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tWe propose a model des
ribing an e
onomy where 
ompanies may default dueto 
ontagion. By using standard approximation results for sto
hasti
 pro
ess we areable to des
ribe the features of the model. It turns out that the model reprodu
esthe os
illations in the default rates that has been observed empiri
ally. That is, wehave an intrinsi
 os
illation in the e
onomi
 system without applying any externalma
roe
onomi
 for
e. These os
illations 
an be understood as 
leansing of the un-healthy 
ompanies during a re
ession and the re
ession ending when su�
iently manyof the unhealthy 
ompanies have left the e
onomy. This is important both from arisk management perspe
tive as well as from a poli
y perspe
tive sin
e it shows that
ontagious defaults may help to explain the os
illations of business 
y
les. We alsoinvestigate the �rst-passage times of the default pro
ess, using this as a proxy for thetime to a re
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y
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1 Introdu
tionBanks and other �nan
ial institutions are fa
ing many di�erent types of risks in their ev-eryday business. In parti
ular, for banks with signi�
ant lending a
tivities it is 
ru
ialto properly measure and manage 
redit risk, i.e. the risk that the bank experien
es lossesfrom an unexpe
tedly large number of its 
ounterparties failing to ful�ll their paymentobligations.Mathemati
al models for 
redit risk have been extensively studied in the literature, see e.g.[3℄ and the referen
es therein. In the standard 
redit risk models, it is assumed that thee
onomy under 
onsideration is stati
, whereas in reality new 
ompanies are 
ontinuouslyentering the system, while other 
ompanies leave the system (through mergers, a
quisitions,or defaults). In su
h a dynami
 environment, not only the number of 
ompanies but alsotheir 
redit quality may 
hange 
onsiderably as time passes. In parti
ular, during anupswing of the e
onomy, start-up 
ompanies may �nd it easy to re
eive loans due to amore liberal granting pro
ess, while under adverse e
onomi
 
ir
umstan
es funding maybe harder to raise.Re
ently there has been resear
h where the dependen
ies between 
ompanies have beeninvestigated. In works like [4℄, [6℄, [7℄, [8℄ it is assumed that the probability of default fora parti
ular 
ompany depends on both the 
urrent state of the e
onomy and on the stateof 
ompanies in its neighborhood. This is often referred to as default 
ontagion.The purpose of this work is to propose a modelling framework for 
redit defaults in adynami
ally 
hanging e
onomy. In our model, 
ompanies enter the system at a givenrate and is assigned a rating. Companies may then exit the system through default,adversely a�e
ting the other 
ompanies, or through mergers and a
quisitions, not a�e
tingother 
ompanies adversely. The proposed framework is inspired by the work in modelling
ontagious endemi
 diseases, see e.g. [1℄, where a homogeneously mixing population is oftenassumed.Sin
e empiri
al observations show that there is a 
y
li
ality in the default rates the 
reditrisk literature often introdu
es default probabilities a�e
ted by external fa
tors, eithergiven in terms of ma
roe
onomi
 variables or de�ned impli
itly using latent variables. Asit turns out, realisti
 
hoi
es of parameters in our model produ
e long-term behavior sim-ilar to the 
y
les in default rates observed empiri
ally, without introdu
ing any externalma
roe
onomi
 for
e. This is also important sin
e empiri
al resear
h show 
o-
y
li
alitybetween GDP and defaults, see e.g. [10℄, and the model therefore shows that strong 
on-ne
tions between 
ompanies may help to explain the os
illations of the business 
y
les.
2



2 Modelling framework and general results2.1 Des
ription of the modelWe will design a dynami
 system des
ribing the evolution of an e
onomy where 
om-panies may default. Time is 
ontinuous and measured in years. Today is t = 0. Let
X = {X(t); t ≥ 0} be a 
ontinuous-time Markov pro
ess with state spa
e Z

3
+, where

Z+ denotes the set of nonnegative integers. The 
ompanies in the e
onomy 
an be inone of three states. They are either healthy, stressed or defaulted. The Markov pro
ess
X(t) =

(

H(t), S(t), D(t)
) represents the number of 
ompanies in ea
h state.We de�ne transition rates by the following devi
e:

P (X(t + ∆t) = ξ + ℓ |X(t) = ξ) = ∆tNqℓ(N
−1ξ) + o(∆t),where N is a large parameter roughly 
orresponding to the number of 
ompanies in thee
onomy and ξ = (h, s, d). The possible transitions are 
lassi�ed as follows:1. In�ow into the system: q(0,1,0)(ξ) = θ. New 
ompanies arrive to the e
onomy in thestressed state.2. Out�ow of healthy 
ompanies from the system: q(−1,0,0)(ξ) = hβ. Healthy 
ompaniesmay leave the e
onomy through mergers and a
quisitions.3. Migration from healthy to stressed: q(−1,1,0)(ξ) = hαh. Healthy 
ompanies maybe
ome stressed.4. Migration from stressed to healthy: q(1,−1,0)(ξ) = sαs. Stressed 
ompanies maybe
ome healthy.5. Default me
hanism: q(0,−1,1)(ξ) = sdλ + sαd. Stressed 
ompanies may default eitherthrough 
ontagion or spontaneously.6. Removal of defaults: q(0,0,−1)(ξ) = dγ. After some time the defaulted 
ompanies 
easeto a�e
t the e
onomy.All parameters above are de�ned to be stri
tly positive real numbers. The initial state isan arbitrary, deterministi
 or sto
hasti
, ve
tor in Z

3
+. We may summarize the above inthe transition 
hart shown in Figure 1.The three possible states of a 
ompany in the e
onomy 
an be viewed as a simpli�ed versionof the rating 
lasses used by 
redit rating agen
ies. Of 
ourse the model is easily expandedto an arbitrary number of rating 
lasses but for our purposes three states are su�
ient.The di�eren
e between our model and models without 
ontagion is the λ

N
sd term.3



                          sαs

θN

hαh
λ

N
sd + sαd

hβ

dγ

HEALTHY STRESSED

DEFAULT

Figure 1: Transition 
hart.We may interpret this as if every defaulted 
ompany 
auses a stressed 
ompany to defaultindependently with probability λ
λ+γN

. An assumption is therefore that the e
onomy ishomogeneously mixing i.e. every 
ompany is equally likely to have 
onne
tions to everyother 
ompany and thereby a�e
t it negatively in 
ase of default. This is of 
ourse a greatsimpli�
ation as geographi
 or industrial aspe
ts are not taken into a

ount. However, thisapproa
h has been su

essfully used in for example the modelling of 
ontagious diseasesamongst humans so there is reason to believe that at least the qualitative behavior ispreserved also in this 
ontext.2.2 Law of large numbersNow, let XN denote a sequen
e of jump Markov pro
esses as above, indexed by the pa-rameter N . We may now show that the normalized sequen
e xN(t) = XN(t)/N 
onvergesweakly in D[0,∞), the spa
e of 
àdlàg fun
tions on [0,∞) equipped with the Skorohodtopology, to a deterministi
 motion x = {x(t); t ≥ 0}.Towards this end let us de�ne the drift ve
tor
F (ξ) =

∑

ℓ

ℓqℓ(ξ) = (−hβ + sαs − hαh, θ − sαs − sdλ − sαd + hαh, sdλ + sαd − dγ) . (1)If x satis�es the equation ẋ = F (x) we have the following theorem by Kurtz [11℄.Theorem 1 Let qℓ be su
h that for every 
ompa
t K ⊂ R
3

∑

ℓ

|l| sup
ξ∈K

ql(ξ) < ∞,and there is MK > 0 su
h that
|F (ξ) − F (η)| ≤ MK |ξ − η|, ξ, η ∈ K.4



Then we have that
lim

N→∞
sup
s≤t

|xN(s) − x(s)| = 0 a.s. for all t > 0.The appli
ability of this theorem in our 
ase follows sin
e for every ℓ we have that qℓ(ξ) is
ontinuous whi
h implies that supξ∈K qℓ(ξ) < ∞, sin
e K is 
ompa
t, whi
h gives us the�rst 
ondition. The se
ond 
ondition is satis�ed sin
e F (ξ) is 
ontinuously di�erentiablewhi
h implies that F is lo
ally Lips
hitz. But a lo
ally Lips
hitz fun
tion restri
ted to a
ompa
t set is Lips
hitz whi
h implies the se
ond 
ondition.To understand the impli
ations of the above theorem we need to investigate the ODE
ẋ = F (x). Spe
i�
ally we would like to �nd any stationary points, i.e. points x̂ = (ĥ, ŝ, d̂)su
h that F (x̂) = 0, sin
e these determine the asymptoti
 behaviour of x(t). Using (1) weget

−ĥβ + ŝαs − ĥαh = 0, (2)
θ − ŝαs − ŝd̂λ − ŝαd + ĥαh = 0, (3)

ŝd̂λ + ŝαd − d̂γ = 0. (4)It is easily shown that the above system has a unique stri
tly positive solution, given by
ĥ =

αhαdγ + αsβγ + αdβγ + αhθλ + βθλ −
√

Ψ

2β(αh + β)λ
, (5)

ŝ =
αhαdγ + αsβγ + αdβγ + αhθλ + βθλ −

√
Ψ

2αsβλ
, (6)

d̂ =
−αhαdγ − αsβγ − αdβγ + αhθλ + βθλ +

√
Ψ

2(αh + β)γλ
, (7)where

Ψ = (−αhαdγ − αsβγ − αdβγ + αhθλ + βθλ)2 + 4αd(αh + β)2γθλ.The stability of the stationary point is determined by the Ja
obian of F evaluated at thestationary point,
∂F̂ =







−β − αh αs 0

αh −αs − d̂λ − αd −ŝλ

0 d̂λ + αd ŝλ − γ





 . (8)If the real-part of the eigenvalues are all negative then the matrix is stable, i.e. thestationary point is lo
ally asymptoti
ally stable. As it turns out, showing expli
itly thatthe eigenvalues of ∂F̂ are negative for all parameter values is di�
ult. Another methodis verifying the so 
alled Routh-Hurwitz 
onditions whi
h in this 
ase is also di�
ult. Wetherefore use a di�erent equivalent method from [13℄.5



Let ||·|| denote a ve
tor norm on R
n and the matrix norm it indu
es. We may then de�nethe Dahlquist-Lozinski�� measure1 of a real n × n matrix, with respe
t to the norm ||·||, as

µ(A) = lim
h→0+

||I − hA|| − 1

h
,

I being the identity matrix. Denote the spe
trum of A as σ(A) and let
s(A) = max {ℜ(λ) : λ ∈ σ(A)} .We may then use the fa
t that s(A) ≤ µ(A) so that it is enough to show that µ(A) < 0for some Dahlquist-Lozinski�� measure to dedu
e stability for A. In general the Dahlquist-Lozinski�� measure of a matrix is hard to 
al
ulate but for 
ertain 
hoi
es of ||·|| there areexpli
it formulas. Below we will 
onsider the Dahlquist-Lozinski�� measure with respe
t tothe norm ||x||

∞
= supi |xi| for whi
h we have the formula

µ(A) = max
i







∑

j

|aij|






,with A = (aij). For a given n × n invertible matrix Q we may 
onstru
t a new norm by
||x||Q = ||Qx|| and therefore a new Dahlquist-Lozinski�� measure µQ whi
h satis�es

µQ(A) = µ(QAQ−1).We will also need the spe
tral property of A's se
ond additive 
ompound matrix A[2] thatif σ(A) = {ξi, i = 1, . . . , n} we have that σ(A[2]) = {ξi + ξj : 1 ≤ i < j ≤ n}. These fa
tsprodu
e the following result, see [13℄.Theorem 2 Let A be an n × n matrix and assume that (−1)n det(A) > 0. Then A isstable if and only if µ(A[2]) < 0 for some Dahlquist-Lozinski�� measure µ.Straightforward 
al
ulations show that det(∂F̂ ) = −
√

Ψ < 0.For a 3 × 3 matrix the se
ond additive 
ompound matrix is,
A[2] =







a11 + a22 a23 −a13

a32 a11 + a33 a12

−a31 a21 a22 + a33





 .Using (8) above this gives us
∂F̂ [2] =









−β − αh − αs − d̂λ − αd −ŝλ 0

d̂λ + αd −β − αh + ŝλ − γ αs

0 αh ŝλ − γ − αs − d̂λ − αd









.1Sometimes referred to as simply the Lozinski�� measure or as the logarithmi
 norm.6



We let µ be the Dahlquist-Lozinski�� measure on 3 × 3 matri
es with respe
t to the ||x||
∞norm. De�ne the diagonal matrix Q by Q = diag(d̂,−ŝ, ĥ). We then have that

µQ(∂F [2]) = µ(Q∂F [2]Q−1)

= max







− β − αh − αs − αd,

−αh − ŝαs

ĥ
− d̂(β + γ) + ŝαd

d̂
,− ĥαh

ŝ
− γ − d̂λ − αs − αd + ŝλ







.Now, from (4) we get that
− ĥαh

ŝ
− γ − d̂λ − αs − αd + ŝλ = − ĥαh

ŝ
− d̂λ − αs − αd −

ŝαd

d̂
< 0,so that µQ(∂F [2]) < 0 and we may 
on
lude that the stationary point x̂ = (ĥ, ŝ, d̂) is indeedasymptoti
ally stable. That is, if we let x(0) be su�
iently 
lose to x̂ then x(t) will remain
lose to x̂ for all t and x(t) → x̂ as t → ∞.2.3 Weak 
onvergen
eNow de�ne the sequen
e of pro
esses XN = {XN (t); t ≥ 0} by

X
N (t) =

√
N

(

xN (t) − x(t)
)

.We start the pro
ess at time 0 and 
hoose x(0) su�
iently 
lose to x̂, in the above sense.Let xN be su
h that limN→∞

√
N

∣

∣

∣xN(0) − x(0)
∣

∣

∣ = 0 and let V be de�ned as
V (t) =

∑

ℓ

ℓWℓ

(∫ t

t0

qℓ (x(s)) ds
)

+
∫ t

t0

∂F (x(s))V (s)ds,where the Wℓ's are Wiener pro
esses. Then we have a 
entral limit theorem by Kurtz [11℄.Theorem 3 If ∑

ℓ |ℓ|2 supξ qℓ(ξ) < ∞, ∂F (ξ) is a bounded, 
ontinuous fun
tion of ξ, then
XN ⇒ V .Be
ause of the asymptoti
 stability of the stationary point x̂ there is some 
ompa
t set Ksu
h that the traje
tory of x(t) is 
ontained in K. But the restri
tion of ∂F and qℓ to Kis bounded, whi
h is what we need for the theorem. We may write V (t) as the solution ofthe linear SDE

dV = ∂F (x(t))V dt + G(x(t))
1

2 dW,where W is the 3-dimensional Wiener pro
ess and G(ξ) =
∑

ℓ ℓℓT qℓ(ξ). As we let t → ∞we get that x(t) → x̂, ∂F (x(t)) → ∂F (x̂) ≡ ∂F̂ and G(x(t)) → G(x̂) ≡ Ĝ. Therefore7



V approa
hes a stationary Ornstein-Uhlenbe
k pro
ess. We will hen
eforth 
onsider thispro
ess des
ribed by the SDE
dV = ∂F̂ V dt + Ĝ

1

2 dW, (9)where
Ĝ =

∑

ℓ

ℓℓT qℓ(x̂) =









ĥ(β + αh) + ŝαs −ĥαh − ŝαs 0

−ĥαh − ŝαs θ + ĥαh + ŝ(αs + αd + d̂λ) −ŝ(d̂λ + αd)

0 −ŝ(d̂λ + αd) ŝ(d̂λ + αd) + d̂γ









.From the de�nition of G(ξ) it easy to show that zT Gz > 0 ∀ z ∈ R
3, i.e. G(ξ) is positivede�nite.Introdu
e the matrix Σ by the equation

∂F̂Σ + Σ∂F̂ T = −Ĝ. (10)In stability theory this is known as the Lyapunov equation and the previously establishedstability of ∂F̂ and positive de�niteness of Ĝ guarantees the existen
e of a unique positive-de�nite symmetri
 solution, see [12℄, and we may interpret Σ as the 
ovarian
e matrix ofthe stationary distribution of V . It is hard to obtain an analyti
 solution but there arenumeri
al algorithms available, see e.g. [2℄.Having 
al
ulated Σ we get from theorem 5.6.7 in [9℄ that the 
ovarian
e fun
tion of V isgiven by
ρ(t) = Σet∂F̂ T

. (11)3 Case study3.1 ContagionTo exemplify the properties of the model we study a spe
i�
 
hoi
e of parameters in depth.No e�ort is made to estimate the parameters but it is our view that the 
hosen parametersare reasonably realisti
. Parameter Value
N 5000
θ 0.1
β 0.01
αh 0.03
αs 0.03
λ 1.1
αd 0.002
γ 28



The 
hoi
e N = 5000 is arbitrary sin
e it is only a matter of s
ale. Interpreting healthy andstressed as investment grade and spe
ulative grade respe
tively we get from the transitionmatri
es supplied by the rating agen
ies that 0.03 is a typi
al intensity for transitionsbetween healthy and stressed, see e.g. [3℄. Choosing γ = 2 represents a defaulted 
ompanya�e
ting the e
onomy for half a year on average. Sin
e this is hard to observe in realityit is hard to motivate this on more than a qualitative level. It is however reasonableto assume that a defaulted 
ompany should a�e
t the e
onomy for more than a monthbut not mu
h more than a year. The 
hoi
e of θ 
an be seen as a 
hoi
e of the s
ale ofthe system, appearing only as a multipli
ative fa
tor of N , and the value 0.1 is largelyarbitrary. Having set β to 0.01 represents about 1% of the healthy 
ompanies disappearingfrom the e
onomy through some other me
hanism than default. Again this is hard to giveany pre
ise motivation other than that is seems to be a reasonable order of s
ale. Pluggingthese values into eqs. (5) to (7) and multiplying by N gives us
Ĥ = 6544.4,

Ŝ = 8725.8,

D̂ = 217.28.Writing the transition intensity between the stressed and default state as s
(

λd
N

+ αd

) wesee that λd̂
N

+αd = 0.0498 
an be interpreted as the transition intensity between the stressedand default states per stressed 
ompany in equilibrium. This is fairly 
onsistent with the4% of investment grade 
ompanies defaulting annually reported in [5℄. The SDE (9) nowbe
omes
dV =







−0.004 0.03 0
0.003 −0.0798 −1.9197

0 0.0498 −0.0803





 V dt +







0.3019 −0.1154 −0.0159
−0.1154 0.5057 −0.0974
−0.0159 −0.0974 0.4051





 dW.Solving eq. (10) in this 
ase gives us
Σ =







2.1309 1.0960 0.2532
1.0960 21.4999 −0.8041
0.2532 −0.8041 0.5835





 ,where we note in parti
ular the negative 
orrelation between the stressed and defaultstates. We are now ready to 
al
ulate the 
orrelation fun
tion by eq. (11). Plotting theauto
orrelation for the three states gives us Figure 2. We see that the auto
orrelation ofthe stressed and default states suggests os
illatory traje
tories with a period of about 20years. Using the number of defaults in an e
onomy as an indi
ator of the business 
y
lethis roughly agrees with the period of business 
y
les that has been observed histori
ally.To gain further understanding of the model we resort to simulation. We simulate the systemwith the above parameters using the gaussian approximation des
ribed above, starting thesystem at the equilibrium point. A sample traje
tory is plotted in Figure 3, where theos
illatory behavior is evident. 9
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tory from simulation, showing the os
illatory behavior of thestressed and default states.We also investigate �rst-passage times of the default pro
ess. Again using the interpretationof the default pro
ess as an indi
ator of the business 
y
le we may view the �rst-passage10



time to a high level as representing the time to a re
ession. We start the simulation atthe equilibrium point and plot the mean �rst-passage time as a fun
tion of the barrierheight in Figure 4. For a 1D Ornstein-Uhlenbe
k pro
ess we know from [14℄ that thedistribution of the �rst-passage time approa
hes an exponential distribution as the barrierheight grows. From [15℄ we also know that for a 1D Ornstein-Uhlenbe
k pro
ess within�nitesimal drift −θx and varian
e σ2 the mean of the �rst-passage time to a barrier atheight z is asymptoti
ally √

πσ2

z2θ3 exp
{

z2θ
σ2

}. The simulation seems to agree qualitativelywith the one dimensional results, suggesting that the same asymptoti
 behavior 
an beused in our multivariate 
ase. Also, the exponential distribution seems to �t well alreadyat quite low barriers. It is important to note, though, that the approximating Ornstein-Uhlenbe
k pro
ess is not adequate at very high levels. One would in this 
ase need to invokelarge deviation te
hniques in order to get more a

urate estimates of the �rst-passage time.
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Figure 4: Mean �rst-passage time as a fun
tion of barrier height along with standard errors.3.2 Without 
ontagionIt is also illuminating to 
ompare the model with 
ontagion to a more standard modelwithout 
ontagion. Let us 
hose the same parameter values as above ex
ept forParameter Value
λ 0
αd 0.0498.11



This produ
es the same equilibrium point and the same equilibrium transition intensities.However the behavior of the system is quite di�erent. Again plotting the auto
orrelationfun
tion and simulating a sample traje
tory produ
es Figure 5. We may 
on
lude from
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tory.Figure 5: No 
ontagion 
asethis that the no 
ontagion 
ase does not produ
e the os
illatory behavior obtained when
ontagion is present. This 
an also be shown to be a general result. Setting λ = 0 in (8)gives the following eigenvalues:
ζ1 = −γ,

ζ2,3 =
1

2

(

−β − αh − αs − αd ±
√

(−β − αh + αs + αd)
2 + 4αhαs

)

.Sin
e the eigenvalues are real we get no os
illating traje
tories.4 Con
lusionsThe understanding of what drives the variation in the default intensities is important bothfrom a risk management and a poli
y perspe
tive. In this paper we have proposed a simplemodel of the default pro
ess inspired by resear
h in the spread of disease among humans.Despite the simpli
ity of the model, by in
orporating default 
ontagion, we have beenable to reprodu
e the 
y
li
ality of default intensities empiri
ally observed in the e
onomy.This has been a
hieved without introdu
ing any external ma
roe
onomi
 for
e. Theseos
illations 
an be understood as 
leansing of the unhealthy 
ompanies during a re
essionand the re
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