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1 IntrodutionBanks and other �nanial institutions are faing many di�erent types of risks in their ev-eryday business. In partiular, for banks with signi�ant lending ativities it is ruialto properly measure and manage redit risk, i.e. the risk that the bank experienes lossesfrom an unexpetedly large number of its ounterparties failing to ful�ll their paymentobligations.Mathematial models for redit risk have been extensively studied in the literature, see e.g.[3℄ and the referenes therein. In the standard redit risk models, it is assumed that theeonomy under onsideration is stati, whereas in reality new ompanies are ontinuouslyentering the system, while other ompanies leave the system (through mergers, aquisitions,or defaults). In suh a dynami environment, not only the number of ompanies but alsotheir redit quality may hange onsiderably as time passes. In partiular, during anupswing of the eonomy, start-up ompanies may �nd it easy to reeive loans due to amore liberal granting proess, while under adverse eonomi irumstanes funding maybe harder to raise.Reently there has been researh where the dependenies between ompanies have beeninvestigated. In works like [4℄, [6℄, [7℄, [8℄ it is assumed that the probability of default fora partiular ompany depends on both the urrent state of the eonomy and on the stateof ompanies in its neighborhood. This is often referred to as default ontagion.The purpose of this work is to propose a modelling framework for redit defaults in adynamially hanging eonomy. In our model, ompanies enter the system at a givenrate and is assigned a rating. Companies may then exit the system through default,adversely a�eting the other ompanies, or through mergers and aquisitions, not a�etingother ompanies adversely. The proposed framework is inspired by the work in modellingontagious endemi diseases, see e.g. [1℄, where a homogeneously mixing population is oftenassumed.Sine empirial observations show that there is a yliality in the default rates the reditrisk literature often introdues default probabilities a�eted by external fators, eithergiven in terms of maroeonomi variables or de�ned impliitly using latent variables. Asit turns out, realisti hoies of parameters in our model produe long-term behavior sim-ilar to the yles in default rates observed empirially, without introduing any externalmaroeonomi fore. This is also important sine empirial researh show o-ylialitybetween GDP and defaults, see e.g. [10℄, and the model therefore shows that strong on-netions between ompanies may help to explain the osillations of the business yles.
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2 Modelling framework and general results2.1 Desription of the modelWe will design a dynami system desribing the evolution of an eonomy where om-panies may default. Time is ontinuous and measured in years. Today is t = 0. Let
X = {X(t); t ≥ 0} be a ontinuous-time Markov proess with state spae Z

3
+, where

Z+ denotes the set of nonnegative integers. The ompanies in the eonomy an be inone of three states. They are either healthy, stressed or defaulted. The Markov proess
X(t) =

(

H(t), S(t), D(t)
) represents the number of ompanies in eah state.We de�ne transition rates by the following devie:

P (X(t + ∆t) = ξ + ℓ |X(t) = ξ) = ∆tNqℓ(N
−1ξ) + o(∆t),where N is a large parameter roughly orresponding to the number of ompanies in theeonomy and ξ = (h, s, d). The possible transitions are lassi�ed as follows:1. In�ow into the system: q(0,1,0)(ξ) = θ. New ompanies arrive to the eonomy in thestressed state.2. Out�ow of healthy ompanies from the system: q(−1,0,0)(ξ) = hβ. Healthy ompaniesmay leave the eonomy through mergers and aquisitions.3. Migration from healthy to stressed: q(−1,1,0)(ξ) = hαh. Healthy ompanies maybeome stressed.4. Migration from stressed to healthy: q(1,−1,0)(ξ) = sαs. Stressed ompanies maybeome healthy.5. Default mehanism: q(0,−1,1)(ξ) = sdλ + sαd. Stressed ompanies may default eitherthrough ontagion or spontaneously.6. Removal of defaults: q(0,0,−1)(ξ) = dγ. After some time the defaulted ompanies easeto a�et the eonomy.All parameters above are de�ned to be stritly positive real numbers. The initial state isan arbitrary, deterministi or stohasti, vetor in Z

3
+. We may summarize the above inthe transition hart shown in Figure 1.The three possible states of a ompany in the eonomy an be viewed as a simpli�ed versionof the rating lasses used by redit rating agenies. Of ourse the model is easily expandedto an arbitrary number of rating lasses but for our purposes three states are su�ient.The di�erene between our model and models without ontagion is the λ

N
sd term.3
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Figure 1: Transition hart.We may interpret this as if every defaulted ompany auses a stressed ompany to defaultindependently with probability λ
λ+γN

. An assumption is therefore that the eonomy ishomogeneously mixing i.e. every ompany is equally likely to have onnetions to everyother ompany and thereby a�et it negatively in ase of default. This is of ourse a greatsimpli�ation as geographi or industrial aspets are not taken into aount. However, thisapproah has been suessfully used in for example the modelling of ontagious diseasesamongst humans so there is reason to believe that at least the qualitative behavior ispreserved also in this ontext.2.2 Law of large numbersNow, let XN denote a sequene of jump Markov proesses as above, indexed by the pa-rameter N . We may now show that the normalized sequene xN(t) = XN(t)/N onvergesweakly in D[0,∞), the spae of àdlàg funtions on [0,∞) equipped with the Skorohodtopology, to a deterministi motion x = {x(t); t ≥ 0}.Towards this end let us de�ne the drift vetor
F (ξ) =

∑

ℓ

ℓqℓ(ξ) = (−hβ + sαs − hαh, θ − sαs − sdλ − sαd + hαh, sdλ + sαd − dγ) . (1)If x satis�es the equation ẋ = F (x) we have the following theorem by Kurtz [11℄.Theorem 1 Let qℓ be suh that for every ompat K ⊂ R
3

∑

ℓ

|l| sup
ξ∈K

ql(ξ) < ∞,and there is MK > 0 suh that
|F (ξ) − F (η)| ≤ MK |ξ − η|, ξ, η ∈ K.4



Then we have that
lim

N→∞
sup
s≤t

|xN(s) − x(s)| = 0 a.s. for all t > 0.The appliability of this theorem in our ase follows sine for every ℓ we have that qℓ(ξ) isontinuous whih implies that supξ∈K qℓ(ξ) < ∞, sine K is ompat, whih gives us the�rst ondition. The seond ondition is satis�ed sine F (ξ) is ontinuously di�erentiablewhih implies that F is loally Lipshitz. But a loally Lipshitz funtion restrited to aompat set is Lipshitz whih implies the seond ondition.To understand the impliations of the above theorem we need to investigate the ODE
ẋ = F (x). Spei�ally we would like to �nd any stationary points, i.e. points x̂ = (ĥ, ŝ, d̂)suh that F (x̂) = 0, sine these determine the asymptoti behaviour of x(t). Using (1) weget

−ĥβ + ŝαs − ĥαh = 0, (2)
θ − ŝαs − ŝd̂λ − ŝαd + ĥαh = 0, (3)

ŝd̂λ + ŝαd − d̂γ = 0. (4)It is easily shown that the above system has a unique stritly positive solution, given by
ĥ =

αhαdγ + αsβγ + αdβγ + αhθλ + βθλ −
√

Ψ

2β(αh + β)λ
, (5)

ŝ =
αhαdγ + αsβγ + αdβγ + αhθλ + βθλ −

√
Ψ

2αsβλ
, (6)

d̂ =
−αhαdγ − αsβγ − αdβγ + αhθλ + βθλ +

√
Ψ

2(αh + β)γλ
, (7)where

Ψ = (−αhαdγ − αsβγ − αdβγ + αhθλ + βθλ)2 + 4αd(αh + β)2γθλ.The stability of the stationary point is determined by the Jaobian of F evaluated at thestationary point,
∂F̂ =







−β − αh αs 0

αh −αs − d̂λ − αd −ŝλ

0 d̂λ + αd ŝλ − γ





 . (8)If the real-part of the eigenvalues are all negative then the matrix is stable, i.e. thestationary point is loally asymptotially stable. As it turns out, showing expliitly thatthe eigenvalues of ∂F̂ are negative for all parameter values is di�ult. Another methodis verifying the so alled Routh-Hurwitz onditions whih in this ase is also di�ult. Wetherefore use a di�erent equivalent method from [13℄.5



Let ||·|| denote a vetor norm on R
n and the matrix norm it indues. We may then de�nethe Dahlquist-Lozinski�� measure1 of a real n × n matrix, with respet to the norm ||·||, as

µ(A) = lim
h→0+

||I − hA|| − 1

h
,

I being the identity matrix. Denote the spetrum of A as σ(A) and let
s(A) = max {ℜ(λ) : λ ∈ σ(A)} .We may then use the fat that s(A) ≤ µ(A) so that it is enough to show that µ(A) < 0for some Dahlquist-Lozinski�� measure to dedue stability for A. In general the Dahlquist-Lozinski�� measure of a matrix is hard to alulate but for ertain hoies of ||·|| there areexpliit formulas. Below we will onsider the Dahlquist-Lozinski�� measure with respet tothe norm ||x||

∞
= supi |xi| for whih we have the formula

µ(A) = max
i







∑

j

|aij|






,with A = (aij). For a given n × n invertible matrix Q we may onstrut a new norm by
||x||Q = ||Qx|| and therefore a new Dahlquist-Lozinski�� measure µQ whih satis�es

µQ(A) = µ(QAQ−1).We will also need the spetral property of A's seond additive ompound matrix A[2] thatif σ(A) = {ξi, i = 1, . . . , n} we have that σ(A[2]) = {ξi + ξj : 1 ≤ i < j ≤ n}. These fatsprodue the following result, see [13℄.Theorem 2 Let A be an n × n matrix and assume that (−1)n det(A) > 0. Then A isstable if and only if µ(A[2]) < 0 for some Dahlquist-Lozinski�� measure µ.Straightforward alulations show that det(∂F̂ ) = −
√

Ψ < 0.For a 3 × 3 matrix the seond additive ompound matrix is,
A[2] =







a11 + a22 a23 −a13

a32 a11 + a33 a12

−a31 a21 a22 + a33





 .Using (8) above this gives us
∂F̂ [2] =









−β − αh − αs − d̂λ − αd −ŝλ 0

d̂λ + αd −β − αh + ŝλ − γ αs

0 αh ŝλ − γ − αs − d̂λ − αd









.1Sometimes referred to as simply the Lozinski�� measure or as the logarithmi norm.6



We let µ be the Dahlquist-Lozinski�� measure on 3 × 3 matries with respet to the ||x||
∞norm. De�ne the diagonal matrix Q by Q = diag(d̂,−ŝ, ĥ). We then have that

µQ(∂F [2]) = µ(Q∂F [2]Q−1)

= max







− β − αh − αs − αd,

−αh − ŝαs

ĥ
− d̂(β + γ) + ŝαd

d̂
,− ĥαh

ŝ
− γ − d̂λ − αs − αd + ŝλ







.Now, from (4) we get that
− ĥαh

ŝ
− γ − d̂λ − αs − αd + ŝλ = − ĥαh

ŝ
− d̂λ − αs − αd −

ŝαd

d̂
< 0,so that µQ(∂F [2]) < 0 and we may onlude that the stationary point x̂ = (ĥ, ŝ, d̂) is indeedasymptotially stable. That is, if we let x(0) be su�iently lose to x̂ then x(t) will remainlose to x̂ for all t and x(t) → x̂ as t → ∞.2.3 Weak onvergeneNow de�ne the sequene of proesses XN = {XN (t); t ≥ 0} by

X
N (t) =

√
N

(

xN (t) − x(t)
)

.We start the proess at time 0 and hoose x(0) su�iently lose to x̂, in the above sense.Let xN be suh that limN→∞

√
N

∣

∣

∣xN(0) − x(0)
∣

∣

∣ = 0 and let V be de�ned as
V (t) =

∑

ℓ

ℓWℓ

(∫ t

t0

qℓ (x(s)) ds
)

+
∫ t

t0

∂F (x(s))V (s)ds,where the Wℓ's are Wiener proesses. Then we have a entral limit theorem by Kurtz [11℄.Theorem 3 If ∑

ℓ |ℓ|2 supξ qℓ(ξ) < ∞, ∂F (ξ) is a bounded, ontinuous funtion of ξ, then
XN ⇒ V .Beause of the asymptoti stability of the stationary point x̂ there is some ompat set Ksuh that the trajetory of x(t) is ontained in K. But the restrition of ∂F and qℓ to Kis bounded, whih is what we need for the theorem. We may write V (t) as the solution ofthe linear SDE

dV = ∂F (x(t))V dt + G(x(t))
1

2 dW,where W is the 3-dimensional Wiener proess and G(ξ) =
∑

ℓ ℓℓT qℓ(ξ). As we let t → ∞we get that x(t) → x̂, ∂F (x(t)) → ∂F (x̂) ≡ ∂F̂ and G(x(t)) → G(x̂) ≡ Ĝ. Therefore7



V approahes a stationary Ornstein-Uhlenbek proess. We will heneforth onsider thisproess desribed by the SDE
dV = ∂F̂ V dt + Ĝ

1

2 dW, (9)where
Ĝ =

∑

ℓ

ℓℓT qℓ(x̂) =









ĥ(β + αh) + ŝαs −ĥαh − ŝαs 0

−ĥαh − ŝαs θ + ĥαh + ŝ(αs + αd + d̂λ) −ŝ(d̂λ + αd)

0 −ŝ(d̂λ + αd) ŝ(d̂λ + αd) + d̂γ









.From the de�nition of G(ξ) it easy to show that zT Gz > 0 ∀ z ∈ R
3, i.e. G(ξ) is positivede�nite.Introdue the matrix Σ by the equation

∂F̂Σ + Σ∂F̂ T = −Ĝ. (10)In stability theory this is known as the Lyapunov equation and the previously establishedstability of ∂F̂ and positive de�niteness of Ĝ guarantees the existene of a unique positive-de�nite symmetri solution, see [12℄, and we may interpret Σ as the ovariane matrix ofthe stationary distribution of V . It is hard to obtain an analyti solution but there arenumerial algorithms available, see e.g. [2℄.Having alulated Σ we get from theorem 5.6.7 in [9℄ that the ovariane funtion of V isgiven by
ρ(t) = Σet∂F̂ T

. (11)3 Case study3.1 ContagionTo exemplify the properties of the model we study a spei� hoie of parameters in depth.No e�ort is made to estimate the parameters but it is our view that the hosen parametersare reasonably realisti. Parameter Value
N 5000
θ 0.1
β 0.01
αh 0.03
αs 0.03
λ 1.1
αd 0.002
γ 28



The hoie N = 5000 is arbitrary sine it is only a matter of sale. Interpreting healthy andstressed as investment grade and speulative grade respetively we get from the transitionmatries supplied by the rating agenies that 0.03 is a typial intensity for transitionsbetween healthy and stressed, see e.g. [3℄. Choosing γ = 2 represents a defaulted ompanya�eting the eonomy for half a year on average. Sine this is hard to observe in realityit is hard to motivate this on more than a qualitative level. It is however reasonableto assume that a defaulted ompany should a�et the eonomy for more than a monthbut not muh more than a year. The hoie of θ an be seen as a hoie of the sale ofthe system, appearing only as a multipliative fator of N , and the value 0.1 is largelyarbitrary. Having set β to 0.01 represents about 1% of the healthy ompanies disappearingfrom the eonomy through some other mehanism than default. Again this is hard to giveany preise motivation other than that is seems to be a reasonable order of sale. Pluggingthese values into eqs. (5) to (7) and multiplying by N gives us
Ĥ = 6544.4,

Ŝ = 8725.8,

D̂ = 217.28.Writing the transition intensity between the stressed and default state as s
(

λd
N

+ αd

) wesee that λd̂
N

+αd = 0.0498 an be interpreted as the transition intensity between the stressedand default states per stressed ompany in equilibrium. This is fairly onsistent with the4% of investment grade ompanies defaulting annually reported in [5℄. The SDE (9) nowbeomes
dV =







−0.004 0.03 0
0.003 −0.0798 −1.9197

0 0.0498 −0.0803





 V dt +







0.3019 −0.1154 −0.0159
−0.1154 0.5057 −0.0974
−0.0159 −0.0974 0.4051





 dW.Solving eq. (10) in this ase gives us
Σ =







2.1309 1.0960 0.2532
1.0960 21.4999 −0.8041
0.2532 −0.8041 0.5835





 ,where we note in partiular the negative orrelation between the stressed and defaultstates. We are now ready to alulate the orrelation funtion by eq. (11). Plotting theautoorrelation for the three states gives us Figure 2. We see that the autoorrelation ofthe stressed and default states suggests osillatory trajetories with a period of about 20years. Using the number of defaults in an eonomy as an indiator of the business ylethis roughly agrees with the period of business yles that has been observed historially.To gain further understanding of the model we resort to simulation. We simulate the systemwith the above parameters using the gaussian approximation desribed above, starting thesystem at the equilibrium point. A sample trajetory is plotted in Figure 3, where theosillatory behavior is evident. 9
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Figure 2: Autoorrelation funtion.
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time to a high level as representing the time to a reession. We start the simulation atthe equilibrium point and plot the mean �rst-passage time as a funtion of the barrierheight in Figure 4. For a 1D Ornstein-Uhlenbek proess we know from [14℄ that thedistribution of the �rst-passage time approahes an exponential distribution as the barrierheight grows. From [15℄ we also know that for a 1D Ornstein-Uhlenbek proess within�nitesimal drift −θx and variane σ2 the mean of the �rst-passage time to a barrier atheight z is asymptotially √

πσ2

z2θ3 exp
{

z2θ
σ2

}. The simulation seems to agree qualitativelywith the one dimensional results, suggesting that the same asymptoti behavior an beused in our multivariate ase. Also, the exponential distribution seems to �t well alreadyat quite low barriers. It is important to note, though, that the approximating Ornstein-Uhlenbek proess is not adequate at very high levels. One would in this ase need to invokelarge deviation tehniques in order to get more aurate estimates of the �rst-passage time.
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Figure 4: Mean �rst-passage time as a funtion of barrier height along with standard errors.3.2 Without ontagionIt is also illuminating to ompare the model with ontagion to a more standard modelwithout ontagion. Let us hose the same parameter values as above exept forParameter Value
λ 0
αd 0.0498.11



This produes the same equilibrium point and the same equilibrium transition intensities.However the behavior of the system is quite di�erent. Again plotting the autoorrelationfuntion and simulating a sample trajetory produes Figure 5. We may onlude from
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Time (years)(b) Sample trajetory.Figure 5: No ontagion asethis that the no ontagion ase does not produe the osillatory behavior obtained whenontagion is present. This an also be shown to be a general result. Setting λ = 0 in (8)gives the following eigenvalues:
ζ1 = −γ,

ζ2,3 =
1

2

(

−β − αh − αs − αd ±
√

(−β − αh + αs + αd)
2 + 4αhαs

)

.Sine the eigenvalues are real we get no osillating trajetories.4 ConlusionsThe understanding of what drives the variation in the default intensities is important bothfrom a risk management and a poliy perspetive. In this paper we have proposed a simplemodel of the default proess inspired by researh in the spread of disease among humans.Despite the simpliity of the model, by inorporating default ontagion, we have beenable to reprodue the yliality of default intensities empirially observed in the eonomy.This has been ahieved without introduing any external maroeonomi fore. Theseosillations an be understood as leansing of the unhealthy ompanies during a reessionand the reession ending when su�iently many of the unhealthy ompanies have left theeonomy. We have also shown that these osillations is, in this model, a onsequene of theontagion. We have made no attempt to estimate any of the parameters introdued in themodel. Further researh would be needed to do this in a onsistent way. It is also possible tointrodue additional states, orresponding to the rating lasses used by the rating agenies.12
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