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Abstract

Outcome dependent sampling probabilities can be used to increase effi-
ciency in observational studies. For continuous outcomes appropriate
consideration of sampling design in estimating parameters of inter-
est is often computationally cumbersome. In this article we suggest
a Stochastic EM type algorithm for estimation. The computational
complexity of the likelihood is avoided by filling in missing data so that
the full data likelihood can be used. The method is not restricted to
any specific distribution of the data and can be used for a broad range
of statistical models.
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1 Introduction

Most standard statistical tools for analyzing data from observational studies
assume that simple random sampling is used. Outcome dependent sampling
may however increase study efficiency. The case-control design (Breslow
1982), for example, has been widely used in epidemiology. An attractive
feature of the design is that unbiased estimates of relative risks can be ob-
tained by performing statistical analysis on the data using a logistic regression
model, as if the data were from a prospective study. More complex sampling
designs may further increase efficiency. In the two-stage case-control design
some covariate information is recorded on all subjects included in a study
(Stage 1) whilst other covariate information, e.g. more expensive covariates,
is gathered only on a subset of samples (Stage 2); the probability that the sub-
ject is included in Stage 2 is dependent on Stage 1 covariates. There is a large
literature dealing with how to analyze outcome dependent, and two-stage,
samples when the outcome is categorical, using a pseudo or semi-parametric
likelihood (Breslow & Cain 1988, Breslow & Holubkov 1997, Breslow & Chat-
terjee 1999, Chen 2003). In general, there is less written about how to deal
with continuous outcomes, although some of the above mentioned literature
does cover the topic. Dichotomizing continuous outcomes and analyzing the
data as if it were a case-control outcome will generally lead to loss in efficiency
(Vargha et al. 1996).

Outcome dependent sampling based on continuous outcomes is common in
genetic epidemiology. Klos & Kullo (2007), for example, compare candidate
gene sequences between individuals in the tails (upper and lower 5%) of the
high-density lipoprotein cholesterol distributions of different study popula-
tions. An ongoing study at the second author’s institute is based on a similar
study design, where individuals in the upper and lower tertiles of cholesterol
distributions are selected from a cohort study of 60 year old men in Stockholm
(www.biobanks.se/cardiovascular.htm), for genotyping. This particular study
has a two-stage cohort design and hence the study base is clearly defined. For
such designs outcome variables Y are known for the entire cohort sample –
unbiased estimation of regression parameters is possible and computationally
straightforward via application of the EM algorithm. Often study bases are
instead ill-defined, e.g. hospital-based studies; it is these study designs which
we focus on in this article. For example: in the genetic association study of
type II diabetes described by Gu et al. (2004), genotyping was carried out for
106 type II diabetes patients, 325 impaired glucose tolerance patients and 497
normal glucose tolerance controls. Analysis were performed to determine ge-
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netic association with continuous metabolic syndrome variables, which were
used to define the selection categories. Parameter estimation in regression
models with continuous outcomes measured in such samples, i.e. obtained
under outcome dependent sampling, will be biased unless the ascertainment
scheme is accounted for.

In what follows we will use X to denote explanatory variables, Y to denote
outcome variables and A (ascertainment) to represent a sampling indicator
variable signifying that both X and Y are observed. Both X and Y are al-
lowed to be multivariate. For notational simplicity both probability density
and mass functions will be denoted by P (.). We assume that the distribution
of X, and of Y conditional on X, is parameterized by θ and that the prob-
ability of ascertainment is independent of θ given the observed data, that is
P (A = 1|X, Y, θ) = P (A = 1|X, Y ). Furthermore, we assume that ascertain-
ment is independent of X conditional on Y , P (A = 1|X,Y ) = P (A = 1|Y ).
Interest is in estimating θ.

Despite there being several solutions to several specific scenarios, the general
problem of parameter estimation under complex ascertainment remains of
interest (Clayton 2003). The approaches considered in this article are general
in the sense that they are not restricted to a particular design. One general
way to account for ascertainment is to inflate the data to a representative
sample. In this spirit we describe a novel approach for parameter estimation
with ascertainment on continuous outcomes Y , which we note can be easily
extended to allow for ascertainment to depend on X as well as Y . This
algorithm is similar to a Stochastic EM (SEM) algorithm.

Another general approach for correcting for ascertainment is to base inference
on the joint likelihood of the data Z = (X, Y ), conditioned on A,

L(θ; Z) = P (X, Y |θ, A = 1) =
P (A = 1|Y )P (X,Y |θ)

P (A = 1|θ) (1.1)

which corresponds to the log likelihood

log(L) ∝ log(P (X,Y |θ))− log(P (A = 1|θ)).

The form of this likelihood generally makes standard likelihood-based esti-
mation computationally difficult. The computational problem arises because
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P (A = 1|θ) =
∫

Y

∫

X
P (A = 1|Y )P (X, Y |θ)dXdY (1.2)

is, in many settings, intractable. For continuous Y some examples of such
settings are: if X is continuous or a mixture of discrete and continuous
variables, or if ascertainment probability is a continuous function of Y , which
could be the case in size biased sampling. See Patil (2002) for a description of
size biased sampling. When analytical solutions are not available, methods
for numerical integration, such as importance sampling, can be used. This
approach is investigated here as a comparison to the SEM type algorithm.

An alternative to basing inference on (1.1) is to use the retrospective like-
lihood P (X|Y, A), utilising the fact that ascertainment probabilities cancel
out of the likelihood when AqX|Y , leaving P (X|Y, A) = P (X|Y ). However,
because of the loss of information in conditioning on the non-ancillary statis-
tic Y , the set of parameters describing the relationship between X and Y is
generally not identifiable (Liang 1983). Some, but not all of the parameters
may however be identifiable. See (Chen 2003) for a discussion of parameter
identification in the general odds ratio function.

There are also alternative solutions for particular designs. An attractive ap-
proach to estimation for study designs where samples are drawn with different
probabilities in different regions of the space of a continuous outcome, Y , is
described by Zhou, Haibo et al. (2002). They describe a semi-parametric
empirical likelihood approach to analyze data that consists of both a sim-
ple random sample and supplement samples from strata that are presumed
highly informative based on their values of Y . Features of the approach are
that no parametric assumptions are required for covariates and that ascer-
tainment probabilities are not required to be known or estimated. Often it is
advantageous not to make parametric assumptions for covariates, although
in genetics it can be advantageous (Chen & Chatterjee 2007).

We will first, in Section 2.1, present the SEM type algorithm for use for the
ascertainment problem as described above. Two other approaches, a data
augmentation method due to Clayton (2003), and a method based on impor-
tance sampling are presented in Section 2.2 for comparison. Some examples
are presented in Section 3 and an analysis of simulated data using the three
different methods is presented in Section 4. The results are discussed in
Section 5.
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2 Methods

2.1 A SEM type algorithm

Although not fitting fully into the classical framework of missing data prob-
lems (Little & Rubin 1987), non-random ascertainment can still be viewed
as a missing data problem, with data missing at random (MAR). In miss-
ing data problems data is partitioned into observed data, Zobs, and missing
data Zmis, and there is typically a well-defined set of subjects for which
some variables have missing values, Zmis, while there is partially complete
information, Zobs, on each sample unit. In our setting all variables can be
viewed as belonging to Zmis when a subject is not ascertained. Nevertheless
it is useful to consider algorithms used in missing data problems, such as
the Estimation Maximization (EM) algorithm (Dempster et al. 1977) and
it’s extensions. Wacholder & Weinberg (1994) used the EM algorithm to
obtain Maximum Likelihood estimates in case-control studies with complex
ascertainment. This approach would encounter computational difficulties if
extended to for example the normal distribution. We describe here a simu-
lation based approach, similar to the SEM algorithm, which overcomes this
problem. We begin by summarising the SEM algorithm (Section 2.1.1) as
background.

2.1.1 The SEM algorithm

Suppose interest is in estimating θ in a parametric model for a complete data
likelihood, when data is actually incomplete. The EM algorithm has been
used extensively for maximum likelihood estimation in this setting. First
starting values for the parameter estimates are chosen, and then the following
two steps are iterated: In the E-step the expectation of the complete data is
calculated using the parameter values, θ̂, from the previous M-step (or using
starting values at the first iteration). In the M-step the maximum likelihood
estimates, θ̂, from the complete data, created in the E-step, are calculated.
Although in general, if a likelihood has a unique maximum, the EM algorithm
converges to that value (Wu 1983), in practice the EM algorithm is prone to
convergence to local maxima. The algorithm is therefore sensitive to choice
of starting values.

If calculating the expected complete data likelihood in the E-step requires
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computationally demanding numerical integration one way to side-step the
problem is to simulate the missing data, and use the value of the observed
mean instead of the calculated expectation. This is the Monte Carlo EM
algorithm (Wei & Tanner 1990). Ibrahim et al. (1999) discuss how the Monte
Carlo EM algorithm can be used in generalized linear models when data has
missing covariates. The algorithm is performed in two steps; in the S-step the
missing data is simulated M times and in the M-step maximum likelihood
estimates θ̂ are calculated using the combined data set containing observed
and simulated data.

The SEM algorithm (Celeux & Diebolt 1985) is a special case of the Monte
Carlo EM algorithm with only one simulation step per maximization step
(McLachlan & Krishnan 1997). In iteration i the calculations are performed
according to the following algorithm:

S-step: Simulate M = 1 set of the missing data, Zmis, using current para-
meter estimates θ̂i−1.

↓

Construct the complete data likelihood using the observed data, Zobs, and
the simulated data, Zsim:

L(θ; Zcom) = L(θ; Zobs
∈A=1, Z

mis
/∈A=1)

≈ L(θ; Zobs
∈A=1, Z

sim
/∈A=1)

=
∏

P (Zobs
∈A=1, Z

sim
/∈A=1|θ)

=
∏

P (Zobs
∈A=1|θ)

∏
P (Zsim

/∈A=1|θ) (2.1)

↓

M-step: Obtain new parameter estimates θ̂i from (2.1) by maximising the
expected complete data likelihood.
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↓

Repeat: Go to iteration i + 1 and repeat the steps above.

Application of the SEM algorithm does not result in a single value for a
parameter estimate. Instead there is built-in variation, induced by the sim-
ulated data, around the estimate, and the result will be similar to that of
a stationary Markov Chain Monte Carlo estimator (Gilks et al. 1996). We
will use the word convergence to denote convergence in distribution of the
sequence of estimates. In analogue with the terminology of Markov Chain
Monte Carlo we will use the word burn-in to refer to the initial iterations of
the chain that should be excluded from analysis in order to ensure that the
estimates are produced by the right distribution.

The SEM algorithm has been shown to be useful in a wide range of miss-
ing data problems such as time-to-event data with censoring data sets (Ip
1994) and haplotype estimation (Tregouet et al. 2004). The SEM algorithm
is known to be more robust to poorly specified starting values than the deter-
ministic EM algorithm (Gilks et al. 1996), which is a highly attractive feature
in our setting. One way of estimating parameters in the SEM algorithm is to
choose the set of parameter values in the iteration that gives the highest value
of the likelihood for the observed data. The likelihood for the observed data
may however be so complicated that this is infeasible. A simpler approach
is to compute the mean, θ̃, of the parameter values in the iterations after
an appropriate burn-in period. An approximation of the variance of θ̃ can,
according to Gilks et al. (1996), be computed by utilizing the property that
the observed data likelihood in the EM algorithm can be specified in terms
of the complete data likelihood (Louis 1982), but replacing the theoretical
mean and variance with bootstrap estimates (Efron 1992). The bootstrap es-
timates are obtained as follows: Fill in the missing data with simulated data
K times, using θ̃, to obtain pseudo complete data sets zcom

1 , zcom
2 . . . zcom

K . If
the complete data log likelihood is denoted lcom, the observed information is

−l′′obs(θ, z) = Eθ[−l′′com(θ, z)]− Covθ[l
′com(θ, z)], (2.2)

where the expectation and covariance are calculated over the K pseudo sam-
ples. The covariance matrix is then obtained by taking the inverse of the
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information matrix as usual. Some details of the variance calculations will
be provided in Section 2.1.2.

For further reading on the SEM algorithm see Gilks et al. (1996) and McLach-
lan & Krishnan (1997).

2.1.2 Applying a SEM type algorithm to the ascertainment prob-
lem

We can implement an algorithm similar in spirit to the SEM algorithm for
the ascertainment problem. The essential idea is to inflate the ascertained
sample to being representative, using simulated observations. The ”non-
ascertained” component is considered missing and is imputed in an S-step
using the parameter estimates from the most recent M-step in a ”SEM type”
algorithm. Normally when the SEM algorithm is used to fill in missing data
there is a fixed sample size and data is filled in for those observations where
data is missing. Here we assume that the sample size of the representative
data is not known, as it is for the two-stage cohort design, but that only the
ascertainment probabilities conditional on data, and the sample size, nobs,
of the observed ascertained data, Zobs

∈A=1. Data is simulated as described
below. In the S-step the missing data is filled in by rejection sampling (see
for example Gilks et al. 1996), using a reverse ascertainment scheme:

Simulate: Simulate data from the population distribution P (Z|θ̂) and sort
the observations into data that would have been ascertained, Zsim

∈A=1, and data
that would not have been ascertained, Zsim

/∈A=1. Stop when nobsobservations
from Zsim

∈A=1 have been obtained.

↓

Reject: Throw out the observations in Zsim
∈A=1 and keep those in Zsim

/∈A=1.

The size of the simulated data-set is random, with distribution NegBin(nobs, P ),
where P = Pθ̂i−1

(A). This implies that E(nsim) = nobs(P−1 − 1) and

V ar(nsim) = nobs(1 − P )/P 2. In the M-step maximum likelihood estimates
are obtained from the likelihood of the real ascertained data combined with
the simulated non-ascertained data as described above.
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The information matrix is estimated using (2.2), with quantities on the r.h.s.
of the equation estimated as

Êθ[−l′′com(θ̂, zcom)] =
1

K

K∑

k=1

ncom
k∑

i=1

−l′′com(θ̂, zcom
ik ),

Ĉovθ[l
′com(θ̂, zcom)] =

1

K − 1

K∑

k=1

ST
k Sk − 1

K − 1
(

K∑

k=1

Sk)
T 1

K − 1

K∑

k=1

Sk

respectively, where

Sk =

ncom
k∑

i=1

l′com(θ̂, zcom
ik ),

and where zcom
ik is the i:th element of the pseudo complete data-set generated

in step k.

2.2 Importance sampling and Data augmentation

We now summarize two alternative strategies to obtain parameter estimates
in data with non-random ascertainment. Both approaches, in common with
the SEM type algorithm, are simulation based and use Maximum Likelihood
for estimation.

Importance sampling

As mentioned above the difficulty in calculating the likelihood of the ascer-
tained data lies in the integration of (1.2). Importance sampling (Hammersly
& Handscomb 1964) is a Monte Carlo method used for numerical integration.
The basic idea is to sample from one distribution to obtain the expectation of
another. This is advantageous for sampling efficiently but also when drawing
samples from the target distribution is difficult. In general terms, for a ran-
dom variable X which has density f1(x), the expectation of some function of
X, g(x), can be written as

µ = Ef1[g(x)] =
∫

g(x)f1dx =
∫ f1

f2

g(x)f2dx = Ef2 [
f1

f2

g(x)]
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for f2 > 0 whenever the support of f2 includes that of gf1 > 0. This means
that samples can be drawn from f2 to obtain the expectation of g(x). We can
apply the importance sampling technique to approximate (1.2). One way to
implement importance sampling in this context is to draw observations from
a distribution which has the same parametric form as the target distribution
P (z|θ), but in the place of the unknown θ, use naive guesses of the values
of θ, which we call θ∗, in analogy with the starting values for the SEM type
algorithm. In this case P (A = 1|θ) is estimated by noting that

P (A = 1|θ) =
∫

P (A = 1|z)P (z|θ)dz =
∫

[P (A = 1|z, θ) P (z|θ)
P (z|θ∗) ]P (z|θ∗)dz.

If we draw Ṁ observations from P (z|θ∗) which we denote as zsim
1 , . . . , zsim

Ṁ
,

we can estimate P (A = 1|θ) by

P̂ (A = 1|θ) =
1

Ṁ

Ṁ∑

j=1

P (A = 1|zsim
j )

P (zsim
j |θ)

P (zsim
j |θ∗) . (2.3)

As a consequence we can approximate the log likelihood contribution of in-
dividual i,

log(L) ∝ log(P (zi|θ))− log(P (A = 1|θ)),

up to a constant, by replacing P (A = 1|θ) by (2.3), thereby obtaining

log(P (zi|θ))− log(
1

Ṁ

Ṁ∑

j=1

P (A = 1|zsim
j )

P (zsim
j |θ)

P (zsim
j |θ∗)). (2.4)

Since the approximation of the likelihood is expressed in terms of θ an ap-
proximation of the information matrix can be computed as minus the second
derivative of the log likelihood as usual.

Data augmentation

Clayton (2003) derives an ascertainment corrected likelihood by using an
analogy to the conditional likelihood for matched case-control data. The
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idea behind this approach is to simulate a number of pseudo-observations for
each real observation and use these in combination with the real data to build
the likelihood. As in the importance sampling method the true parameter
values θ are unknown and are substituted by guesses, θ∗.

Given the pseudo-observations the log likelihood contribution of individual i
can, up to a constant, be written as

log(P (zi|θ))− log(
1

M̈ + 1

M̈+1∑

j=1

P (zij|θ)
P (zij|θ∗)). (2.5)

Since an expression for the likelihood is available, parameter estimates can
be obtained using maximum likelihood. Variances of these estimates are ob-
tained as usual by calculating the information matrix from the likelihood.
The likelihood (2.5) is similar to the likelihood approximated with the im-
portance sampler, (2.4), especially when ascertainment probabilities are 0/1.
The essential differences are that

• Data is drawn under non-random ascertainment in (2.5), using the
data augmentation method, while it was drawn from the population
distribution in (2.4), using the importance sampler.

• The sum in the second term is over the pseudo-observations only in
(2.4) while the real observation are also included in (2.5).

• In (2.5) a separate estimate of P (A = 1) is calculated for each real
observation while in (2.4) P (A = 1) is calculated only once.

The last of these differences means that while Ṁ pseudo-observations are
produced in the importance sampler, for a sample size of nobs real observa-
tions, M̈ × nobs pseudo-observations are produced in the data augmentation
method.

3 Examples

To illustrate the performance of the methods described above perform we
will look at two examples. The example data are simulated to allow com-
parison of the results with true answers. Starting values/parameter guesses,

11



θ∗, are required for each method. The first example is based on a univariate
continuous outcome with non-random ascertainment and is used to illustrate
how sensitive, mainly with respect to variability, the different methods are
to specification of starting values. The second simulation is based on a more
complex example with a multivariate outcome and non-random ascertain-
ment. For this example we found that our method provides valid parameter
estimates while the other approaches fail when θ∗ is poorly specified. Both
examples are based on a single explanatory variable X.

The simulations are inspired by genetic epidemiology, where non-random
ascertainment is widely used for the reason that genetic data has traditionally
been more expensive to collect than response variable measurements. In
particular the outcomes are thought of as traits representing the metabolic
syndrome (Agardh et al. 2003). The metabolic syndrome comprises many
health related outcomes that can affect each other in complex ways. In
our simulation studies we represent only simplified models of the metabolic
syndrome, using outcome variables only to represent BMI and plasma glucose
level.

In the examples ascertainment probabilities are assumed known. In reality,
these quantities will usually have to be either estimated from data, or inferred
from external sources, adding an extra source of uncertainty that has not been
taken into account here.

3.1 Simulation model i

For the first simulation model we use a single categorical covariate, X, which
takes possible values 0,1,2. The model is based on a genetics example. X
represents the genotypes (AA,Aa, aa) of a single nucleotide polymorphism
(SNP) with alleles A and a and a minor allele frequency of exp(β0X)/(1 +
exp(β0X)) ≈ 0.2 (β0X = −1.4), so that genotypes AA,Aa and aa have
approximate population frequencies 0.64, 0.32 and 0.04. The distribution
of the univariate outcome, conditional on X = x is Gaussian with mean
β0Y + βXY × x and variance σ2

Y . We use values β0Y = 24, βXY = 4 and
σY =

√
2, chosen so that Y loosely represents BMI. Individuals with a

BMI of 30 or more are defined as obese (as according to the WHO defin-
ition). About 10 percent of the Swedish population in the ages of 25-64 have
such a BMI according to the WHO MONICA project (Tolonen et al. 2000).
Ascertainment probabilities are dependent on outcome/phenotype values:
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P (A|y ≥ 30) = 1, P (A|y < 30) = 0.067, giving approximately equal num-
bers of obese and non-obese subjects. In this example, due to the simplicity
of the model, evaluation of the integral (1.2) would actually be straightfor-
ward. Sampling is continued until the total sample size is 300. This sampling
procedure is similar to the one used by Gu et al. (2004). The difference is
that in our simulation subgroup sample sizes are not fixed, whereas in Gu
et al. (2004) they are. In simulating data we generate samples with random
subgroup sample sizes, since this corresponds directly to the way the data is
analyzed. The asymptotic equivalence of estimators, whether the subgroup
sample sizes are regarded as fixed or random, has been discussed by Bres-
low et al. (2000) in the case-control setting. The simulation model can be
represented graphically as

X(Genotype) → Y (BMI) → A (Ascertainment).

3.2 Simulation model ii

In the second simulation we again assume a single categorical covariate, X,
representing a SNP genotype. Instead of a single outcome as in Model i,
we here use two, Y1 and Y2, considered to represent BMI and plasma glucose
level, respectively. Obesity, measured in terms of BMI, is a co-morbid disease
of plasma glucose level; BMI is dependent on genotype and, in turn, affects
plasma glucose level. The genotype is assumed to have an additive effect on
both outcomes, and Y1 has an additive effect on Y2. Given X = x, Y1 has
distribution N(β0Y1 + βXY1 × x, σY1) and Y2, given X = x and Y1 = y1 has
distribution N(β0Y2 +βXY2×x+βY1Y2×y1, σY2). Parameter values are chosen
to represent outcomes accordingly; β0Y1 = 24, βXY1 = 4, σY1 =

√
2, β0Y2 = 3,

βXY2 = 1, βY1Y2 = 1/15 and σY2 = 0.5. The ascertainment probability is
dependent upon both outcomes, as specified in Table 5.1. Model ii can be
illustrated graphically as

Y1 (BMI)
↗ ↘

X (Genotype) ↓ A (Ascertasinment).
↘ ↗

Y2 (Plasma Glucose)
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4 Results

All simulations were performed using the software R (The-R-Development-
Core-Team 2001). Simulations were carried out for both correctly specified
”starting values”, θ∗ = θ, and for misspecified values, θ∗ 6= θ, to investi-
gate how the methods perform under both optimal and sub-optimal circum-
stances. In the analysis below M̈ = 50 is used in the data augmentation
method and Ṁ = 30000 is used in the importance sampler. For a more
detailed discussion on the choice of M̈ and Ṁ , see Grünewald (2004).

4.1 Results for Model i

Parameter estimates and variance estimates when θ∗ = θ

Estimates calculated using θ∗ = θ are presented in Table 5.2. Naive esti-
mates, calculated by optimizing the likelihood of the data without ascertain-
ment correction, are also presented. Standard errors of the means of the
estimates are presented in parentheses. We calculated the variance estimate
of Gilks et al. (1996) based on (2.2) for each of the 100 simulations, using
K = 5000. The means of these standard errors across the 100 simulations are
presented in Table 5.3. For comparison standard errors based on observed
variability in simulations are also presented. The standard errors calculated
using (2.2) were also used to construct 95% confidence intervals around the
estimates obtained using the SEM type algorithm.

The three methods all provide estimates which are appropriately corrected
for ascertainment, while naive estimates are biased. A comparison with the
observed standard errors for the SEM type algorithm, indicates that the
standard errors calculated using (2.2) give appropriate approximations of
the variation in the estimates. Of the 95% confidence intervals constructed
for the SEM type algorithm, the empirical coverage probabilities based on
100 simulations were 0.94, 0.95, 0.96 and 0.96 for β0X , β0Y , βXY and σY

respectively.

It is worth noting that the Gilks et al. (1996) method of calculating stan-
dard errors does not take into account the chain length of the SEM, so it
is advisable to run a long chain to avoid variability that is unaccounted for.
The chain length in Model i was 2000. It is also worth noting that any ob-
served differences in variability of estimates between methods in Table 5.2
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should be interpreted with caution since the variance of estimates based on
the data augmentation method and the importance sampler depend on M̈
and Ṁ , respectively, and the variance of estimates based on using the SEM
type algorithm depend on chain length.

Parameter estimation when θ∗ is poorly specified

To investigate the behavior of the methods under poorly specified θ∗ sim-
ulations were run for β∗XY = 0 and 2, while remaining starting values were
specified as their true parameter value counterparts. The running time of
the SEM type algorithm was longer when θ∗ was misspecified, to allow for
convergence. As for Markov Chain Monte Carlo simulations, an appropriate
burn in period has to be identified. When the algorithm has converged to
a distribution around the parameter estimates, the standard errors of the
estimates after burn in are the same as for correctly specified starting values.
In our simulations the SEM type algorithm always converged and gave the
same parameter estimates for poorly specified θ∗ as for correctly specified θ∗,
as presented in the right-hand column of Table 5.2.

When the data augmentation method was run with poorly specified θ∗ para-
meter estimates were unbiased but had large standard errors, as can be seen
in Table 5.5. As Clayton (2003) suggests, running a moderate amount of iter-
ations of the data augmentation method improves the performance when θ∗

is poorly specified. That is, the standard error estimates become smaller, ap-
proaching values that would be obtained if true/population parameter values
were used as starting values.

In Table 5.4 parameter estimates and standard errors of mean estimates for
the importance sampler are presented. The importance sampler yields incor-
rect parameter estimates. For example, the mean estimate of β̂0X was 3.213,
with a standard error of 0.208; for a true value of −1.4. The inflation of the
standard errors appears to be more pronounced in the importance sampler
than in the data augmentation method. The effect of the misspecification
on the standard errors is not linear. It is worth noting that the standard
error of β̂XY actually seems to be larger for slightly misspecified β∗XY than
for more severely misspecified β∗XY . Since the importance sampler estimator
is claimed to be unbiased it may seem surprising that the parameter esti-
mates in the example are biased. A condition for the importance sampler is
that the sampling distribution f2 should be positive whenever gf1 > 0. This
condition is fulfilled in the simulations above, but when θ∗ is misspecified
f2 may be so small in some regions where gf1 is large, that no observations
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are actually sampled. The performance of the method may be improved
by a better choice of sampling distribution, for example by using a mixture
distribution (Hesterberg 1995).

4.2 Results for Model ii

When using θ∗ = θ for Model ii the importance sampler, the data augmen-
tation method and the SEM type algorithm all gave reasonable estimates.

Algorithms were also run for poorly specified θ∗. The value of θ∗ was (β∗0X =
0, β∗0Y1

= β0Y1 , β∗XY1
= 0, σ∗Y1

= σY1 , β∗0Y2
= β0Y2 , β∗XY2

= 0, β∗Y1Y2
=

0, σ∗Y2
= σY2). This value was chosen to investigate the robustness of the

methods under extreme misspecification of θ∗ in a complex model. As can
be seen from Table 5.6 under this value of θ∗ neither the data augmentation
method nor the importance sampler obtain adequate parameter estimates.
To investigate whether iterating the data augmentation method compensates
for poorly specified θ∗ a few exploratory runs were made. However, even after
several iterations, the estimates behaved erratically, and we did not observe
convergence towards true parameter values.

The SEM type algorithm did converge to appropriate parameter estimates
but took longer to converge than it did in Model i. A run of the SEM type
algorithm on a single data set is shown in Figure 5.1. Since the algorithm
is run on a data-set, which in itself contains some uncertainty, convergence
will be seen towards the data parameter values corrected for ascertainment,
rather than towards the true/population parameter values.

5 Conclusions

In this paper we have presented an algorithm that can be used to correct for
ascertainment. The computational complexity of the likelihood under ascer-
tainment is avoided by filling in missing data so that the full data likelihood
can be used. An advantage of the method is that it is not restricted to any
specific statistical model -some of the traditional methods to correct for as-
certainment handle only specific sampling schemes/statistical models. Also,
the complexity of the ascertainment scheme hardly affects the complexity of
the calculations, since the ascertainment probabilities are used only when
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simulating data, and not in the likelihood.

For well specified starting values the SEM type algorithm, as well as the
two other methods investigated, perform well. For poorly specified starting
values the SEM type algorithm seems to perform better than the other meth-
ods, when only a single iteration is used, both with regards to bias and to
variability of the estimates.

The SEM type algorithm was slower to run than the other two methods
discussed. The speed of the algorithm may be a problem if ascertainment
probability is low for some portion of data, since large sets of data will then
have to be filled in. An alternative to sampling the whole set of missing
data is to simulate only a portion of the data and weigh up the likelihood
contribution of the simulated data. Data can for example be simulated as
above until nobs/q observations from Zsim

∈A=1 are obtained. Too small values
of nobs/q will however cause too large variability in parameter estimates.
Ripatti et al. (2002) suggest a rule for increasing the number of samples in a
Monte Carlo EM algorithm when approaching convergence. The basic idea
of altering the number of samples when approaching the estimate could be
used also in our setting. If the size of the missing data is small it is of course
also possible to choose M > 1, giving an algorithm similar to the Monte
Carlo EM.

The approaches presented here demand prior knowledge of sampling prob-
abilities given the data. These probabilities are often not known and ap-
proximations may have to be made using, for example, registry data or prior
knowledge about disease occurrence. For ill-defined study designs sensitivity
analysis may be informative, with ascertainment probabilities as sensitivity
parameters. The results described here may also be sensitive to distribu-
tional assumptions, especially if the ascertainment probability is low, so that
a large proportion of data is filled in. The outcomes in the examples are
assumed to be normally distributed given genotype scores, but since real
data often do not follow standard distributions, nonparametric extensions of
the method would be of interest. It is not possible to check distributional
assumptions using standard procedures such as normal QQ-plots since the
ascertained data is not assumed to follow the distribution in the population.
When missing data is filled in, checks of distributional assumptions can be
misleading since the combined data is a mixture of data from the population
distribution and data simulated according to the distributional assumptions.
If distributional assumptions are to be checked custom made methods have
to be constructed.
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Other sampling strategies, e.g. two-stage designs, where some information
is retained on all individuals, may in some cases be handled by a slightly
modified version of the algorithm. This sampling scheme is on the other
hand more similar to the classical missing data setting, with observations
missing at random (MAR), and methods such as multiple imputation (Little
& Rubin 1987) may be useful.
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Figures and tables

Y1 < 30 Y1 ≥ 30
Y2 < 7.8 0.1 0.3
Y2 ≥ 7.8 0.3 1

Table 5.1: Ascertainment probabilities in Model ii

True Naive Importance Data SEM
values estimates sampling augmentation type algorithm

β̂0X -1.4 -0.107 -1.394 -1.403 -1.400
(0.008 ) (0.008 ) (0.006 ) (0.007)

β̂0Y 24 24.409 23.996 24.007 24.027
(0.014 ) (0.013) (0.011 ) (0.012)

β̂XY 4 4.152 4.008 3.991 3.993
(0.011 ) (0.012) (0.010 ) (0.010)

σ̂Y

√
(2) ≈ 1.414 1.589 1.416 1.416 1.409

(0.006 ) (0.005) (0.005) (0.005)

Table 5.2: Model i. Comparison of estimates when θ∗ = θ. Results based on
100 simulations with nobs = 300, Ṁ = 30000 and M̈ = 50. Standard errors
for mean estimates are reported in parentheses.
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Figure 5.1: Model ii. The first 400 iterations in the SEM type algorithm for
misspecified θ∗. True parameter values as solid lines. nobs = 300.
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Standard errors Standard errors
based on observed calculated using method

variability in simulations in Gilks et al. (1996)

β̂0X 0.072 0.073

β̂0Y 0.122 0.122

β̂XY 0.100 0.109
σ̂Y 0.047 0.054

Table 5.3: Model i. Comparison of standard errors calculated using method
in Gilks et al. (1996) and standard errors reflecting observed variation be-
tween simulations. θ∗ = θ. Results based on 100 simulations with nobs = 300.

True β∗XY = βXY = 4 β∗XY = 2 β∗XY = 0

β̂0X -1.4 -1.394 -1.189 3.213
(0.008 ) (0.031 ) (0.208 )

β̂0Y 24 23.996 23.850 26.342
(0.013) (0.021 ) (0.183 )

β̂XY 4 4.008 4.292 4.687
(0.012) (0.035 ) (0.030 )

σ̂Y

√
(2) ≈ 1.414 1.416 1.401 2.001

(0.005) (0.016) (0.037)

Table 5.4: Model i. Importance sampling with β∗XY misspecified, and the
remaining parameters at ideal starting values. Results based on 100 simula-
tions with nobs = 300 and Ṁ = 30000. Standard errors for mean estimates
are reported in parentheses.
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True β∗XY = βXY = 4 β∗XY = 2 β∗XY = 0

β̂0X -1.4 -1.403 -1.409 -1.316
(0.006) (0.010) (0.034)

β̂0Y 24 24.007 24.000 23.991
(0.011) (0.013) (0.013)

β̂XY 4 3.991 3.984 4.094
(0.010) (0.014) (0.041)

σ̂Y

√
(2) ≈ 1.414 1.416 1.392 1.434

(0.005) (0.007) (0.009)

Table 5.5: Model i. Data augmentation method with β∗XY misspecified,
and the remaining parameters at ideal starting values. Results based on 100
simulations with nobs = 300 and M̈ = 50. Standard errors for mean estimates
are reported in parentheses.
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True θ θ∗ Data augmentation Importance sampling

β̂0X -1.4 0 -0.376 -1.001
(0.105 ) (0.094 )

β̂0Y1 24 24 23.654 24.371
(0.109 ) (0.090 )

β̂XY1 4 0 0.304 0.584
(0.043 ) (0.102 )

σ̂Y1

√
(2) ≈ 1.414

√
(2) 1.719 1.704

(0.020 ) (0.038 )

β̂0Y2 3 3 4.825 4.977
(0.033 ) (0.052 )

β̂XY2 1 0 0.557 0.645
(0.019 ) (0.039 )

β̂Y1Y2 1/15 ≈ 0.067 0 0.061 0.015
(0.003 ) (0.002 )

σ̂Y2 0.5 0.5 0.064 0.002
(0.008) (0.004)

Table 5.6: Model ii. The data augmentation method and importance
sampling under misspecified θ∗. Results based on 100 simulations with
nobs = 300, Ṁ = 30000 and M̈ = 50. Standard errors for mean estimates are
reported in parentheses.
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