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Abstract

The general stochastic SIR epidemic in a closed population under the influence of
a term-time forced environment is considered. An “environment” is in this context
any external factor that influences the contact rate between individuals in the pop-
ulation, but is itself unaffected by the population. Here “term-time forcing” refers
to that the changes in contact rate are discontinuous but cyclic. The inclusion of
such an environment into the model is done by replacing a single contact rate λ with
a cyclically alternating renewal process with k different states denoted {Λ(t)}t≥0.
Threshold conditions in terms of R? are obtained, such that R? > 1 implies that π,
the probability of a large outbreak, is strictly positive. Examples when it is possible
to compute π are given and from these examples the impact of the distribution of
the time periods that Λ(t) spends in its different states is clearly seen.

KEY WORDS: Stochastic epidemic; Branching process in seasonal environment;
Seasonal forcing; Term-time forcing; Threshold conditions.

MSC2000: 92D30, 60J80

1 Introduction

In the present paper we focus on infectious diseases of SIR type, where SIR is an abbrevi-
ation for susceptible, infectious and recovered (and immune). These are consequently the
only possible states that an individual can belong to when we discuss SIR type diseases,
and the possible transitions between these states follows S → I → R.

∗Postal address: Mathematical Statistics, Stockholm University, SE-106 91, Stockholm, Sweden.
†E-mail: tomb@math.su.se
‡E-mail: lindholm@math.su.se



In the classical general stochastic SIR epidemic, see e.g. [3, Ch. 2.3, p. 14], many un-
realistic assumptions are made. For example one assumes that the population is closed,
that all individuals mix homogeneously, that the contact rate is constant etc. As a con-
sequence of this, many modifications of this model have been introduced and analysed in
the literature, where different assumptions have been relaxed, see e.g. [3] and references
therein. In the present paper we relax the assumption that the rate of contact between
individuals is constant over time, and we are particularly interested in the situation where
the contact rate changes following some cyclic pattern. An example of this is how school
children interact during school terms and holidays respectively. This effect on the contact
rate is quantified as a seasonally varying environment. The term “environment” in this
context is any external factor that influences the rate with which individuals make contact
in the population, but is itself independent of the population. For many viral and bac-
terial diseases seasonal incidence patterns have been observed, and measles is a striking
example where the seasonal incidence patterns seems to be highly correlated with seasonal
contact patterns, se e.g. [2, pp. 44, 46, 136-137]. The topic of seasonality in connection
to epidemics have been addressed in several papers, where some of the more recent are
[19] and [13], and an earlier reference is [22]. These papers are concerned with endemic
diseases. In [21] they consider a closed population SIR model in a seasonally varying
environment using a deterministic approach and give numerical examples. Related issues
can also be found in the area of epizootics, see e.g. [1] and references therein. In common
for all these references are that they consider seasons following some oscillating pattern,
i.e. modelling the seasonality using sinusoids (so-called “seasonal forcing”, see e.g. [18]).
Another type of seasonality that has been considered is the so-called “term-time forcing”,
see e.g. [11], [18], [23] and references therein. In this situation the contact rate changes
discontinuously, but cyclically, similar to what is natural to believe that happens in the
holiday/term example for schoolchildren from above. In the present paper we focus on a
situation similar to term-time forcing. That is, we let the environment change cyclically
corresponding to that the contact intensities make jumps at (non-)random time points.

The aim of the present paper is to get a better understanding for how term-time
forced environments affects a newly introduced disease’s ability to take off. We make
a simple modification of the general stochastic SIR epidemic that takes environmental
effects into account, and derive threshold conditions for this model. These conditions
are expressed in terms of R?, loosely defined as the expected number of individuals that
are infectious at the time point when an entire environmental cycle is completed, given
that the epidemic was started by a single infective. The quantity R? relates to R0, the
so-called basic reproduction number. The basic reproduction number is defined as the
average number of susceptible individuals that a typical infectious individual infects in
an otherwise disease-free population during its infectious period. In more detail: A large
outbreak can only occur when R0 > 1, see e.g. [3, Thm. 3.1, Ch. 3.3, p. 25]. From our
main result, Theorem 3.1, we show that R? possess the same threshold property.

We consider environments that change cyclically between k different states, and where
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the time that the environment spends in any state may be either random or non-random.
For the special case when the time periods that the environment spends in its different
states are exponentially distributed, we show how this system can be represented as a
multi-type epidemic, and show for k = 2 that R0 and R? are equivalent in terms of
threshold behaviour. Moreover, we show that if this kind of system is approximated
by a general stochastic SIR epidemic with a single contact rate equal to the time-mean
environmental effect on the rate of contacts between individuals, the distributions of the
time that the environmental process spends in its different states are of importance. More
precisely, we show that R? of the actual process with environment included is always
greater than the corresponding R? of the approximated system, except when the time
periods that the environment spends in its different states are non-random. For this
situation the two thresholds are equal. This is quantified in Corollary 3.2. The implication
is hence somewhat disappointing from an applied point of view where one rather would
see that this kind of approximation would yield an epidemic which takes off easier than
the actual one. In fact, in connection with the statement of Theorem 3.1 in Section 3 we
give an example where R? of the approximated system is strictly smaller than 1 whereas
R? of the actual process is strictly greater than 1.

A short outline of our analysis can be formulated as follows: First a coupling between
a suitable branching process with a varying environment and the epidemic process with
a varying environment is established. Then, by using that the approximating process
analysed at the time points when entire environmental cycles are completed behaves as a
Galton-Watson branching process, the desired results follows from standard results from
branching process theory.

The disposition of this paper is as follows: In Section 2 and 3 we define the model
and state and discuss our main results. Section 4 is devoted to the coupling between the
number of infectious individuals in our epidemic process and the approximating branching
process and the proof of Theorem 3.1. Section 5 is concerned with some important
examples, and we conclude with a discussion in Section 6.

2 The general stochastic SIR epidemic in a term-time

forced environment

In the general stochastic SIR epidemic, see [3, Ch. 2.3, pp. 14-15], a closed homogeneous
population is considered, where all infectious contacts are made according to a Poisson
process with intensity λ, and where infectious individuals recovers, independently of ev-
erything else, at rate γ. Denote this process by {(S(n)(t;λ, γ), I(n)(t;λ, γ))}t≥0, where n
refers to the size of the initially susceptible population. Note that R(t;λ, γ), the number of
recovered (and immune) individuals at t, is superfluous since the population is closed, i.e.
S(n)(t;λ, γ) + I(n)(t;λ, γ) +R(t;λ, γ) = n+ 1. Unless otherwise stated we will throughout
assume (S(n)(0;λ, γ), I(n)(0;λ, γ)) = (n, 1) for notational convenience. As described in
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From To Rate

(s, i) (s− 1, i+ 1) Λ(t)
n
si

(s, i) (s, i− 1) γi

Table 1: The general stochastic SIR epidemic in a term-time forced environment. Here
S(n)(t; Λ(t), γ) = s and I(n)(t; Λ(t), γ) = i denote the number of susceptible and infectious
individuals at time t respectively, and Λ(t), Λ ∈ {λ1, . . . , λk}, is the intensity process
that changes state depending on the environment. If not stated otherwise we assume that
(S(n)(0; Λ(0), γ), I(n)(0; Λ(0), γ)) = (n, 1) and Λ(0) = λ1.

the introduction, the environment only affects the intensity with which individuals make
contact, and the environmental changes are cyclic. We can hence describe our model as fol-
lows: When the environment is in state i the rate at which individuals makes contact will
be λi. Further, the time periods that the environment spends in state i are distributed as
the (non-)random variable Ti, and then changes to state i+1. Due to the cyclic behaviour
of the environmental process, this will correspond to that the contact rates will change
according to λ1 → λ2 → · · ·λk → λ1 → · · · , when there are k different environmental
states. Thus, by replacing a single λ by a cyclically varying intensity process {Λ(t)}t≥0

(Λ(0) = λ1), where Λ(t) = λi if the environmental process is in state i (i = 1, . . . , k) at
t, the general stochastic SIR epidemic can account for environmental effects, see Table
1. That is, our new epidemic process is {(S(n)(t; Λ(t), γ), I(n)(t; Λ(t), γ))}t≥0. Henceforth,
we will make no distinction between the environmental process and the intensity process
Λ(t). If we summarise our restrictions on the environmental process, we will throughout
assume that

(a) it is piece-wise constant, i.e. Λ(t) ∈ {λ1, . . . , λk}.

(b) it changes cyclically between its states.

(c) the time periods that Λ(t) spends in a state i are i.i.d. and distributed as the random
variables Ti.

(d) the time periods that Λ(t) spends in different states are independent.

In the next section we state and discuss our main result which describes how a term-
time forced environment affects the possibility of a large outbreak. The notion of large
outbreak is here equivalent to that the number of ultimately infected individuals will tend
to infinity when passing to the limit in n.
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3 Results

We now define a number of quantities needed in the formulation of our main result,
Theorem 3.1. These quantities will be explained in more detail in Section 4.

Recall from the previous section that Ti is a stochastic variable distributed as the
typical time that the environmental process spends in state i. If we denote the moment
generating function of Ti (Ti is non-negative) by

Ψi(s) := E
[
esTi

]
=
∫ ∞

0
estfTi(t)dt, (3.1)

which is convergent if there exists some h > 0 such that s < h (otherwise Ψi(s) := +∞).
Note that the integral in (3.1) always is convergent for s < 0, but that Ψi(s) then looses
its interpretation as a moment generating function. We will throughout use statements
with negative s without further comments.

Further, let ξi(s, t) denote the generating function of X(t;λi, γ), which is defined as a
linear birth and death process with birth rate λi and death rate γ. Then it can be shown
that

ξi(s, t) := E[sX(t;λi,γ)] =
γ(s− 1)− e(γ−λi)t(λis− γ)

λi(s− 1)− e(γ−λi)t(λis− γ)
, |s| ≤ 1, t ≥ 0, (3.2)

see e.g. [5, Ch. III.5, p. 109]. Further, define

χ(s) := E[ξ1(ξ2(ξ3(· · · (ξk(s, Tk), Tk−1), · · · ), T3), T2), T1)], |s| ≤ 1. (3.3)

Moreover, let ρ be the smallest non-negative solution to the equation

s = χ(s). (3.4)

We can now state our main result:

Theorem 3.1. Let {(S(n)(t; Λ(t), γ), I(n)(t; Λ(t), γ))}t≥0 denote an epidemic process in a
term-time forced environment defined by the rates in Table 1 and let everything else be
defined as above. Moreover, let E(n) := n− S(n)(∞; Λ(∞), γ). Then R? defined by

R? =
k∏
i=1

Ψi(λi − γ), (3.5)

works as a threshold, such that E(n) → ∞ as n → ∞ with probability π := 1 − ρ, where
π > 0 if and only if R? > 1.

The proof of Theorem 3.1 is rather lengthy and is given in Section 4.
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Remark 3.1. As will become apparent later, the epidemiological interpretation of R? is
that it corresponds to the average number of individuals that are infectious at the time
point when an environmental cycle is completed, given that the epidemic was initiated
by a single infectious individual whose infectious period starts at the time point when a
new environmental cycle is started. In Remark 4.2 after the proof of Theorem 3.1 it will
become clear why this threshold should be expressed in terms of infectious rather than
infected individuals. By inspecting the above theorem we see that it is relatively easy
to compute R?, at least with the aid of a computer. The value of R? tells us whether
the probability of a large outbreak is strictly greater than zero or not. Unfortunately the
actual probability π, is much harder to compute. In Section 5 we discuss two special cases
where π is possible to compute. Further, if we only have one environmental state, then
T = +∞, and R? = +∞ if λ − γ > 0, and R? = 0 otherwise. For the general stochastic
SIR epidemic with a single environment R0 = λ/γ, see e.g. [3, Ch. 2.1, p. 12], and the
threshold property of R? is hence preserved since R0 > 1 is equivalent to R? = +∞.
Moreover, from (3.1) it is clear that Ψi(s) > 1 if s > 0, and Ψi(s) ≤ 1 otherwise. Thus,
if λi > γ for i = 1, . . . , k, then R? > 1, and if λi ≤ γ, then R? ≤ 1. Consequently, the
remaining cases are those where λi > γ holds for some i, and λi ≤ γ for some other i.

Suppose that one would try to approximate this type of system. One way would be
to calculate the long-time average environmental effect, λ̃, and use this single rate in the
general SIR epidemic. Postponing the calculation of λ̃ for a moment, assuming that it is
possible to obtain, we get

R̃0 =
λ̃

γ
. (3.6)

As mentioned in Section 2, the intensity process Λ(t) is a cyclically varying renewal
process. (This type of processes are in the literature often referred to as alternating
renewal processes when k = 2.) For the case with k environmental states, we get

λ̃ :=
k∑
i=1

E[Ti]

E[T1] + . . .+ E[Tk]
λi, (3.7)

by using well known facts from renewal theory (i.e. the factors in front of the λi’s are
the long-time proportion of time that Λ(t) spends in state i, which follows from the law
of large numbers for renewal processes, see e.g. [10, Ch. 3.4, pp. 202-216]). By using R?

from Theorem 3.1 together with λ̃ from (3.7) we can conclude the following:

Corollary 3.2. Let R̃? be defined as in Theorem 3.1, but with all λi (i = 1, . . . , k) replaced
with λ̃ from (3.7), the mean intensity of the process Λ(t), and let R? be that of Theorem
3.1. For R? we also assume that V ar(Ti) > 0 for some i and let ti := E[Ti]. Further, let
Rδ
? denote R? where all Ti ∈ δ(ti), i.e. Ti ≡ ti, with the corresponding R̃δ

?. Then,

(i) R? > R̃?,
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(ii) Rδ
? = R̃δ

?,

(iii) R? > Rδ
?.

Proof of Corollary 3.2. By noting that

Ψi(s) := E[esTi ] > esE[Ti],

holds by a direct application of Jensen’s inequality (except when Ti ≡ E[Ti] when we have
equality), the proof of Corollary 3.2 follows directly from the definition of R? from (3.5)
combined with the definition of λ̃ from (3.7).

Recall from Section 1 that a large outbreak in general only can occur when R0 > 1
(or in our situation when R̃0 > 1). Using this and combining Corollary 3.2, Remark 3.1
and (3.6) it is clear that

R̃? T 1⇐⇒ R̃0 T 1,

which implies that R̃0 ≥ 1 ⇒ R? ≥ 1. To see why the opposite implication does not
hold, use the following counter-example: Consider the situation with two environmental
states, where T1 and T2 are independent Exp(νi)-distributed (i = 1, 2) with corresponding
moment generating functions

Ψi(s) =
1

1− s
νi

,

where s ∈ [0, νi). Further, due to Remark 3.1, we assume that λ1 > 1 > λ2, and R? from
Theorem 3.1 becomes

R? =
1

1− λ1−γ
ν1

1

1− λ2−γ
ν2

. (3.8)

If we for example set λ1 = 2.7, λ2 = 0.8, γ = 2 and ν1 = ν2 = 1, then λ̃ = 1.75
and R̃0 = 0.875 < 1 while R? ≈ 1.52 > 1. Thus, we have an example where the
approximation can not take off while the true epidemic can. This could make health
authorities incorrectly feel “safe” when using the approximated process.

In the next section we will prove a coupling between a suitable branching process and
our epidemic process and prove Theorem 3.1. Once this coupling has been established,
we use that this approximating process observed at the time points when environmental
cycles are completed behaves as a Galton-Watson process. Known facts from branching
process theory then gives us Theorem 3.1.
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4 Branching process approximation

In this section we relate the epidemic process to a suitable branching process in a varying
environment and show that the ultimate number of infected in the epidemic process
converges in distribution to the ultimate number of born individuals in this approximating
process. This is done by using a coupling argument analogous to that used in [6] for the
general epidemic. For more on branching processes in varying and random environments
we refer the reader to e.g. [14, Ch. 5.10, pp. 145-152] and references therein, and for more
mathematical references on branching processes in general see e.g. [15], [5] and [16].

Recall that Λ(t) denotes the environmental process defined in Section 2, where Λ(t) ∈
{λ1, . . . , λk}. Let X(t; Λ(t), γ) denote a continuous time branching process in a varying
environment with k different states describing the number of individuals alive at time t
analogously defined as X(t;λi, γ) from the previous section, but with λi replaced with
Λ(t). For this process individuals give birth at rate λi while the environmental process is
in state i, and individuals die independently of everything else at rate γ.

To see how we can construct I(n)(t; Λ(t), γ) using X(t; Λ(t), γ), we first introduce a
sequence of i.i.d. U(0,1)-distributed random variables ζi, i = 1, 2, . . . and label all n initially
susceptible individuals in the epidemic process from 1 to n. Then whenever an individual
in X(t; Λ(t), γ) is born an individual in I(n)(t; Λ(t), γ) becomes infectious. That is, when
the i:th individual in X(t; Λ(t), γ) is born, we pick an individual amongst the n initially
susceptible individuals labelled [ζin] + 1 and infect it in I(n)(t; Λ(t), γ). This infected
individual will then have the same characteristics as that of the i:th born individual
in X(t; Λ(t), γ). On the other hand, if the picked individual no longer is susceptible the
coupling brakes down and we have encountered what is called a “ghost” following Mollison
[20], but until this event occurs the two processes will be identical.

Let B(t; Λ(t), γ) denote the number of births in X(t; Λ(t), γ) up to t. If we define
E(n) := n − S(n)(∞; Λ(∞), γ), and E := B(∞; Λ(∞)), we can state the main result of
this section:

Theorem 4.1. We have that E(n) d→ E as n→∞.

Before we proceed with the proof of Theorem 4.1, we need to establish for how long
time the coupling between I(n)(t; Λ(t), γ) and X(t; Λ(t), γ) holds:

Lemma 4.2. The processes I(n)(t; Λ(t), γ) and X(t; Λ(t), γ) can with a probability tending
to one (as n tends to infinity) be coupled up to time τ(n) := c log n, where 0 < c <
(1− 2ε)/(2(λmax − γ)), λmax := maxi=1,...,k λi (Λ(t) ∈ {λ1, . . . , λk}) and 0 < ε < 1/2.

Proof of Lemma 4.2. To prove Lemma 4.2 we need the following notation: letB(n)(t; Λ(t), γ)
denote the number of individuals infected up to t in I(n)(t; Λ(t), γ). Further, letX(t;λmax, γ)
be a linear birth and death process with birth and death intensity λmax and γ respectively,
and let B(t;λmax, γ) denote the number of individuals born up to t in X(t;λmax, γ). Note
that B(n)(t; Λ(t), γ) ≤d B(t; Λ(t), γ) ≤d B(t;λmax, γ) holds for all t ≥ 0.
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From the classical birthday problem it follows that the coupling will hold up until
n1/2−ε individuals have been born with a probability tending to one as n tends to infinity
where 0 < ε < 1/2, see e.g. [12, Ch. II.3, pp. 31]. From the relation B(n)(t; Λ(t), γ) ≤d
B(t; Λ(t), γ) ≤d B(t;λmax, γ) it follows that if it takes no more than τ(n) time units for
B(t;λmax, γ) to reach n1/2−ε individuals with a high probability, the coupling between
I(n)(t; Λ(t), γ) and X(t; Λ(t), γ) will hold at least as many time units. Thus, we want to
show that P(B(τ(n);λmax, γ) > n1/2−ε) → 0 as n → ∞ for some suitable choice of τ(n).
This we will do by using Markov’s inequality:

P(B(t;λmax, γ) > n1/2−ε) ≤ E[B(t;λmax, γ)]

n1/2−ε . (4.1)

Recall that X(t;λmax, γ) is a linear birth and death process, and can hence be represented
asX(t;λmax, γ) = B(t;λmax, γ)−D(t; γ)+1 (i.e.X(0;λmax, γ) = 1), whereB(t;λmax, γ) is a
pure birth process counting the number of individuals born up to time t, and D(t;λmax, γ)
is a pure birth process counting the number of individuals that have died up to t. For
an ordinary linear birth and death process X(t;λ, γ) with probability generating function
ξ(s, t) given by (3.2) where λi = λ, we get that

E[X(t;λ, γ)] =
d

ds
ξ(s, t)

∣∣∣∣
s=1

= e(λ−γ)t, t ≥ 0. (4.2)

In order to determine E[B(t;λmax, γ)] we condition and get

E[B(t+ h;λmax, γ)] = E[E[B(t+ h;λmax, γ) | B(t;λmax, γ), X(t;λmax, γ)]]

= λE[X(t;λmax, γ) +B(t;λmax, γ)]h+ o(h),

which can be rewritten as

1

h
E[B(t+ h;λmax, γ)−B(t;λmax, γ)] = λE[X(t;λmax, γ)] +

o(h)

h
.

If we let h→ 0 and integrate with respect to time, and use (4.2), we arrive at

E[B(t;λmax, γ)] =
λmax

λmax − γ
(
e(λmax−γ)t − 1

)
, t ≥ 0.

This together with (4.1) gives us that P(B(τ(n);λmax, γ) > n1/2−ε) → 0 as n → ∞ if
τ(n) := c log n, where c < (1 − 2ε)/(2(λmax − γ)) and 0 < ε < 1/2, which finishes the
proof.

Remark 4.1. Note that if λmax ≤ γ then τ(n) = +∞.
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Proof of Theorem 4.1. First, note that E(n) := n−S(n)(∞; Λ(∞), γ) = B(n)(∞; Λ(∞), γ)

and recall that E := B(∞; Λ(∞), γ). Hence, in order to show that E(n) d→ E as n→∞,
we need to relate B(n)(t; Λ(t), γ) to B(t; Λ(t), γ). As before, let τ(n) denote the time
until the coupling breaks down. From Lemma 4.2 we have that for large enough n it
holds that P(τ(n) ≤ c log n) > 1 − ε/2, where ε > 0, and that {B(n)(t; Λ(t), γ) ≤ k} =
{B(t; Λ(t), γ) ≤ k} for any fixed k ≤ n1/2 and t ≤ τ(n). Following the line of proof of
Theorem 3.1 from [9]: Introduce An = {τ(n) ≤ c log n}. For fixed t ≤ τ(n) and k ≤

√
n

we get that

P(B(n)(t; Λ(t), γ) ≤ k) = P({B(n)(t; Λ(t), γ) ≤ k} ∩ An) + P({B(n)(t; Λ(t), γ) ≤ k} ∩ AC
n)

= P({B(t; Λ(t), γ) ≤ k} ∩ An) + P({B(n)(t; Λ(t), γ) ≤ k} ∩ AC
n)

≤ P(B(t; Λ(t), γ) ≤ k) + ε/2.

Likewise, we get

P(B(n)(t; Λ(t), γ) ≤ k) = P({B(n)(t; Λ(t), γ) ≤ k} ∩ An) + P({B(n)(t; Λ(t), γ) ≤ k} ∩ AC
n)

≥ P({B(t; Λ(t), γ) ≤ k} ∩ An)

= P(B(t; Λ(t), γ) ≤ k)− P({B(t; Λ(t), γ) ≤ k} ∩ AC
n)

≥ P(B(t; Λ(t), γ) ≤ k)− ε/2,

and hence

|P(B(n)(t; Λ(t), γ) ≤ k)− P(B(t; Λ(t), γ) ≤ k)| < ε

holds. But, in the limit as n → ∞, we have that k ∈ N, t ∈ R+ and ε > 0 which where

all chosen arbitrarily. Hence it holds that B(n)(t; Λ(t), γ)
d→ B(t; Λ(t), γ) as n → ∞ for

all fixed t ∈ R+ and in particular it follows that E(n) d→ E as n→∞.

Note that even though we know that E(n) → E in distribution as n→∞ we have not
yet established any characteristics concerning the distribution of E. For the purposes of
the present paper it is of interest to determine whether E is distributed as a degenerate
random variable, with a point mass at infinity or not, and give conditions for when this
occurs. This is effectively what is stated in Theorem 3.1. By noting that X(t; Λ(t), γ)
observed at the time points when environmental cycles are completed behaves as a certain
Galton-Watson process, Theorem 3.1 follows by applying standard results from branching
process theory.

Proof of Theorem 3.1. As before, let Ti be a random variable distributed as the time that
Λ(t) spends in state i during a typical visit. We will also use the notation Tij which denotes
the j:th visit in state i, and we will make no distinction between Ti and Ti1. Recall that
all {Ti} are mutually independent and that, for each i = 1, . . . , k, all Ti1, Ti2, . . . are i.i.d.
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In addition, let Ui denote the time point of the i:th completed environmental cycle. This
gives us that U1 = T1 + . . .+Tk and in general we have Ui = T1 + . . .+Tk +T12 + . . .+Tki.

Let ξi(s, t), i = 1, . . . , k, denote the generating function of X(t;λi, γ) given by (3.2).
Recall that whenever the environmental process stays constant the process X(t; Λ(t), γ)
will behave like an ordinary linear birth and death process. Thus, by conditioning on
the time points {Ui} and using that all individuals in X(t; Λ(t), γ) live for exponentially
distributed time periods, we obtain the recursive relation:

E[sX(U1;Λ(U1),γ) | {T1, . . . , Tk;X(T1 + . . .+ Tk−1; Λ(T1 + . . .+ Tk−1), γ)}] =

= ξk(s, Tk)
X(T1+...+Tk−1;Λ(T1+...+Tk−1),γ). (4.3)

Solving this recursive relation backwards from k to 1 it then follows after some further
conditioning that

χ(s) := E[sX(U1;Λ(U1),γ)] = E[ξ1(ξ2(ξ3(· · · (ξk(s, Tk), Tk−1), · · · ), T3), T2), T1)],

which is the same expression as (3.3).
Moreover, from the definition of Λ(t) we know that the sums T1i+ . . .+Tki, i = 1, 2, . . .

are i.i.d., which together with the fact that all individuals live for an exponential life-
length in the process X(t; Λ(t), γ) gives us that the process restarts at the time points
{Ui}. Consequently, if we introduce X̃1, X̃2, . . . i.i.d. all distributed as X(U1; Λ(U1), γ),
we get that

E[sX(U2;Λ(U2),γ)] = E[E[sX(U2;Λ(U2),γ) | {T1, . . . , Tk2;X(T1 + . . .+ Tk; Λ(T1 + . . .+ Tk), γ)}]]
= E[E[sX(U2;Λ(U2),γ) | {T1, . . . , Tk2;X(U1; Λ(U1), γ)}]]

= E
[
E
[
s
∑X(U1;Λ(U1),γ)

i=1
X̃i | X(U1; Λ(U1), γ)

]]
= E[E[sX̃ ]X(U1;Λ(U1),γ)] = χ(χ(s)),

and hence X(t; Λ(t), γ) observed at the time points {Ui} behaves as a Galton-Watson
process with offspring distribution determined by χ(s) from (3.3).

Note that if X(t; Λ(t), γ) observed at the time points {Ui} has died out, obviously
X(t; Λ(t), γ) has died out as well. For our purposes the time point when this event
occurs is of no interest, and if we introduce Ed :=

∑∞
i=0 X(Ui; Λ(Ui), γ), it hence holds

that Ed = +∞ if and only if E = +∞. From standard references in branching process
theory, see e.g. [16, Ch. 2.11, pp. 39-42], it is known that P(Ed = +∞) > 0 if and only
if E[X(U1; Λ(U1), γ)] > 1. But, from the definition of χ(s), see (3.3), it follows that
χ′(1) = E[X(U1; Λ(U1), γ)]. Note that (4.3) is a conditional generating function. Hence,
we obtain the corresponding conditional expectations by differentiating both sides of (4.3)
with respect to s and then setting s = 1 and use (4.2). Thus, by solving the recursive
relation (4.3) backwards and using that we can extract all the conditional expectations
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along the way, we get that χ′(1) = R?, where R? is from (3.5). Thus, P(Ed = +∞) > 0
and hence π := P(E = +∞) > 0 if and only if R? > 1. Moreover, π is given by π := 1−ρ,
where ρ is the smallest non-negative solution to s = χ(s), see e.g. [16, Thm. 2.3.1, Ch.
22, p. 22]. Thus, Theorem 3.1 is proved.

Remark 4.2. In the proof of Theorem 3.1 we made use of an approximating Galton-Watson
process. For this process generations corresponds to completed environmental cycles, and
the particles corresponds to infectious individuals. Thus, a natural interpretation of R?

is as the average number of individuals that are infectious at the time point when the
first environmental cycle is completed, given that the epidemic was initiated by a single
infectious individual.

5 Examples

In the present section we consider two examples both with k = 2 environmental states.
The first example is when the time periods spent in different environmental states are
exponentially distributed, and the second is when the time periods are non-random. For
both of these examples it is possible to compute π := 1− ρ from Theorem 3.1. Before we
proceed with the computation of these probabilities, we describe how the situation with
exponentially distributed time periods relates to a certain multi-type epidemic.

5.1 On the relation to multi-type epidemics

Consider the situation where the environment may change between two states, corre-
sponding to the intensities λ1 and λ2, and assume that Ti ∈ Exp(νi). The situation is
now equivalent to that of the counter-example that was treated after that Theorem 3.1
was stated in Section 3, and R? is thus given by (3.8). Let r1 := λ1/γ and r2 := λ2/γ.
The interpretation of ri is that ri > 1 corresponds to that the epidemic process in its
early stages under influence of the environment i behaves like a super-critical branching
process, when ri < 1 it behaves like a sub-critical branching process, and when ri = 1 it
behaves like a critical branching process. As a consequence of Remark 3.1 the interesting
case is when r1 > 1 > r2. By straightforward algebraic manipulation of (3.8) we get that

r1 − 1

ν1

(
ν2

1− r2

+ γ
)

T 1⇐⇒ R? T 1,

and since these expressions are equivalent, we set

R? :=
r1 − 1

ν1

(
ν2

1− r2

+ γ
)
. (5.1)

By analysing R? term-wise, one sees that (r1 − 1)/ν1 is the average excess of infectious
individuals that is generated during a typical time period when the environment is in
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state 1, and (1 − r2)/ν2 is the corresponding shortage of infectious individuals. Thus,
the heuristic interpretation of this threshold condition is that in order for the epidemic
to take off, there must be a sufficient excess of infectious individuals from the time spent
in the “favourable” (from the disease’s perspective) state of the environment in order to
compensate for the time spent in the “unfavourable” state of the environment.

To relate this system to a two-type epidemic, introduce Zij, where Zij denotes the
number of type j-individuals that a single type i-individual infects in an otherwise disease
free population during its infectious period. Here a type-i individual corresponds to an
individual that becomes infectious during a time period where the environment is in state
i. Let T̃ denote the infectious period of any individual, T̃ ∈ Exp(γ), and let Ti denote
the time that the environment spends in state i as before. Here i, j = 1, 2 and we will for
relief of notation henceforth assume that i 6= j.

While the environmental process is in state i, infectious contacts are made according
to a Poisson process with intensity λi. Further, if an individual becomes infectious while
the environmental process is in state i, the time until this individual either recovers or
that the environment changes state is min{Ti, T̃} ∈ Exp(νi + γ). Combining these two
facts gives us that the number of i-individuals that a newly infected i-individual will infect
up to the time of recovery or until the environment changes state is Po(λi min{Ti, T̃})
distributed, conditional on min{Ti, T̃}. Let the corresponding unconditional number of
infected i-individuals be denoted by Z̃i, and it hence holds that Z̃i ∈ Geo(pi), pi :=
(νi + γ)/(νi + γ + λi), and E[Z̃i] := (1− pi)/pi = λi/(νi + γ). By conditioning on whether
an individual recovers before the environment changes state or not, together with that
the system is Markovian gives us that

(i) [Zii|Ti > T̃ ] =d Z̃i + 0

(ii) [Zii|Ti ≤ T̃ ] =d Z̃i + Zji

(iii) [Zij|Ti > T̃ ] ≡ 0

(iv) [Zij|Ti ≤ T̃ ] =d Zjj.

Using (i)− (iv) yields

µii : = E[Zii|Ti > T̃ ]P(Ti > T̃ ) + E[Zii|Ti ≤ T̃ ]P(Ti ≤ T̃ )

= E[Z̃i]
γ

νi + γ
+ E[Z̃i + Zji]

νi
νi + γ

= E[Z̃i] +
νi

νi + γ
E[Zji] =

λi
νi + γ

+
νi

νi + γ
µji,

and

µij :=
νi

νi + γ
µjj,
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which gives us

µ11 =
λ1

ν1 + γ
+ µ21

ν1

ν1 + γ

µ21 = µ11
ν2

ν2 + γ

and µ22 and µ12 follow by symmetry. Combining these relations imply that

µii =
λi(νj + γ)

γ(ν1 + ν2 + γ)

µij =
λjνi

γ(ν1 + ν2 + γ)
.

The basic reproduction number, R0, is then defined as the largest eigenvalue for M =
{µij}i,j=1,2, i.e. the largest κ such that det(M−κI) = 0, see e.g. [7, p. 730]. For this model
R0 becomes

R0 =
µ11 + µ22

2
+

√(
µ11 + µ22

2

)2

+ µ21µ12 − µ11µ22 =: w +
√
w2 + v. (5.2)

If we consider conditions for R0 > 1, this is equivalent to that w+
√
w2 + v > 1 which in

turn is equivalent to that 2w + v > 1. Inserting v and w from (5.2) and simplifying then
gives us

r1(ν2 + γ) + r2(ν1 + γ)− r1r2γ

ν1 + ν2 + γ
> 1

⇒ r1 − 1

ν1

(
ν2

1− r2

+ γ
)
> 1,

i.e. R? > 1, where R? is from (5.1). Thus

R? > 1⇐⇒ R0 > 1,

and consequently the same relation holds for R0 ≤ 1 and hence the two thresholds are
equivalent. We believe that the conclusions are valid for general k, but it is not clear to
us how to prove this.

Above we have described how one can represent an epidemic in an alternating en-
vironment with two states, where the time periods that the environment spends in its
different states are exponentially distributed, as a two-type epidemic. This could also
be done for the case where the time periods follows some arbitrary distribution (with
finite expectation). For this situation, however, we must keep track of the time points
where individuals become infected, since this system is no longer Markovian. In terms of
multi-type epidemics this is equivalent to having a continuum of types, where the types
now include information about the time point of infection.
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5.2 Probability of a large outbreak — Two examples

In this section we give two examples where π, the probability of a large outbreak, is
possible to compute. The first example is when the time periods that the environment
spends in its different states are exponentially distributed. In this situation we can make
use of known facts concerning multi-type epidemics. The second example is when the
time periods that the environment spends in its different states are non-random. Then π
can be obtained directly as π := 1 − ρ, where ρ is the smallest non-negative solution to
the equation s = χ(s), where χ(s) is from (3.3).

5.2.1 Exponentially distributed time periods

In Theorem 3.1 it is stated that the probability of a large outbreak is given as one minus
the smallest non-negative solution to the equation s = χ(s), where χ(s) is from (3.3).
As mentioned before, χ(s) is the generating function defining a certain Galton-Watson
process. In the previous subsection the case when the time periods that the environmental
process spends in its different states are exponentially distributed was treated and one
could instead represent this situation in terms of a certain multi-type epidemic. For the
case with two environmental states, define the generating functions

η(i)(s1, s2) := E[sZi11 sZi22 ], |s1|, |s2| ≤ 1, (5.3)

where i = 1, 2 and where Zij are defined as in the previous subsection. That is, η(i)(s1, s2)
is the generating function for the number of type 1 and type 2 individuals originating
from a single ancestor of type i. The probability of a large outbreak in the multi-type
epidemic defined by the generating functions η(i)(s1, s2), i = 1, 2, is obtained as one minus
the smallest non-negative solution to the equation system{

s1 = η(1)(s1, s2)
s2 = η(2)(s1, s2)

, (5.4)

see e.g. [7, p. 730]. Let πi := 1−ρi, i = 1, 2, where ρi is the smallest non-negative solution
to (5.4). Hence, π from Theorem 3.1, i.e. the probability of a large outbreak given that the
epidemic was initiated by a single infectious individual infected at the time point when a
new environmental cycle was started, is given by π := π1.

By using (5.3) together with the relations (i) − (iv) from the previous subsection we

15



can determine η(i)(s1, s2):

η(1)(s1, s2) = E[sZ11
1 sZ12

2 |T1 > T̃ ]P(T1 > T̃ ) + E[sZ11
1 sZ12

2 |T1 ≤ T̃ ]P(T1 ≤ T̃ )

= E[sZ11
1 |T1 > T̃ ]

γ

ν1 + γ
+ E[sZ11

1 sZ12
2 |T1 ≤ T̃ ]

ν1

ν1 + γ

= E[sZ̃1
1 ]

γ

ν1 + γ
+ E[sZ̃1+Z21

1 sZ22
2 ]

ν1

ν1 + γ

{independence} = E[sZ̃1
1 ]

(
γ

ν1 + γ
+ E[sZ21

1 sZ22
2 ]

ν1

ν1 + γ

)

{def.} = η̃1(s1)

(
γ

ν1 + γ
+ η(2)(s1, s2)

ν1

ν1 + γ

)
, (5.5)

where

η̃i(si) = E[sZ̃ii ] =
pi

1− (1− pi)si
, i = 1, 2,

and where pi = (νi + γ)/(νi + γ + λi). By symmetry it follows that

η(2)(s1, s2) = η̃2(s2)

(
γ

ν2 + γ
+ η(1)(s1, s2)

ν2

ν2 + γ

)
. (5.6)

Combining (5.5) and (5.6) yields

η(i)(s1, s2) =
γη̃i(si)(νj + γ + νiη̃j(sj))

(ν1 + γ)(ν2 + γ)− ν1ν2η̃1(s1)η̃2(s2)
, (5.7)

where i = 1, 2. Note that from the definition we get

µij =
d

dsj
η(i)(s1, s2)

∣∣∣∣∣
s1=s2=1

, (5.8)

and one can check that the calculations agree. Returning to the issue of calculating
the probability of a large outbreak we must solve the equation system (5.4). This is
unfortunately not possible to do analytically, but the system is easily solved numerically.

In order to compare π, the probability of a large outbreak, for different parameter
settings, we first keep ν1 = ν2 = 1 and set γ = 1 for simplicity, and vary λ1 and λ2 in
such a way that R? is kept fixed. One such parametrisation assuming λ1 > 1 > λ2 is{

λ1 = 1 + δ
λ2 = 2− 1

R?(1−δ)
, 1− 1

R?

< δ < 1− 1

2R?

, (5.9)

where R? is from (3.8). For a numerical illustration of how π varies with λ1 and λ2, see
Figure 1, where it is seen that the probability of a large outbreak decreases as δ increases.
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The probability of a large outbreak: Exponential time periods, varying λ1(δ) and λ2(δ)

δ

π

Figure 1: Exponentially distributed time periods: A numerical illustration of how π from
Theorem 3.1 varies when λ1(δ) and λ2(δ) from (5.9) varies. Here γ = 1, ν1 = ν2 = 1 and
R? = 4. On the y-axis we have π, and on the x-axis we have δ from (5.9).
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The probability of a large outbreak: Exponential time periods, varying ν1(φ) and ν2(φ)
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π

Figure 2: Exponentially distributed time periods: A numerical illustration of how π from
Theorem 3.1 varies when ν1(φ) and ν2(φ) from (5.10) varies. Here γ = 1, ν = 1, λ1 = 3.7,
λ2 = .4 and R? = 4. On the y-axis we have π, and on the x-axis we have φ from (5.10).

On the other hand, one can instead fix λ1 and λ2 and set γ = 1, and vary ν1 and ν2 in
such a way that R? is kept fixed. One such parametrisation assuming λ1 > 1 > λ2 is

ν1 = νφ

ν2 =
(1−λ2)R?(1−λ1−1

νφ )
1−R?(1−λ1−1

νφ )
,
λ1 − 1

ν
< φ <

λ1 − 1

ν
(
1− 1

R?

) . (5.10)

A numerical illustration is given in Figure 2 from which it is seen that the behaviour of π
is not necessarily monotonically increasing with increasing difference between ν1 and ν2.

5.2.2 Non-random time periods

For the situation when the time periods that the environmental process spends in its
different states are non-random, the probability π, is obtained by directly solving the
equation s = χ(s), where χ(s) is from (3.3). This is because the outer expectation in
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the definition of χ(s) vanishes. As for the situation with exponentially distributed time
periods, it is not possible to solve this equation analytically.

As in the previous subsection we want to vary first λ1 and λ2 while all other parameters
are fix, including R?, and then vary ν1 and ν2 while everything else is kept fix. First, from
Theorem 3.1 we get for k = 2 that

R? := exp

{
λ1 − γ
ν1

+
λ2 − γ
ν2

}
, (5.11)

if Ti ≡ 1/ν1. Using this choice of Ti we have the same expectation of as for the exponential
case treated in the previous subsection. As before, set ν1 = ν2 = 1 and γ = 1, and
parametrise λ1 > 1 > λ2 according to{

λ1 = 1 + δ
λ2 = 1− δ + logR?

, logR? < δ < 1 + logR?, (5.12)

in order to keep R? from (5.11) fix. For a numerical illustration of how π varies with
varying λ1 and λ2, see Figure 3, where it is seen that π increases with δ. Recall that in
Figure 1 π instead was decreasing in δ. Thus, the distribution of the time periods that
the environment spends in its different states may have a great impact on the behaviour
of π.

If we instead fix λ1 > 1 > λ2 and set γ = 1, one can parametrise ν1 and ν2 as ν1 = νφ
ν2 = 1−λ2

λ1−1

νφ
−logR?

, 0 < φ <
λ1 − 1

ν logR?

, (5.13)

keeping R? from (5.11) fix. In Figure 4 an illustration of how π varies with ν1 and ν2 is
given, and it seen that π increases monotonically with increasing φ. In comparison with
Figure 2 where non-monotonic behaviour was observed, we again see significant differences
in the behaviour of π depending on the distribution of the time that the environment
spends in its different states.

To conclude, comparing Figure 1 and 2 with Figure 3 and 4 respectively, it is seen that
there are dramatic differences in how π varies depending on the distribution of the time
that the environmental process spends in its different states. As an example, by inspecting
Figure 1 and Figure 3 one sees that in the former figure π decreases monotonically, whereas
in the latter figure π instead increases monotonically.

It is interesting to note that except for the non-monotonic part of Figure 2, Figure
2 and 4 show similar behaviour. This could be an indication to that changes in contact
rate are more vulnerable to different distributions of the time periods than is the case for
changes in the rate with which the environment switch state.
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The probability of a large outbreak: Non−random time periods, varying λ1(δ) and λ2(δ)
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π

Figure 3: Non-random time periods: A numerical illustration of how π from Theorem 3.1
varies when λ1(δ) and λ2(δ) from (5.12) varies. Here γ = 1, ν1 = ν2 = 1 and R? = 4. On
the y-axis we have π, and on the x-axis we have δ from (5.12).
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Figure 4: Non-random time periods: A numerical illustration of how π from Theorem 3.1
varies when ν1(φ) and ν2(φ) from (5.10) varies. Here γ = 1, ν = 1, λ1 = 3.7, λ2 = .4 and
R? = 4. On the y-axis we have π, and on the x-axis we have φ from (5.13).
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6 Discussion

The present paper is concerned with the threshold behaviour of a SIR model in a term-
time forced environment. An “environment” is in this context any external factor that
influences the population, but itself is unaffected of the population. Here “term-time
forcing” refers to that the changes in contact rate are discontinuous but cyclic. We
describe this kind of system using the general SIR epidemic but where the traditionally
single contact rate, λ, is replaced with a cyclically varying renewal process with k states,
denoted Λ(t). For this model we derive threshold conditions, denoted R?, that can be
expressed as products of the moment generating functions of the time periods that Λ(t)
spends in its different states. This is stated more precisely in Theorem 3.1. The quantity
R? can hence be stated explicitly and works as a threshold, such that a large outbreak
can only occur if and only if R? > 1. Thus, R? relates to the so-called basic reproduction
number, R0, in both of these aspects. The epidemiological interpretation of R? is more
involved than that of R0, but from the derivation of R? it is seen that it corresponds
to the expected number of individuals that are infectious at the time point when the
first environmental cycle is completed, given that the epidemic was initiated by a single
infectious individual whose infectious period starts when a new environmental cycle is
started.

By checking whether R? is greater than one or not, we can easily determine whether
a large outbreak can occur or not. That is, R? determines whether the probability of a
large outbreak, π, is strictly greater than zero or not. The probability π is, however, much
harder to compute than R?, since it is defined as one minus the smallest non-negative
solution to s = χ(s), where χ(s) is from (3.3). In Section 5 we give two examples when
it is possible to compute π numerically. The first situation is when all time periods that
Λ(t) spends in its different states are exponentially distributed. This system can then be
represented as a multi-type epidemic, and by using known facts concerning multi-type
epidemics it is possible to compute π. This is done in detail for the case k = 2 when
we also show that R0 and R? are equivalent in terms of threshold behaviour. We believe
that this is true for general k. The second situation is when the time periods that the
environmental process spends in its different states are non-random. For this situation it
is possible to directly solve the equation s = χ(s). In connection with these examples we
calculate π numerically, see Figures 1-4, from which it is apparent that the distribution
of the time that the environmental process spends in its different states is of importance.

In Corollary 3.2 we give some qualitative relations between the behaviour of the general
SIR epidemic in a term-time forced environment and the general SIR epidemic with the
single contact rate λ̃ from (3.7) corresponding to the long-time average environmental
effect. If we denote R? of the latter process by R̃?, we show that R? of the epidemic
with the environment accounted for always will be greater than R̃?, except when all time
periods that Λ(t) spends in its different states are non-random, when R? = R̃? holds.

The derivation of these results rely on the theory of branching processes and the cou-
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pling between such processes and epidemic processes. The strongest form of coupling
between epidemics and branching process is given in [8, Thm. 2.1, p. 4], but for our pur-
poses it is sufficient to obtain a weaker coupling. More precisely we only need convergence
in distribution between the ultimate number of infected individuals in the epidemic pro-
cess and the ultimate number of born individuals in a certain branching process. This is
stated in Theorem 4.1.

Throughout we have made repeated use of the fact that the system is conditionally
Markovian in its nature. Consequently, the methods used in the present paper are hard
to adapt directly to situations with non-exponential infectious periods, since the Markov
property will then be lost. One possible generalisation could, be to allow gamma dis-
tributed infectious periods. This could possibly be done by sub-dividing the infectious
period into a number of shorter exponentially distributed infectious periods similarly to
what is done in [4]. In this way the Markov property of the system would be preserved.
For many real-life applications the flexibility of the gamma distribution will suffice from
a modelling perspective. But, as soon as the system becomes non-Markovian the approx-
imating branching processes will be of Crump-Mode-Jagers type, and hence depend on
the distribution of the time points of renewal. It might, however, be possible to derive
some threshold conditions using embedding techniques, but it is not clear to us how one
would incorporate the environmental effects into such embeddings.

Assuming that the Markov property is fulfilled it is possible to use these methods
when the environment depends on the population. The perhaps most simple example
corresponds to a naive model for social awareness where the entire population becomes
aware of that a disease is present first when a fraction of the population have become
infected. In this situation, the process would still be conditionally Markovian, and it is
possible to derive closed, but implicit threshold conditions. But, these expressions would
instead depend on the distribution of the time it takes until this fraction of the population
has become infected, which in general is hard to obtain. In simple situations it might
be possible to go via generating functions and relations between such and orthogonal
polynomials similar to those used in [17].

Even though we only have treated non-endemic situations in the present paper, we can
still determine whether or not a disease may become endemic or not, by using R? from
Theorem 3.1. A natural continuation of the present work would be to analyse endemic
diseases under the influence of varying environments in more detail, both in terms of
endemic levels, fluctuations, and the time to disease extinction.

Acknowledgment

Both authors are grateful to the Swedish Foundation for Strategic Research (SSF) for
financial support.

23



References

[1] Allen L.J.S., Cormier P.J. (1996). Environmentally Driven Epizootics. Mathematical Bio-
sciences, 131, 51–80.

[2] Anderson R.M., May R.M. (1991). Infectious Diseases of Humans: Dynamics and Control.
Oxford Science Publications, Oxford University Press.

[3] Andersson H., Britton T. (2000). Stochastic epidemic models and their statistical analysis.
Springer Lecture Notes in Statistics, 151. Springer-Verlag, New York.

[4] Andersson H., Britton T. (2000). Stochastic epidemics in dynamic populations: quasi-
stationarity and extinction. Journal of Mathematical Biology, 41, 559–580.

[5] Athreya K.B., Ney P.E. (1972). Branching processes. Springer-Verlag.

[6] Ball F. (1983). Threshold Behaviour of Epidemic Models. Journal of Applied Probability, 20,
227–241.

[7] Ball F., Clancy D. (1993). The final size and severity of a generalised stochastic multitype
epidemic model. Advances in Applied Probability, 25, 721–736.

[8] Ball F., Donnely P. (1995). Strong approximations for epidemic models. Stochastic Processes
and their Applications, 55, 1–21.

[9] Britton T., Deijfen M., Lager̊as A.N., Lindholm M. (2008). Epidemics on random graphs
with tunable clustering. To appear in Journal of Applied Probability.

[10] Durrett R. (2004). Probability: Theory and Examples. 3ed, Duxbury.

[11] Earn D.J.D., Rohani P., Bolker B.M., Grenfell B.T. (2000). A Simple Model for Complex
Dynamical Transitions in Epidemics. Science, Vol. 287, no. 5453, pp. 667–670.

[12] Feller W. (1957) An Introduction to Probability Theory and Its Applications, Volume I. 2nd edn.
Wiley Series in Probability and Mathematical Statistics, Wiley.

[13] Franke J.E., Yakubu A-Z. (2006). Discrete-time SIS epidemic model in a seasonal environment.
SIAM Journal on Applied Mathematics, Vol. 66, No. 5, 1563–1587.

[14] Haccou P., Jagers P., Vatutin V.A. (2005). Branching Processes: Variation, Growth, and
Extinction of Populations. Cambridge Studies in Adaptive Dynamics, Cambridge University Press.

[15] Harris T.E. (1963). Branching Processes. Springer-Verlag.

[16] Jagers P. (1975). Branching Processes with Biological Applications. John Wiley and Sons: London.

[17] Karlin S., McGregor J. (1958). Linear Growth, Birth and Death Processes. Journal of Mathe-
matics and Mechanics, 7, 643–662.

[18] Keeling M.J., Rohani P., Grenfell B.T. (2001). Seasonally forced dynamics explored as
switching between attractors. Physica D, 148, 317–335.

24



[19] Kuske R., Gordillo L.F., Greenwood P. (2007). Sustained oscillations via coherence resonance
in SIR. Journal of Theoretical Biology, Vol. 245, Issue 3, 459–469.

[20] Mollison D. (1977). Spatial contact models for ecological and epidemic spread. Journal of the
Royal Statistical Society, Series B, 39, 283—326.

[21] Piyawong W., Twizell E.H., Gumel A.B. (2003). An unconditionally convergent finite-
difference scheme for the SIR model. Applied Mathematics and Computation, 146, 611—625.

[22] Prajneshu, Gupta C.K., Sharma U. (1986). A Stochastic Epidemic Model with Seasonal Vari-
ations in Infection Rate. Biometrical Journal, 28, 7, 889–895.

[23] Stone L., Olinky R., Huppert A. (2007). Seasonal dynamics of recurrent epidemics. Nature,
446, 533–536.

25


