. By extrapolation in the linear regression, this also yields f̂j for the tail j =

t, t +1 . . . , t+ u. The original f̂j 's are kept for j ≤ 3 and the smoothed ones used forall j > 3.3. Now estimates µ̂ij for ∆ are 
omputed as in the standard 
hain-ladder method.4. Estimates of µ̂ij for ∇ are obtained by the pro
ess of ba
kwards re
ursion des
ribedin England & Verrall (1999).5. Finally, the obtained 
laim values may be dis
ounted by some interest rate 
urve, orin�ated by assumed 
laims in�ation. The latter of 
ourse requires that the observa-tions where re
al
ulated to �xed pri
es in the �rst pla
e.



2.3 The separation methodIn the En
y
lopedia of A
tuarial S
ien
e (2004) one 
an read that the separation methodwas developed by Taylor (1977) while he was employed at the Department of Trade, thesupervisory authority in the UK. During the the mid-70's the in�ation was high and un-stable and the Department of Trade had been experimenting with the in�ation-adjustedversion of the 
hain-ladder, see e.g. Taylor (2000). However, the spe
i�
ation of the futurein�ation 
aused problems, sin
e it was extremely 
ontroversial for a supervisory tool. Asan attempt to fore
ast the in�ation me
hani
ally Taylor (1977) 
onstru
ted the separa-tion method on the basis of a te
hnique introdu
ed in the reinsuran
e 
ontext by Verbeek(1972).Paper II provides a des
ription of the separation method at a bit more detailed level thanthe one given in Taylor (1977). The original assumption underlying the method is
E
(

Cij

Ni

)

= rj λk , (2.6)where rj is a parameter relating to the payment pattern for the development years, while
λk is 
onsidered as an index that relates to the 
alendar year k during whi
h the 
laimsare paid. In this way the separation method separates the 
laim delay distribution fromin�uen
es a�e
ting the 
alendar years, e.g. 
laims in�ation. Furthermore, it is assumedthat the 
laims are fully paid by year t and we then have the 
onstraint

t
∑

j=0

rj = 1. (2.7)If Ni is estimated separately, e.g. by the 
hain-ladder if a triangle of 
laim 
ounts is pro-vided, it 
an be treated as known. Consequently, estimates r̂j and λ̂k 
an be obtainedusing the observed values
sij =

Cij

N̂i

, (2.8)and the method of moments equations
sk0 + sk−1,1 + . . . + s0k = (r̂0 + . . . + r̂k) λ̂k , k = 0, . . . , t (2.9)



for the diagonals of ∇ and
s0j + s1j + . . . + st−j,j = (λ̂j + . . . + λ̂t) r̂j , j = 0, . . . , t (2.10)for the 
olumns of ∇.Taylor (1977) shows that the equations (2.9) - (2.10) have a unique solution under (2.7)whi
h 
an be obtained re
ursively. This yields

λ̂k =

∑k
i=0 si,k−i

1 −
∑t

j=k+1 r̂j

, k = 0, . . . , t (2.11)and
r̂j =

∑t−j
i=0 sij

∑t
k=j λ̂k

, j = 0, . . . , t , (2.12)where ∑t
j=k+1 r̂j is interpreted as zero when k = t.Estimates m̂ij of the expe
tations mij = E(Cij) for 
ells in ∇ are now given by

m̂ij = N̂i r̂j λ̂k , (2.13)but in order to obtain the estimates of ∆ it remains to predi
t λk for t + 1 ≤ k ≤ 2 t e.g.by extrapolation.3 Bootstrapping for 
laims reserve un
ertainty3.1 Bootstrap te
hniques for the 
hain-ladder in the literatureWhen England & Verrall (1999) and England (2002) introdu
ed bootstrapping in 
laimsreserving it soon be
ame a popular method in pra
tise as well as in the literature. However,even though bootstrapping has been hailed as a �exible tool to �nd the pre
ision of the
omplex reserve estimators it has developed to be the opposite in the literature. Instead of�nding general te
hniques where the a
tuary 
an 
hange and adjust the reserving method,the obje
t of the resear
h area has been to �nd te
hniques for, in parti
ular, the 
hain-ladder. In pra
tise this 
ould be quite frustrating sin
e the a
tuary then has to measure the



un
ertainty of her estimate by a bootstrap pro
edure �tted for 
hain-ladder even thoughshe a
tually has used some other reserving method to 
al
ulate the 
laims reserve.The bootstrap pro
edures in the literature are based on the resampling of residuals, seee.g. England & Verrall (1999), England (2002) and Pinheiro et al. (2003). In order tode�ne the residuals some model assumption has to be adopted for the observations. The
ommon 
hoi
e is to use a generalized linear model (GLM) with an over-dispersed Poissondistribution (ODP) and a logarithmi
 link fun
tion for the in
remental observations ∇Cin Table 2.1, i.e.
E(Cij) = mij and Var(Cij) = φmij

log(mij) = ηij

ηij = c + αi + βj, α1 = β1 = 0 . (3.1)The reason of the frequent use of this parti
ular GLM is that Renshaw & Verrall (1998)have shown that it produ
es the same expe
ted 
laims by maximum likelihood estimationof the parameters in the GLM as the 
hain-ladder method, provided that the 
olumnsums of the triangle are positive. Thus, the expe
tations of the 
laims 
an be obtainedeither by maximum likelihood estimation or by the 
hain-ladder, while the varian
es, whi
hare needed for the residuals, are given by the assumption of the GLM. However, if thebootstrap pro
edure is 
onstru
ted a

ording to this parti
ular model it only holds for the
hain-ladder and, hen
e, the reserving algorithm 
annot be 
hanged.In 
ontrast to England & Verrall (1999) and England (2002), Pinheiro et al. (2003) adoptsthe model in (3.1) together with the plug-in-prin
iple, see Efron & Tibshirani (1993), and,hen
e, the 
al
ulation of the estimators in the real world is repeated on the pseudo-data inthe bootstrap world. This opens up for extended bootstrap pro
edures appli
able to otherreserving algorithms than the 
hain-ladder and therefore we fo
us on Pinheiro's method.



3.2 Paper I: Non-parametri
 and parametri
 bootstrap te
hniquesfor arbitrary age-to-age development fa
tor methods in sto
has-ti
 
laims reservingThe purpose of this paper is to �nd a reasonable model that �ts the data instead of using amodel whi
h happens to reprodu
e a parti
ular estimate for the bootstrap pro
edure. Wetherefore 
onsider the log-additive assumption in (3.1) as unne
essary strong, but besidesof that we 
ontinue to follow England & Verrall (1999), England (2002) and Pinheiro et al.(2003) assuming independent 
laims Cij and a varian
e fun
tion in terms of the means, i.e.
E(Cij) = mij and Var(Cij) = φ mp

ij (3.2)for some p > 0. We let the a
tuary's age-to-age development fa
tor method impli
itlyspe
ify the stru
ture of all mij and produ
e estimates of m̂ij . Then, if the non-parametri
bootstrap approa
h of Pinheiro et al. (2003) is used, it only remains to spe
ify the varian
efun
tion. We suggest that p is estimated for the parti
ular data set under analysis and weprovide a simple and straightforward way of doing it. Furthermore, sin
e the standardizedpredi
tion errors in Pinheiro et al. (2003) sometimes are unde�ned in the bootstrap worldwe also investigate a bootstrap pro
edure whi
h is based on the unstandardized predi
tionerrors.As a 
omplement to the non-parametri
 predi
tive bootstrap we de�ne a parametri
 ver-sion of Pinheiro's approa
h that requires more distributional assumptions. Hen
e, in-stead of resampling the residuals we sample pseudo-observations from a full distribution
F = F (mij, φ mp

ij) 
onsistently with (3.2).3.3 Paper II: Bootstrapping the separation method in 
laims re-servingIn this paper we adopt the parametri
 predi
tive bootstrap pro
edure in Paper I andextend it in order to handle ∇N as well as ∇C for the separation method. To this end,



we introdu
e a parametri
 framework for the separation method where 
laim 
ounts arePoisson distributed and 
laim amounts are gamma distributed 
onditionally on the ultimate
laim 
ounts. This enables joint resampling of 
laim 
ounts and 
laim amounts.Hen
e, we let nij = E(Nij) and assume
Nij ∈ Po(nij) (3.3)and

Cij |Ni ∈ Γ

(

Ni

φ
, rj λk φ

)

. (3.4)We then have a model for the 
laim amounts where
E(Cij|Ni) = Ni rj λk , (3.5)whi
h is 
onsistent with the separation method assumption (2.6) when Ni is estimatedseparately. Moreover, we have

V ar(Cij|Ni) = φ Ni (rj λk)
2 . (3.6)A

ording to the parametri
 predi
tive bootstrap pro
edure in Paper I and the plug-in-prin
iple we then let the separation method produ
e estimates of rj and λk in the bootstrapworld as in the real world.The separation model is based on the assumption that Ni is 
onsidered as known at themoment when the reserving is being done, but in (3.3) Ni is a random variable. In orderto get a view of how mu
h un
ertainty Ni 
ontributes to the predi
tive distribution of the
laims reserve we also 
onsider the spe
ial 
ase when Ni is treated as deterministi
 in (3.4),i.e. N̂i ≡ Ni.4 Reserve risk in a business modelSo far the insuran
e business as well as the authorities' supervision have been based ona general 
onservativeness regarding the liabilities to the poli
y holders. There are laws



that di
tate how mu
h 
apital the �rms must hold and how it may be invested, see e.g.Försäkringsrörelselagen by Sveriges Riksdag (1982) for the regulations applied in Swedentoday. However, the 
urrent regulations rather 
onsider the volume than the risk of thebusiness in the 
al
ulation of the required amount of 
apital.In order to 
apture the individual 
hara
teristi
s of the �rms the regulations are beingmodernized within EU. A

ording to the Solven
y II Draft Framework Dire
tive by EUCommission (2007), the required 
apital will instead be 
al
ulated by quantifying the risksof the �rm under market-like assumptions. The authorities will provide a standard formulawhi
h 
onsider the major risks that an insuran
e 
ompany is exposed to, but own internalmodels will also be allowed. For instan
e, the �rms will have to quantify premium andreserve risk, 
atastrophe risk, market risks su
h as e.g. equity risk, interest rate risk and
urren
y risk, 
ounterparty default risk and operational risk. For Solven
y II purposes theinternal models will have to be sto
hasti
, a one-year time perspe
tive should be adoptedand the risks should be measured a

ording to a 99.5% 
on�den
e level. Furthermore, thepurpose of an internal model is not only to be a supervisory tool - it has to be used in thebusiness as well in order to show its trustworthiness. Potential areas of use 
ould be e.g.business planning, investment strategies, reinsuran
e pur
hase and pri
ing.The analysis of the business by su
h an internal simulation model is often referred to asDynami
 Finan
ial Analysis (DFA) in general insuran
e. Kaufmann et al. (2001) gives anintrodu
tion to DFA and also provides an example of a basi
 model.Thus, regarding the reserve risk for Solven
y II purposes we have to model the amountof 
apital that the insuran
e 
ompany must hold in order to be able to handle a negativerun-o� result the next a

ounting year with 99.5% probability. The one year run-o� resultis de�ned as the di�eren
e between the opening reserve at the beginning of the year andthe sum of payments during the year and the 
losing reserve of the same portfolio at theend of the year. Thus, if we at the end of year t want to make predi
tions of the run-o�result at the end of the unobserved year t+1, and if we do not add neither a new a

ident



year nor a new development year, we have to �nd the predi
tive distribution of
R̂t − (

t
∑

i=2

Ci,t+2−i + R̂t+1) , (4.1)where R̂t and R̂t+1 are the estimated reserves at the end of year t and t + 1 respe
tively.Paper I brie�y dis
usses how the predi
tive distribution of the one year reserve risk 
an beobtained by bootstrapping, while Ohlsson & Lauzeningks (2008) provides more details forthe one year reserve risk as well as the one year premium risk.5 Dis
ussion5.1 Con
lusionsIn Paper I the parametri
 bootstrap pro
edure is numeri
ally 
ompared to Pinheiro's non-parametri
 pro
edure for the 
hain-ladder. The study shows that the two approa
hes givealmost the same results. Moreover, in Paper II the parametri
 bootstrap pro
edure for theseparation method is numeri
ally 
ompared to a parametri
 pro
edure for the 
hain-ladderfor di�erent assumptions of the future in�ation rate. The study shows that the result ismore a�e
ted by the assumption of the future 
laims in�ation rate than the 
hoi
e betweenthe 
hain-ladder and the separation method.The numeri
al analysis has revealed that the variability of the estimation error, when 
hain-ladder as well as the separation method is used, is mu
h larger than the variability of thepro
ess error. Furthermore, the unstandardized bootstrap results in lower per
entiles thanthe standardized one, seemingly due to the fa
t that the standardization makes the distri-bution more symmetri
 than the unstandardized 
ase, where the predi
tive distribution isskewed to the left.



5.2 Future resear
hSeveral interesting topi
s for future resear
h have been dis
overed during the developmentof the bootstrap pro
edures des
ribed in Paper I - II. For instan
e, estimation of thedispersion parameter p for the varian
e fun
tion and the feasible use of non-integer valuesshould be analyzed further, the modeling of the future in�ation rate of the separationmethod 
ould be re�ned in order to improve the bootstrap pro
edure, the relative sizeof the estimation and pro
ess errors is indeed an interesting topi
 to explore and thedouble bootstrap, whi
h is an improved version of the standardized bootstrap, should beinvestigated numeri
ally. Furthermore, the bootstrap pro
edure 
ould be extended formodels whi
h expli
itly take into 
onsideration the reporting year as well as the paymentyear of the 
laims, see e.g. Jessen et al. (2007). In the future it is also important toprovide a guideline of how the a
tuary should 
hoose between the standardized and theunstandardized bootstrap pro
edure.
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1 INTRODUCTION 21 Introdu
tionThe provision for outstanding 
laims � hen
eforth the 
laims reserve � is a major 
ontributorto the total risk of an insuran
e 
ompany, espe
ially for long-tailed lines of business. In orderto estimate the risk that the provisions will not su�
e to pay all 
laims in the end, thea
tuary's best estimate of the outstanding 
laims needs to be 
omplemented by its predi
tivedistribution; this is the ultimo perspe
tive. For solven
y 
ontrol and risk management withDynami
 Finan
ial Analysis we are also interested in a shorter period, say the one year risk.The reserving risk is then the risk of a negative run-o� result, due to unexpe
tedly large 
laimspayments, 
hanges in in�ation regime or in the dis
ount rate in the simulated fore
ast year.A well-known method for 
al
ulating the un
ertainty of the 
laims reserve, obtained by 
hain-ladder, in meeting ultimate 
laims, or at least its mean squared error of predi
tion, is the oneintrodu
ed by Ma
k (1993) and re
ently treated by Bu
hwalder et al. (2006) and Ma
k et al.(2006). Another popular method is bootstrapping, as introdu
ed in this 
ontext by England& Verrall (1999) and England (2002). The latter method gives a full predi
tive distributionwithout further assumptions and 
an easily be used also for the purpose of �nding the risk inthe run-o� result. Therefore, we fo
us on bootstrap methods here.A standard statisti
al approa
h to 
laims reserving would be to �rst spe
ify a model, then�nd an estimate of outstanding 
laims under the model, e.g. by maximum likelihood. Finally,the model 
ould be used to �nd the pre
ision of the estimate, possibly by bootstrapping if ananalyti
 solution was untra
table.In pra
ti
e, there is a long tradition of a
tuaries 
al
ulating reserve estimates without expli
itreferen
e to a model. The obje
t of the resear
h area 
alled sto
hasti
 
laims reserving, hasmostly been to �nd a model and a method of giving a measure of the pre
ision of the a
tuary'sbest estimate post festum, i.e. without the possibility of 
hanging the estimate itself.In parti
ular the obje
t of several papers on sto
hasti
 
laims reserving has been to �nd amodel under whi
h the best estimate is the one given by the 
hain-ladder method; indeed,



1 INTRODUCTION 3there has been a dis
ussion of whi
h method is underlying the 
hain-ladder, see in parti
ularVerrall (2000), Ma
k & Venter (2000) and Verrall & England (2000). So even though thea
tuary did not use a model to pi
k her best estimate, these arti
les try to �nd a model thatwould make her work 
onsistent with the standard approa
h of statisti
s: to spe
ify the modelbefore �nding the estimate. In Verrall (2000) several underlying models, whi
h produ
e thesame reserve estimates as the 
hain-ladder method, are suggested, and it is also remarked onthe importan
e of 
areful examination of the assumptions of the model and how the 
hosenmodel e�e
ts the outstanding 
laims.In this paper we question the need to bootstrap an underlying model with 
laim distributionsfully spe
i�ed, whi
h happens to reprodu
e the a
tuary's best estimate. Instead, we developa bootstrap methodology for the data with as few model assumptions as possible, appli
ableto any age-to-age development fa
tor method. We assume that the bootstrap pro
edure onlydepends on the mean and varian
e of the 
laims and that the 
hosen reserving algorithmimpli
itly spe
i�es the mean stru
ture and therefore the only additional assumption 
on
ernsthe varian
e fun
tion. Furthermore, we dis
uss the non-parametri
 vs the parametri
 boot-strap and standardized vs unstandardized predi
tion errors. Finally, the suggested bootstrappro
edures are applied to development triangles of di�erent types.Se
tion 2 
ontains the de�nitions and gives an example of an age-to-age development fa
tormethod, that might be used in pra
tise. In Se
tion 3 the non-parametri
 bootstrap pro
edureof Pinheiro et al. (2003) is dis
ussed and an alternative parametri
 pro
edure is suggested,as well as bootstrap pro
edures, whi
h 
an be used to �nd the predi
tive distribution of anyage-to-age development fa
tor method. The double bootstrap is dis
ussed, some details ofthe implementation of the bootstrap pro
edures are 
ommented and �nally the run-o� resultis de�ned and a sket
h of a method of obtaining it's predi
tive distribution is provided. InSe
tion 4 the bootstrap pro
edures are 
ompared on four di�erent development triangles.



2 A BASIC MODEL 42 A basi
 modelWe 
onsider data in the form of a triangle of n in
remental observations {Cij ; i, j ∈ ∇}, where
∇ denotes the upper, observational triangle ∇ = {i = 1, . . . , t; j = 1, . . . , t − i + 1} and Cijis e.g. paid 
laims, the number of 
laims, 
laims in
urred or some other quantity of interestof origin year i in development year j, see Table 2.1. For the time being we dis
uss paid
laims. The a
tuary's goal is then to predi
t the sum of the delayed 
laim amounts in thelower, unobserved future triangle {Cij ; i, j ∈ ∆}, where ∆ = {i = 2, . . . , t; j = t− i+2, . . . , t},see Table 2.2. We write R =

∑

∆ Cij for this sum, whi
h is the outstanding 
laims for whi
hthe insuran
e 
ompany must hold a reserve.Development yearA

ident year 1 2 3 · · · t − 1 t

1 C11 C12 C13 · · · C1,t−1 C1,t

2 C21 C22 C23 · · · C2,t−1

3 C31 C32 C33 · · ·... ... ... ...
t − 1 Ct−1,1 Ct−1,2

t Ct,1Table 2.1: The triangle ∇ of observed in
remental payments.Development yearA

ident year 1 2 3 · · · t − 1 t

1
2 C2,t

3 C3,t−1 C3,t... ... ...
t − 1 Ct−1,3 · · · Ct−1,t−1 Ct−1,t

t Ct,2 Ct,3 · · · Ct,t−1 Ct,tTable 2.2: The triangle ∆ of unobserved future 
laim 
osts.Above we have impli
itly made the 
ommon assumption that 
laims are settled within the
t observed years. In long-tailed business su
h as Motor TPL we often have no origin yearwith �nalized 
laims; when needed, we extend the model so that the unknown 
laims extend



2 A BASIC MODEL 5beyond t in a tail of length u, i.e. over the development years t, t + 1, . . . , t + u, see Table 2.3.For simpli
ity, we use the notation ∆ for the set of unobserved 
laims in this 
ase, too.In pra
ti
e, the a
tuary has used some method to 
al
ulate an estimate of the outstanding
laims R; in statisti
al terminology this is rather a predi
tion of R. We assume that themethod gives estimates m̂ij of the 
ell expe
tations mij = E(Cij) for all 
laims in both ∇and ∆ and that these estimates are fun
tions of our observations ∇C
.
= {Cij ; i, j ∈ ∇} only.(We will use the notation ∇x to denote the ∇ 
olle
tion of any variable x, and similar for

∆x.) The estimate of outstanding 
laims is then R̂ =
∑

∆ m̂ij. This is the 
ase for age-to-agedevelopment fa
tor methods. Note in parti
ular that we do not assume that the reservingmethod is based on an expli
it statisti
al model, in our experien
e this is seldom the 
ase inpra
ti
e.Some reserving methods operate on 
umulative 
laims Dij =
∑j

ℓ=1
Ciℓ rather than in
remental
laims Cij . Let µij = E(Dij). Here is an example of an age-to-age development fa
tor methodthat �ts our s
heme:1. The 
hain-ladder method, see Taylor (2000), is used to produ
e development fa
tors f̂jthat are estimates of fj = µi,j+1/µij , perhaps after ex
luding the oldest observationsand/or sole outliers in ∇.2. For 3 < j < t, say, the f̂j's are smoothed by some method, say exponential smoothing,Development yearA

ident year 1 2 3 · · · t t + 1 · · · t + u

1 C1,t+1 · · · C1,t+u

2 C2,t C2,t+1 · · · C2,t+u

3 C3,t C3,t+1 · · · C3,t+u... ... ... ... ...
t − 1 Ct−1,3 · · · Ct−1,t Ct−1,t+1 · · · Ct−1,t+u

t Ct,2 Ct,3 · · · Ct,t Ct,t+1 · · · Ct,t+uTable 2.3: The long tail 
ase, with the triangle ∆ of unobserved future 
laim 
osts extendedwith a re
tangle beyond t.



3 BOOTSTRAP METHODS 6i.e. they are repla
ed by estimates obtained from a linear regression of log(f̂j−1) on j. Byextrapolation in the linear regression, this also yields f̂j for the tail j = t, t+1 . . . , t+u.The original f̂j's are kept for j ≤ 3 and the smoothed ones used for all j > 3.3. Now estimates µ̂ij for ∆ are 
omputed as in the standard 
hain-ladder method.4. Estimates of µ̂ij for ∇ are obtained by the pro
ess of ba
kwards re
ursion des
ribed inEngland & Verrall (1999).5. Finally, the obtained 
laim values may be dis
ounted by some interest rate 
urve, orin�ated by assumed 
laims in�ation. The latter of 
ourse requires that the observationswhere re
al
ulated to �xed pri
es in the �rst pla
e.We now have an estimator R̂ = h(∇C) for some possibly quite 
omplex fun
tion h, thatmight be spe
i�ed only by an algorithm as in the example. Our primary obje
t is to �nd thebootstrap estimate of the predi
tive distribution of R̂.3 Bootstrap methodsThe basi
 idea of bootstrapping is to work with the Bootstrap world in order to make inferen
eon the Real world, see Efron & Tibshirani (1993). This is done by investigating the resultof B simulations in the bootstrap world and assuming that the 
on
lusions from these areapproximately valid in the real world; this is the so-
alled plug-in-prin
iple, Efron & Tibshirani(1993). With the outstanding 
laims in 
onsideration this means that a relation between thetrue outstanding 
laims R and its estimator R̂ in the real world 
an be substituted in thebootstrap world by their bootstrap 
ounterparts. This makes it possible to approximate thevarian
e of the predi
tion error R − R̂ as well as the predi
tive distribution of R.Pinheiro et al. (2003) use the plug-in-prin
iple to obtain the predi
tive distribution of R bya non-parametri
 bootstrap te
hnique 
onsistent with the statisti
al assumptions underlyingthe 
hain-ladder method in the literature. Our purpose is to modify it to a non-parametri




3 BOOTSTRAP METHODS 7bootstrap pro
edure whi
h works for any age-to-age development fa
tor method used in pra
-tise, e.g. the one des
ribed in the previous se
tion. We also suggest a 
ompletely parametri
approa
h 
onsistent with, and as a 
omplement to, the non-parametri
 pro
edure.3.1 Bootstrapping data with a generalized linear model using standardizedpredi
tion errorsSome assumptions about the model stru
ture of ∇C have to be imposed in order to bootstrapthe data. In the literature a 
ommon 
hoi
e is to use a generalized linear model, in parti
ularan over-dispersed Poisson distribution with a logarithmi
 link fun
tion. A 
onsequen
e of thisunderlying model is that the expe
ted 
laims obtained by maximum likelihood estimation ofthe parameters in the generalized linear model equal the ones obtained by the 
hain-laddermethod, if the 
olumn sums of the triangle are positive, see Renshaw & Verrall (1998). Thus,the expe
tations of the 
laims 
an be obtained either by maximum likelihood estimation orby the 
hain-ladder, while the varian
es, whi
h are needed for the residuals, are given by theassumption of the generalized linear model. The bootstrap methods des
ribed by England &Verrall (1999), England (2002) and Pinheiro et al. (2003) are all based on generalized linearmodels.The method dis
ussed in Pinheiro et al. (2003) assumes the following log additive stru
tureof the n = t (t + 1)/2 in
remental observations in ∇C

E(Cij) = mij and Var(Cij) = φmp
ij

log(mij) = ηij

ηij = c + αi + βj , α1 = β1 = 0 (3.1)The �tted values ∇m̂ and the fore
asts ∆m̂ are 
al
ulated by maximum quasi likelihoodestimation of the q = 2t − 1 model parameters c, αi and βj, e.g. under the assumption of anover-dispersed Poisson distribution, i.e. p = 1, or a gamma distribution, i.e. p = 2. Estimatorsof the outstanding 
laims are then obtained by summing per a

ident year R̂i =
∑

j∈∆i
m̂ij,where ∆i denotes the row 
orresponding to a

ident year i in ∆m̂. The estimator of the grand



3 BOOTSTRAP METHODS 8total is R̂ =
∑

∆ m̂ij.The residuals are needed for the resampling pro
ess and the 
ommon 
hoi
e is to use thePearson residuals
rP
ij =

Cij − m̂ij
√

m̂p
ij

, (3.2)whi
h should have approximately zero mean and 
onstant varian
e. Pinheiro et al. (2003), aswell as England & Verrall (1999) and England (2002), work under the assumption that theresiduals are independent and identi
ally distributed, an assumption that 
an be questioned,see e.g. Larsen (2007) and Appendix 1. Nevertheless, we shall adhere to this assumption.There are two ways of adjusting the Pearson residuals. England & Verrall (1999) and England(2002) use a global adjusting fa
tor
rPA
ij =

√

n

n − q
rP
ij , (3.3)whereas Pinheiro et al. (2003) argue that the hat matrix standardized Pearson residuals area better 
hoi
e. They are given by

rPA
ij =

rP
ij

√

1 − hij

, (3.4)where the hij :s are the diagonal elements of the n x n hat matrix H, whi
h for generalizedlinear models is given by
H = X(XT WX)−1XT W, (3.5)where X is an n x q design matrix and the generi
 elements Wij,ij of the n x n diagonal matrix

W are
Wij,ij = (V (mij)(

∂ηij

∂mij

)2)−1 (3.6)and V is the varian
e fun
tion.This 
hoi
e of residual 
orre
tion is in a

ordan
e with Davison & Hinkley (1997). The resultof the 
omparison in Pinheiro et al. (2003) does not indi
ate a big di�eren
e to the 
orre
tionin (3.3).



3 BOOTSTRAP METHODS 9Note that the residuals are also used to produ
e the Pearson estimate of the unknown φ,
φ̂ =

1

n − q

∑

∇

(rP
ij)

2 =
1

n

∑

∇

(rPA
ij )2 , (3.7)where the last equality is exa
t when (3.3) is used and an approximation for (3.4).The next step is to get B new triangles of residuals ∇r∗ by drawing samples with repla
ementfrom the 
olle
tion of residuals in (3.3) or (3.4). This pro
edure means sampling from theempiri
al distribution fun
tion of the approximately independent and identi
ally distributedresiduals r.Then B pseudo-triangles ∇C∗ are generated by 
omputing

C∗
ij = m̂ij + r∗ij

√

m̂p
ij for i, j ∈ ∇ (3.8)and for these B pseudo-triangles the future values ∆m̂∗ are fore
asted by the same methodas above, i.e. by estimating the parameters of the generalized linear model. Estimators forthe outstanding 
laims in the bootstrap world are then derived by R̂∗

i =
∑

j∈∆i
m̂∗

ij and
R̂∗ =

∑

∆ m̂∗
ij .In order to get the random out
ome of the true outstanding 
laims in the bootstrap world, i.e.

R∗∗
i =

∑

j∈∆i
C∗∗

ij and R∗∗ =
∑

∆ C∗∗
ij , the resampling is done on
e more from the empiri
aldistribution fun
tion of the residuals to get B triangles of ∆r∗∗ and then solving

C∗∗
ij = m̂ij + r∗∗ij

√

m̂p
ij for i, j ∈ ∆ (3.9)to get ∆C∗∗.The �nal step is to 
al
ulate the B predi
tion errors and in Pinheiro et al. (2003) this is doneby the following equationspe∗∗i =

R∗∗
i − R̂∗

i
√

̂V ar(R∗∗
i )

and pe∗∗ =
R∗∗ − R̂∗

√

̂V ar(R∗∗)
. (3.10)The predi
tive distributions of the outstanding 
laims Ri and R are then obtained by plotting

R̃∗∗
i = R̂i + pe∗∗i √

̂V ar(Ri) and R̃∗∗ = R̂ + pe∗∗√ ̂V ar(R) (3.11)



3 BOOTSTRAP METHODS 10for ea
h B.We ta
itly assume that the mean and varian
e of all bootstrapped quantities are 
onditionalon the observed data ∇C. For instan
e, the varian
e of the bootstrapped outstanding 
laimsare
V ar(R∗∗

i ) = φ̂
∑

j∈∆i

m̂p
ij and V ar(R∗∗) = φ̂

∑

∆

m̂p
ij , (3.12)sin
e the varian
e of the bootstrapped residuals 
onditional on ∇C is φ̂ a

ording to (3.3),(3.4) and (3.7). Sin
e Pinheiro et al. (2003), as well as England (2002), 
onsider φ as 
onstantfor the data, the estimates of (3.12) appearing in (3.10) are

̂V ar(R∗∗
i ) = φ̂

∑

j∈∆i

m̂∗p
ij and ̂V ar(R∗∗) = φ̂

∑

∆

m̂∗p
ij (3.13)and hen
e 
omputable from the bootstrap world data ∇C∗. Nevertheless, φ is unknown andtherefore

̂V ar(R∗∗
i ) = φ̂∗

∑

j∈∆i

m̂∗p
ij and ̂V ar(R∗∗) = φ̂∗

∑

∆

m̂∗p
ij (3.14)should rather be used, see Davison & Hinkley (1997). This is in analogy with the estimatedvarian
es of the true 
laims reserves

̂V ar(Ri) = φ̂
∑

j∈∆i

m̂p
ij and ̂V ar(R) = φ̂

∑

∆

m̂p
ij , (3.15)whi
h are 
omputable from the real data ∇C, as opposed to V ar(Ri) and V ar(R).As a 
omplement to the non-parametri
 pro
edure des
ribed above we suggest a parametri
approa
h. In addition to the assumptions in (3.1) we assume a full distribution F , parametrisedby the mean and varian
e, so that we may write F = F (mij , φmp

ij). Instead of resamplingthe residuals, we draw C∗
ij from F (m̂ij, φ̂m̂p

ij) for all i, j ∈ ∇ and thereby we dire
tly get thepseudo-triangles ∇C∗. The bootstrap estimates R̂∗
i =

∑

j∈∆i
m̂∗

ij and R̂∗ =
∑

∆ m̂∗
ij are then
al
ulated for ea
h simulation by estimating the parameters of the generalized linear model.In order to get R∗∗

i =
∑

j∈∆i
C∗∗

ij and R∗∗ =
∑

∆ C∗∗
ij we sample on
e again from F (m̂ij , φ̂m̂p

ij)to get C∗∗
ij for all i, j ∈ ∆ . Finally, the B observations of (3.10) and (3.13) are inserted into(3.11) to yield the sought predi
tive distribution.



3 BOOTSTRAP METHODS 11These methods of bootstrapping for 
laims reserve un
ertainty are des
ribed in Figure 1 andare referred to as the non-parametri
 and the parametri
 standardized predi
tive bootstrap.England & Verrall (1999) and England (2002) use other bootstrap approa
hes, whi
h aredes
ribed in Appendix 2. In England (2002) the bootstrap 
ounterparts of the outstanding
laims in the real world are obtained by another simulation 
onditional on the one in Substage2.1 in Figure 1. In this way the pro
ess error R − E(R) is bootstrapped di�erently fromSubstage 2.2, while Substage 2.1 bootstraps the estimation error R̂−E(R). Thus, B triangles
∆m̂† are obtained by sampling a random observation m̂†

ij from a distribution with mean m̂∗
ijand varian
e φ m̂∗

ij for all i, j ∈ ∆. The predi
tive distribution of the outstanding 
laims Rin real world is then obtained by plotting the B values of R̃† =
∑

∆ m†

ij. England (2002)suggests using e.g. an over-dispersed Poisson distribution, a negative binomial or a Gammadistribution as the pro
ess distribution.England & Verrall (2006) 
omment on the approa
h of in
luding the pro
ess error by samplingfrom a separate distribution, by noting that the non-parametri
 standardized predi
tive boot-strap in Pinheiro et al. (2003) 
annot give larger extremes of the pro
ess error than the mostextreme residuals observed. Nevertheless, we see no reason to assume separate distributionsfor the pro
ess error and the estimation error. Either we believe in the 
hosen distributionon the whole and use a parametri
 predi
tive bootstrap or we do not and 
ontinue to use anon-parametri
 predi
tive bootstrap.3.2 The double bootstrapIt would be preferable to use pe∗∗ =
R∗∗ − R̂∗

√

̂V ar(R∗∗ − R̂∗)

(3.16)and
R̃∗∗ = R̂ + pe∗∗√ ̂V ar(R − R̂) (3.17)instead of (3.10) and (3.11), in parti
ular if the estimation error is mu
h larger than the pro
esserror. Although this is more 
ompli
ated it 
an be a
hieved by means of a double bootstrap.



3 BOOTSTRAP METHODS 12
Stage 1 - Real world
· Estimate the parameters in the generalized linear model in equation (3.1).
· Fore
ast the future expe
ted values ∆m̂ and 
al
ulate the �tted values ∇m̂.
· Cal
ulate the residuals for the non-parametri
 bootstrap and φ̂ for theparametri
 bootstrap.
· Cal
ulate the outstanding 
laims R̂i =

∑

j∈∆i
m̂ij and R̂ =

∑

∆ m̂ij .Stage 2 - Bootstrap worldSubstage 2.1 - The estimated outstanding 
laims
· Resample residuals (3.3) or (3.4) with repla
ement and insert into (3.8)together with ∇m̂ or sample from F (m̂ij, φ̂m̂p

ij) for i, j ∈ ∇ to obtain the pseudo-reality in ∇C∗.
· Estimate the parameters in the generalized linear model with the pseudo-triangles.
· Fore
ast the future expe
ted values ∆m̂∗.
· Cal
ulate the estimated outstanding 
laims R̂∗

i =
∑

j∈∆i
m̂∗

ij and R̂∗ =
∑

∆ m̂∗
ij .Substage 2.2 - The true outstanding 
laims

· Resample residuals (3.3) or (3.4) with repla
ement and insert into (3.9)together with ∆m̂ or sample from F (m̂ij, φ̂m̂p
ij) for i, j ∈ ∆ to obtain the pseudo-reality in ∆C∗∗.

· Cal
ulate the true outstanding 
laims R∗∗
i =

∑

j∈∆i
C∗∗

ij and R∗∗ =
∑

∆ C∗∗
ij .

· Store the predi
tion errors pe∗∗i and pe∗∗ in (3.10).
· Return to the beginning of the bootstrap loop and repeat it B times.Stage 3 - Analysis of the simulations
· Obtain the predi
tive distribution of Ri and R, the true outstanding 
laims in thereal world, by plotting the B values in (3.11).Figure 1: The pro
edure of the non-parametri
 and the parametri
 standardized predi
tivebootstrap.



3 BOOTSTRAP METHODS 13However, the 
omputational 
omplexity of this approa
h is quite prohibitive be
ause of thenested bootstrap loop and therefore the double bootstrap is not in
luded in our numeri
alstudy.For ea
h of the B bootstrap repli
ates, we generate B̃ double bootstrap 
laims reserves Rdand estimated 
laims reserves R̂d in analogy with R∗∗ and R̂∗ in Se
tion 3.1, the di�eren
ebeing that we use ∇C∗ as our data rather than ∇C. Then
̂V ar(R − R̂) = V ar(R∗∗ − R̂∗|∇C) (3.18)and

̂V ar(R∗∗ − R̂∗) = V ar(Rd − R̂d|∇C∗), (3.19)where the last varian
e is approximated by the sample varian
e of all B̃ double bootstraprepli
ates.An alternative to (3.18) and (3.19) is to use the varian
e of the pro
ess and the estimationerrors in (5.2) in Appendix 2, i.e.̂
V ar(R − R̂) = ̂V ar(R) + ̂V ar(R̂) (3.20)and

̂V ar(R∗∗ − R̂∗) = ̂V ar(R∗∗) + ̂V ar(R̂∗), (3.21)where the pro
ess errors are estimated by
̂V ar(R) = φ̂

∑

∆

m̂p
ij (3.22)and

̂V ar(R∗∗) = φ̂∗
∑

∆

m̂∗p
ij . (3.23)The estimation errors are approximated by the sample varian
e of the 
orresponding bootstraprepli
ates

̂V ar(R̂) = V ar(R̂∗) (3.24)and
̂V ar(R̂∗) = V ar(R̂d). (3.25)



3 BOOTSTRAP METHODS 143.3 Bootstrapping data with a simple underlying model and a reservingalgorithm using unstandardized predi
tion errorsFor the purpose of obtaining the predi
tive distribution of the 
laims reserve by bootstrapping,the assumption of a generalized linear model in (3.1) is unne
essarily strong. In pra
tise thea
tuary seldom assumes any model for ∇C and ∆C, but only uses a reserving algorithm inorder to estimate ∇m̂ and ∆m̂. Thus, when using the plug-in-prin
iple we just need to makean assumption of the model that generates ∇C∗ and ∆C∗∗ from the data ∇C, while thereserving algorithm 
an be used in bootstrap world too in order to estimate ∆m̂∗.We follow England & Verrall (1999), England (2002) and Pinheiro (2003) and assume inde-pendent 
laims Cij and a varian
e fun
tion in terms of the means, i.e.
E(Cij) = mij and Var(Cij) = φmp

ij (3.26)for some p > 0. Thus the mean and varian
e of Cij are still related as in (3.1), but mij needno longer satisfy the log-additive 
onditions in (3.1). Instead the 
hosen reserving algorithmimpli
itly spe
i�es the stru
ture of all mij and produ
es estimates of m̂ij. The bootstrappro
edures are then performed as in Se
tion 3.1 with the ex
eption that the residuals (3.3)are used rather than (3.4). The interpretation of n and q as the number of observations andmodel parameters is still the same. Using the pure 
hain-ladder method together with theba
kwards re
ursive operation des
ribed in England & Verrall (1999) implies that q = 2t − 1,as for the generalized linear model in (3.1), sin
e this pro
edure demands the estimation of
t−1 development fa
tors as well as the t starting values of the ba
kwards re
ursive operation.Adding exponential smoothing of the development fa
tors, like in the example in Se
tion 2, 
anindeed 
ompli
ate the determination of the number of model parameters but the 
orre
tionfa
tor in (3.3) 
an be 
onsidered as an approximation, although the number of parameters qtypi
ally depends on the amount of smoothing.Standardized predi
tion errors may still be used, sin
e (3.10) - (3.15) 
ontinue to hold. Indeed,it is well known that for many bootstrap pro
edures, resampling of standardized quantitiesoften in
reases a

ura
y 
ompared to using unstandardized quantities, see e.g. Hall (1995).



3 BOOTSTRAP METHODS 15Nevertheless, the unstandardized predi
tion errorspe∗∗i = R∗∗
i − R̂∗

i and pe∗∗ = R∗∗ − R̂∗ (3.27)are useful, in parti
ular for the purpose of studying the estimation and the pro
ess errors, butalso sin
e they are always de�ned. On the 
ontrary, the denominators of (3.10) may sometimesbe non-positive, yielding unde�ned or imaginary standardized predi
tion errors, see Se
tion3.5. The predi
tive distributions of the outstanding 
laims Ri and R are then obtained byplotting
R̃∗∗

i = R̂i + pe∗∗i and R̃∗∗ = R̂ + pe∗∗ (3.28)for ea
h B. These predi
tion errors are used in Li (2006).The alternative bootstrap pro
edures dis
ussed above are des
ribed in detail in Figure 2 andare referred to as the non-parametri
 and the parametri
 unstandardized predi
tive bootstrap.3.4 Estimation of pIn the literature the most frequent 
hoi
e of dispersion parameter is p = 1 in order to reprodu
ethe 
hain-ladder estimates under the assumption of a generalized linear model, but as indi
atedin the method example in Se
tion 2, a pure 
hain-ladder is seldomly used in pra
tise. Thus,another approa
h would be to 
hoose the p that best �ts the data.A straightforward way of obtaining a suitable value of p is to use the unstandardized residuals
rij =

√

n

n − q
(Cij − m̂ij) . (3.29)The following relation then holds approximatively

E(r2
ij) ≈ V ar(Cij) = φmp

ij (3.30)and minimizing the fun
tion
f(p, φ) =

∑

i,j

wij (r2
ij − φ m̂p

ij)
2, (3.31)
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Stage 1 - A
tuary's best estimate in the real world
· Choose an appropriate reserving method e.g. the one des
ribed in Se
tion 2.
· Fore
ast the future expe
ted values ∆m̂ and 
al
ulate the �tted values ∇m̂.
· Cal
ulate the residuals for the non-parametri
 bootstrap and φ̂ for theparametri
 bootstrap.
· Cal
ulate the outstanding 
laims R̂i =

∑

j∈∆i
m̂ij and R̂ =

∑

∆ m̂ij .Stage 2 - Bootstrap worldSubstage 2.1 - The estimated outstanding 
laims
· Resample residuals (3.3) with repla
ement and insert into (3.8) togetherwith ∇m̂ or sample from F (m̂ij , φ̂m̂p

ij) for i, j ∈ ∇ to obtain the pseudo-realityin ∇C∗.
· Apply the 
hosen reserving method to ∇C∗ to obtain the fore
asts ∆m̂∗.
· Cal
ulate the estimated outstanding 
laims R̂∗

i =
∑

j∈∆i
m̂∗

ij and R̂∗ =
∑

∆ m̂∗
ij.Substage 2.2 - The true outstanding 
laims

· Resample residuals (3.3) with repla
ement and insert into (3.9) togetherwith ∆m̂ or sample from F (m̂ij , φ̂m̂p
ij) for i, j ∈ ∆ to obtain the pseudo-realityin ∆C∗∗.

· Cal
ulate the true outstanding 
laims R∗∗
i =

∑

j∈∆i
C∗∗

ij and R∗∗ =
∑

∆ C∗∗
ij .

· Store the predi
tion errors pe∗∗i and pe∗∗ in (3.27).
· Return to the beginning of the bootstrap loop and repeat it B times.Stage 3 - Analysis of the simulations
· Obtain the predi
tive distribution of Ri and R, the true outstanding 
laims in thereal world, by plotting the B values in (3.28).Figure 2: The pro
edure of the non-parametri
 and the parametri
 unstandardized bootstrap.



3 BOOTSTRAP METHODS 17where wij is a weight for observation Cij, with respe
t to p and φ yields an estimator for
p. On
e a reasonable value of p is 
hosen and the residuals for the resampling pro
ess arede�ned, φ is estimated by (3.7). The simplest 
hoi
e is to use uniform wights wij ≡ 1 in (3.31).Another possibility is inverse varian
e weighting, wij = ̂V ar(r2

ij)
−1. In order to spe
ify theseweights, further model assumptions would be needed though.3.5 Implementation detailsThere are some major problems with the pro
ess of resampling the residuals for the non-parametri
 bootstrap pro
edures. Firstly, the bootstrap world is hardly a good approximationof the real world if the 
laims triangle is small. Furthermore, the basi
 assumption of iden-ti
ally distributed residuals is 
ertainly violated for p = 1, i.e. for an over-dispersed Poissondistribution, see Appendix 1. Depending on the 
hosen reserving method and the value of p,the standardized residuals in (3.2) sometimes imply a limitation of the set of triangles that
an be analyzed, sin
e the residual will be unde�ned or imaginary whenever a �tted value in

∇m̂ is non-positive. Finally, using the residuals to solve equation (3.8) sometimes results inundesirable negative in
rements in the pseudo-triangles.Thus, if the 
laims triangle ∇C is small, a parametri
 bootstrap pro
edure seems preferable.On the other hand, if we know nothing about F and have a large triangle, a non-parametri
bootstrap pro
edure would be our �rst 
hoi
e. Note, however, that a parametri
 bootstrappro
edure does not solve the problem with unde�ned residuals sin
e they are needed in orderto estimate φ as well. Furthermore, a parametri
 bootstrap pro
edure should be used ifnegative in
rements in the pseudo-triangles are una

eptable and a gamma distribution shouldparti
ularly be used if it is undesirable that the in
rements only take on the values zero andmultiples of φ, whi
h is the 
ase for the over-dispersed Poisson distribution.The 
hoi
e of predi
tion errors 
auses another problem. The standardized ones in (3.10) aresensitive to pseudo-triangles where the row sums of the outstanding 
laims are non-positive.An ad ho
 solution is simply to 
ut out these pseudo-triangles from the simulation pro
ess if



3 BOOTSTRAP METHODS 18they are rare, another solution is to use the unstandardized predi
tion errors in (3.27) instead.The unstandardized ones, on the other hand, result in a predi
tive distribution whi
h is moreskewed to the left than the distribution obtained by the standardized predi
tion errors, seeSe
tion 4 for more details.Sin
e England & Verrall (1999), England (2002) and Pinheiro et al. (2003) repla
e the maxi-mum likelihood estimation of the parameters in (3.1) by 
hain-ladder when p = 1, the samemethod is adopted here for the standardized predi
tive distribution in Figure 1, even thoughthe non-positive 
olumn sums of the pseudo-triangles make the estimates disagree.In this paper, the estimated value of p in Se
tion 3.4 is just 
onsidered as an indi
ator ofwhether p = 1 or p = 2 should be used in the non-parametri
 bootstrap and whether anover-dispersed Poisson distribution or a gamma distribution should be 
hosen in a parametri
bootstrap. The distributions of the residuals 
orresponding to di�erent 
hoi
es of p ∈ (1, 2)should indeed be investigated, but this is beyond the s
ope of this paper.3.6 Dynami
 Finan
ial Analysis and the one year run-o� resultSee Kaufmann et al. (2001) for an introdu
tion to Dynami
 Finan
ial Analysis. Here themovements of the 
laims reserve are of parti
ular interest. The one year run-o� result is the
hange in the reserve during the �nan
ial year and is de�ned as the di�eren
e between theopening reserve at the beginning of the year and the sum of payments during the year andthe 
losing reserve of the same portfolio at the end of the year. Thus, if we at the end of year
t want to make predi
tions of the run-o� result at the end of the unobserved year t + 1, andif we do not add neither a new a

ident year nor a new development year, we have to �nd thepredi
tive distribution of

R̂t − (

t
∑

i=2

Ci,t+2−i + R̂t+1) , (3.32)where R̂t and R̂t+1 are the estimated outstanding 
laims at the end of year t and t + 1respe
tively.One method to obtain the predi
tive distribution of the one year run-o� result is to 
ondition
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laims triangle ∇C. R̂t is then 
onsidered �xed, while the predi
tive distribution of thepayments 
orresponding to the fore
ast year t + 1 is obtained by B times simulating the newdiagonal {(i, j); i + j = t + 2} by one of the bootstrap pro
edures dis
ussed above. This isdone by storing e.g. the unstandardized predi
tion errors pe∗∗ij = C∗∗
ij − Ĉ∗

ij of ea
h in
rementin the new diagonal and then adding them to the 
orresponding estimated values Ĉij in thereal world to obtain C̃∗∗
ij = Ĉij + pe∗∗ij . In this way B pseudo-triangles, 
onsisting of the �xedtriangle ∇C known at the end of year t and a new simulated diagonal C̃∗∗, are generated andthe outstanding 
laims are then re
al
ulated by the same reserving method as before, in orderto obtain B re
ords of R̂t+1 ∗ = R̂t+1(∇C ∪ C̃∗∗). Finally the B values of

R̂t − (

t
∑

i=2

C̃∗∗
i,t+2−i + R̂t+1 ∗)|∇C , (3.33)are investigated in order to estimate the predi
tive distribution of the one year run-o� result.De Feli
e & Mori
oni (2003) use a similar method in order to analyze R̂t+1, but in the simu-lation pro
ess the oldest a

ident year is removed, while a new a

ident year, 
orrespondingto the year t + 1, is added to the pseudo-triangle.4 Numeri
al studyThe purpose of the numeri
al study is to 
ompare the non-parametri
 and the parametri
bootstrap pro
edures under di�erent 
hoi
es of p, F and predi
tion errors. Sin
e the a
tuary
hooses an age-to-age development fa
tor method that �ts the parti
ular development triangleunder analysis, it is di�
ult to �nd one single algorithm that works for all situations. Thereforewe only use the pure 
hain-ladder method in the 
omparisons, even though the bootstrappro
edures allow the use of any age-to-age development fa
tor method as well. From now on

B = 10000 simulations are used for ea
h predi
tion. The upper 95 per
ent limits are studieddue to higher robustness than, e.g., the 99.5 per
entile, whi
h is perhaps the most frequent
hoi
e in pra
tise. The 
oe�
ients of variation are also presented.



4 NUMERICAL STUDY 204.1 The triangle from Taylor & Ashe (1983)4.1.1 Comparison with Pinheiro et al. (2003)First, the well-known triangle from Taylor & Ashe (1983), 
alled Data 1 in Table 4.1, is ana-lyzed by the non-parametri
 standardized predi
tive bootstrap pro
edure, i.e. the bootstrappro
edure des
ribed in Pinheiro et al. (2003). The estimated reserves and the upper 95 per-
ent limits for p = 1 and p = 2 are presented in Table 4.2. The se
ond a

ident year is left outfrom the tabulation of results when p = 1 sin
e a negative in
rement in the northeast 
ornerof a pseudo-triangle 
auses a situation with an imaginary predi
tion error for that year. Theremaining a

ident years are not as sensitive to negative in
rements as this year.The results of the standardized predi
tive bootstrap pro
edure are in a

ordan
e with Pinheiroet al. (2003). As we 
an see, for earlier a

ident years, the p = 2 per
entiles are smaller thanthe p = 1 per
entiles, whereas the opposite is true for later a

ident years. This is natural,sin
e most of the future 
laims Cij of later years have large mij and hen
e larger varian
e for
p = 2 than for p = 1.1 2 3 4 5 6 7 8 9 101 357 848 766 940 610 542 482 940 527 326 574 398 146 342 139 950 227 229 67 9482 352 118 884 021 933 894 1 183 289 445 745 320 996 527 804 266 172 425 0463 290 507 1 001 799 926 219 1 016 654 750 816 146 923 495 992 280 4054 310 608 1 108 250 776 189 1 562 400 272 482 352 053 206 2865 443 160 693 190 991 983 769 488 504 851 470 6396 396 132 937 085 847 498 805 037 705 9607 440 832 847 631 1 131 398 1 063 2698 359 480 1 061 648 1 443 3709 376 686 986 60810 344 014 Table 4.1: Data 1 from Taylor & Ashe (1983).4.1.2 The 
hoi
e of φ̂ or φ̂∗We 
ontinue to use the non-parametri
 standardized predi
tive bootstrap and Data 1, but wenow repla
e (3.13) with (3.14) in Substage 2.2 in Figure 1. Thus, we do not 
onsider φ as
onstant for the data and therefore we repla
e φ̂ by φ̂∗. The results are presented in Table4.3. As we 
an see, the repla
ement hardly a�e
ts the results.



4 NUMERICAL STUDY 21Note that sin
e p = 1 o

asionally yields m̂∗
ij < 0 the 
orresponding Pearson residuals in thebootstrap world are imaginary while φ̂∗ is real. Sin
e the assumption of an over-dispersedPoisson distribution for the parametri
 pro
edure o

asionally yields m̂∗

ij = 0, the 
orrespond-ing Pearson residuals in the bootstrap world are unde�ned and as a result, φ̂∗ is unde�ned aswell. Thus, in the sequel we use (3.13) in all simulations.Estimated 95% Estimated 95%Year reserve p = 1 reserve p = 22 94 634 93 316 222 7893 469 511 903 221 446 504 799 7004 709 638 1 187 641 611 145 992 5855 984 889 1 527 903 992 023 1 497 6336 1 419 459 2 076 496 1 453 085 2 170 4807 2 177 641 3 034 860 2 186 161 3 284 4908 3 920 301 5 277 768 3 665 066 5 692 7649 4 278 972 6 139 286 4 122 398 6 975 12310 4 625 811 9 760 307 4 516 073 9 286 282Total 18 680 856 23 681 062 18 085 772 23 033 968Table 4.2: The estimated reserves and the 95 per
entiles of the non-parametri
 standardizedpredi
tive bootstrap with (3.13) used in Substage 2.2 of Figure 1 for Data 1. Chain-ladder isused for p = 1 and maximum likelihood estimation for p = 2.Estimated 95% Estimated 95%Year reserve p = 1 reserve p = 22 94 634 93 316 216 6983 469 511 889 639 446 504 796 1464 709 638 1 186 623 611 145 978 3155 984 889 1 533 399 992 023 1 497 7226 1 419 459 2 082 287 1 453 085 2 136 4237 2 177 641 3 041 716 2 186 161 3 290 0618 3 920 301 5 290 749 3 665 066 5 738 4969 4 278 972 6 181 331 4 122 398 6 795 92710 4 625 811 9 328 277 4 516 073 9 476 343Total 18 680 856 23 603 123 18 085 772 23 042 954Table 4.3: The estimated reserves and the 95 per
entiles of the non-parametri
 standardizedpredi
tive bootstrap when (3.13) is repla
ed by (3.14) in Substage 2.2 in Figure 1 for Data 1.Chain-ladder is used for p = 1 and maximum likelihood estimation for p = 2.



4 NUMERICAL STUDY 224.1.3 Maximum likelihood estimation vs 
hain-ladder when p = 2The next step is to repla
e the maximum likelihood estimator of the model parameters bythe 
hain-ladder for the non-parametri
 standardized predi
tive bootstrap when p = 2. (Wealready use the 
hain-ladder when p = 1, 
f. Se
tion 3.5.) Consequently, the estimatedreserves in Table 4.4 are the same as when p = 1 in Table 4.2 whereas the per
entiles in Table4.4 are 
onsistently higher than in Table 4.2.This is an example of bootstrapping under a model that does not produ
e the estimatora
tually employed, a model whi
h might nevertheless be quite realisti
 for paid 
laims. Wewill use the 
hain-ladder in all remaining numeri
al studies, sin
e it is popular and simple.Estimated 95%Year reserve p = 22 94 634 236 8503 469 511 875 3824 709 638 1 156 0505 984 889 1 503 6856 1 419 459 2 141 4707 2 177 641 3 308 8058 3 920 301 6 199 8419 4 278 972 7 646 14010 4 625 811 10 698 797Total 18 680 856 23 991 584Table 4.4: The estimated reserve and the 95 per
entiles of the non-parametri
 standardizedpredi
tive bootstrap with (3.13) used in Substage 2.2 in Figure 1 for Data 1. Chain-ladder isused for p = 2.4.1.4 Non-parametri
 bootstrap vs parametri
 bootstrapFor the purpose of 
omparing the non-parametri
 and the parametri
 bootstrap pro
edureswe 
ontinue to use the standardized predi
tive bootstrap with 
hain-ladder for Data 1. SeeTable 4.5 for the upper 95 per
ent limits and Table 4.6 for the 
oe�
ients of variation, i.e.
√

V ar(R̃∗∗
i )/R̂i and √

V ar(R̃∗∗)/R̂. (In the tables ODP denotes the over-dispersed Poissondistribution.)



4 NUMERICAL STUDY 23The results of the parametri
 bootstrap 
oin
ide well with the results of the non-parametri
bootstrap ex
ept for the last a

ident year. It is well-known that the 
hain-ladder estimateof the outstanding 
laims for the last a

ident year is extremely sensitive to outliers in thesouth 
orner of the upper triangle. If C∗
t1 happens to be small in the pseudo-triangle then the
orresponding reserve R̂∗

t will be small 
ompared to R∗∗
t , whi
h a�e
ts the predi
tion errorin (3.10). The parametri
 bootstrap generates more stable C∗

t1:s than the non-parametri
bootstrap, 
onsequently there is a dis
repan
y in the results of the last a

ident year for thenon-parametri
 and the parametri
 bootstrap pro
edures in Tables 4.5 - 4.6. The 
on
lusionis that the parametri
 bootstrap may be preferable in some 
ases.Estimated Non-parametri
 Parametri
 Non-parametri
 Parametri
Year Reserve p = 1 ODP p = 2 Gamma2 94 634 236 850 220 6433 469 511 903 221 920 956 875 382 866 8334 709 638 1 187 641 1 215 254 1 156 050 1 162 9425 984 889 1 527 903 1 537 266 1 503 685 1 516 8686 1 419 459 2 076 496 2 096 805 2 141 470 2 150 4417 2 177 641 3 034 860 3 057 599 3 308 805 3 309 8388 3 920 301 5 277 768 5 308 472 6 199 841 6 192 2869 4 278 972 6 139 286 6 192 655 7 646 140 7 272 01210 4 625 811 9 760 307 9 163 520 10 698 797 9 222 470Total 18 680 856 23 681 062 23 685 724 23 991 584 24 095 302Table 4.5: The estimated reserve and the 95 per
entiles of the non-parametri
 and the para-metri
 standardized predi
tive bootstrap with (3.13) used in Substage 2.2 in Figures 1- 2 forData 1. Chain-ladder is used in both 
ases.4.1.5 Standardized predi
tion errors vs unstandardized predi
tion errorsFrom now on the unstandardized predi
tive bootstrap pro
edures are used in all tables; theresults for Data 1 are presented in Tables 4.7 - 4.8. As we 
an see, the per
entiles for theunstandardized predi
tive bootstrap in Table 4.7 are lower than for the standardized predi
tivebootstrap in Table 4.5, and the same goes for the 
oe�
ients of variation. Note that thereis a large dis
repan
y in the 
oe�
ients of variation, in Table 4.8, for the two 
hoi
es ofdistribution for year 2. The reason for the extreme values, when p = 1 or an over-dispersedPoisson distribution is assumed, is dis
ussed in Se
tion 4.3.



4 NUMERICAL STUDY 24In Figures 3 (
) - (d) and 4 (
) - (d) the predi
tive distributions of the total 
laims re-serve are plotted when assuming p = 1 for the non-parametri
 bootstrap pro
edures and anover-dispersed Poisson distribution for the parametri
 bootstrap pro
edures. The predi
tivedistribution obtained by the unstandardized bootstrap in (
) is slightly skewed to the left
ompared to the one obtained by the standardized bootstrap in (d), whi
h is almost symmet-ri
. This follows sin
e the pro
ess 
omponent (Figures 3 (a) and 4 (a)) has smaller variabilitythan the estimation 
omponent (Figures 3 (b) and 4 (b)), and the latter is slightly skewed tothe right. This skewness is to a large extent removed for the standardized predi
tion errors(3.10), be
ause of the denominator, but not for the unstandardized predi
tion errors (3.27).Furthermore, from Figures 3 (a) and 4 (a), it does not seem to matter whether we use anon-parametri
 or parametri
 approa
h for the pro
ess error, even though England & Ver-rall (2006) argue that the former 
hoi
e 
annot give larger extremes than the most extremeresidual observed. The same holds for p = 2 or a gamma distribution (results not shown here).4.1.6 Estimation of pEstimation of p by minimizing the (unweighted) sum in (3.31) yields p = 0.7280. Thus, p = 1or an over-dispersed Poisson distribution seems to be more reasonable for this developmenttriangle. Estimated Non-parametri
 Parametri
 Non-parametri
 Parametri
Year Reserve p = 1 ODP p = 2 Gamma2 94 634 76 623 469 511 50 50 43 424 709 638 37 38 32 325 984 889 31 31 27 286 1 419 459 27 27 26 267 2 177 641 23 23 27 268 3 920 301 20 20 30 299 4 278 972 24 25 38 3510 4 625 811 53 50 64 48Total 18 680 856 16 16 15 16Table 4.6: The estimated reserve and the 
oe�
ients of variation of the simulations (in %)of the non-parametri
 and the parametri
 standardized predi
tive bootstrap with (3.13) used inSubstage 2.2 in Figures 1- 2 for Data 1. Chain-ladder is used in both 
ases.
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Estimated Non-parametri
 Parametri
 Non-parametri
 Parametri
Year Reserve p = 1 ODP p = 2 Gamma2 94 634 274 891 252 438 168 132 167 5853 469 511 823 274 814 256 750 175 754 6464 709 638 1 148 468 1 125 650 1 055 135 1 064 0595 984 889 1 486 951 1 475 088 1 414 799 1 403 9196 1 419 459 2 040 277 2 019 093 1 995 397 1 982 6117 2 177 641 2 983 269 2 979 860 3 043 356 3 049 2158 3 920 301 5 201 768 5 171 112 5 579 973 5 564 8489 4 278 972 5 916 186 5 910 048 6 363 139 6 257 00010 4 625 811 7 755 623 7 517 443 7 387 885 7 088 050Total 18 680 856 23 264 493 23 122 056 23 109 992 23 107 180Table 4.7: The estimated reserve and the 95 per
entiles of the non-parametri
 and the para-metri
 unstandardized predi
tive bootstrap when 
hain-ladder is used for Data 1.
Estimated Non-parametri
 Parametri
 Non-parametri
 Parametri
Year Reserve p = 1 ODP p = 2 Gamma2 94 634 121 118 52 503 469 511 47 46 39 384 709 638 38 37 31 315 984 889 31 31 28 276 1 419 459 27 26 26 267 2 177 641 23 23 26 268 3 920 301 21 21 28 279 4 278 972 25 25 32 3210 4 625 811 46 44 40 38Total 18 680 856 17 16 17 16Table 4.8: The estimated reserve and the 
oe�
ients of variation of the simulations (in %) ofthe non-parametri
 and the parametri
 unstandardized predi
tive bootstrap when 
hain-ladderis used for Data 1.
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Figure 3: Density 
harts of R∗∗ (a), R̂∗ (b) and R̃∗∗ for the unstandardized (
) and standardized(d) non-parametri
 predi
tive bootstrap pro
edures for Data 1 when p = 1.
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Figure 4: Density 
harts of R∗∗ (a), R̂∗ (b) and R̃∗∗ for the unstandardized (
) and standardized(d) parametri
 predi
tive bootstrap pro
edures for Data 1 under the assumption of an over-dispersed Poisson distribution.



4 NUMERICAL STUDY 284.2 A small triangle of 
laim 
ountsThe non-parametri
 and the parametri
 unstandardized predi
tive bootstrap pro
edures arenow 
ompared on a triangle of 
laim 
ounts appearing in Taylor (2000). Be
ause of the shapeof the data and in order to avoid non-positive 
olumn sums we use just the later part ofthe original triangle, see Table 4.9. This is reasonable sin
e the 
laim 
ounts from previousa

ident years are almost �nalized. 1 2 3 4 5 6 7
1989 589 210 29 17 12 4 9
1990 564 196 23 12 9 5
1991 607 203 29 9 7
1992 674 169 20 12
1993 619 190 41
1994 660 161
1995 660Table 4.9: Data 2 from Taylor (2000).Estimation of p yields p̂ = 0.5596, whi
h indi
ates that p = 1 is a better 
hoi
e than p = 2 forthe non-parametri
 bootstrap and an over-dispersed Poisson distribution is preferable for theparametri
 bootstrap, as expe
ted for 
laim 
ounts. Nevertheless, the results for both 
hoi
esare presented in Tables 4.10 - 4.11 and, as we 
an see, the results of the parametri
 bootstrap
oin
ides well with the results of the non-parametri
 one.The density 
harts of R∗∗ and R̂∗ are plotted in Figure 5. The variability of the estimationerror is larger than the variability of the pro
ess error for Data 2 too, but the di�eren
e is notas extreme as for Data 1 in Figures 3 - 4.4.3 A small triangle of paid 
laims from a short-tailed line of businessTable 4.12 shows a triangle of paid 
laims, provided by the Swedish insuran
e 
ompanyAFA Försäkring, for the short-tailed line of business Severan
e Grant.The results of the bootstrap pro
edures are presented in Tables 4.13 - 4.14. The per
entilesfor year 1996 are very di�erent for the two 
hoi
es of distribution. This is a 
onsequen
e



4 NUMERICAL STUDY 29Estimated Non-parametri
 Parametri
 Non-parametri
 Parametri
Year Reserve p = 1 ODP p = 2 Gamma1990 8 19 18 14 141991 14 26 26 20 201992 24 40 39 34 341993 36 56 55 51 501994 65 90 89 91 901995 269 323 321 400 399Total 417 500 496 555 554Table 4.10: The estimated reserve and the 95 per
entiles of the non-parametri
 and the para-metri
 unstandardized predi
tive bootstrap when 
hain-ladder is used for Data 2.Estimated Non-parametri
 Parametri
 Non-parametri
 Parametri
Year Reserve p = 1 ODP p = 2 Gamma1990 8 74 71 43 421991 14 57 55 35 331992 24 40 39 29 281993 36 32 31 26 251994 65 23 22 25 251995 269 12 12 32 31Total 417 12 12 22 21Table 4.11: The estimated reserve and the 
oe�
ients of variation of the simulations (in %) ofthe non-parametri
 and the parametri
 unstandardized predi
tive bootstrap when 
hain-ladderis used for Data 2.
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Figure 5: Density 
harts of R∗∗ (a) and R̂∗ (b) for the unstandardized non-parametri
 predi
-tive bootstrap pro
edures for Data 2 when p = 1.



4 NUMERICAL STUDY 30of o

asional non-positive m̂∗
ij 
aused by the resampling pro
ess. Tables 4.15 - 4.16 showexamples of pseudo-triangles when p = 1 for the non-parametri
 bootstrap pro
edure andan over-dispersed Poisson distribution is assumed for the parametri
 bootstrap pro
edure.By (3.27) and (3.28) these parti
ular simulations yield R̃∗∗

1996 = 2614 and R̃∗∗
1996 = 2876,respe
tively, whi
h is not reasonable. Thus, even though p̂ = 1.1915, a 
omparison of theresults for p = 1 and p = 2 indi
ates that p = 2 might be a better 
hoi
e for this triangle.Another alternative might be to use a trun
ated over-dispersed Poisson distribution to ex
ludezero values, but this is outside the s
ope of the present paper.The density 
harts of R∗∗ and R̂∗ are plotted in Figure 6 and, as for previous data, thevariability of the estimation error is larger than the variability of the pro
ess error.4.4 A large triangle of paid 
laims from a long-tailed line of businessFinally the two bootstrap pro
edures are applied to a development triangle for Motor TPL,a typi
ally long-tailed line of business, where there are still unreported 
laims. Due to an1 2 3 4 5 6 71995 48 545 56 786 32 659 12 973 4 005 1 696 4901996 58 294 79 824 38 287 15 957 4 617 1 4271997 73 859 73 237 35 281 13 960 3 8541998 65 707 67 632 32 832 12 1581999 92 901 80 931 36 5082000 66 834 47 6302001 45 838Table 4.12: Data 3 provided by the Swedish insuran
e 
ompany AFA Försäkring.Estimated Non-parametri
 Parametri
 Non-parametri
 Parametri
Year Reserve p = 1 ODP p = 2 Gamma1996 621 2 369 2 124 873 8621997 2 408 5 377 5 382 3 128 3 1161998 6 317 10 763 10 823 8 027 7 9601999 25 536 34 668 34 673 32 242 32 1632000 46 196 59 249 58 820 58 910 58 3952001 82 821 107 213 105 455 110 188 108 440Total 163 898 195 586 195 097 195 876 193 573Table 4.13: The estimated reserve and the 95 per
entiles of the non-parametri
 and the para-metri
 unstandardized predi
tive bootstrap when 
hain-ladder is used for Data 3.



4 NUMERICAL STUDY 31Estimated Non-parametri
 Parametri
 Non-parametri
 Parametri
Year Reserve p = 1 ODP p = 2 Gamma1996 621 173 169 26 251997 2 408 77 74 19 181998 6 317 44 42 17 161999 25 536 22 22 17 162000 46 196 17 17 17 172001 82 821 17 17 21 20Total 163 898 12 12 12 12Table 4.14: The estimated reserve and the 
oe�
ients of variation of the simulations (in %) ofthe non-parametri
 and the parametri
 unstandardized predi
tive bootstrap when 
hain-ladderis used for Data 3. 7572 007 -746604 3 300 32616 480 6 116 2 838 1 10830 487 11 674 2 527 1 924 -94847 952 16 537 14 875 2 315 640 -368 -1 2361 949 -1 3672 653 1 561 -1 09517 954 3 478 2 046 -1 43526 073 11 364 2 201 1 295 -90840 247 18 232 7 947 1 539 905 -635Table 4.15: An example of pseudo-triangles when p = 1; the left triangle is ∆C∗∗ and the righttriangle is ∆m̂∗. 2 2551 503 2 2553 758 3 006 018 788 2 255 3 006 2 25530 061 12 024 3 006 752 75242 085 27 055 9 770 2 255 2 255 752 01 712 04 919 1 716 016 892 5 385 1 878 028 929 12 041 3 838 1 339 055 292 28 841 12 004 3 827 1 335 0Table 4.16: An example of pseudo-triangles when an over-dispersed Poisson distribution isassumed; the left triangle is ∆C∗∗ and the right triangle is ∆m̂∗.
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Figure 6: Density 
harts of R∗∗ (a) and R̂∗ (b) for the unstandardized non-parametri
 predi
-tive bootstrap pro
edures for Data 3 when p = 1.



5 CONCLUSIONS 32outlier in the oldest a

ident year (1987) we ex
lude this year from the original triangle inNaziropoulou (2005), see Table 4.17 for Data 4.Estimation of p yields p̂ = 0.7773 and the results of the bootstrap pro
edures are presentedin Tables 4.18 - 4.19. The 
on
lusions are the same as in the earlier examples. The density
harts of R∗∗ and R̂∗ are plotted in Figure 7 and for Data 4 the variability of the estimationerror is again larger than the variability of the pro
ess error.
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Figure 7: Density 
harts of R∗∗ (a) and R̂∗ (b) for the unstandardized non-parametri
 predi
-tive bootstrap pro
edures for Data 4 when p = 1.5 Con
lusionsSo far most papers 
on
erning bootstrapping for 
laims reserve un
ertainty fo
us on obtai-ning the predi
tive distribution for the 
hain-ladder method by assuming underlying models,whi
h reprodu
e the 
hain-ladder estimates. However, the assumption of an underlying modelis generally not made in pra
tise for the purpose of estimating the 
laims reserve, sin
e thea
tuary rather uses somewhat 
omplex reserving algorithms, without referen
e to statisti
almodels. In this paper we suggest using either a non-parametri
 or a parametri
 bootstrapmethodology with as few model assumptions as possible in order to make the bootstrap pro-
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 161988 13 286 9 064 2 260 1 271 1 295 1 007 1 484 150 1 110 598 780 1 262 1 470 350 881 496 1701989 12 428 9 740 2 387 1 751 1 261 902 1 054 1 086 1 378 1 983 634 1 129 1 346 700 844 1 1421990 13 292 8 996 2 615 1 493 1 462 834 1 102 734 1 297 1 160 781 2 021 997 416 4171991 13 174 9 023 2 476 1 586 1 361 1 056 758 955 972 1 468 1 029 2 483 599 9961992 12 300 8 562 2 444 1 282 1 444 637 1 474 1 368 944 1 328 1 013 1 250 1 0091993 12 710 7 747 2 242 2 164 1 478 1 263 1 069 2 160 962 3 870 803 4751994 11 935 8 340 2 814 1 870 1 464 1 107 1 221 1 214 1 617 1 310 1 5911995 11 959 9 377 2 804 2 488 1 746 1 466 3 168 1 832 1 763 2 0511996 11 518 8 953 3 269 1 865 1 522 1 753 1 770 1 717 2 0841997 11 621 8 233 3 705 2 091 2 080 1 697 1 800 2 4181998 12 416 8 518 2 670 1 951 1 861 1 365 1 8741999 12 957 8 917 3 172 2 550 2 141 2 1162000 12 964 10 432 3 060 2 382 1 6062001 14 959 12 404 4 017 2 6632002 16 890 11 899 3 6332003 17 167 11 6292004 17 658 Table 4.17: Data 4 from Naziropoulou (2005).



5 CONCLUSIONS 34Estimated Non-parametri
 Parametri
 Non-parametri
 Parametri
Year Reserve p = 1 ODP p = 2 Gamma1989 184 551 608 311 3141990 1 000 1 785 1 810 1 528 1 5381991 1 765 2 783 2 773 2 523 2 5301992 2 250 3 401 3 386 3 084 3 0801993 3 586 5 010 5 002 4 798 4 8191994 4 947 6 611 6 563 6 576 6 5801995 6 811 8 805 8 761 9 014 8 9521996 8 245 10 607 10 523 10 902 10 8861997 9 865 12 444 12 460 13 060 12 9881998 10 797 13 455 13 493 14 131 14 2451999 13 529 16 623 16 531 17 759 17 7642000 14 933 18 240 18 179 19 716 19 6612001 19 798 23 719 23 700 26 008 26 2802002 22 920 27 141 27 176 30 525 30 7712003 26 757 31 598 31 539 36 447 36 3592004 40 854 48 032 48 283 61 070 60 315Total 188 242 207 770 207 461 218 375 217 784Table 4.18: The estimated reserve and the 95 per
entiles of the non-parametri
 and the para-metri
 unstandardized predi
tive bootstrap when 
hain-ladder is used for Data 4.Estimated Non-parametri
 Parametri
 Non-parametri
 Parametri
Year Reserve p = 1 ODP p = 2 Gamma1989 184 131 129 48 471990 1 000 49 49 35 341991 1 765 36 36 28 281992 2 250 31 31 24 241993 3 586 25 24 22 221994 4 947 21 21 22 211995 6 811 18 18 21 201996 8 245 16 16 20 201997 9 865 15 15 20 201998 10 797 14 15 20 201999 13 529 13 13 20 202000 14 933 13 13 21 202001 19 798 12 12 21 212002 22 920 11 11 22 222003 26 757 11 11 24 242004 40 854 11 11 34 33Total 188 242 6 6 11 10Table 4.19: The estimated reserve and the 
oe�
ients of variation of the simulations (in %) ofthe non-parametri
 and the parametri
 unstandardized predi
tive bootstrap when 
hain-ladderis used for Data 4.
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edures more 
onsistent with the a
tuary's way of working. It is assumed that the bootstrappro
edures only depend on the mean and varian
e of the 
laims, while the a
tuary's 
hoi
eof reserving algorithm impli
itly spe
i�es the mean stru
ture. Consequently, the suggestedbootstrap pro
edures 
an be used to obtain the predi
tive distribution of any age-to-age de-velopment fa
tor method. The non-parametri
 and the parametri
 bootstrap pro
edures are
ompared to te
hniques des
ribed in Pinheiro et al. (2003), as well as in England (2002), and�nally they are applied to four development triangles of di�erent types.We have seen that the results of the parametri
 standardized predi
tive bootstrap are 
onsis-tent with the results of its non-parametri
 
ounterpart in Pinheiro et al. (2003). Furthermore,the unstandardized predi
tive bootstrap pro
edures have revealed that the variability of theestimation error, when 
hain-ladder is used, is larger than the variability of the pro
ess errorfor all four investigated development triangles and for the two largest of them the di�eren
e is
onsiderable. Finally, our simulation results are almost the same for the non-parametri
 andthe parametri
 approa
h.Sin
e resampling of standardized quantities often in
reases a

ura
y 
ompared to using un-standardized quantities, the standardized predi
tive bootstrap is in theory preferable to theunstandardized one. We have seen that the standardized 
ase yields higher estimated risk,seemingly due to the fa
t that it makes the distribution more symmetri
 than the unstan-dardized 
ase, where the predi
tive distribution is skewed to the left. A disadvantage ofthe standardized predi
tive bootstrap is that the denominators of (3.10) may sometimes benon-positive, yielding unde�ned or imaginary predi
tion errors. In prin
iple, this 
ould be
orre
ted by the double bootstrap, whi
h provides a better estimation of the varian
e sin
e itin
ludes the estimation error as well as the pro
ess error. Therefore, it would be interesting,in a future paper, to analyze the behaviour of the double bootstrap method both for simulatedand real data sets.Finally, a somewhat surprising result of the numeri
al studies is that the estimation error is
onsistently larger than the pro
ess error. This 
ould be the 
ase for further study.



36Referen
esBu
hwalder, M., Bühlmann, H., Merz, M. & Wüthri
h, M. (2006): The Mean SquareError of Predi
tion in the Chain Ladder Reserving Method (Ma
k and Murphy revisited).ASTIN Bulletin, 36(2), 521-542.Davison, A. C. & Hinkley, D. V. (1997): Bootstrap Methods and their Appli
ations.Cambridge University Press.De Feli
e, M. & Mori
oni, F. (2003): Risk Based Capital in P&C Loss Reserving orStressing the Triangle. Working paper. Available online at: http://www.math.ethz.
h/�nan
e/PC_DFM.pdfEfron, B. & Tibshirani, R.J. (1993): An Introdu
tion to the Bootstrap. Chapman & Hall,N. Y.England, P. (2002): Addendum to �Analyti
 and Bootstrap Estimates of Predi
tion Error inClaims Reserving�. Insuran
e: Mathemati
s and E
onomi
s, 31, 461-466.England, P. & Verrall, R. (1999): Analyti
 and Bootstrap Estimates of Predi
tion Errorsin Claims Reserving. Insuran
e: Mathemati
s and E
onomi
s, 25, 281-293.England, P. & Verrall, R. (2006): Predi
tive Distributions of Outstanding Liabilities inGeneral Insuran
e. Annals of A
tuarial S
ien
e, 1, II, 221-270.Hall, P. (1995): The Bootstrap and Edgeworth Expansion. Springer.Kaufmann, R., Gadmer, A. & Klett, R. (2001): Introdu
tion to Dynami
 Finan
ialAnalysis. ASTIN Bulletin, 31(1), 213-249.Larsen, C. R. (2007): An Individual Claims Reserving Model. ASTIN Bulletin, 37(1), 113-132.



37Li, J. (2006): Comparison of Sto
hasti
 Reserving Methods. Australian A
tuarial Journal,volume 12, issue 4, 489-569.Ma
k, T. (1993): Distribution Free Cal
ulation of the Standard Error of Chain Ladder Re-serve Estimates. ASTIN Bulletin, 23(2), 213-225.Ma
k, T., Quarg, G. & Braun, C. (2006): The Mean Square Error of Predi
tion in theChain Ladder Reserving Method - a Comment. ASTIN Bulletin, 36(2), 543-552.Ma
k, T. & Venter, G. (2000): A Comparison of Sto
hasti
 Models that Reprodu
e ChainLadder Reserve Estimates. Insuran
e: Mathemati
s and E
onomi
s, 26, 101-107.M
Cullagh, P. & Nelder, J.A. (1989): Generalized Linear Models. London: Chapmanand Hall.Naziropoulou, A. (2005): Simulering av in�ations- o
h återförsäkringsinverkan på avsätt-ning för oreglerade skador med hänsyn till Solvens II. Examensarbete 2005:7. Master thesis,Mathemati
al Statisti
s, Sto
kholm University. Available online at: http://www.math.su.se/matstat/reports/serieb/2005/rep7/report.pdf (In Swedish.)Pinheiro, P.J.R., Andrade e Silva, J.M. & Centeno, M.d.L (2003): Bootstrap Method-ology in Claim Reserving. The Journal of Risk and Insuran
e, 4, 701-714.Renshaw, A.E. & Verrall, R.J. (1998): A Sto
hasti
 Model Underlying the Chain-LadderTe
hnique. British A
tuarial Journal, 4, IV, 903-923.Taylor, G. (2000): Loss Reserving - An A
tuarial Perspe
tive. Boston: Kluwer A
ademi
Press.Taylor, G. & Ashe, F.R. (1983): Se
ond Moments of Estimates of Outstanding Claims.Journal of E
onometri
s, 23, 37-61.Verrall, R. (2000): An Investigation into Sto
hasti
 Claims Reserving Models and theChain-ladder Te
hnique. Insuran
e: Mathemati
s and E
onomi
s, 26, 91-99.



38Verrall, R. & England, P. (2000): Comments on: �A Comparison of Sto
hasti
 Modelsthat reprodu
e Chain Ladder Reserve Estimates�, by Ma
k and Venter. Insuran
e: Mathemat-i
s and E
onomi
s, 26, 109-111.



39Appendix 1The basi
 assumption of the resampling pro
ess of the non-parametri
 bootstrap is indepen-dent and identi
ally distributed residuals. We will now motivate that the model in (3.1) givesapproximately identi
ally distributed residuals rij for the majority of residuals (3.2) or (3.3)in the upper triangle (not 
lose to any of the 
orners) when p = 2 (gamma distribution), butnot for p = 1 (over-dispersed Poisson distribution). By large triangles we mean that t → ∞and hen
e also n → ∞. For ea
h �xed ij, m̂ij is a 
onsistent estimate of mij as n grows, and
q/n → 0. Hen
e, for large n, the residuals 
an be written as

rij =
Cij − mij

√

mp
ij

.Sin
e the moment generating fun
tion of a Γ(α, β) distribution is M(t) = (1 − β t)−α and
p = 2 is equivalent to Cij ∈ Γ( 1

φ
, φmij), the residuals rij are identi
ally distributed a

ordingto

Mrij
(t) = e−t MCij

(
t

mij

) = e−t(1 − φ t)−
1

φ .The moment generating fun
tion of a Po(λ) distribution is M(t) = eλ(et−1), but sin
e p = 1implies an over-dispersed Poisson distribution we need a help variable Xij in order to �nd thedistribution of the residuals. The underlying model is ful�lled if Cij = φXij , Xij ∈ Po(
mij

φ
)and the residuals are distributed a

ording to

Mrij
(t) = e−t

√
mij MCij

(
t

√
mij

) = e−t
√

mij MXij
(

φ t
√

mij

) = e−t
√

mij e
mij

φ
(e

φ t√
mij −1)

.The distributions of the residuals rij depend on mij and 
onsequently the residuals 
annot beidenti
ally distributed.



40Appendix 2In order to �nd the variability of the 
laims reserve obtained by the 
hain-ladder methodEngland & Verrall (1999) assume the model stru
ture in (3.1) and on the basis of the standarderror of predi
tion of a single future value Cij in ∆C, i.e.
SEP (Cij) =

√

̂E(Cij − Ĉij)2 ∼=

√

̂V ar(Cij) + ̂V ar(Ĉij), (5.1)an expression for the standard error of predi
tion of the total 
laims reserve is derived as
SEP (R) =

√

̂V ar(R − R̂) ≈

√

̂V ar(R) + ̂V ar(R̂) (5.2)
=

√

̂V ar(
∑

∆

Cij) + ̂V ar(
∑

∆

Ĉij)

≈

√

∑

∆

φ̂ m̂p
ij +

∑

∆

m̂ij
̂V ar(η̂ij) + 2

∑

∆, i1j1 6=i2j2

m̂i1j1 m̂i2j2
̂Cov(η̂i1j1 η̂i2j2) ,where η̂ij is the estimate of ηij appearing in (3.1). The �rst term provides for the varian
e ofthe pro
ess error and 
an easily be estimated analyti
ally, while the two last terms, providingfor the varian
e of the estimation error, 
an be obtained by bootstrapping. When p = 1,England & Verrall (1999) repla
e equation (5.2) by the bootstrap standard error of predi
tion

SEPbs(R) =

√

φ̂ R̂ + (SEbs(R̂∗))2, (5.3)where SEbs(R̂
∗) is the standard error of the B simulated values of R̂∗ obtained by the non-parametri
 standardized bootstrap pro
edure in Substage 2.1 in Figure 1. However, England& Verrall (1999) substitute the maximum likelihood estimates of the model parameters inFigure 1 by the 
hain-ladder method.In order to obtain a 
omplete predi
tive distribution England (2002) extended the methodin England & Verrall (1999) by repla
ing the analyti
 
al
ulation of the pro
ess error byanother simulation 
onditional on the bootstrap simulation. The pro
ess error is in
luded tothe B triangles ∆m̂∗ by sampling a random observation from a pro
ess distribution with mean

m̂∗
ij and varian
e φ m̂∗

ij to obtain the future 
laims ∆m†. The predi
tive distribution of theoutstanding 
laims is then obtained by plotting the B values of R̃† =
∑

∆ m†

ij and �nally the



41standard deviation of the simulations gives the standard error of predi
tion of the outstanding
laims.England (2002) presents no justi�
ation of this pro
edure, but sampling from over-dispersedPoisson distributions with mean m̂∗
ij and varian
e φ m̂∗

ij will indeed provide us with a predi
tivedistribution of R 
onsistent with (5.3). Sin
e
E(R†|∆m̂∗) =

∑

∆

E(m†

ij |∆m̂∗) =
∑

∆

m̂∗
ij = R̂∗and Var(R†|∆m̂∗) =

∑

∆

V ar(m†

ij |∆m̂∗) =
∑

∆

φ̂ m̂∗
ij = φ̂ R̂∗the varian
e of the simulated predi
tive distribution isVar(R†) = E[Var(R†|∆m̂∗)] + Var[E(R†|∆m̂∗)]

= E(φ̂ R̂∗) + Var(R̂∗) = φ̂ E(R̂∗) + Var(R̂∗) ≈ φ̂ R̂ + Var(R̂∗),where, in the last step, we used E(R̂∗) ≈ R̂ and (3.12).
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1 INTRODUCTION 21 Introdu
tionOne issue for the reserving a
tuary is how to deal with in�ation, whi
h 
ontributes tothe un
ertainty in the estimate of the 
laims reserve. Even though some proper reservingte
hniques are suggested in the literature, little has been said about how to approa
hthis issue when it 
omes to �nding the variability of the a
tuary's best estimate eitheranalyti
ally or by bootstrapping.Due to external for
es the average 
ost per 
laim will 
hange from one 
alendar year toanother. Typi
ally this 
laims in�ation is spe
i�
 to ea
h line of business and dependson the e
onomi
 in�ation, whi
h usually 
an be tied to some relevant index, as well as onfa
tors like legislation and attitudes to poli
y holder 
ompensation. The latter result in so
alled superimposed 
laims in�ation.The 
hain-ladder method makes impli
it allowan
e for 
laims in�ation sin
e it proje
ts thein�ation present in the past data into the future, see e.g. Taylor (2000). Consequently, itonly works properly when the in�ation rate is 
onstant. When the e
onomi
 in�ation rateis non-
onstant, the past paid losses 
an be 
onverted to 
urrent value by some relevantindex before they are proje
ted into the future by the 
hain-ladder, but still there is noallowan
e for superimposed 
laims in�ation.Another approa
h of dealing with 
laims in�ation is to in
orporate it into the model un-derlying the reserving method. In this way the past in�ation rate 
an be estimated andthe future in�ation rate 
an be predi
ted within the model. Verbeek (1972) introdu
edsu
h a method in the reinsuran
e 
ontext and Taylor (1977) developed it further to beappli
able to the average 
laim 
ost in a general 
ontext. The reserving te
hnique is 
alledthe separation method. However, the separation method has, unlike its famous relative,remained quite anonymous in the literature on sto
hasti
 
laims reserving. For instan
e,the mean squared error of predi
tion for the 
hain-ladder was analyti
ally 
al
ulated byMa
k (1993) and revisited by Bu
hwalder et al. (2006) and Ma
k et al. (2006) and a full



2 THE SEPARATION METHOD 3predi
tive distribution was obtained for the 
hain-ladder by bootstrapping in England &Verrall (1999), England (2002) and Pinheiro et al. (2003). Re
ently the variability of otherreserving methods has been investigated as well, e.g. the Bornhuetter-Ferguson method byanalyti
al approximation in Ma
k (2008) and the Muni
h 
hain-ladder, see Quarg & Ma
k(2004), by bootstrapping of two 
orrelated quantities in Liu & Verrall (2008).The obje
t of this paper is to analyze the variability of the separation method. Sin
e boot-strapping easily gives a full predi
tive distribution and 
an also be used in risk managementwith Dynami
 Finan
ial Analysis (DFA) we develop a bootstrap pro
edure for the sepa-ration method. For this purpose we use an extended version of the parametri
 bootstrapte
hnique des
ribed in Björkwall et al. (2008). To this end, we introdu
e a parametri
framework within the separation model, in whi
h 
laim 
ounts are Poisson distributed and
laim amounts are gamma distributed 
onditionally on the ultimate 
laim 
ounts. Thisenables joint resampling of 
laim 
ounts and 
laim amounts.Se
tion 2 
ontains the de�nitions and the theory behind the separation method. In Se
tion3 the suggested bootstrap methodology is dis
ussed and it is studied numeri
ally for thewell-known data set from Taylor & Ashe (1983) in Se
tion 4. Finally, Se
tion 5 
ontains adis
ussion.2 The separation methodAssume that we have a triangle of in
remental observations of paid 
laims {Cij; i, j ∈ ∇},where ∇ denotes the upper, observational triangle ∇ = {i = 0, . . . , t; j = 0, . . . , t− i}. Thesu�xes i and j refer to the origin year and the development year, respe
tively, see Table2.1. In addition, the su�x k = i + j is used for the 
alendar years, i.e. the diagonals of ∇.The purpose is to predi
t the sum of the delayed 
laim amounts in the lower, unobservedfuture triangle {Cij ; i, j ∈ ∆}, where ∆ = {i = 1, . . . , t; j = t − i + 1, . . . , t}, see Table2.2. We write R =
∑

∆ Cij for this sum, whi
h is the outstanding 
laims for whi
h the



2 THE SEPARATION METHOD 4insuran
e 
ompany must hold a reserve. Furthermore, assume that we have a triangle ofthe in
remental observations of the numbers of 
laims {Nij; i, j ∈ ∇} 
orresponding to thesame portfolio as in Table 2.1, i.e. the observations in Table 2.3. The ultimate number of
laims relating to period of origin year i is then
Ni =

∑

j∈∇i

Nij +
∑

j∈∆i

Nij , (2.1)where ∇i and ∆i denotes the rows 
orresponding to origin year i in the upper triangle ∇and the lower triangle ∆, respe
tively.The separation method is based on the assumption that Ni is 
onsidered as known. Sin
ethe number of 
laims is often �nalized quite early even for long-tailed business, Ni mayvery well be estimated separately, e.g. by the 
hain-ladder if a triangle of 
laim 
ountsDevelopment yearA

ident year 0 1 2 · · · t − 1 t
0 C00 C01 C02 · · · C0,t−1 C0,t

1 C10 C11 C12 · · · C1,t−1

2 C20 C21 C22 · · ·... ... ... ...
t − 1 Ct−1,0 Ct−1,1

t Ct,0Table 2.1: The triangle ∇ of observed in
remental payments.Development yearA

ident year 0 1 2 · · · t − 1 t
0
1 C1,t

2 C2,t−1 C2,t... ... ...
t − 1 Ct−1,2 · · · Ct−1,t−1 Ct−1,t

t Ct,1 Ct,2 · · · Ct,t−1 Ct,tTable 2.2: The triangle ∆ of unobserved future 
laim 
osts.



2 THE SEPARATION METHOD 5is provided, and then be treated as known. Hen
eforth estimates n̂ij of the expe
tations
nij = E(Nij) is obtained by the 
hain-ladder for all 
ells in both ∇ and ∆. The estimatedultimate number of 
laims relating to origin year i is then

N̂i =
∑

j∈∇i

Nij +
∑

j∈∆i

n̂ij . (2.2)The 
hain-ladder method operates on 
umulative 
laim 
ounts
Aij =

j
∑

ℓ=0

Niℓ (2.3)rather than in
remental 
laim 
ounts Nij . Let νij = E(Aij). Development fa
tors gj areestimated for j = 0, 1, . . . , t − 1 by
ĝj =

∑t−j
i=0 Ai,j+1
∑t−j

i=0 Aij

(2.4)yielding
ν̂ij = Ai,t−i ĝt−i ĝt−i+1 . . . ĝj−1 (2.5)and

n̂i,j = ν̂i,j − ν̂i,j−1 (2.6)for ∆, while estimates of ν̂ij for ∇ are obtained by the pro
ess of ba
kwards re
ursiondes
ribed in England & Verrall (1999).Development yearA

ident year 0 1 2 · · · t − 1 t
0 N00 N01 N02 · · · N0,t−1 N0,t

1 N10 N11 N12 · · · N1,t−1

2 N20 N21 N22 · · ·... ... ... ...
t − 1 Nt−1,0 Nt−1,1

t Nt,0Table 2.3: The triangle ∇ of observed in
remental numbers of reported 
laims.



2 THE SEPARATION METHOD 6While the 
hain-ladder only assumes 
laim proportionality between the development years,the separation method in Taylor (1977) separates the 
laim delay distribution from in�u-en
es e�e
ting the 
alendar years, e.g. in�ation. In the separation model we �rst assumethat the proportion of the average 
laim amount paid in development year j is 
onstantover i; denote this proportion by rj . If the 
laims are fully paid by year t we have the
onstraint
t
∑

j=0

rj = 1. (2.7)We then make a further assumption that the 
laim amount is proportional to some index,say λk, that relates to the 
alendar year k during whi
h the 
laims are paid. The expe
ted
laim 
ost for development year j and 
alendar year k is then proportional to rj λk.Development yearA

ident year 0 1 2 · · · t − 1 t
0 r0 λ0 r1 λ1 r2 λ2 · · · rt−1 λt−1 rt λt

1 r0 λ1 r1 λ2 r2 λ3 · · · rt−1 λt

2 r0 λ2 r1 λ3 r2 λ4 · · ·... ... ... ...
t − 1 r0 λt−1 r1 λt

t r0 λtTable 2.4: The triangle ∇ of expe
ted paid 
laims.The separation model 
an be given the following formulation, whi
h is at a bit moredetailed level than the one given in Taylor (1977). Let Cijl denote the amount paid during
alendar year k for the l:th individual 
laim in
urred in origin year i and assume that Cijlare 
onditionally independent for all i, j and l given Ni. A

ording to the dis
ussion abovewe also assume that
E(Cijl|Ni) = rj λk. (2.8)Sin
e the total amount paid during 
alendar year k for 
laims in
urred in origin year i is

Cij =
Ni
∑

l=1

Cijl (2.9)



2 THE SEPARATION METHOD 7we obtain
E

(

Cij

Ni

∣

∣

∣

∣

∣

Ni

)

=
1

Ni

Ni
∑

l=1

E (Cijl|Ni) =
1

Ni

Ni
∑

l=1

rj λk = rj λk (2.10)for the 
onditional expe
tation of the average 
laim 
osts given the ultimate number of
laims and this relation is the basi
 assumption of the separation method. The expe
tationsin equation (2.10) now build up the triangle in Table 2.4.If Ni is estimated separately by (2.2), it follows from (2.8) and (2.9) that
E

(

Cij

N̂i

∣

∣

∣

∣

∣

∇N

)

=
E(E(Cij|Ni,∇N)|∇N)

N̂i

= rj λk

(
∑

∇i
Nij +

∑

∆i
nij)

(
∑

∇i
Nij +

∑

∆i
n̂ij)

≈ rj λk (2.11)where in the last equality we used n̂ij ≈ nij .Estimates r̂j and λ̂k of the parameters in the triangle in Table 2.4 
an now be obtainedusing the 
orresponding triangle ∇s of observed values
sij =

Cij

N̂i

, (2.12)and the method of moments equations
sk0 + sk−1,1 + . . . + s0k = (r̂0 + . . . + r̂k) λ̂k , k = 0, . . . , t (2.13)for the diagonals of ∇ and
s0j + s1j + . . . + st−j,j = (λ̂j + . . . + λ̂t) r̂j , j = 0, . . . , t (2.14)for the 
olumns of ∇.Taylor (1977) shows that the equations (2.13) - (2.14), with the side 
onstraint (2.7), havea unique solution that 
an be obtained re
ursively, starting with k = t in (2.13) to solvefor λ̂t, then j = t in (2.14) to solve for r̂t, k = t − 1 in (2.13) to solve for λ̂t−1 and so on.This yields

λ̂k =

∑k
i=0 si,k−i

1 −
∑t

j=k+1 r̂j

, k = 0, . . . , t (2.15)



3 A CONDITIONAL PARAMETRIC BOOTSTRAP APPROACH 8
r̂j =

∑t−j
i=0 sij

∑t
k=j λ̂k

, j = 0, . . . , t , (2.16)where ∑t
j=k+1 r̂j is interpreted as zero when k = t.Estimates m̂ij of the expe
tations mij = E(Cij) for 
ells in ∇ are now given by

m̂ij = N̂i r̂j λ̂k , (2.17)but in order to obtain the estimates of ∆ it remains to predi
t λk for t+1 ≤ k ≤ 2 t, whi
hrequires some in�ation assumption.If there is a trend in the in�ation indexes λ̂k for k ≤ t then smoothing and extrapolation
ould be used in order to fore
ast the future in�ation. An alternative is to use an averageof the past indexes. In any 
ase, with an in�ation assumption of, say, K%, the fore
asted
λk+1 
an be obtained as λ̂k+1 = (1 + K

100
) λ̂k for t ≤ k ≤ 2 t − 1. The 
ell expe
tations of

∆Cij are then estimated by equation (2.17) and estimators of the outstanding 
laims areobtained by summing per a

ident year R̂i =
∑

j∈∆i
m̂ij . The estimator of the total reserveis R̂ =

∑

∆ m̂ij.The separation model des
ribed by Taylor (1977) is more general than the one dis
ussedin this paper, sin
e the original model do not presume that Ni is the number of 
laims; it
ould be some other exposure relating to origin year i as well. However, in this paper westi
k to the number of 
laims.3 A 
onditional parametri
 bootstrap approa
hFor the purpose of obtaining the predi
tive distribution of the 
laims reserve R estimatedby the separation method the bootstrap te
hnique des
ribed in Pinheiro et al. (2003) and,in parti
ular, the parametri
 approa
h in Björkwall et al. (2008) is used. For the samplingpro
ess we model the paid 
laims Cij 
onditionally on Ni in a

ordan
e with (2.11). Weprovide models for the assumption of sto
hasti
 Ni as well as for the 
ase when Ni is



3 A CONDITIONAL PARAMETRIC BOOTSTRAP APPROACH 9
onsidered as known. The former assumption demands that we develop the te
hniquedes
ribed in Björkwall et al. (2008) in order to handle ∇N as well as ∇C.3.1 Sto
hasti
 Poisson distributed 
laim 
ountsVerbeek (1972) adopted a Poisson distribution for the 
laim 
ounting variable, while themethod des
ribed in Taylor (1977) is distribution-free. However, the assumption of inde-pendent and Poisson distributed 
laim 
ounts
Nij ∈ Po(nij) (3.1)yields a very reasonable model for the sampling pro
ess.In addition we assume that the 
onditionally independent 
laims Cijl|Ni in (2.8) are gammadistributed. We use the notation

Cijl|Ni ∈ Γ

(

1

φ
, rj λk φ

)

, (3.2)where 1/φ is the so 
alled index parameter and rj λk φ is the s
ale, so that the expe
tedvalue is rj λk. Moreover, φ > 0.Re
alling (2.9) and the independen
e of the Cijl we �nd that
Cij |Ni ∈ Γ

(

Ni

φ
, rj λk φ

)

, (3.3)whi
h is 
onsistent with (2.10) sin
e
E(Cij|Ni) = Ni rj λk . (3.4)The varian
e of the amounts in (3.3) is

V ar(Cij|Ni) = φ Ni (rj λk)
2 = φ

E2(Cij|Ni)

Ni

, (3.5)whi
h 
orresponds to a weighted generalized linear model under the assumption of a loga-rithmi
 link fun
tion and a gamma distribution. We use a Pearson type estimate of φ, 
f.
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Cullagh & Nelder (1989),
φ̂ =

1

|∇| − q

∑

∇

N̂i

(Cij − Ê(Cij|Ni))
2

Ê2(Cij |Ni)
=

1

|∇| − q

∑

∇

N̂i

(Cij − N̂i r̂j λ̂k)
2

(N̂i r̂j λ̂k)2
, (3.6)where |∇| = (t+1) (t+2)/2 is the number of observations in ∇C, the estimators N̂i, λ̂j and

r̂j are obtained from (2.2), (2.15) and (2.16) and q = 2 t + 1 is the number of parametersthat have to be estimated by the separation method, i.e. rj for j = 0, 1, . . . , t − 1 and λkfor k = 0, 1, . . . , t.Noti
e that (3.3) 
ould be interpreted as follows; given Ni 
laims we allo
ate 
laim amountsindependently over the development years j a

ording to the proportions r0, . . . , rt beforethe in�ation is 
onsidered. A

ording to (3.2) we not only allo
ate 
laim amounts butindividual 
laims as well. This interpretation is 
onsistent with the assumptions dis
ussedin Se
tion 2.We adopt the bootstrap te
hnique des
ribed in Pinheiro et al. (2003) and, in parti
ular, theparametri
 approa
h in Björkwall et al. (2008). The relation between the true outstanding
laims R and its estimator R̂ in the real world is, by the plug-in-prin
iple, substituted inthe bootstrap world by their bootstrap 
ounterparts. Hen
e, the pro
ess error is in
ludedin R∗∗, i.e. the true outstanding 
laims in the bootstrap world, while the estimation erroris in
luded in R̂∗, i.e. the estimated outstanding 
laims in the bootstrap world. Hen
eforthwe use the index ∗ for random variables or plug-in estimators in the bootstrap world whi
h
orrespond to observations or estimators in the real world, while the index ∗∗ is usedfor random variables in the bootstrap world when the 
ounterparts in the real world areunobserved.The parametri
 bootstrap approa
h in Björkwall et al. (2008) 
an now be implemented forthe separation method using (3.1) and (3.3) in the following way. We draw N∗
ij and N∗∗

ijfrom
N∗

ij ∈ Po(n̂ij) and N∗∗

ij ∈ Po(n̂ij) (3.7)
B times for all i, j ∈ ∇ and i, j ∈ ∆, respe
tively. We thereby get the B pseudo-triangles
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∇N∗ and ∆N∗∗. The ultimate number of 
laims per origin year in the bootstrap world isthen given by

N∗∗

i =
∑

j∈∇i

N∗

ij +
∑

j∈∆i

N∗∗

ij (3.8)a

ording to (2.1).On
e N∗∗
i is 
al
ulated, C∗

ij is sampled B times from
C∗

ij |N
∗∗

i ∈ Γ

(

N∗∗
i

φ̂
, r̂j λ̂k φ̂

)

, (3.9)for all i, j ∈ ∇ yielding the B pseudo-triangles ∇C∗. Here λ̂k and r̂j are obtained from(2.15) and (2.16).The heuristi
 estimation pro
ess des
ribed in Se
tion 2 is then repeated B times for ea
hpair of pseudo-triangles. The 
laim 
ounts are �rst fore
asted by ∆n̂∗, obtained by the
hain-ladder from ∇N∗, in order to estimate the ultimate number of 
laims per origin year
N̂∗

i =
∑

j∈∇i

N∗

ij +
∑

j∈∆i

n̂∗

ij (3.10)a

ording to (2.2). The future payments are then fore
asted by estimating ∆m̂∗ a

ordingto (2.12) - (2.17). Finally, estimators for the outstanding 
laims in the bootstrap worldare obtained by R̂∗
i =

∑

j∈∆i
m̂∗

ij and R̂∗ =
∑

∆ m̂∗
ij.In order to generate a random out
ome of the true outstanding 
laims in the bootstrapworld, i.e. R∗∗

i =
∑

j∈∆i
C∗∗

ij and R∗∗ =
∑

∆ C∗∗
ij , we sample on
e again from (3.9) for all

i, j ∈ ∆ to get B triangles ∆C∗∗.The �nal step is to 
al
ulate the B predi
tion errorspe∗∗i =
R∗∗

i − R̂∗
i

√

̂V ar(R∗∗
i )

and pe∗∗ =
R∗∗ − R̂∗

√

̂V ar(R∗∗)
. (3.11)The predi
tive distributions of the outstanding 
laims Ri and R are then obtained byplotting

R̃∗∗

i = R̂i + pe∗∗i √̂V ar(Ri) and R̃∗∗ = R̂ + pe∗∗√̂V ar(R) (3.12)



3 A CONDITIONAL PARAMETRIC BOOTSTRAP APPROACH 12for ea
h B.The 
onditional independen
e of Cij for all i and j given Ni (3.3) implies that
V ar(Ri) = E (V ar (Ri|Ni)) + V ar (E (Ri|Ni))

= E





∑

j∈∆i

φNi (rjλk)
2



+ V ar





∑

j∈∆i

Nirjλk





= φE (Ni)
∑

j∈∆i

(rjλk)
2 + V ar (Ni)





∑

j∈∆i

rjλk





2

=





φ
∑

j∈∆i

(rjλk)
2 +





∑

j∈∆i

rjλk





2










∑

j∈∇i∪∆i

nij



 (3.13)sin
e
E(Ni) = V ar(Ni) =

∑

j∈∇i∪∆i

nij . (3.14)By plugging in the estimates we �nd
̂V ar (Ri) =





φ̂
∑

j∈∆i

(

r̂jλ̂k

)2

+





∑

j∈∆i

r̂jλ̂k





2










∑

j∈∇i∪∆i

n̂ij



 (3.15)and
̂V ar (R) =

∑

i





φ̂
∑

j∈∆i

(

r̂jλ̂k

)2

+





∑

j∈∆i

r̂jλ̂k





2










∑

j∈∇i∪∆i

n̂ij



 . (3.16)Analogously, the varian
es appearing in (3.11) are
̂V ar (R∗∗

i ) =





φ̂∗
∑

j∈∆i

(

r̂∗j λ̂
∗

k

)2

+





∑

j∈∆i

r̂∗j λ̂
∗

k





2










∑

j∈∇i∪∆i

n̂∗

ij



 (3.17)and
̂V ar (R∗∗) =

∑

i





φ̂∗
∑

j∈∆i

(

r̂∗j λ̂
∗

k

)2

+





∑

j∈∆i

r̂∗j λ̂
∗

k





2










∑

j∈∇i∪∆i

n̂∗

ij



 (3.18)where
φ̂∗ =

1

|∇| − q

∑

∇

N̂∗

i

(C∗
ij − N̂∗

i r̂∗j λ̂∗
k)

2

(N̂∗
i r̂∗j λ̂∗

k)
2

. (3.19)in a

ordan
e with (3.6).



3 A CONDITIONAL PARAMETRIC BOOTSTRAP APPROACH 13It is remarked in Björkwall et al. (2008) that for many bootstrap pro
edures, resamp-ling of standardized quantities often in
reases a

ura
y 
ompared to using unstandardizedquantities. Nevertheless, the unstandardized predi
tion errorspe∗∗i = R∗∗

i − R̂∗

i and pe∗∗ = R∗∗ − R̂∗ (3.20)are useful, e.g. for the purpose of studying the estimation and the pro
ess errors, but alsosin
e they are always de�ned.The predi
tive distributions of the outstanding 
laims Ri and R are then obtained byplotting the B quantities
R̃∗∗

i = R̂i + pe∗∗i and R̃∗∗ = R̂ + pe∗∗ . (3.21)The parametri
 predi
tive bootstrap pro
edure is des
ribed in Figure 1 and a

ording toBjörkwall et al. (2008) we will refer to it as standardized or unstandardized depending onwhi
h predi
tion errors that are used.3.2 Known 
laim 
ountsIn Se
tion 2 it was remarked that the separation model is based on the assumption that
Ni is 
onsidered as known at the moment when the reserving is being done. This 
an oftenbe a reasonable assumption sin
e the numbers of 
laims are usually �nalized quite earlyeven for long-tailed business. In Se
tion 3.1 Ni was a random variable; in order to get aview of how mu
h un
ertainty Ni 
ontributes to the predi
tive distribution of the 
laimsreserve we now 
onsider the spe
ial 
ase when Ni is treated as deterministi
, in 
ontrastto (3.1). Consequently, N̂i ≡ Ni in all equations above.Assumption (3.3) 
an still be used and φ̂ is estimated as in (3.6), but the sampling pro
ess
hanges. We do not have to generate pseudo-triangles of 
laim 
ounts in the bootstrap



3 A CONDITIONAL PARAMETRIC BOOTSTRAP APPROACH 14Stage 1 - Real worldSubstage 1.1 - The triangle of 
laim 
ounts ∇N

· Fore
ast the future expe
ted values ∆n̂ and 
al
ulate the �tted values ∇n̂ by 
hain-ladder.
· Cal
ulate the estimated ultimate 
laim 
ount per origin year N̂i.Substage 1.2 - The triangle of paid 
laims ∇C

· Use N̂i from Substage 1.1 for the purpose of fore
asting the future expe
ted values ∆m̂and 
al
ulating the �tted values ∇m̂ by the separation method.
· Cal
ulate φ̂ for the sampling pro
ess.
· Cal
ulate the outstanding 
laims R̂i =

∑

j∈∆i
m̂ij and R̂ =

∑

∆ m̂ij.Stage 2 - Bootstrap worldSubstage 2.1 - The estimated outstanding 
laimsSubstage 2.1.1 - The pseudo-triangle of 
laim 
ounts ∇N∗

· Sample from (3.7) for i, j ∈ ∇ to obtain the pseudo-reality in ∇N∗.
· Fore
ast the future expe
ted values ∆n̂∗ by 
hain-ladder.
· Cal
ulate the estimated ultimate 
laim 
ount per origin year N̂∗

i .Substage 2.1.2 - The pseudo-triangle of paid 
laims ∇C∗

· Sample from (3.7) for i, j ∈ ∆ to obtain the pseudo-reality in ∆N∗∗.
· Cal
ulate the ultimate 
laim 
ount per origin year N∗∗

i using ∇N∗ from Substage 2.1.1and ∆N∗∗.
· Sample from (3.9) for i, j ∈ ∇ to obtain the pseudo-reality in ∇C∗ 
onditionally on ∆N∗∗

i .
· Use N̂∗

i from Substage 2.1.1. for the purpose of fore
asting the future expe
ted values ∆m̂∗by the separation method.
· Cal
ulate the estimated outstanding 
laims R̂∗

i =
∑

j∈∆i
m̂∗

ij and R̂∗ =
∑

∆ m̂∗
ij .Substage 2.2 - The true outstanding 
laims

· Sample from (3.9) for i, j ∈ ∆ to obtain the pseudo-reality in ∆C∗∗ 
onditionallyon ∆N∗∗
i .

· Cal
ulate the true outstanding 
laims R∗∗
i =

∑

j∈∆i
C∗∗

ij and R∗∗ =
∑

∆ C∗∗
ij .

· Store either the standardized predi
tion errors in (3.11) or the unstandardized ones in (3.20).
· Return to the beginning of the bootstrap loop in Stage 2 and repeat B times.Stage 3 - Analysis of the simulations
· Obtain the predi
tive distribution of Ri and R, the true outstanding 
laims in the real world,by plotting the B values in either (3.12) or (3.21).Figure 1: The pro
edure of the parametri
 predi
tive bootstrap for the separation method.



4 NUMERICAL STUDY 15world, i.e. ∇N∗ and ∆N∗∗, sin
e Ni is 
onsidered as known. Thus, we just draw C∗
ij from

C∗

ij ∈ Γ(
Ni

φ̂
, r̂j λ̂k φ̂) (3.22)

B times for all i, j ∈ ∇ yielding ∇C∗. The estimation pro
ess of the separation methodis then repeated for ea
h ∇C∗ using Ni as the exposure in the bootstrap world as well.Finally, we sample on
e again B times from (3.22) for all i, j ∈ ∆ to get ∆C∗∗.The predi
tion errors and the predi
tive distributions are as earlier obtained by (3.11) and(3.12), respe
tively, but sin
e V ar(Ni) = 0, we obtain the estimators
̂V ar(Ri) = φ̂Ni

∑

∆i

(r̂jλ̂k)
2 (3.23)and

̂V ar(R) =
∑

i

φ̂Ni

∑

∆i

(r̂jλ̂k)
2 (3.24)instead of (3.15) and (3.16).Analogously, the estimators appearing in (3.11) are

̂V ar(R∗∗

i ) = φ̂∗Ni

∑

∆i

(r̂∗j λ̂
∗

k)
2 (3.25)and

̂V ar(R∗∗) =
∑

i

φ̂∗Ni

∑

∆i

(r̂∗j λ̂
∗

k)
2 , (3.26)where φ̂∗ is estimated by (3.19).The unstandardized predi
tion errors in (3.20) 
an of 
ourse be used as well. The predi
tivedistributions are then obtained by (3.21).This simpli�ed approa
h is summarized in Figure 2.4 Numeri
al studyThe purpose of the numeri
al study is to illustrate the parametri
 bootstrap pro
edure forthe separation method and to 
ompare it to the approa
h for the 
hain-ladder des
ribed in
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Stage 1 - Real worldSubstage 1.1 - The triangle of 
laim 
ounts ∇N

· Fore
ast the future expe
ted values ∆n̂ by 
hain-ladder.
· Cal
ulate the estimated ultimate 
laim 
ount per origin year N̂i.Substage 1.2 - The triangle of paid 
laims ∇C

· Use N̂i from Substage 1.1 for the purpose of fore
asting the future expe
ted values ∆m̂and 
al
ulating the �tted values ∇m̂ by the separation method.
· Cal
ulate φ̂ for the sampling pro
ess.
· Cal
ulate the outstanding 
laims R̂i =

∑

j∈∆i
m̂ij and R̂ =

∑

∆ m̂ij.Stage 2 - Bootstrap worldSubstage 2.1 - The estimated outstanding 
laims
· Sample from (3.22) for i, j ∈ ∇ to obtain the pseudo-reality in ∇C∗.
· Use N̂i for the purpose of fore
asting the future expe
ted values ∆m̂∗ by the separationmethod.
· Cal
ulate the estimated outstanding 
laims R̂∗

i =
∑

j∈∆i
m̂∗

ij and R̂∗ =
∑

∆ m̂∗
ij .Substage 2.2 - The true outstanding 
laims

· Sample from (3.22) for i, j ∈ ∆ to obtain the pseudo-reality in ∆C∗∗.
· Cal
ulate the true outstanding 
laims R∗∗

i =
∑

j∈∆i
C∗∗

ij and R∗∗ =
∑

∆ C∗∗
ij .

· Store either the standardized predi
tion errors in (3.11) or the unstandardized ones in (3.20).
· Return to the beginning of the bootstrap loop in Stage 2 and repeat B times.Stage 3 - Analysis of the simulations
· Obtain the predi
tive distribution of Ri and R, the true outstanding 
laims in the real world,by plotting the B values in either (3.12) or (3.21).Figure 2: The pro
edure of the simpli�ed parametri
 predi
tive bootstrap for the separationmethod.



4 NUMERICAL STUDY 17Björkwall et al. (2008). From now on B = 10 000 simulations are used for ea
h predi
tion.The upper 95 per
ent limits are studied and the 
oe�
ients of variation, i.e. √V ar(R̃∗∗
i )/R̂iand √V ar(R̃∗∗)/R̂, are presented as well.We use the well-known data from Taylor & Ashe (1983), who also provide observations ofnumber of 
laims. The triangles of paid 
laims ∇C and 
laim 
ounts ∇N are presented inTable 4.1 and Table 4.2, respe
tively.4.1 The estimate of the 
laims reserve and the payment patternThe assumption of the future in�ation rate has great impa
t on the 
laims reserve estimatedby the separation method. The future in�ation rate 
an of 
ourse be modeled by morere�ned approa
hes, but this is beyond the s
ope of this paper and we just 
onsider a
onstant or the mean rate observed so far. In Table 4.3 the estimators are shown underthree di�erent assumptions. The in�ation rate 11, 01% 
orresponds to the mean in�ationrate observed so far, while 5% and 15% are 
hosen just for 
omparison. The estimated
laims reserves obtained by the 
hain ladder are presented as well.Table 4.4 shows the expe
ted 
umulative payment proportions

ĉj =

∑j
l=0

∑t
i=0 m̂il

∑t
l=0

∑t
i=0 m̂il

. (4.1)Obviously, a higher future in�ation rate tends to delay the payments.0 1 2 3 4 5 6 7 8 90 357 848 766 940 610 542 482 940 527 326 574 398 146 342 139 950 227 229 67 9481 352 118 884 021 933 894 1 183 289 445 745 320 996 527 804 266 172 425 0462 290 507 1 001 799 926 219 1 016 654 750 816 146 923 495 992 280 4053 310 608 1 108 250 776 189 1 562 400 272 482 352 053 206 2864 443 160 693 190 991 983 769 488 504 851 470 6395 396 132 937 085 847 498 805 037 705 9606 440 832 847 631 1 131 398 1 063 2697 359 480 1 061 648 1 443 3708 376 686 986 6089 344 014Table 4.1: Observations of paid 
laims ∇C from Taylor & Ashe (1983).



4 NUMERICAL STUDY 180 1 2 3 4 5 6 7 8 90 40 124 157 93 141 22 14 10 3 21 37 186 130 239 61 26 23 6 62 35 158 243 153 48 26 14 53 41 155 218 100 67 17 64 30 187 166 120 55 135 33 121 204 87 376 32 115 146 1037 43 111 838 17 929 22Table 4.2: Observations of 
laim 
ounts ∇N from Taylor & Ashe (1983).4.2 Predi
tive bootstrap results for the 
hain-ladderIn order to 
ompare the separation method to the 
hain-ladder we summarize the resultsof the parametri
 predi
tive bootstrap pro
edures des
ribed in Björkwall et al. (2008),where data is bootstrapped a

ording to the plug-in-prin
iple under the assumption of agamma distribution; see the referen
e for details. Tables 4.5 - 4.6 show the results for thestandardized as well as the unstandardized approa
h.Future in�ation Future in�ation Future in�ation Chain-ladderYear i rate 5.00% rate 11.01% rate 15.00%1 84 339 89 163 92 371 94 6342 473 893 506 151 527 909 469 5113 720 846 794 132 845 099 709 6384 1 144 208 1 288 308 1 391 323 984 8895 1 497 489 1 722 883 1 888 356 1 419 4596 2 095 131 2 448 039 2 713 372 2 177 6417 2 793 640 3 269 931 3 634 088 3 920 3018 3 636 785 4 314 184 4 841 171 4 278 9729 4 990 729 6 043 441 6 879 216 4 625 811Total 17 437 060 20 476 232 22 812 905 18 680 856Table 4.3: The estimated 
laims reserves under the 
hain-ladder, 
ompared to the separationmethod with di�erent in�ation assumptions. The mean in�ation rate observed so far is
11, 01%.
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Development Future in�ation Future in�ation Future in�ation Chain-ladderyear j rate 5.00% rate 11.01% rate 15.00%0 7.1 6.7 6.4 6.91 25.2 23.9 23.0 24.22 44.5 42.5 41.0 42.23 63.3 60.9 59.1 61.54 73.7 71.3 69.5 72.25 81.2 79.0 77.4 79.76 87.7 86.0 84.7 86.67 92.3 91.0 90.1 91.38 98.6 98.3 98.1 98.39 100.0 100.0 100.0 100.0Table 4.4: The expe
ted 
umulative payment proportion (in %) under the 
hain-ladder,
ompared to the separation method with di�erent in�ation assumptions. The mean in�ationrate observed so far is 11, 01%.

Standardized UnstandardizedYear i Gamma Gamma1 219 178 168 7562 861 781 756 6343 1 169 041 1 062 7834 1 519 540 1 409 0345 2 127 947 1 975 2226 3 358 037 3 038 7327 6 253 164 5 562 1338 7 386 412 6 284 0209 9 247 043 7 148 120Total 23 991 467 23 123 593Table 4.5: The 95 per
entiles of the parametri
 predi
tive bootstrap pro
edures des
ribed inBjörkwall et al. (2008) for the 
hain-ladder. We work under the assumption of a gammadistribution and the pro
edure is either standardized or unstandardized.



4 NUMERICAL STUDY 204.3 The standardized predi
tive bootstrap for the separation methodThe results for the pro
edure des
ribed in Se
tion 3.1, when the standardized predi
tionerrors are used, are presented in Table 4.7 for the three di�erent assumptions of the futurein�ation rate. Two of these are mean in�ation rates observed so far, either treated asa 
onstant (11.01%) or as sto
hasti
 in the bootstrap world. A

ording to the plug-in-prin
iple the in�ation rate should be treated as sto
hasti
, i.e. re
omputed from {λ̂∗
k}for ea
h resample, but the former alternative is shown as well for 
omparison. Table 4.8
ontains the 
oe�
ients of variation. Tables 4.7 - 4.8 also in
lude the results obtained bythe 
hain-ladder for 
omparison.As we 
an see the results are strongly a�e
ted by the in�ation assumption and the 
oef-�
ients of variation are naturally higher when the mean in�ation is treated as sto
hasti
,in parti
ular for the grand total. As expe
ted the 
oe�
ients of variation of the latestorigin year are lower for the separation method than for the 
hain-ladder, sin
e the ex-treme sensitivity to outliers for the 
hain-ladder in the south 
orner of the upper triangleis removed for the separation method. Less expe
ted is that the separation method hasStandardized UnstandardizedYear i Gamma Gamma1 65 502 41 383 32 314 28 275 26 256 27 257 29 278 35 329 47 38Total 15 16Table 4.6: The 
oe�
ients of variation of the simulations (in %) of the parametri
 predi
-tive bootstrap pro
edures des
ribed in Björkwall et al. (2008) for the 
hain-ladder. We workunder the assumption of a gamma distribution and the pro
edure is either standardized orunstandardized.
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In�ation In�ation In�ation In�ation Chain LadderYear i 5.00% 11.01% Mean 15.00% Gamma1 197 907 201 184 190 418 208 028 219 1782 839 849 882 300 858 679 926 020 861 7813 1 137 848 1 253 445 1 204 288 1 336 139 1 169 0414 1 704 374 1 908 980 1 859 360 2 066 985 1 519 5405 2 178 017 2 513 476 2 446 109 2 751 393 2 127 9476 3 033 630 3 526 976 3 516 529 3 901 976 3 358 0377 4 223 019 4 893 910 4 807 925 5 359 921 6 253 1648 5 564 419 6 540 182 6 489 287 7 239 800 7 386 4129 8 261 189 9 852 469 9 540 033 11 081 546 9 247 043Total 23 412 570 27 442 696 27 659 095 30 692 578 23 991 467Table 4.7: The 95 per
entiles of the standardized predi
tive bootstrap pro
edure under the
hain-ladder, 
ompared to the separation method with di�erent in�ation assumptions. Twoof these are mean in�ation rates observed so far, either treated as a 
onstant (11.01 %) oras sto
hasti
 (Mean).
In�ation In�ation In�ation In�ation Chain LadderYear i 5.00% 11.01% Mean 15.00% Gamma1 63 61 57 60 652 38 38 37 38 413 30 29 30 30 324 26 25 27 25 285 24 24 27 24 266 24 23 28 23 277 26 26 31 25 298 28 27 32 26 359 33 32 37 31 47Total 18 18 25 17 15Table 4.8: The 
oe�
ients of variation of the simulations (in %) of the standardized pre-di
tive bootstrap pro
edure under the 
hain-ladder, 
ompared to the separation method withdi�erent in�ation assumptions. Two of these are mean in�ation rates observed so far,either treated as a 
onstant (11.01 %) or as sto
hasti
 (Mean).
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oe�
ients of variation for years 1-3.4.4 The unstandardized predi
tive bootstrap for the separationmethodIn order to study the estimation and the pro
ess error we also investigate the pro
eduredes
ribed in Se
tion 3.1 when the unstandardized predi
tion errors are used. The resultsare shown in Tables 4.9 - 4.10.In�ation In�ation In�ation In�ation Chain LadderYear i 5.00% 11.01% Mean 15.00% Gamma1 152 189 158 866 158 108 163 797 168 7562 765 412 803 966 792 018 840 344 756 6343 1 071 483 1 180 997 1 150 577 1 262 227 1 062 7834 1 632 010 1 825 048 1 780 637 1 967 326 1 409 0345 2 082 197 2 413 236 2 340 763 2 644 546 1 975 2226 2 916 401 3 389 043 3 327 822 3 754 270 3 038 7327 4 024 333 4 666 419 4 547 122 5 125 141 5 562 1338 5 270 015 6 180 526 6 027 989 6 874 970 6 284 0209 7 528 152 9 024 898 8 787 987 10 208 677 7 148 120Total 22 281 683 26 091 962 26 145 893 29 117 165 23 123 593Table 4.9: The 95 per
entiles of the unstandardized predi
tive bootstrap pro
edure underthe 
hain-ladder, 
ompared to the separation method with di�erent in�ation assumptions.Two of these are mean in�ation rates observed so far, either treated as a 
onstant (11.01%) or as sto
hasti
 (Mean).As remarked in Björkwall et al. (2008) the per
entiles of the unstandardized predi
tivebootstrap tend to be lower than for the standardized one. This was explained by the leftskewness of the predi
tive distribution of the unstandardized bootstrap 
ompared to thedistribution obtained by the standardized bootstrap. A

ording to Figure 3 this seems tohold for the separation method too. Figure 3 (
) - (d) show the predi
tive distributionsof the total 
laims reserve under the assumption of a sto
hasti
 future in�ation rate 
orre-sponding to the mean in�ation rate observed so far. The predi
tive distribution obtainedby the unstandardized bootstrap in (
) is skewed to the left 
ompared to the one obtainedby the standardized bootstrap in (d), whi
h is slightly skewed to the right. This follows
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e the pro
ess 
omponent in Figure 3 (a) has smaller variability than the estimation
omponent in Figure 3 (b), and the latter is skewed to the right. The left skewness isto a large extent removed for the standardized predi
tion errors (3.11), be
ause of thedenominator, but not for the unstandardized predi
tion errors (3.20).Re
omputing the future in�ation rate from {λ̂∗
k} for ea
h resample in the bootstrap worldyields some rates whi
h are unreasonably high. These rates a�e
t the estimation 
ompo-nent, whi
h be
ome more skewed to the right than for a 
onstant future in�ation rate.Consequently, the predi
tive distribution of the outstanding 
laims is more skewed to theleft for the sto
hasti
 future in�ation rate than for the 
onstant. This explains why mostof the per
entiles in Tables 4.7 and 4.9 are lower for sto
hasti
 in�ation.4.5 Known 
laim 
ountsIn Tables 4.11 - 4.12 we present the results of the simpli�ed approa
h in Se
tion 3.2 wherewe treat Ni as known. As expe
ted the variability has de
reased 
ompared to the results inTables 4.7 - 4.8, but the di�eren
e is notably small. This is 
onsistent with the separationIn�ation In�ation In�ation In�ation Chain LadderYear i 5.00% 11.01% Mean 15.00% Gamma1 49 48 50 48 502 36 36 38 35 383 29 29 33 29 314 25 25 32 25 275 24 24 34 24 256 24 23 36 23 257 26 26 39 25 278 27 26 43 26 329 33 32 52 31 38Total 18 18 35 17 16Table 4.10: The 
oe�
ients of variation of the simulations (in %) of the unstandardizedpredi
tive bootstrap pro
edure under the 
hain-ladder, 
ompared to the separation methodwith di�erent in�ation assumptions. Two of these are mean in�ation rates observed so far,either treated as a 
onstant (11.01 %) or as sto
hasti
 (Mean).



4 NUMERICAL STUDY 24method assumption that the numbers of 
laims usually are �nalized early enough to be
onsidered as known. This is interesting, sin
e Table 4.2 reveals that the data here isa
tually an example when 
laim numbers are not �nalized very fast. As expe
ted, thedi�eren
e is largest for the last origin year, i.e. where we predi
t the ultimate number of
laims based on one single observation.
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Figure 3: Density 
harts of R∗∗ (a), R̂∗ (b) and R̃∗∗ for the unstandardized (
) and stan-dardized (d) predi
tive bootstrap pro
edure under the assumption of a sto
hasti
 futurein�ation rate 
orresponding to the mean in�ation rate observed so far.
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In�ation In�ation In�ation In�ation Chain LadderYear i 5.00% 11.01% Mean 15.00% Gamma1 192 618 203 666 194 659 211 058 219 1782 838 502 897 770 875 334 934 584 861 7813 1 142 097 1 243 302 1 195 689 1 332 776 1 169 0414 1 697 879 1 918 643 1 858 748 2 074 808 1 519 5405 2 200 470 2 525 290 2 451 200 2 726 575 2 127 9476 3 032 494 3 577 632 3 481 789 3 914 571 3 358 0377 4 250 351 4 871 638 4 819 584 5 386 039 6 253 1648 5 532 888 6 507 485 6 421 424 7 227 340 7 386 4129 7 461 845 9 023 231 8 859 782 10 108 297 9 247 043Total 23 398 840 27 417 470 27 783 761 30 304 007 23 991 467Table 4.11: The 95 per
entiles of the simpli�ed standardized predi
tive bootstrap pro
edureunder the 
hain-ladder, 
ompared to the separation method when Ni is 
onsidered as known.We work under di�erent in�ation assumptions. Two of these are mean in�ation ratesobserved so far, either treated as a 
onstant (11.01 %) or as sto
hasti
 (Mean).
In�ation In�ation In�ation In�ation Chain LadderYear i 5.00% 11.01% Mean 15.00% Gamma1 63 62 57 61 652 39 39 39 39 413 30 29 30 29 324 26 26 27 25 285 24 24 27 24 266 24 24 27 23 277 27 26 31 25 298 27 26 32 25 359 26 25 32 24 47Total 17 17 24 17 15Table 4.12: The 
oe�
ients of variation of the simulations (in %) of the simpli�ed stan-dardized predi
tive bootstrap pro
edure under the 
hain-ladder, 
ompared to the separationmethod when Ni is 
onsidered as known. We work under three di�erent in�ation assump-tions. Two of these are mean in�ation rates observed so far, either treated as a 
onstant(11.01 %) or as sto
hasti
 (Mean).



5 CONCLUSIONS 265 Con
lusionsThe separation method is a useful reserving te
hnique for the purpose of modeling 
laimsin�ation, whi
h 
ontributes to the un
ertainty of the 
laims reserve and therefore shouldbe 
onsidered in risk management. This paper provides a parametri
 bootstrap pro
edure,whi
h 
an be used to assess the un
ertainty of the separation method. It is of 
oursedi�
ult to fore
ast the future in�ation and in this paper simple assumptions have beenused. We believe that the future in�ation for real appli
ations should be modeled by morere�ned approa
hes.In one example we saw that whether we 
onsider Ni as sto
hasti
 or known in the bootstrappro
edure the results are still at the same level. Of 
ourse, the situation might be di�erentin another example.Furthermore, when we 
ompare the per
entiles obtained for the separation method withthe ones for the 
hain-ladder in Tables 4.7 and 4.9 we 
an see that the result is more a�e
tedby the assumption of the future 
laims in�ation rate than the 
hoi
e between the 
hainladder and the separation method. Sin
e the separation method, under the assumption ofa future in�ation rate 
orresponding to the mean rate observed so far, indi
ates a higherrisk than predi
ted by the 
hain-ladder the question of whi
h method is preferable in agiven situation immediately arises. Therefore, in a future paper, it would be interesting to
ompare the two methods in more situations than the one in Se
tion 4 and in parti
ularfor long-tailed data.The bootstrap approa
h for the separation method 
an also be used in a DFA 
ontextto simulate the reserve risk. However, as remarked by England & Verrall (2006), a DFAmodel usually in
ludes an e
onomi
 s
enario generator (ESG), whi
h simulates the futurein�ation, and it is important that the dependen
e between reserve risk and the in�ationfrom the ESG is in
orporated in the DFA model. Therefore, England & Verrall (2006)suggest that the data is adjusted to remove e�e
ts of the e
onomi
 in�ation before applying



5 CONCLUSIONS 27a reserving method, whi
h use 
alendar year 
omponents to model superimposed 
laimsin�ation, is applied to fore
ast the future payments. On
e the future payments has beensimulated they are re-adjusted a

ording to the in�ation obtained from the ESG.A
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