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Abstract

It is known that the distributions of the latent and infectious periods affect the dy-
namics of the spread of an infectious disease. Here we consider the SEIR epidemic
model describing the spread of an infectious disease giving life-long immunity in a
community whose social structure can be represented by a simple random graph
having a pre-specified degree distribution. Two real time vaccination strategies,
based on tracing and vaccinating the friends of infectious individuals during the
early stages of an epidemic, are proposed. The first strategy considers vaccination
of each friend of a detected infectious individual independently with probability ρ.
The second strategy sets an upper bound on the number of friends an individual
can infect before being detected. We derive both the basic reproduction number
and the strategy-specific reproduction numbers and show that these reproduction
numbers decrease when the variances of the infectious period and the time to detec-
tion increase. Under the assumption that detection may only occur after the latent
period, the reproduction numbers are independent of the distribution of the latent
period.

Key words: branching approximation, coefficient of variation, degree distribution,
epidemic models, social networks, vaccination strategies.

1 Introduction

In network theory, the contact structure among individuals in a social community can
be represented by a simple undirected random graph (see e.g. Scott 2000, Newman 2003),
where vertices correspond to individuals and edges to some type of social relations, here
referred to as friendships. A model for the spread of an infectious disease may be defined
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on such a social graph, where individuals are at first susceptible but may be infected by
a friend. In our model, the infection is started by one randomly chosen individual who
is infected from outside the community. The final outbreak, both its size and who gets
infected, depends on the properties of the social graph as well as on the properties of
the disease transmission. For instance, the dynamics of the disease is affected by the
distributions of the latent and infectious periods (see e.g. Wearing et al. 2005, Lloyd
2001). It is possible to prevent an outbreak by vaccinating friends of infected individuals
during the early stages of the epidemic. Vaccination may be delayed for some time (here
referred to as delay time), because we assume that an infectious individual can only be
detected after showing symptoms.

The present paper investigates what effects the distributions of the latent, infectious
and delay periods have on the potential of a large disease outbreak. In particular, we
consider a random social graph of a closed community, where the degree distribution
(number of friends) follows some pre-specified distribution F , typically having heavy
tails, but where the random graph is otherwise chosen randomly. The epidemic model
considered here is a model for the susceptible-exposed-infectious-removed (SEIR) disease.
Initially, one randomly selected individual is externally infected. This individual is first
latent, after which she becomes infectious and may infect her susceptible friends before
she recovers and become immune, a state called removed. Friends of such a person or any
other individual who become infected behave similarly.

SEIR epidemic in a homogeneously mixing community have been extensively studied
(e.g. Bailey 1975, Diekmann and Heesterbeek 2000, Hethcote 2000) under the assumption
that the latent (when considered) and infectious periods are exponentially distributed.
The exponential distribution is mathematically convenient, but it corresponds to the as-
sumption that the chance of being removed in a given time interval is independent of
the time since infection. It is argued (e.g. Gough 1977, Lloyd 2001), that in reality the
chance of recovery (in a given time interval) is initially small but increases overtime. This
indicates that the infectious period distribution is less dispersed and more closely centred
around its mean than the exponential distribution. This can be interpreted that the expo-
nential distribution overestimates the number of individuals whose duration of infection
is much shorter or much longer than the mean. Below we study how the distributional
effects (other than exponential distribution) of the infectious period and vaccination delay
time influence the reproduction numbers.

For the above social graph and epidemic model we study two vaccination strategies:
vaccination of located friends after delay (the first strategy) and vaccination of friends after
delay with a bound on the maximum number of possible infections (the second strategy).
Both vaccination strategies are implemented during the early stages of the epidemic after
tracing the friends of infectious individuals in order to uncover possible chains of infection.
Shaban et al., (2007) studied these vaccination schemes, but then assuming no latent
period and exponentially distributed infectious periods and detection times. Here we
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model the latent period with an arbitrary distribution, and infectious period and delay
time with independent gamma distributions. We investigate how the random properties
of latent and infectious periods as well as the properties of the vaccination schemes affect
the reproduction numbers.

The transmission potential of an infectious disease can be quantified by the basic
reproduction number often denoted R0, which determines whether a major outbreak can
occur or not: if R0 ≤ 1, only minor outbreaks can occur, whereas if R0 > 1 then there
is a positive probability for a major outbreak, (e.g see p.6 in Andersson and Britton,
2000). For a closed large population of size n we derive R0 for the network epidemic
model without vaccination and show that, for our model, the latent period does not
affect R0 and hence plays no role on the distribution of the final size. We also derive
the strategy-specific reproduction numbers for the two vaccination schemes, and show
that the distributions of the infectious period and delay time affect the dynamics of the
disease transmission (and hence the reproduction numbers). The reproduction numbers
are independent of the distribution of the latent period, since we assume that an infected
individual can only be detected while infectious and not during latent period. All this is
done while assuming independent gamma distributions for infectious periods and delay
times.

The rest of the paper is organized as follows. In Section 2 we define the models for
the social graph, the epidemic on the social graph and we derive the basic reproduction
number. In Section 3 we present our two vaccination strategies and derive the corre-
sponding strategy-specific reproduction numbers. The effects of the random properties of
the infectious periods and delay time on the reproduction numbers are also investigated.
Discussion of the results as well as some concluding remarks are treated in Section 4.

2 Models

2.1 Social structure

Let n denote the number of vertices (i.e. the population size) of a random graph, not
allowing for multiple edges and loops (i.e. a simple random graph). We describe the social
network by a simple undirected random graph where the degree distribution follows some
pre-specified distribution F = {pk}∞k=0. That is, we are given the probabilities pk that a
randomly chosen vertex from the network has degree D = k. We define a simple random
graph with a given degree sequence {Di}n

i=1 by the configuration model (see e.g. Bollobás
2001): assign independent degrees D1, . . . , Dn from F to the vertices and give a vertex
with degree k, k stubs. Then join the stubs randomly pairwise to form edges between
them. That is, first pick two stubs randomly among all stubs in the graph and join them.
Then pick two stubs at random from the remaining stubs and join them, and so on (see,
e.g. Molloy and Reed, 1995). Vertices i and j are neighbours (friends) if there is an edge
between them. For details on how to generate simple undirected random graphs we refer
the reader to Britton et al. (2006) and references therein. This procedure produces a
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graph with the desired degree distribution as n → ∞, but which in all other respects is
completely random. That is, we generate a graph which is drawn uniformly at random
from the set of graphs with the given distribution.

2.2 Epidemic model

Consider an infectious disease that spreads along the edges of a graph defined above.
The vertices of a graph are the individuals in the community and the edges represent
friendships through which the disease may spread. We now define the course of the dis-
ease in the following way. Initially, one randomly selected individual (vertex) is infected
from the outside. This individual then is first latent for a random time with arbitrary
distribution, after which she becomes infectious and remains so for a period I being
Γ(nI , nIγ)-distributed. During the infectious period an individual infects each of her
friends independently according to independent Poisson processes with the rate λ. Those
who get infected make out the first generation infected in the epidemic. These individuals
then behave similarly and may infect their not yet infected friends thus making a second
infected generation, and so on. An individual cannot be re-infected after her infectious
period, so she is considered recovered and immune from the disease. This epidemic contin-
ues until there are no more latent or infectious individuals present when it stops, because
then all individuals are either still susceptible or immune and no one is infectious or latent.
It follows from the above distribution of L that the average length of latent period is 1/δ,
the standard deviation is 1/(δ

√
nL) and the coefficient of variation is 1/

√
nL. Similarly,

the mean length of the infectious period is 1/γ with standard deviation 1/(γ
√

nI) and the
coefficient of variation 1/

√
nI . As usual, we assume that all Poisson processes describing

infectious contacts, as well as latent and infectious periods, are mutually independent.

2.3 Basic reproduction number

We now derive the basic reproduction number for the epidemic model defined above.
To do this, we begin by deriving the probability for an individual to infect her friends
before recovery. If initially the number of infectious individual is small, the growth of an
epidemic can be approximated by a suitable branching process. This approximation can
be made more precise by coupling arguments (see e.g. Ball 1996), but this will not be
treated in the present paper.

Let Ti denote the time an individual makes the first contact with a given friend i
during her infectious period, and let I be the the length of the infectious period. Note
that contacts made by an individual while latent have no effect in the progress of infections,
while contacts made when infectious result into infection. It follows that the probability
of transmission of infection is given by

P (Ti < I) =

∫ ∞

0

P (Ti < I|Ti = t)λe−λtdt =

∫ ∞

0

(1− P (I ≤ t))λe−λtdt. (2.1)
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Since I ∼ Γ(nI , nIγ) with nI integer, the distribution function of the infectious period I
is

FI(t) = 1−
nI−1∑
j=0

(nIγt)j

j!
e−nIγt. (2.2)

A related expression to Equation (2.2) is obtained in Bain and Engelhardt (1991) (see
page 113). As a consequence, Equation (2.1) becomes

P (Ti < I) = λ

nI−1∑
j=0

(nIγ)j

j!

∫ ∞

0

tje−(nIγ+λ)tdt

= 1−

(
nIγ

λ + nIγ

)nI

,

(2.3)

since ∫ ∞

0

tje−(nIγ+λ)tdt =
j!

(λ + nIγ)j+1
.

The initial infectious individual has the degree distribution {pk}∞k=0. The friends of
this individual (or friends of any other individual) have the size biased degree distribution
{p̃k}∞k=0, where p̃k = kpk

E(D)
, and E(D) =

∑
j jpj is the average degree of an individual.

During the early stages and conditioning on the degree k, an individual in the second
generation will on average infect (k−1)P (Ti < I) new cases, because all individuals except
the one she was infected by are susceptible. As a consequence, the basic reproduction
number R0 becomes

R0 =
[
1−

( nIγ

λ + nIγ

)nI
]∑

k

(k − 1)
kpk

E(D)

=
[
1−

( nIγ

λ + nIγ

)nI
](

E(D) +
V (D)− E(D)

E(D)

)
,

(2.4)

where V (D) =
∑

j j2pj − (E(D))2 is the variance in the degree distribution. If nI = 1
(see e.g. Andersson 1999) Equation (2.4) becomes

R0 =
λ

λ + γ

(
E(D) +

V (D)− E(D)

E(D)

)
.

We should comment here that the extinction probability (probability of minor outbreak
in epidemic) can be calculated by using a suitable branching process approximation (see
e.g. Jagers 1975). Note that the branching process is subcritical, critical or supercritical
depending on whether R0 < 1, R0 = 1 or R0 > 1. In terms of the epidemic, this means
that a major outbreak is possible if and only if R0 > 1.

We conclude from (2.4) that the latent period L plays no role on R0, following the
assumption that the detection of an infected person may only occur during her infectious
period. We also see in (2.4) that R0 is increasing in V (D), so the more variance in the
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Figure 1: Basic reproduction number R0 as a function of the coefficient of variation of
the infectious period CVI .

degree distribution, the higher R0, and if the degree distribution has infinite variance then
R0 = +∞, a case which we do not pursue in this paper. We now look into the effects
of the variation in the distribution of the infectious period on the basic reproduction
number (i.e. how nI affects R0). In Figure 1 we plot R0, as a function of CVI(= 1/

√
nI),

the coefficient of variation of the infectious period. It is seen that R0 is decreasing with
increase in CVI , showing that the variation in the distribution of the infectious periods
affect the dynamics of the disease.

Furthermore, if nI = +∞ corresponding to having a constant infectious period, then
(2.4) becomes

R0(nI = +∞) = (1− e−
λ
γ )
(
E(D) +

V (D)− E(D)

E(D)

)
.

Likewise, for the case when nI = 1, corresponding to infectious period being exponential
distributed with parameter γ, (2.4) becomes

R0(nI = 1) =
λ

λ + γ

(
E(D) +

V (D)− E(D)

E(D)

)
.

Taking the ratio of R0(nI = +∞) to R0(nI = 1) (i.e. the extreme cases) yields a function
of λ

γ
(the mean number of infectious contacts with a given individual during infectious

period) given by
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), the
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R0(nI = ∞)

R0(nI = 1)
= f

(λ

γ

)
=
(
1 +

γ

λ

)(
1− e−

λ
γ

)
.

In Figure 2, this function f is illustrated and it is seen that f(λ
γ
) is increasing in λ

γ
.

The interpretation is that there is biggest difference between constant and exponentially
distributed infectious periods when R0 is large. It is also observed that f(λ

γ
) ≥ 1, implying

that constant infectious period always make R0 larger.

3 Vaccination strategies

Assume now that a perfect vaccine is available. By this we mean that a susceptible
individual who is vaccinated is completely protected (that is immune to) from the disease
and is unable to spread the disease. Below we present two vaccination strategies which are
implemented during the early stages of the epidemic after detecting infectious individuals.
That is, an infected individual can only be detected while infectious (after latency period)
and we assume that all located friends of a detected infectious individual are vaccinated,
but that vaccination has no effect on already infected individuals. Below we derive the
strategy-specific reproduction numbers for the two strategies.
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3.1 Vaccination of located friends after delay

Assume that an infected individual is never detected before showing symptoms. The
time between the point of infection and the point at which an individual shows symptoms
is called incubation period. We assume that the incubation period is approximately equal
to the latent period. Once the person starts showing symptoms (hence also becomes
infectious), she may be detected by the authorities, and then friends of this individual
are located and become vaccinated. The time starting from when the person becomes
infectious until she is detected and friends are located and vaccinated is referred to as the
delay time. For simplicity, we assume that all located friends are vaccinated at the same
time.

More precisely, this vaccination strategy goes as follows. An infectious individual
is detected and her friends get located after some delay time S say, having Γ(nS, nSθ)-
distribution. Each friend of this individual is located independently with probability ρ and
all located friends are vaccinated without further delay. It follows from the distribution
of S that the mean length of delay time is 1/θ, the standard deviation is 1/(θ

√
nS) and

the coefficient of variation is 1/
√

nS.

We now derive the reproduction number in order to determine the performance of this
vaccination strategy. Let Xi be an indicator variable such that Xi = 1 if a given friend
i of an infectious individual is located (which happens with probability ρ), and Xi = 0
otherwise. Suppose Ti is the time an infectious individual first contacts friend i. Then
transmission of infection occurs if Ti < min(S, I), or if S < Ti < I and {Xi = 0}. Let
p denote the probability that an infected person infects a given susceptible friend i. By
conditioning on Ti, p can be derived as

p = P (Ti < min(S, I)) + P (S < Ti < I ∩ {Xi = 0})

=

∫ ∞

0

(
P
(
Ti < min(S, I)|Ti = t

)
+ (1− ρ)P

(
S < Ti < I|Ti = t

))
λe−λtdt.

(3.1)

Since I and S are independent, and Ti is Exp(λ), Equation (3.1) hence becomes

p =

∫ ∞

0

P (I > t)P (S > t)λe−λtdt + (1− ρ)

∫ ∞

0

P (S ≤ t)P (I > t)λe−λtdt. (3.2)

Using the gamma distributions for S and I in Equation (3.1) we get that (see e.g. Bain
and Engelhardit 1991, page 113 ),

p =

∫ ∞

0

nI−1∑
j=0

(nIγt)j

j!
e−nIγt

nS−1∑
i=0

(nSθt)i

i!
e−nSθt λe−λtdt

+ (1− ρ)

∫ ∞

0

nI−1∑
j=0

(nIγt)j

j!
e−nIγt

(
1−

nS−1∑
i=0

(nSθt)i

i!
e−nSθt

)
λe−λtdt.

(3.3)
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Interchanging integration and summation and performing some algebra, (3.3) simplifies
to the following expression

p = (1− ρ)

[
1−

( nIγ

λ + nIγ

)nI

]
+

ρλ

λ + nIγ + nSθ
ξ, (3.4)

where

ξ =

nS−1∑
i=0

nI−1∑
j=0

(
i + j

i

)( nSθ

λ + nIγ + nSθ

)i( nIγ

λ + nIγ + nSθ

)j

. (3.5)

Applying some combinatorial techniques in (3.5), then (3.4) becomes

p = (1− ρ)

[
1−

( nIγ

λ + nIγ

)nI

]
+ ρ

[
1−

( nIγ + nSθ

λ + nIγ + nSθ

)nI+ns−1
]
. (3.6)

During the early stages of the epidemic, individuals in the second and later generation
have degree k with probability p̃k = kpk

E(D)
, and of these (k − 1) are susceptible. The

reproduction number hence becomes (using equation (2.4))

Rθ,ρ = p
∑

k

(k − 1)
kpk

E(D)

=

[
(1− ρ) + ρ

(
1−

( nIγ

λ + nIγ

)nI

)−1

·

(
1−

( nIγ + nSθ

λ + nIγ + nSθ

)nI+ns−1
)]

R0.

(3.7)

We note that Rθ,ρ in (3.7) is linear in R0, thus if the basic reproduction number is large
so is Rθ,ρ. The disease will surely be contained if and only if Rθ,ρ ≤ 1. In Figure 3 we
see that Rθ,ρ is decreasing with θ, though it does not necessarily prevent the disease from
taking off.

We now investigate how Rθ,ρ is influenced by the variation in the distributions of the
infectious period and delay time (i.e. how nI and nS affect Rθ,ρ). Of particular interest
is when nI = nS = 1 and when both nI and nS are tending to infinity, corresponding
to exponential distributed and constant periods respectively. Using the pair of values
(nI = 1, nS) and (nI = +∞, nS) in (3.7) we obtain respectively

Rθ,ρ(nI = 1, nS) =

[
(1− ρ) + ρ(1 +

γ

λ
)

(
1−

( γ + nSθ

λ + γ + nSθ

)nS

)]
R0 (3.8)

and

Rθ,ρ(nI = +∞, nS) =

[
(1− ρ) + ρ

(
1− e−

λ
γ

)−1(
1− e−(λ

γ
+nS

θ
γ
)
)]

R0. (3.9)

As an example, we choose λ = γ = 1, ρ = 0.5, θ = 1, R0 = 2 and using Equations (3.8)
and (3.9), it is seen that both Rθ,ρ(nI = 1, nS) and Rθ,ρ(nI = +∞, nS) are increasing
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Figure 3: Reproduction number Rθ,ρ, as a function of θ, the detection rate when R0 = 2,
and λ = γ = 1, for ρ = 0.2 and ρ = 0.8.

with nS (see Figure 4). The interpretation of this is that the reproduction number is
decreasing with CVS = 1/

√
nS, the coefficient of variation of the delay time. However,

Rθ,ρ grows faster for the case nI = ∞ (I is constant) than when nI = 1 (I is exponentially
distributed).

Applying the same line of argument for the pairs (nI , nS = 1) and (nI , nS = +∞) in
Equation (3.7) we obtain respectively

Rθ,ρ(nI , nS = 1) =

[
(1−ρ)+ρ

(
1−
( nIγ

λ + nIγ

)nI

)−1(
1−
( nIγ + θ

λ + nIγ + θ

)nI

)]
R0 (3.10)

and

Rθ,ρ(nI , nS = +∞) =

[
(1− ρ) + ρ

(
1−

( nIγ

λ + nIγ

)nI

)−1(
1− e−(λ

γ
+nI

θ
γ
)
)]

R0. (3.11)

Using the above set of parameter values in (3.10) and (3.11), we plot Rθ,ρ(nI , nS = 1) and
Rθ,ρ(nI , nS = +∞) as functions of nI (see Figure 5). It is observed that Rθ,ρ is increasing
with nI for the case nS = 1, implying that Rθ,ρ is decreasing with CVI the coefficient
of variation of the infectious period. However, Rθ,ρ is decreasing with nI if nS = +∞
(i.e. S is constant period), showing that the reproduction number is increasing in CVI if
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the vaccination delay time is constant. To conclude, we have shown that Rθ,ρ is always
decreasing with the coefficient of variation of S, but Rθ,ρ can go either way as a function
of CVI .

3.2 Vaccination after delay with bounds on the maximum num-
ber of infections

The reproduction number Rθ,ρ in the first strategy is proportional to the basic repro-
duction number R0. As a consequence, if R0 is very large, for example due to a heavy
tailed degree distribution, so will Rθ,ρ be. The second strategy aims at reducing the re-
production number more than the first strategy. To achieve this we assume that it is
possible to put an upper bound, m say, on the number of friends that can be infected
by one infectious individual. By this we mean that an individual can at most infect m
friends. A heuristic motivation as to why this could be the case is that an individual is
more likely to be detected the more friends she has infected, so if the number is as large
as some value m she will always be detected. We assume that, if an infectious person is
detected then all friends are located (so ρ = 1) and vaccinated after the same delay time
S counted from the time at which the person becomes infectious.

So given that the degree of an individual is D = k, we want to compute the expected
number of friends say Z, who ultimately get infected (i.e. E(Z|D = k)) and then the
unconditional expected value of Z, given by E(Z) =

∑∞
k=1 E(Z|D = k) kpk

E(D)
. As before, a

typical infectious individual has k friends with probability kpk

E(D)
. Let m be the maximum

number of friends an infectious person can infect among the k − 1 initial susceptible
friends. We now consider two possible cases. The first case is, when k− 1 ≤ m, implying
that m plays no role in the transmission of infection. Consequently, the number of newly
infected individuals can be written as the sum of indicators, showing whether each of the
k− 1 friends is infected or not, here denoted Z. Thus, the conditional mean of Z is given
by

E(Z|D = k) =
k−1∑
i=1

P (friend i gets infected) = (k − 1)P (friend i gets infected). (3.12)

The probability of infecting individual i, P(friend i gets infected), here denoted π can
be computed from Equation (3.6), but now with ρ = 1, since all susceptible friends are
vaccinated after the detection of an infectious individual. Thus, π equals

π = 1−
( nIγ + nSθ

λ + nIγ + nSθ

)nI+ns−1

,

and as a result Equation (3.12) becomes

E(Z|D = k) = (k − 1) π.
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The second case is when k−1 > m. So, given that the individual has degree D = k, the
delay time S = s and infectious period I = i, each individual out of the k− 1 susceptible
friends is contacted independently with the same probability 1− e−λ min(s,i). However, not
more than m friends can be infected. As a consequence, the conditional expected number
of infected friends, denoted Z is given by

E(Z|D = k, S = s, I = i) =
m∑

j=0

j

(
k − 1

j

)(
1− e−λ min(s,i)

)j(
e−λ min(s,i)

)k−1−j

+
k−1∑

j=m+1

m

(
k − 1

j

)(
1− e−λ min(s,i)

)j(
e−λ min(s,i)

)k−1−j

.

(3.13)

The unconditional expected number of friends infected by a single person during her
infectious period (i.e. the reproduction number), denoted R, is hence given by

R =
∞∑

k=1

E(Z|D = k)
kpk

E(D)

=
m+1∑
k=1

(k − 1)π
kpk

E(D)
+

∞∑
m+2

[
m∑

j=0

j

(
k − 1

j

)(
1− e−λ min(s,i)

)j(
e−λ min(s,i)

)k−1−j

+
k−1∑

j=m+1

m

(
k − 1

j

)(
1− e−λ min(s,i)

)j(
e−λ min(s,i)

)k−1−j
]

kpk

E(D)
.

(3.14)

As usual only small outbreaks of the disease may be observed if R ≤ 1. The expression of
the reproduction number R in this strategy is somehow complicated to enable us perform
some theoretical analysis of the effects of the random behaviour in the distributions of
infectious period and delay times. However, though tedious it can be shown numerically
that R is decreasing with the coefficient of variations of both the infectious period and
detection time.

4 Discussions

In the present paper we have studied how the random properties of the infectious period
and delay time affect the reproduction numbers when the disease propagates in a random
social network. The epidemic model is an SEIR, and we assumed that the latent period
has an arbitrary distribution, and infectious period and delay time have independent
gamma distributions. Under the assumption that the detection of an infected individual
may only occur while the person is infectious (after latent period), it is seen that the
reproduction numbers are independent of the latent period.

In particular we have shown that the stochasticity of the distributions of the infectious
period and delay time have significant impacts on the reproduction numbers, and hence
on the final size of the epidemic. The basic reproduction number R0 and the reproduction
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number Rθ,ρ in the first strategy are both decreasing with the coefficient of variation of the
infectious period. Furthermore, Rθ,ρ is decreasing with the coefficient of variation of the
delay time, implying that the variations in the distributions of both infectious periods and
delay times affect the dynamic of an infectious disease. Similar effects of the distributions
of I and S can be observed on the reproduction number R of the second strategy, though
it is hard to get a simple expression of R for theoretical analysis.

The models which have been developed are not fully realistic, but we believe that they
may capture some of the relevant behaviour which would appear in complex models. For
example, a more realistic social structure would consider some network properties such as
clustering, associativity and preferential attachment (see e.g. Newman 2003). A possible
generalization of the model would be to consider different types of individuals, and to
assume that both network properties as well as transmission probabilities depend on the
type of an individual; see e.g. Ball Clancy (1993). For example, it would be interesting
to consider the varying susceptibility of individuals to the disease,(see e.g. O’Neill 2001).

The most obvious continuation of the present paper is however, to partition the com-
munity into small groups such as households, schools, workplaces and so on. It is well
known that in a community partitioned into small groups, the contact rates among in-
dividuals are different for within the group and between the groups. The main interest
would be to study the effect of some vaccination strategies in reducing the spread of the
disease in such the community with heterogeneties between individuals.
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