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Abstract

We propose a model describing an economy where companies may default due
to contagion. By using standard approximation results for stochastic process we are
able to describe the features of the model. It turns out that the model reproduces
the oscillations in the default rates that has been observed empirically. That is, we
have an intrinsic oscillation in the economic system without applying any external
macroeconomic force. These oscillations can be understood as cleansing of the un-
healthy companies during a recession and the recession ending when sufficiently many
of the unhealthy companies have left the economy. This is important both from a
risk management perspective as well as from a policy perspective since it shows that
contagious defaults may help to explain the oscillations of business cycles. We also
investigate the first-passage times of the default process, using this as a proxy for the
time to a recession.

KEY WORDS: Risk management; Credit risk; Contagion; Business cycle; Markov
process; Ornstein-Uhlenbeck.
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1 Introduction

Banks and other financial institutions are facing many different types of risks in their ev-
eryday business. In particular, for banks with significant lending activities it is crucial
to properly measure and manage credit risk, i.e. the risk that the bank experiences losses
from an unexpectedly large number of its counterparties failing to fulfill their payment
obligations.

Mathematical models for credit risk have been extensively studied in the literature, see e.g.
[3] and the references therein. In the standard credit risk models, it is assumed that the
economy under consideration is static, whereas in reality new companies are continuously
entering the system, while other companies leave the system (through mergers, acquisitions,
or defaults). In such a dynamic environment, not only the number of companies but also
their credit quality may change considerably as time passes. In particular, during an
upswing of the economy, start-up companies may find it easy to receive loans due to a
more liberal granting process, while under adverse economic circumstances funding may
be harder to raise.

Recently there has been research where the dependencies between companies have been
investigated. In works like [4], [6], [7], [8] it is assumed that the probability of default for
a particular company depends on both the current state of the economy and on the state
of companies in its neighborhood. This is often referred to as default contagion.

The purpose of this work is to propose a modelling framework for credit defaults in a
dynamically changing economy. In our model, companies enter the system at a given
rate and is assigned a rating. Companies may then exit the system through default,
adversely affecting the other companies, or through mergers and acquisitions, not affecting
other companies adversely. The proposed framework is inspired by the work in modelling
contagious endemic diseases, see e.g. |1|, where a homogeneously mixing population is often
assumed.

Since empirical observations show that there is a cyclicality in the default rates the credit
risk literature often introduces default probabilities affected by ezternal factors, either
given in terms of macroeconomic variables or defined implicitly using latent variables. As
it turns out, realistic choices of parameters in our model produce long-term behavior sim-
ilar to the cycles in default rates observed empirically, without introducing any external
macroeconomic force. This is also important since empirical research show co-cyclicality
between GDP and defaults, see e.g. [10], and the model therefore shows that strong con-
nections between companies may help to explain the oscillations of the business cycles.



2 Modelling framework and general results

2.1 Description of the model

We will design a dynamic system describing the evolution of an economy where com-
panies may default. Time is continuous and measured in years. Today is ¢t = 0. Let
X = {X(t);t > 0} be a continuous-time Markov process with state space Z3, where
Z, denotes the set of nonnegative integers. The companies in the economy can be in
one of three states. They are either healthy, stressed or defaulted. The Markov process
X(t) = (H(t), S(t), D(t)) represents the number of companies in each state.

We define transition rates by the following device:
P(X(t+At)=&+0| X(t) =€) = AtNg(N7'E) + o(At),

where N is a large parameter roughly corresponding to the number of companies in the
economy and £ = (h, s,d). The possible transitions are classified as follows:

1. Inflow into the system: g 1,0)({) = 6. New companies arrive to the economy in the
stressed state.

2. Outflow of healthy companies from the system: q(_;,0)({) = h3. Healthy companies
may leave the economy through mergers and acquisitions.

3. Migration from healthy to stressed: ¢11,0(§) = hay. Healthy companies may
become stressed.

4. Migration from stressed to healthy: ¢u,_10)({) = sa,. Stressed companies may
become healthy.

5. Default mechanism: gq,—11)(§) = sd\ + sag. Stressed companies may default either
through contagion or spontaneously.

6. Removal of defaults: q(0,—1)(§) = dvy. After some time the defaulted companies cease
to affect the economy.

All parameters above are defined to be strictly positive real numbers. The initial state is
an arbitrary, deterministic or stochastic, vector in Zi. We may summarize the above in
the transition chart shown in Figure 1.

The three possible states of a company in the economy can be viewed as a simplified version
of the rating classes used by credit rating agencies. Of course the model is easily expanded
to an arbitrary number of rating classes but for our purposes three states are sufficient.
The difference between our model and models without contagion is the %sd term.
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Figure 1: Transition chart.

We may interpret this as if every defaulted company causes a stressed company to default
independently with probability ﬁ An assumption is therefore that the economy is
homogeneously mixing i.e. every company is equally likely to have connections to every
other company and thereby affect it negatively in case of default. This is of course a great
simplification as geographic or industrial aspects are not taken into account. However, this
approach has been successfully used in for example the modelling of contagious diseases
amongst humans so there is reason to believe that at least the qualitative behavior is
preserved also in this context.

2.2 Law of large numbers

Now, let XV denote a sequence of jump Markov processes as above, indexed by the pa-
rameter N. We may now show that the normalized sequence z(t) = X (t)/N converges
weakly in D|0, 00), the space of cadlag functions on [0,00) equipped with the Skorohod
topology, to a deterministic motion x = {z(t);¢ > 0}.

Towards this end let us define the drift vector
F(&) = Lqi(&) = (=hB + sa; — hap, 0 — sag — sdX — sag + hay, sd\ + sag — dy) . (1)
¢

If = satisfies the equation & = F'(x) we have the following theorem by Kurtz [11].

Theorem 1 Let g, be such that for every compact K C R?
>l sup gi(€) < oo,
¢ EeK

and there is Mg > 0 such that
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Then we have that

lim sup |2V (s) — 2(s)| =0 a.s. for allt > 0.
N—oo 5<t

The applicability of this theorem in our case follows since for every ¢ we have that ¢,(§) is
continuous which implies that sup,c qo(§) < oo, since K is compact, which gives us the
first condition. The second condition is satisfied since F'(£) is continuously differentiable
which implies that F' is locally Lipschitz. But a locally Lipschitz function restricted to a
compact set is Lipschitz which implies the second condition.

To understand the implications of the above theorem we need to investigate the ODE
& = F(x). Specifically we would like to find any stationary points, i.e. points & = (h, 3, d)
such that F'(z) = 0, since these determine the asymptotic behaviour of x(t). Using (1) we
get

—hB + sa, — ha, = 0, (2)
0 — Sa, — 8dX\ — Sag + hay, = 0, (3)
$d\+ sag—dy = 0. (4)

It is easily shown that the above system has a unique strictly positive solution, given by

apagy + asBy + agBy + aRd + BOX — VU

o>
|
—~
ot
S~—"

28(ap + B)A ’
R apagy + asBy + agBy + aRd + BOX — VU
s = ) (6)
20,0\
— o0y — 0By — By + apb\ + BON + VT

SN
|
—
EN |
~

2(an + B)yA ’

where
U = (—apoay — 0By — gy + anbA + BON)? + dag(oy, + 5)*90N.

The stability of the stationary point is determined by the Jacobian of F' evaluated at the
stationary point,

-0 — ay Qg 0
OF = an —ag—dN—ag  —3\ . (8)
0 A\ + aq SA—ry

If the real-part of the eigenvalues are all negative then the matrix is stable, i.e. the
stationary point is locally asymptotically stable. As it turns out, showing explicitly that
the eigenvalues of OF are negative for all parameter values is difficult. Another method
is verifying the so called Routh-Hurwitz conditions which in this case is also difficult. We
therefore use a different equivalent method from [13].



Let ||-|| denote a vector norm on R™ and the matrix norm it induces. We may then define

the Dahlquist-Lozinskii measure! of a real n x n matrix, with respect to the norm ||-||, as
.|| —hA| -1
A) = lim 12472
p(A) = lim 3 :

I being the identity matrix. Denote the spectrum of A as 0(A) and let
s(A) =max{R(\) : A€ o(A)}.

We may then use the fact that s(A) < u(A) so that it is enough to show that u(A) < 0
for some Dahlquist-Lozinskii measure to deduce stability for A. In general the Dahlquist-
Lozinskii measure of a matrix is hard to calculate but for certain choices of ||-|| there are
explicit formulas. Below we will consider the Dahlquist-Lozinskii measure with respect to
the norm ||z|| = sup, |z;| for which we have the formula

J

pu(A) = max {Z Iaij\} ,

with A = (a;;). For a given n x n invertible matrix ¢) we may construct a new norm by
||z]|, = ||Qz|| and therefore a new Dahlquist-Lozinskii measure pq which satisfies

po(A) = p(QAQ™).

We will also need the spectral property of A’s second additive compound matrix AP? that
if 0(A) = {&,i=1,...,n} we have that o(A?) = {& + ¢ : 1 <i < j <n}. These facts
produce the following result, see [13].

Theorem 2 Let A be an n X n matriz and assume that (—1)"det(A) > 0. Then A is
stable if and only if p(A2) < 0 for some Dahlquist-Lozinskii measure .

Straightforward calculations show that det(9F) = —V¥ < 0.

For a 3 x 3 matrix the second additive compound matrix is,

a1 + Qo2 Qo3 —a13
APl = aso a1 + ass aie
—asy a9 Q9o + G33
Using (8) above this gives us
—B—aj, —ay —d\ — aq — 3\ 0
oF — d\ + ay —B—ap+ 8\ —7 s
0 (67 §>\—’)/—Oés—d>\—04d

1Sometimes referred to as simply the Lozinskii measure or as the logarithmic norm.



We let 1 be the Dahlquist-Lozinskii measure on 3 x 3 matrices with respect to the ||z||_
norm. Define the diagonal matrix @) by @ = diag(d, —3,h). We then have that

no(OF®) = p(QIOFPIQ™)

= max{—ﬁ—ah—as—ad,

5 s CZ 5 }AL 7 N
—ah—sz _ (5+7d)+50‘d,— ‘f‘h—y—dA—as—adjLsA}.
S

Now, from (4) we get that

h . hay 5
R R
S

so that p1g(0F™?) < 0 and we may conclude that the stationary point # = (iz, 3, cZ) is indeed
asymptotically stable. That is, if we let z(0) be sufficiently close to Z then z(¢) will remain
close to z for all t and z(t) — & as t — oo.

2.3 Weak convergence

Now define the sequence of processes X~ = {XN(t);t > 0} by
XN(t) = VN (&V(t) - 2(t)) .

We start the process at time 0 and choose z(0) sufficiently close to Z, in the above sense.

Let 2V be such that limy_ o \/N‘xN(O) — SL’(O)‘ = 0 and let V be defined as

to

Vit) =S o0, ( /tt 0 (x(s))ds) + [ OF (a(s)) V(s)ds,

where the W,’s are Wiener processes. Then we have a central limit theorem by Kurtz [11].
Theorem 3 If Y, |£\2sup§ (&) < 00, OF () is a bounded, continuous function of &, then
XN = V.

Because of the asymptotic stability of the stationary point & there is some compact set K
such that the trajectory of x(t) is contained in K. But the restriction of OF and ¢, to K
is bounded, which is what we need for the theorem. We may write V() as the solution of
the linear SDE

AV = OF (z(t))Vdt + G(z(t))2dW,

where W is the 3-dimensional Wiener process and G(§) = 3, 0" qy(£). As we let t — oo
we get that x(t) — &, OF(x(t)) — OF(z) = OF and G(x(t)) — G(2) = G. Therefore
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V approaches a stationary Ornstein-Uhlenbeck process. We will henceforth consider this
process described by the SDE

dV = 0FVdt + G2dW, (9)
where
ﬁ(ﬁ + ap) + Sag —hay, — da 0
G=> q) = —hap — Sas 0+ hay + S(as + ag+ dN) —s(d)\ + ag)
¢ 0 —5(dX + ) 3(d\ + ag) + dvy

From the definition of G(£) it easy to show that TGz > 0V 2z € R3, i.e. G(£) is positive
definite.

Introduce the matrix > by the equation
IFY + YoFT = —G. (10)

In stability theory this is known as the Lyapunov equation and the previously established
stability of OF and positive definiteness of G guarantees the existence of a unique positive-
definite symmetric solution, see [12]|, and we may interpret ¥ as the covariance matrix of
the stationary distribution of V. It is hard to obtain an analytic solution but there are
numerical algorithms available, see e.g. [2].

Having calculated ¥ we get from theorem 5.6.7 in [9] that the covariance function of V' is
given by )
p(t) = Der (11)

3 Case study

3.1 Contagion

To exemplify the properties of the model we study a specific choice of parameters in depth.
No effort is made to estimate the parameters but it is our view that the chosen parameters
are reasonably realistic.

Parameter | Value
N 2000
0 0.1
16} 0.01
ay, 0.03
Q 0.03
A 1.1
Qg 0.002
ol 2




The choice N = 5000 is arbitrary since it is only a matter of scale. Interpreting healthy and
stressed as investment grade and speculative grade respectively we get from the transition
matrices supplied by the rating agencies that 0.03 is a typical intensity for transitions
between healthy and stressed, see e.g. [3]. Choosing v = 2 represents a defaulted company
affecting the economy for half a year on average. Since this is hard to observe in reality
it is hard to motivate this on more than a qualitative level. It is however reasonable
to assume that a defaulted company should affect the economy for more than a month
but not much more than a year. The choice of 6 can be seen as a choice of the scale of
the system, appearing only as a multiplicative factor of N, and the value 0.1 is largely
arbitrary. Having set (3 to 0.01 represents about 1% of the healthy companies disappearing
from the economy through some other mechanism than default. Again this is hard to give
any precise motivation other than that is seems to be a reasonable order of scale. Plugging
these values into eqs. (5) to (7) and multiplying by N gives us

H = 65444,
S = 8725.8,
D 217.28.

Writing the transition intensity between the stressed and default state as s (% + ad) we

see that ’\W‘i—l—ad = 0.0498 can be interpreted as the transition intensity between the stressed
and default states per stressed company in equilibrium. This is fairly consistent with the
4% of investment grade companies defaulting annually reported in |5|. The SDE (9) now
becomes

—-0.004  0.03 0 0.3019 —0.1154 -0.0159
dV = 0.003 —0.0798 —1.9197 | Vdt+ | —0.1154 0.5057 —0.0974 |dW.
0 0.0498 —0.0803 —0.0159 —0.0974 0.4051

Solving eq. (10) in this case gives us

2.1309 1.0960  0.2532
Y= 1.0960 21.4999 —-0.8041 |,
0.2532 —0.8041 0.5835

where we note in particular the negative correlation between the stressed and default
states. We are now ready to calculate the correlation function by eq. (11). Plotting the
autocorrelation for the three states gives us Figure 2. We see that the autocorrelation of
the stressed and default states suggests oscillatory trajectories with a period of about 20
years. Using the number of defaults in an economy as an indicator of the business cycle
this roughly agrees with the period of business cycles that has been observed historically.

To gain further understanding of the model we resort to simulation. We simulate the system
with the above parameters using the gaussian approximation described above, starting the
system at the equilibrium point. A sample trajectory is plotted in Figure 3, where the
oscillatory behavior is evident.
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Figure 2: Autocorrelation function.
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Figure 3: Sample trajectory from simulation, showing the oscillatory behavior of the
stressed and default states.

We also investigate first-passage times of the default process. Again using the interpretation
of the default process as an indicator of the business cycle we may view the first-passage
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time to a high level as representing the time to a recession. We start the simulation at
the equilibrium point and plot the mean first-passage time as a function of the barrier
height in Figure 4. For a 1D Ornstein-Uhlenbeck process we know from [14] that the
distribution of the first-passage time approaches an exponential distribution as the barrier
height grows. From [15] we also know that for a 1D Ornstein-Uhlenbeck process with
infinitesimal drift —fz and variance o? the mean of the first-passage time to a barrier at
o2
with the one dimensional results, suggesting that the same asymptotic behavior can be
used in our multivariate case. Also, the exponential distribution seems to fit well already
at quite low barriers. It is important to note, though, that the approximating Ornstein-
Uhlenbeck process is not adequate at very high levels. One would in this case need to invoke
large deviation techniques in order to get more accurate estimates of the first-passage time.

height z is asymptotically \/%exp {ﬁ} The simulation seems to agree qualitatively

10
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Figure 4: Mean first-passage time as a function of barrier height along with standard errors.

3.2 Without contagion

It is also illuminating to compare the model with contagion to a more standard model
without contagion. Let us chose the same parameter values as above except for

Parameter ‘ Value
A 0
Qg 0.0498.
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This produces the same equilibrium point and the same equilibrium transition intensities.
However the behavior of the system is quite different. Again plotting the autocorrelation
function and simulating a sample trajectory produces Figure 5. We may conclude from
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(a) Autocorrelation function. (b) Sample trajectory.

Figure 5: No contagion case

this that the no contagion case does not produce the oscillatory behavior obtained when
contagion is present. This can also be shown to be a general result. Setting A\ = 0 in (8)
gives the following eigenvalues:

gl = -
1

Ca3 = §<—ﬁ—ah—o¢s—o¢d:|:\/(—6—ah+as+ad)2+4ahas>.

Since the eigenvalues are real we get no oscillating trajectories.

4 Conclusions

The understanding of what drives the variation in the default intensities is important both
from a risk management and a policy perspective. In this paper we have proposed a simple
model of the default process inspired by research in the spread of disease among humans.
Despite the simplicity of the model, by incorporating default contagion, we have been
able to reproduce the cyclicality of default intensities empirically observed in the economy.
This has been achieved without introducing any external macroeconomic force. These
oscillations can be understood as cleansing of the unhealthy companies during a recession
and the recession ending when sufficiently many of the unhealthy companies have left the
economy. We have also shown that these oscillations is, in this model, a consequence of the
contagion. We have made no attempt to estimate any of the parameters introduced in the
model. Further research would be needed to do this in a consistent way. It is also possible to
introduce additional states, corresponding to the rating classes used by the rating agencies.
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This would however substantially complicate the analysis and is perhaps best suited for
simulation studies. It would also be possible to relax the assumption of homogeneous
mixing and instead introduce a network structure, taking into account geographic location
and type of industry.
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