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Sammanfattning
Epidemic models are always simpli�cations of real world epidemics. Which real world
features to include, and which simpli�cations to make, depend both on the disease of
interest and on the purpose of the modelling. In the present paper we discuss some
such purposes for which a stochastic model is preferable to a deterministic counter-
part. The two main examples illustrate the importance of allowing the infectious and
latent periods to be random when focus lies on the probability of a large epidemic
outbreak and/or on the initial speed, or growth rate, of the epidemic. A consequence
of the latter is that estimation of the basic reproduction number R0 is sensitive to
assumptions about the distributions of the infectious and latent periods when using
the data from the early stages of an outbreak, which we illustrate with data from
the SARS outbreak. Some further examples are also discussed as are some practical
consequences related to these stochastic aspects.
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1 Introduction

Mathematical epidemic models describe the spread of an infectious disease in a community
(e.g. Bailey, 1975, Anderson and May, 1991, Diekmann and Heesterbeek, 2000). A model
can be used to derive various properties of an outbreak, such as: whether or not a big
outbreak may occur, how big the outbreak will be, or the endemic level in case the
disease becomes endemic. From a statistical/epidemiological point of view the model and
its analysis may be used to estimate important epidemiological parameters from observed
outbreak data. These estimates can then be used to study e�ects of potential interventions
to stop or reduce the spreading of the disease. For example, an endemic disease may go
extinct if a vaccination program is launched having high enough vaccination coverage (e.g.
Anderson and May, 1991, pp87, and Gay, 2004), or an outbreak may be stopped during
the early stages of an outbreak if spreading parameters are reduced enough by means of
di�erent sorts of intervention (e.g. Anderson et al., 2004, for an application to SARS).

Mathematical models are always simpli�cations of reality, but the hope is that the simp-
li�cations have little e�ect on the epidemic properties of interest. Simple models have
the advantage of being tractable to analysis and quite often allow for explicit solutions
admitting general qualitative statements. Their main disadvantage is of course that they
may be too simplistic for the conclusions to be valid also for real world epidemics. Adding
more complexity to the model increases realism but usually makes it harder to analyse
and also introduces more uncertainty by having more parameters. More complex models
are usually analysed by means of numerical solutions to di�erential equations, or from
numerous stochastic simulations.

The most important features to include to make an epidemic model more realistic (and
at the same time harder to analyse) are to incorporate individual heterogeneity (e.g.
Anderson and May, 1991, pp 175) and/or structured mixing patterns (e.g. House and
Keeling, 2008, for a deterministic household model). Another step in making a model more
realistic is to make certain features random, for example the actual transmission/contact
process but also possibly susceptibility, social structures, the latent period and/or the
infectious period. Such stochastic models thus allow individuals to behave di�erent from
each other in a way that is speci�ed by random distributions (e.g. Bailey, 1975, Andersson
and Britton, 2000a).

Which complexities to include in the model, and which not to, depend both on the type
of disease in question and on the scienti�c question motivating the study. The aim of the
present paper is to illustrate some aspects where stochasticity matters. More precisely
we focus on two features, the risk for an outbreak and the initial growth rate of the
epidemic, and we illustrate that they depend heavily on assumptions about the latent and
infectious periods; not only on their mean durations but also on their randomness. As a
consequence, the (stochastic) distribution of these periods are important when addressing
questions relating to these two features � using an over-simpli�ed stochastic model or
a deterministic model will give misleading results. For example, estimating R0 from the
initial phase of an epidemic is hard without additional knowledge about the distributions
of the infectious and latents periods, a fact which we illustrate using data from the SARS
outbreak. We illustrate our results using a simple epidemic model, but the qualitative
conclusions hold also for more realistic models allowing other heterogeneities. We note
that other features of the model, e.g. the basic reproduction number and the outbreak
size in case of a major outbreak, hardly depend on the randomness of the latent and
infectious periods at all, so having a deterministic latent and infectious period may be
appropriate when addressing other questions.
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Most results presented in this paper are not new but have appeared elsewhere or are
folkloreämong stochastic epidemic modellers, but are perhaps less known outside this
community. The aim of the paper is hence to gather and present the results in a simple
form reaching outside the community of stochastic epidemic modellers. The rest of the
paper is outlined as follows. In Section 2 we present the standard stochastic SEIR epidemic
model for a homogeneously mixing community of homogeneous individuals. In Section
3 properties of the model are presented and illustrated. In Section 4 we interpret the
results in more epidemiologically relevant formulations and illustrate where it can make
a di�erence. In the discussion we brie�y describe, and give references to, some other
situations where stochasticity of some form a�ect certain features of the epidemic model.

2 A simple stochastic epidemic model

2.1 De�nition

We now de�ne what we call the standard susceptible-exposed-infectious-removed (SEIR)
epidemic model. Consider a homogeneously mixing community consisting of n homoge-
neous individuals, where n is assumed to be large. A transmittable disease is spread
according to the following rules. Initially a small number, k, individuals are infectious
and the rest of the community are susceptible to the disease (immune individuals are
simply neglected). Each individual who gets infected is at �rst latent (exposed but not
yet infectious) for a random period L with distribution FL. After the latent period has
ended the infectious period starts and lasts for a period I having distribution FI . All
infectious periods and latent periods are assumed to be mutually independent. While
infectious an individual has random "infectious contactsät rate λ, each contact is with
a randomly chosen individual, so the contact rate with a speci�c individual is λ/n (or
more correctly λ/(n− 1) but when n is large this distinction is irrelevant). Contacts with
susceptible individuals result in infection (and their latent period starts); contacts with
non-susceptibles have no e�ect. Once the infectious period is over the individual is said
to be removed, meaning that the person has recovered and become immune, and plays
no further role in the epidemic. The epidemic goes on until there are no more infectious
or latent individuals, then the epidemic stops. Let T denote the (random) number of
individuals who get infected during the outbreak, and that hence are removed at the end
of the epidemic. T is often called the �nal size of the epidemic, and ρ̃ = T/n denotes the
�nal proportion infected during the outbreak.

In what follows we will restrict ourselves to the case where L and I have di�erent and
independent Gamma distributions, this being a rather �exible family of distributions. We
parametrise these distributions by their means, µL = E(L) and µI = E(I) (≥ 0), and
their coe�cients of variation τL =

√
V (L)/E(L) and τI =

√
V (I)/E(I) ≥ 0, where V (·)

denotes the variance.

2.2 The basic reproduction number R0

The perhaps most important property of an epidemic model is the basic reproduction
number, denoted R0, which for the present model can be de�ned as the average number of
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infections caused by a typical infective when the disease is introduced into the population.
For the present model it is easy to show that

R0 = λE(I) = λµI .

The basic reproduction number determines both if a major outbreak is possible, and if
so, also the �nal proportion infected in case there is a major outbreak. More precisely, it
can be shown that ρ̃, the ultimate proportion infected, will in a large community be close
to ρ, which solves

1− ρ = e−R0ρ. (2.1)
It is easy to see that ρ = 0 (corresponding to a minor outbreak) is always a solution
to (2.1). If R0 ≤ 1, this is in fact the only solution, meaning that a major outbreak is
impossible. If R0 > 1 there is also a unique strictly positive solution ρ∗ (0 < ρ∗ < 1)
corresponding to a major outbreak.

As was seen above, R0 only depends on the mean of the infectious period � not on its
randomness nor on the latency period. The model can be extended to allow for a (perhaps
random) time-varying infectivity λ(s) over the infectious period (0 ≤ s ≤ I ≤ ∞). Then
R0 = E(

∫ I
0 λ(s)ds), the expected accumulated infectivity. As before, R0 determines both if

a major outbreak is possible, and if so, how big the outbreak will be. In fact, the complete
(random) distribution of the �nal size, for any �nite n, can be shown to depend only on
the distribution of the accumulated infectivity ∫ I

0 λ(s)ds (Ball, 1986), how the infectivity
is distributed over time only a�ects the time dynamics of the epidemic and not the �nal
size.

3 Model properties a�ected by randomness

In the previous section it was shown that R0 only depends on the mean length of the
infectious period and not at all on the latent period. In the present section we study two
features, the probability of a major outbreak and the initial growth rate of the epidemic,
where the randomness of the infectious period and also the latent period do matter. In
the discussion we brie�y mention some other aspects where stochasticity matters.

3.1 The probability of a major outbreak

When the community n is large, the initial phase of the epidemic may be approximated by
a branching process (Ball, 1986). The reason for this is that new contacts will most likely
be with not yet contacted people, so new infectives infect (=�give birth� in branching pro-
cess terminology) independently which is the crucial underlying assumption in branching
processes. The branching process corresponding to our model is the Sevastyanov model
(Jagers, 1975, p 8). Infections correspond to births in the branching process, the latency
period to infancy in the branching process and the infectious period to the reproductive
life stage (life stages after the reproductive stage play no role for population growth just
like with removed individuals in the epidemic).

Let π denote the probability of a large outbreak (corresponding to in�nite growth of the
approximating branching process) when starting with k = 1 infectious individual. From
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branching process theory it can be shown that π is the largest solution to the balance
equation

1− π = E[(1− π)X ], (3.1)
where X is the (random) number of births of a typical individual in the branching process.
The balance equation is obtained by conditioning on the number of births of the �rst
individual: if the �rst individual has X = x births during her life, all these individuals
must avoid causing in�nite growth. They do this independently, so the probability for this
to happen is (1− π)x.

For our model, with constant birth/infection rate λ during a Gamma distributed infectious
period with mean µI and coe�cient of variation τI , the distribution of X, and hence also
E[(1−π)X ], can be computed explicitly. By �rst conditioning on the length of the infectious
period I = y it is easy to show that X then is Poisson distributed with mean λy, and
removing the conditioning makes X follow a negative binomial distribution. Using this it
can be shown that Equation (3.1) simpli�es to

1− π =
(

1

1 + πR0τ 2
I

)τ−2
I

, (3.2)

(this relation can also be found in Asikainen, 2006, p 28). If for example τI = 0, implying
that the length of the infectious period is non-random, π is the largest solution to 1−π =
e−πR0 which is obtained by taking limits of (3.2) when τI → 0. If τI = 1, corresponding to
an exponentially distributed infectious period, we have that π = 1−1/R0 which is clearly
di�erent.

By studying the balance equation (3.2) it is possible to see how π, the probability of a
major outbreak, depends on model parameters. The �rst conclusion is not very surprising:
π is increasing in R0 = λµI and hence also in the contact rate λ and in the mean infectious
period µI . A less obvious conclusion is that π is decreasing in τI (the coe�cient of variation
of the infectious period). In other words, the more random the length of the infectious
period is, the less likely is a major outbreak. Finally, π is independent of µL and τL.

In Figure 1 we have plotted π as a function of τI in the range 0 (corresponding to a
deterministic infectious period) to 3 (being a very random infectious period), for three
choices of R0. It is seen that τI is quite in�uential. For example, if R0 = 3 and τI = 0, then
π ≈ 0.940. If R0 is reduced to 1.5 and τI is unchanged we get π ≈ 0.583, whereas if we
instead keep R0 unchanged (at R0 = 3) and increase τI to 1, then π ≈ 0.667. It is hence
seen that the variation in the infectious period is as important as R0 for determining the
probability of a major outbreak.

The probability π de�ned above was for the case that the epidemic starts with 1 initially
infectious. More generally, we can de�ne πk as the probability of a major outbreak starting
with k initially infectious individuals (so π1 = π). Since, for an epidemic not to take o�,
none of the initially infectives must initiate a major outbreak. As a consequence, πk can
be expressed in terms of π1 = π as

πk = 1− (1− π)k, (3.3)

where π is the solution to (3.2). In Figure 2 πk is plotted as a function of k for the cases
π = 0.25 and π = 0.5. It is seen that πk grows quickly up towards 1, implying that the
outbreak probability is close to 1 when initiated by many individuals as long as R0 > 1
and τI is not very large (meaning that infectious period is not extremely varying).
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Figur 1: The probability of a large outbreak, π, as function of τI , the coe�cient of
variation of the infectious period.
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Figur 2: The probability πk of an outbreak when k infectious individuals enters the
population.

The distribution of the infectious period is hence mainly of interest when the epidemic is
initiated by rather few individuals.
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3.2 The initial growth rate of the epidemic

We now study another property which is heavily in�uenced by both the latent and in-
fectious periods, their mean durations as well as their randomness: the initial growth rate
of the epidemic. As before we assume that the community size n is large.

In Section 2 it was shown that an epidemic can only take o� if R0 = λµI > 1. Since we
now focus on the growth rate of the epidemic we assume this to be the case. As mentioned
before, the early stages of the epidemic in a large community can be approximated by a
branching process. Since R0 > 1 the branching process is said to be super-critical, and
if the epidemic/branching process takes o� branching process theory (e.g. Jagers, 1975)
tells us that the epidemic will grow at an exponential rate during the initial phase. More
precisely, in case of a major outbreak, the number of infectious individuals at t, I(t), will
satisfy I(t) ∼ eαt for some α. The parameter α, denoted the Malthusian parameter, is
known to solve ∫ ∞

0
e−αtλP (L < t < L + I)dt = 1, (3.4)

where L and I are the (random) durations of the latent and infectious periods respectively.
In the present paper L and I are assumed to be independent Gamma distributions with
means µI and µL, and coe�cients of variation τI and τL respectively. The solution α to
(3.4) can then be shown to solve

α =
R0

µI

1

(1 + ατ 2
LµL)1/τ2

L

(
1− 1

(1 + ατ 2
I µI)

1/τ2
I

)
(3.5)

(see the Appendix for details).

It can be shown that the exponential growth rate α (i.e. the solution to (3.5)) depends
monotonically on all four parameters of the latent and infectious periods, µI , µL, τI and
τL, keeping R0 �xed. As for the mean infectious and latent periods, µI and µL, the growth
is decreasing. This is not surprising: the longer the infectious period (keeping R0 = λµI

�xed!) the slower the epidemic will grow, and the same applies to the situation where
a latent period becomes longer on average. Perhaps more surprising is that α depends
monotonically on the coe�cients of variation τL and τI , and in di�erent ways! It can be
shown from (3.5) that the growth rate is increasing in τL but decreasing in τI . In other
words, a more random latent period increases the growth rate whereas a more random
infectious period decreases it.

A heuristic motivation for the di�erent monotone dependence of the coe�cients of varia-
tion goes as follows. Consider �rst two alternatives for the infectious period assuming, for
simplicity that there is no latency period: two infectious periods both being two time-units
long (corresponding to small τI) and the other scenario having one infectious period of
length 1 and the other of length 3, thus having the same mean µI but larger τI . During
the �rst time-unit both scenarios will have two persons infecting but during the second
time-unit the �rst scenario (small τI) will still have two persons infecting, but the second
scenario only one person. During the third time-unit the second scenario will "catch up"in
infecting new people by having one person infecting (as opposed to no one for the second
scenario) but the �rst scenario will clearly infect new individuals at an earlier state in
time thus resulting in higher growth rate α. This motivates why α is decreases in τI . The
motivation for the growth rate being increasing in τL is similar. Suppose that we have two
alternative scenarios similar to before: two latent periods of equal length two time-units,
or one of length 1 and one of length 3, and assume for simplicity that all infectious periods
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last one time-unit in both scenarios. In the �rst scenario the two individuals will infect
others between time 2 and 3 whereas in the second scenario one person will infect between
time 1 and 2 and the other between 3 and 4. The second scenario (with higher τL) will
have a higher growth rate because of the multiplicative e�ect the �rst person's infections
will cause: these people will start new epidemic outbreaks at an earlier state.

In Figure 3 the exponential growth rate α is computed numerically for the case R0 = 2, this
being a common value for diseases like in�uenza (e.g. Mills et al., 2004). In each of the four
sub-plots, one parameter is varied over an interval (1 to 14 days for the mean durations
µL and µI and 0 to 3 for the coe�cients of variation τL and τI) keeping the remaining
parameters constant. The means are set to 7 days and the coe�cients of variation to 3/7
(corresponding to a standard deviation of 3 days) when not varied.
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Figur 3: Plots of the initial exponential (per day) growth rate α as function of the model
parameters. Parameters not varied are set to: R0 = 2, µL = µI = 7 τL = τI = 3

7
.

From the �gure it is clear that all four parameters µL, µI , τL and τI are quite in�uential for
the initial growth rate of the epidemic. As mentioned above, the growth rate is decreasing
in the two mean durations (recall that the expected accumulated infectivity R0 = λµI is
kept �xed, so when µI changes, so does λ). As for the coe�cients of variation, the growth
rate α decreases with τI but increases with τL.
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4 Practical relevance

4.1 Estimating R0 from growth rate needs prior knowledge

Our �rst, and perhaps most important observation, lies in the consequences of knowing
that the growth rate depends heavily on all of the parameters µL, µI , τL and τI , and not
only R0. This implies that it is harder to estimate R0 from only observing the early stages
of an epidemic as we now illustrate.

Recently, an important area in infectious disease epidemiology has been to analyse emer-
ging infectious diseases, for example SARS (e.g. McLean et al., 2005) and the fear for
a pandemic in�uenza (e.g. Ferguson et al., 2004). One important task when analysing
emerging infectious diseases is to estimate R0 using data from the initial phase of the
epidemic. Such data sets typically consists of the number of diagnosed cases (per day or
per week) over a certain observation period, typically weeks or months. One can argue
that the number of diagnosed cases roughly corresponds to the number of recovered indi-
viduals, and using branching process theory it can be shown that this number will have
the same growth rate as the number of infectives. If we let R(t) denote the accumulated
number of removed individuals up to time t, it is known from branching process theory
that

R(t) ≈ Weαt, (4.1)
where W is random variable, the same for all t, and α is the Malthusian parameter treated
in Section 3.2. If we look at the ratio of the number of removed individuals for two di�erent
observation times it follows that R(t1)/R(t0) ≈ eα(t1−t0) implying that we can estimate
the growth rate α by

α̂ =
log(R(t1))− log(R(t0))

t1 − t0
. (4.2)

The time-points t0 < t1 should be chosen such that the epidemic has really taken o� at
t0 and not too many should have been infected by t1.

The remaining problem lies in making conclusions about R0 from the estimate α̂. Equation
(3.5) gives a one-to-one correspondence between α and R0 when the model parameters for
the latent and infectious period are given. Rearranging Equation (3.5) gives the following
expression for R0:

R0 = αµI
(1 + ατ 2

LµL)1/τ2
L(

1− 1

(1+ατ2
I µI)

1/τ2
I

) (4.3)

However, for emerging infectious diseases the parameters of the infectious and latent
periods are rarely known. The best one can hope for are some crude estimates. This will
induce uncertainty in the estimate for R0 no matter how precise the estimator α̂ is.

We now illustrate this using WHO data from the SARS outbreak (WHO webpage). Our
model is of course unrealistic for this outbreak in several aspects as we are neglecting
other community heterogeneities. However, the same qualitative conclusions would hold
also for more realistic models. In Figure 4 part of a large outbreak of SARS in China is
illustrated. It shows the incidence and accumulated number of diagnosed SARS cases by
the day, between April and June in 2003.
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Figur 4: Sars outbreak in China 2003.04.02 - 2003.06.02. Data from WHO.

From this data we estimate the growth rate α using (4.2). Rather than estimating α
from one time interval (t0, t1) we take several, thus getting several α-estimates. We
then take the mean of these estimates as our �nal estimate. More precisely we took the
intervals (t0, t1)= (10,20), (10,25), and (15,25), all three representing the early stages
of the epidemic neglecting the very �rst bit and stopping before the speed really starts
dropping. The resulting α-estimates were α̂1 = 0.071, α̂2 = 0.054, and α̂3 = 0.034. We
take the mean of these values as our �nal estimate: α̂ = 0.0530. (We will use the estimate
to illustrate that a range R0-values are consistent with this estimate, the exact value of
α̂ is of secondary importance.)

Given the estimate (α̂ = 0.0530) we now use Equation (3.5) to see what we can say
about R0. The disappointing answer is that, unless we assume some prior knowledge
about the latent and infectious periods, we can hardly say anything about R0, except
that R0 > 1 since the epidemic is taking o�. In order to say more about R0 one needs
either more detailed data or some other knowledge about the latent and infectious periods.
If infections are contact-traced it is possible to make inference on the generation times.
However estimating model parameters from such inference is far from simple (Svensson,
2007). If such information is not available, R0 can be estimated by assuming interval ranges
for each model parameter, ranges within which the true parameter values are believed to
lie. To illustrate this from the SARS data we choose the following intervals: µI and µL

is assumed to lie between 3 and 11 days (with 7 days as mid-point), and the coe�cients
of variation are assumed to lie between 0 and 4/7 (corresponding to 4 days for the mid-
points above). In Table 1 the R0 estimate, based on (3.5), α̂ = 0.053 and current values of
µL, µI , τL and τI , is listed for each of the 16 combinations interval end-points. The point
estimate when each parameter takes on the mid-value (µL = µI = 7 and τL = τI = 2/7

and α̂ = 0.053) equals R̂0 = 1.747.

As can be seen from the table the estimate R̂0 depends quite a lot on our assumptions
about the latent and infectious periods. The smallest estimate is R̂0 = 1.2897 obtained
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µL µI τL τI R̂0

3 3 0 0 1.2903
3 3 0 4/7 1.2935
3 3 4/7 0 1.2897
3 3 4/7 4/7 1.2930
3 11 0 0 1.5528
3 11 0 4/7 1.6468
3 11 4/7 0 1.5521
3 11 4/7 4/7 1.6461
11 3 0 0 1.9674
11 3 0 4/7 1.9724
11 3 4/7 0 1.8834
11 3 4/7 4/7 1.8881
11 11 0 0 2.3677
11 11 0 4/7 2.5111
11 11 4/7 0 2.2666
11 11 4/7 4/7 2.4039

Tabell 1: Estimates of R0 from SARS outbreak in China 2003.04.02 - 2003.06.02. within
di�erent assumptions of model parameters and α̂ = 0.053. Data from WHO.

when µL, µI and τI are at their minimal possible point and where τL is at its maximal
point. The largest estimate is R0 = 2.5111 obtained for the �opposite� parameter choices.
Within the range of possibleparameter values for the latent and infectious periods, the
R0 estimate hence changes by a factor 2. It is hence hard to make precise estimates of R0

without other sources of information regarding the latent and infectious periods.

This illustrates that an estimate of R0 using data from the initial growth is quite uncertain
except in the rare case that the parameters of the latent and infectious periods are known
with fairly high precision.

4.2 Estimating variability from �nal size data

In Section 3.1 it was shown that, for �xed R0, the more random the infectious period
is, the more unlikely is a large outbreak (the same conclusion holds when other factors,
e.g. susceptibilities and/or infectivities, are varied, Andersson and Britton, 2000a and
references therein). This observation can be used to say something about the randomness
of the infectious period (and/or of individuals) from �nal size data, i.e. data lacking any
time measurements. If we observe the �nal proportion infected ρ̃ in a large outbreak we
estimate R0 using Equation (2.1), which gives the estimate

R̂0 =
− ln(1− ρ̃)

ρ̃
. (4.4)

The information about τI lies in the fact that a major outbreak took place, an event with
small probability when τI is large. In the Bayesian framework this can be illustrated by
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comparing the prior distribution p(τI) with the posterior distribution p(τI |ρ̃). Using Bayes
formula we get

p(τI |ρ̃) ∝ p(ρ̃|τI)p(τI),

i.e. the posterior distribution equals the prior distribution multiplied by p(ρ̃|τI), the proba-
bility of a large outbreak, denoted π in Section 3.1. There it was shown that π = p(ρ̃|τI)
was decreasing in τI , the coe�cient of variation of the infectious period. So, any prior
knowledge about τI is shifted towards smaller values in the posterior distribution. The
same type of conclusion also applies to other individual heterogeneities: the fact that a ma-
jor outbreak has occurred shifts any prior knowledge about individual variation towards
less variation.

Of course, more detailed data containing time-measurements, or data from more than
one outbreak is to be preferred. But, if no such data is available, any prior information
about the randomness of the infectious period is shifted towards smaller values of τI when
inference is based on �nal size data from one major outbreak. In Figure 5 we illustrate this
for the case that τI has an exponential distribution with mean 0.5 as prior distribution,
and where the posterior distribution is based on a major outbreak resulting in 50% getting
infected.
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Figur 5: Exponential prior distribution function of τI with mean 0.5, and posterior
distribution of τI after observing an outbreak resulting in 50% getting infected, with
mean 0.384.

It is seen that the posterior distribution is not more "concentrated"compared with the
prior distribution, as is usually the case. Instead the posterior distribution is merely
shifted towards smaller values implying that the belief after observing an epidemic with
50% getting infected results in that the posterior favors smaller values of τI (the coe�cient
of variation of the infectious period), as compared to prior beliefs. The posterior mean
of τI is ??, The same qualitative conclusion, that a major outbreak results in higher
posterior belief for small coe�cient of variation of the infectious period, holds for any
fraction getting infected and any prior distribution for τI .
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5 Discussion

In the present paper we have tried to motivate the use of stochastic models when studying
certain features in epidemics. First it was illustrated that the probability for a major
outbreak is greatly a�ected by the randomness of the infectious period, or more generally,
the randomness of the �infectivity� exerted by an individual. The more variation the
distribution of the infectious period contains, the less likely is a major outbreak. As a
consequence, observed epidemics (major outbreaks) will tend to originate from diseases
with infectious periods not having very skew/heavy-tailed distributions. It was also shown
that the probability of a major outbreak is una�ected by a latency period of arbitrary
length. The latter result relies on the assumption that individuals do not change behaviour
as the epidemic progresses nor that preventive measures are put into place � then a latency
period will have an e�ect.

The second feature studied was the initial exponential growth rate. This rate was shown
to depend heavily on both the latent and infectious periods, there means as well as their
randomness. From a practical perspective this implies that, unless additional information
about the infectious period and latency period distributions is available, it is very hard to
estimate the basic reproduction number R0 (and e�ects of possible preventive measures)
from the exponential growth rate of the initial outbreak phase.

There are also other features in epidemics a�ected by randomness and not only mean
values. Common for most of these situations are that, for some type of event, only few
random objects are in�uential. One such feature is the time to disease extinction of en-
demic diseases: before disease extinction only few are infectious. For example, Andersson
and Britton (2000b) show that not only the means but also the coe�cients of variation of
the latency period, infectious period and life-duration a�ect the time to extinction when
starting at the endemic level.

Another feature a�ected by randomness is vaccine response. Two models for vaccine re-
sponse are the leaky model and the all-or-nothing model (Halloran et al., 1992). The
leaky model assumes that each person vaccinated has a susceptibility that is reduced by
a factor e (for e�cacy). The all-or-nothing model instead assumes that a proportion e are
completely immune whereas the remaining proportion vaccinated are una�ected by the
vaccine. Here too, e is called e�cacy. In both cases, the relative risk that a vaccinated
person gets infected by an infectious contact is 1− e (so the person avoids infection due
to the vaccine with probability e). Even though the two models have the same �e�cacy�
their e�ect is di�erent. In fact, a leaky vaccine always reduces the spread less than an all-
or-nothing vaccine with the same e�cacy � so the randomness in vaccine e�ect matters. A
simple explanation to this is the following (Ball and Becker, 2006). Both vaccine models
have the same probability of infection (1− e) at the �rst contact with an individual. Ho-
wever, among the vaccinated people who escape infection upon the �rst contact, people
vaccinated with a leaky vaccine still have relative susceptibility 1− e whereas those with
the all-or-nothing vaccine escaping infection the �rst time all have the �all�-e�ect and are
hence completely immune. As a consequence, the �nal size in case of a major outbreak will
be smaller with an all-or-nothing vaccine as compared to a leaky vaccine having the same
e�cacy e (0 ≤ e ≤ 1). Still, both vaccine responses have the same critical vaccination
coverage vc = e−1 (1− 1/R0), meaning that the same fraction has to be vaccinated with
either vaccine in order to obtain herd immunity.

As pointed out there are many other features less in�uenced by stochasticity, for example
R0. In the present paper we simply focus on aspects where stochasticity does matter.
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Needless to say, the model we have studied is by no means fully realistic. Important
extensions are for example to allow for di�erent types of individuals having di�erent
susceptibility, infectivity and/or mixing patterns, e.g. households with higher contact
rates within households (since households are small, stochasticity play a roll also here,
cf. Ball et al., 1997). However, the features considered in the present paper are still valid
under such more realistic models.

Appendix: The Malthusian parameter

The Malthusian parameter α is the solution to (3.4). To begin with,

λP (L < t < L + I) = λ
∫ t

0
fL(s)

∫ ∞

t−s
fI(r)drds

= λ
∫ t

0
fL(s)(1− FI(t− s))ds.

Hence (3.4) equals

λ
∫ ∞

0
e−αt

∫ t

0
fL(s)(1− FI(t− s))dsdt = λ

∫ ∞

0
e−αsfL(s)

∫ ∞

s
e−α(t−s)(1− FI(t− s))dtds

= λϕL(α)(1− ϕI(α))
1

α
. (.1)

The second equality follows from partial integration and identifying the laplace transforms
of the latent and infectious periods: ϕL(α) = E(e−αL) =

∫∞
0 eαsfL(s)ds, and similar for

the infectious period. The infectious period I is gamma-distributed. Using �rst the more
common parametrization I ∼ Γ(αI , βI) we get

ϕI(α) =
(

βI

βI + α

)αI

. (.2)

Since also the latent period is gamma distributed we also have that ϕL(α) =
(

βL

βL+α

)αL

.
Thus, by (.1) and (.2), Equation (3.4) is simpli�ed to

α = λ
(

βL

βL + α

)αL
(
1−

(
βI

βI + α

)αI
)
. (.3)

If we convert to the more interpretable parameters mean µ and coe�cient of variation τ
we have that µI = αI/βI and τI = 1/

√
αI , and similarly for the latent period. Equation

(.3) can then, after some simple algebra and using that R0 = λµI , be written as

α =
R0

µI

1

(1 + ατ 2
LµL)1/τ2

L

(
1− 1

(1 + ατ 2
I µI)

1/τ2
I

)
.
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