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Abstract

We are interested in how the addition of type heterogeneities af-
fects the long time behaviour of endemic diseases. We do this by
analysing a two-type version of a model introduced by Bartlett under
the restriction of proportionate mixing. This model is used to describe
diseases for which individuals switch states according to susceptible
→ infectious → recovered and immune, where the immunity is life-
long. We describe an approximation of the distribution of the time
to extinction given that the process is started in the quasi-stationary
distribution, and we analyse how the variance and the coefficient of
variation of the number of infectious individuals depends on the degree
of heterogeneity between the two types of individuals. These are then
used to derive an approximation of the time to extinction. From this
approximation we get that if we increase the difference in infectivity
between the two types the expected time to extinction decreases, and
if we instead increase the difference in susceptibility the behaviour of
the expected time to extinction depends on which part of the parame-
ter space we are in, and we can also obtain non monotonic behaviour.
These results are supported by simulations.

KEY WORDS: Stochastic SIR epidemic model, Quasi-stationary dis-
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1 Introduction

Diseases that are able to persist in a population for a long time without the
need of introducing new infectious individuals from an external population
are called endemic, see e.g. pp. 73 in [1]. A question which has received a
lot of attention in the literature is the behaviour of an endemic disease af-
ter a long time, see e.g. [2] and the references therein, [3], [4], [5]. In the
present paper we look at the situation when all individuals in a homoge-
neously mixing population is classified as one of two types, e.g. children or
adults, female or male etc. These types give the individuals different char-
acteristics in terms of their ability to become infected while susceptible, and
their ability to infect while infectious. We are interested in how this addition
of heterogeneity affects the persistence of an infectious disease. As a measure
of persistence we use the additional time to extinction conditioned on that
the disease has not gone extinct for a long time. We have used a stochastic
epidemic model introduced by Bartlett in [6], and modified it to take types
into account. Bartlett proposed a very similar deterministic two-type model
in [6], and the model treated in the present paper is a stochastic analogue
to this model when Bartlett’s deterministic model is suitably parametrized.
The definition of Bartlett’s original stochastic one-type model which we will
use is from ch. VII in [7]. This model is used to describe diseases where
individuals switch between the states susceptible, S, infectious, I, and recov-
ered (and immune), R, according to S → I → R. Henceforth we make no
distinction between recovered and immune, and only refer to this state as
being recovered. Immunity is here regarded as life-long, hence the state R is
absorbing up until death. The big difference between Bartlett’s model and
the standard SIR epidemic, see e.g. [1] pp. 11, is that it has a simple de-
mographic mechanism. This mechanism is necessary in order for the disease
to become endemic. That is, since the model has a recovered state, we need
to have some inflow of susceptible individuals in order for this behaviour to
appear. Bartlett’s model has been widely studied over the years, e.g. [2]
and the references therein, and different versions of this model has emerged,
see e.g. [8]. A central issue in many of these papers is the behaviour of the
epidemic after a long time.

We analyse an extension of this model when two types of individuals are
present under the restriction of so-called proportionate mixing, that is when
the contact parameter λij for a contact between an infected i-individual and
a susceptible j-individual, has the form λij = αiβj (this is sometimes called
separable), where {αi} and {βj} are called infectivities and susceptibilities
respectively. Under this extra restriction we describe an approximation of
the distribution of the time to extinction conditioned on that the disease
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has not gone extinct for a long time, i.e. an approximation of the quasi-
stationary distribution. We also analyse the variance and the coefficient of
variation of the number of infectious individuals under quasi-stationarity.
When comparing our analytical approximations with simulations, it is seen
that the approximations are not perfect, but that they capture the qualitative
behaviour of the epidemic in relevant regions of the parameter space. That is,
if we increase the difference in infectivity between the two types the expected
time to extinction decreases, and if we instead increase the difference in
susceptibility the behaviour of the expected time to extinction depends on
which parameter region we are in, and we can in fact observe non monotonic
behaviour.

For the disposition of this paper, we define the two-type version of Bartlett’s
epidemic model and describe our main results in Section 2 and in Section 3
we make some numerical comparisons with simulations. Section 4 is devoted
to a closing discussion.

2 Bartlett’s epidemic model with two types

of individuals

We have an open population without social structures where each individual
lives forever and is classified as either a type one or a type two individual, e.g.
female or male, young or adult etc., and individuals are not allowed to change
type. An alternative interpretation of the model is that individuals never die
while susceptible or infectious. This interpretation is realistic when we are
interested in childhood diseases, and this is the interpretation we will use
henceforth. The population is open in that new susceptible individuals are
brought into the population via birth/immigration, or more formally: sus-
ceptible individuals of type j are born according to a pure birth process with
constant rate, µnj, j = 1, 2. Here 1/µ is considered to be of the same order of
magnitude as the average life-length of a real-life human, e.g. 1/µ ≈ 70 years,
and where nj is more or less the average number of type j individuals which
are either susceptible or infectious, or if we suppose that type j individuals
in R dies at rate µ then nj ≈ Sj + Ij + Rj. By introducing new susceptible
individuals into the population in this way, we will on average have a propor-
tion πj = nj/n, n = n1 + n2, type j individuals in the population which are
either susceptible or infectious. Turning to the spread of disease, an infec-
tious i individual stays so for an exponentially distributed infectious period
with mean 1/νi = 1/ν, where 1/ν is considered small, e.g. 1/ν is about one
week for measles (if 1/µ ≈ 70 then 1/ν ≈ 1/52), see e.g. pp. 31 in [9]. During
this time period, the infectious i individual makes contacts with a given j
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individual according to a Poisson process with rate λij/n. If a contacted j
individual is susceptible at the time of contact then this individual becomes
infectious. After the infectious period is over the previously infectious in-
dividual recovers and becomes immune, that is, individuals switch between
being susceptible, infectious and recovered according to S → I → R. Since
recovered individuals never again will contribute to the infectious pressure in
the population, we only need to keep track of the number of susceptible and
infectious individuals at each time point to be able to describe the dynamics
of the epidemic. Due to this, we can always interpret the model as if death
occurs at rate µ in the recovered state, which is reasonable when talking
about childhood diseases. Note, that since susceptible individuals are born
at a constant rate there will always be a large number of susceptible individ-
uals present in the population at all time points, hence the epidemic will not
go extinct due to lack of susceptible individuals to infect.

In the present paper we will use this model under the extra restriction
of proportionate mixing, which is the situation when λij can be written as
λij = αiβj where {αi} and {βj} are called infectivities and susceptibilities
respectively. Let (X(t),Y(t)) = (X1(t), X2(t), Y1(t), Y2(t)) denote the pro-
cess of number of susceptible and infectious individuals of the two types at
t. Rates for all possible transitions are defined in Table 1. From these rates
we also see that the disease-free set of states is absorbing. Denote this set
by Sabs, where

Sabs = {(x,y);x ∈ N× N,y = 0} (1)

where N = {0, 1, 2, . . .}. If we instead look at the process of proportions,
(X(t)/n,Y(t)/n), where n = n1 + n2, then its deterministic counterpart is
described by the following system of differential equations:{

x′
j(t) = µπj − βjxj(t) (α1y1(t) + α2y2(t))

y′j(t) = βjxj(t) (α1y1(t) + α2y2(t))− νyj(t)
(2)

where πj = nj/n, j = 1, 2. An important epidemiological quantity is R0, the
so-called basic reproduction number. For general multi-type epidemic models
R0 is defined as the largest eigenvalue of the mean offspring matrix {λijπj/ν},
see pp. 51-61 in [1]. For Bartlett’s model with two types of individuals, under
the restriction of proportionate mixing, the mean offspring matrix becomes
{αiβjπj/ν}, and we get that

R0 =
α1β1π1 + α2β2π2

ν
. (3)

In general, for a disease to be able to become endemic R0 must be strictly
above one, see e.g. ch. 8 in [1]. This is however not the case for Bartlett’s
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model, which can become endemic for any R0 > 0. That is, regardless of the
value of R0 > 0, the epidemic process has always a positive probability of
stabilising around some equilibrium.

That a disease becomes endemic is the same as to say that it has been able
to persist in the population for a long but finite time. In the present paper
we use the additional time to extinction conditioned on that the process has
not gone extinct for a long but finite time, as a measure of persistence. If the
process has not gone extinct after a long time it is likely to have stabilised,
making small fluctuations, around the endemic level. The endemic level
is obtained by finding the stationary points to the system of differential
equations defined in (2). For this particular model we get one stationary
point

(x̂j, ŷj) =

(
πjµγ

απβj

,
πj

γ

)
, j = 1, 2 (4)

where απ = α1π1+α2π2, βj > 0, j = 1, 2, and γ = ν/µ. Here γ denotes the ra-
tio of average lifetime and average infectious period. Note that as discussed
above, the stationary point from (4) will always exist as soon as R0 > 0.
Under these circumstances it is natural to look at the quasi-stationary distri-
bution of the epidemic process denoted Q, i.e. the distribution conditioned
on that the epidemic has not died out by time t when we let t tend to infinity.
Hence, we are interested in TQ, the time to extinction given that the process
is started in the quasi-stationary distribution. Regardless of whether or not
we know the quasi-stationary distribution, we can still say something about
TQ:

P (TQ > t + s | TQ >t, (X(0),Y(0)) ∼ Q) =

= P (TQ > t + s | TQ > t, (X(t),Y(t)) ∼ Q)

= P (TQ > s | (X(0),Y(0)) ∼ Q)

i.e. TQ has the lack of memory property which implies that TQ is exponentially
distributed. This follows the same reasoning as in [3]. To determine this
exponential distribution completely we need to know its mean. Following the
lines of [2] for Bartlett’s original model, we know that P (TQ ≤ t) = P (Y(t) =
0), and by defining the Kolmogorov forward equations for P (Y(t) = i) one
can show that E(TQ) = τQ = 1/µγq•,1. Here q•,1 =

∑
x(qx,e1 + qx,e2), where

ej is the j’th unit vector. Thus, the distribution of TQ will depend on the
rate with which (X(t),Y(t)) enters the set of absorbing states, Sabs from (1).
We state this more precisely in the following proposition:
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Table 1: Bartlett’s model with two types of individuals, possible transitions
for individuals of type j = 1, 2. Here sj and ij denote the number of suscep-
tible and infectious type j individuals at a certain time point. Note that if
a change of state occurs for the type 1 individuals, the state of the type 2
individuals remains unchanged, and vice versa.

From To Rate

(sj, ij) (sj + 1, ij) µnj

(sj, ij) (sj − 1, ij + 1) βj

n
sj(α1i1 + α2i2)

(sj, ij) (sj, ij − 1) νij

Proposition 1 The time to extinction given that the process is started in
the quasi-stationary distribution, TQ, is exponentially distributed with mean

τQ =
1

µγq•,1
(5)

where

q•,1 =
∑
x≥0

(qx,e1 + qx,e2) (6)

and where ej is the j’th unit vector.

A way of approximating the quasi-stationary distribution, q•,k, is via a dif-
fusion approximation. Introduce the scaled and centred process

(X̃n(t), Ỹn(t)) =
√

n

(
X(t)

n
− x̂,

Y(t)

n
− ŷ

)
(7)

where (x̂, ŷ) corresponds to the endemic level of infection. From the theory
of diffusion processes it is known that this process converges weakly to an
Ornstein-Uhlenbeck process, (X̃(t), Ỹ(t)), as n tends to infinity, see e.g. ch.
11 in [10]. Since the limiting process is of Ornstein-Uhlenbeck type, it has
a stationary Gaussian distribution with mean 0 and covariance matrix Σ̂ =
{σ̂ij}, which is the solution to the following equation

B̂Σ̂ + Σ̂B̂T = −Ŝ, (8)

see e.g. pp. 357 in [11]. Here B and S are the local drift and covariance
matrices of (X̃(t), Ỹ(t)). The local drift matrix is the Jacobian of the first
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order infinitesimal moment of (X̃n, Ỹn) and the local covariance matrix is
the infinitesimal covariance matrix of (X̃n, Ỹn). We are interested in the
behaviour of the epidemic process close to the endemic level, and we therefore
approximate B and S at the endemic level, denoted B̂ and Ŝ. We can now
conclude the following: after a long but finite time the process is likely to have
stabilised around the stationary point (4), and then Y(t) ≈

√
nỸ(t) + nŷ

implying that Y(t) ∼ apprN(nŷ, nCov(Ỹ)). In particular we have that
Y1(t) + Y2(t) ∼ apprN(µY , σ2

Y ), where

µY = E(Y1 + Y1) = n(ŷ1 + ŷ2)

σ2
Y = V ar(Y1 + Y2) = n(σ̂2

11 + σ̂2
22 + 2σ̂12)

. (9)

This, however, contradicts our original definition of the process Y(t) which
is non-negative and integer valued, since we can not have a negative num-
ber of individuals, whereas the approximate distribution of the total number
of infected individuals after a long time is defined on R. But, if we trun-
cate this distribution at 0 (or at 0.5 using continuity correction) we get an
approximation of the the probability that Y1(t) + Y2(t) = k, i.e. q•,k:

q•,k ≈
1

σY

ϕ((k − µY )/σY )

Φ((µY − 0.5)/σY )
, k ≥ 0 (10)

where Φ(·) and ϕ(·) are the standard normal distribution and density func-
tions, and µY and σY are from (9). By using q•,1 from (10) together with
Proposition 1 the distribution of TQ is determined. This is analogous to what
N̊asell did for Bartlett’s original model in [2].

In Appendix A we derive B̂ and Ŝ for Bartlett’s model with two types,
with which we can find a solution to equation (8). This amounts to solving a
ten dimensional equation system, and for this task we have used the symbolic
software MAPLE. Unfortunately the closed expression for Σ̂ is lengthy and not
easy to grasp, and is hence omitted. We can, however, calculate µY and σ2

Y

from (9). Calculating µY gives us

µY =
n

γ
. (11)

A general expression for σ2
Y turns out to be long and not illuminating, but if

we either set α1 = α2 = α and vary β1 and β2, or set β1 = β2 = β and vary
α1 and α2, we can simplify σ2

Y quite a lot.
If we set α1 = α2 = α we get that

σ2
Y,β =

n

γ
+ n

µγ

α

β2
1π2 + β2

2π1 + β1β2 + (β1π1 + β2π2)
µγ2

α

β2
1

(
β2 + µγ2

α
π1

)
+ β2

2

(
β1 + µγ2

α
π2

) (12)
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and if we instead set β1 = β2 = β we get

σ2
Y,α =

n

γ
+ n

µγ

απ

2β + ((α1 + α2)απ − α1α2)
µγ2

α3
π

2β + µγ2

απ

(13)

where απ = α1π1 + α2π2. Our particular interest is to analyse the effect
of the heterogeneity caused by including types into the model, and this we
would do by looking at the α’s and β’s separately, i.e. λij = αβj or λij = αiβ,
so from this point of view we have not limited ourselves. A measure used
to get an idea of how far the process is from extinction, is the coefficient of
variation, CVY , defined as

CVY =
σY

µY

(14)

but, since µY from (11) is independent of all α’s and β’s, we can analyse
σ2

Y as a function of either the α’s or β’s instead. That it is enough to
analyse σ2

Y , and no higher order moments, is due to that we approximate the
quasi-stationary distribution with a truncated normal distribution, i.e. the
approximating distribution lacks skewness. Intuitively, as σ2

Y increases, we
are more likely to make larger fluctuations around the endemic level, and are
hence more likely to hit Sabs, the disease-free set of states. Thus, increasing
the variance ought to shorten the expected time to extinction, and vice versa.

2.1 Analysing σ2
Y,β(δ): the effect of difference in sus-

ceptibility between the two types

To be able to compare our results with those for Bartlett’s original one-type
model, we parametrize β1 and β2 according to{

β1= β(1− δ)
β2= β(1 + π1

π2
δ)

, δ ∈ [0, 1] (15)

where δ correspond to the degree of heterogeneity between the two types.
By using this parametrization we get that R0 = αβ/γ, hence independent
of δ and thus compatible with R0 for the original Bartlett model. Note that
the limits for δ are chosen so that both β1 and β2 will remain positive, and
due to symmetry we only look at δ ∈ [0, 1], since we do not gain any extra
information by including δ ∈ [−π2/π1, 0). Further, since R0 is independent
of δ and we are interested in the heterogeneity caused by differences in the
susceptibilities, we can set α1 = α2 = 1, because we can always scale the β’s
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such that the α’s can be set to unity. When parametrizing the β’s in this
way and setting π1 = 1−π and π2 = π then σ2

Y,β from (12) can be written as

σ2
Y,β(δ) =

n

γ
+ n

f(δ)

µγR0f(δ) + g(δ)
µγ (16)

where

f(δ) = β(2β + µγ2)π2 + 3β2(1− 2π)πδ + β2(1− 2π)2δ2 =

= R0(µγ)2(2R0 + γ)π2 + 3(R0µγ)2(1− 2π)πδ + (R0µγ)2(1− 2π)2δ2

= a1 + a2δ + a3δ
2 (17)

g(δ) = β2(µγ2 − 2β)π(1− π)δ2 − β3(1− π)(1− 2π)δ3

= R3
0(µγ)4(γ − 2R0)π(1− π)δ2 − (R0µγ)3(1− π)(1− 2π)δ3

= a4δ
2 + a5δ

3 (18)

Analysing σ2
Y,β(δ) at its end points gives us

σ2
Y,β(δ) =


n
γ

+ n
R0

if δ = 0
n
γπ

+ n π
R0

if δ = 1
(19)

so that if π = R0/γ then σ2
Y,β(0) = σ2

Y,β(1). Setting π = R0/γ, then straight-
forward calculations gives us that σ2

Y,β(δ) is not independent of δ, hence
σ2

Y,β(δ) is not monotone for all choices of parameters. We also see that
when π ≥ R0/γ then σ2

Y,β(0) ≥ σ2
Y,β(1), and that when π < R0/γ then

σ2
Y,β(0) < σ2

Y,β(1). Note that if δ = 1 then β1 = 0, thus, susceptible type
one individuals can never become infectious and X1(t) is a strictly growing
process. This gives us that X1(t) does not have an endemic level and from (2)
we see that the only stable point for Y1(t) is 0. Hence, σ2

Y,β(1) only describes
the variation among infectious type two individuals. From (16) together with
(17) and (18) we see that σ2

Y,β(δ) depends on δ in a non-trivial way, that is,
if we change δ in 0 ≤ δ ≤ 1 we can not tell whether σ2

Y,β(δ) increases or
decreases for arbitrary choices of R0, γ, µ and π. In order to find the extreme
points of σ2

Y,β(δ) we equate the first derivative of σ2
Y,β(δ) to 0, which immedi-

ately gives us that δ0 = 0 is a root, and if we calculate the second derivative
of σ2

Y,β(δ) in the point 0 we get

d2

dδ2
σ2

Y,β(0) = n
2

(µγ)2R3
0

2R0 − γ

2R0 + γ

1− π

π
(20)

so that σ2
Y,β(0) is a local maximum if 0 < R0 < γ/2 and a local minimum if

R0 > γ/2. Note that for all practical purposes 0 will be a local maximum to
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σ2
Y,β, since typical values of R0 and γ for diseases like measles are R0 ≈ 10−15

and γ ≈ 1800−3500, see e.g. pp. 31 and 70 in [9]. The remaining three roots
can be solved explicitly by using Cardano’s formula, see e.g. pp. 65 in [12],
and this is done in Appendix B. Using these roots together with the values
of σ2

Y,β(δ) in the end points of the interval δ ∈ [0, 1] we can determine the
functional form of σ2

Y,β(δ).

2.2 Analysing σ2
Y,α(δ): the effect of difference in infec-

tivity between the two types

If we instead set β1 = β2 = 1 and parametrize α1 and α2 analogously to (15),
then σ2

Y,α from (13) simplifies to

σ2
Y,α(δ) =

n

γ
+

n

R0

2R0 + γ + γ 1−π
π

δ2

2R0 + γ
(21)

which increases monotonically as δ increases, such that

σ2
Y,α(δ) =


n
γ

+ n
R0

if δ = 0

n
γ

+ n
R0

2R0+ γ
π

2R0+γ
if δ = 1

(22)

Worth noticing is that if we set δ = 1, we have moved the entire infectious
pressure to the type two individuals, and the only way that a susceptible
individual may become infected is via an infectious type two individual. To
see that this only corresponds to a shift in the infectious pressure, we can
look at the endemic level from (4) which is unchanged.

2.3 The effect of type heterogeneities on τQ

Using the approximations σ2
Y,β(δ) and σ2

Y,α(δ) from Eqs. (16) and (21) re-
spectively, together with Proposition 1 gives us approximations τQ,β(δ) and
τQ,α(δ), the expected time to extinction when the epidemic process is started
at quasi-stationarity as a function of the degree of heterogeneity in terms
of susceptibility or infectivity. We will in the remainder of this exposition
sometimes use the notation τQ,· and σ2

Y,· when we do not want to stress the
effect of neither varying susceptibility nor infectivity.

From the definitions of µY and σY,·(δ) we know that for large enough n
the relation µY > σY,·(δ) holds for all δ, i.e. µY /σY,·(δ) > 1 for all δ. If we
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see to q•,1 from (10) we can write it as

q•,1(δ) ≈
1

σY,·(δ)

ϕ
(

1−µY

σY,·(δ)

)
Φ
(

µY −0.5
σY,·(δ)

) ≈ 1

σY,·(δ)

ϕ
(

µY

σY,·(δ)

)
Φ
(

µY

σY,·(δ)

) =
1

µY

µY

σY,·(δ)

ϕ
(

µY

σY,·(δ)

)
Φ
(

µY

σY,·(δ)

)
(23)

=
1

µY

uϕ(u)

Φ(u)
=

1

µY

g(u) > 0. (24)

Differentiating g(u) w.r.t. u and using that Φ′(u) = ϕ(u) and ϕ′(u) = −uϕ(u)
we get that

g′(u) =
g(u)

u
(1− u2 − g(u)). (25)

This together with that g(u)/u > 0 for all u > 0 gives us that g′(u) < 0 for
u ≥ 1, i.e. g(u) decreases monotonically when u ≥ 1. Thus for u ≥ 1 all non
monotonic behaviour of q•,1 is a result of the non monotonic behaviour of
σY,·(δ). We will henceforth only consider this situation. Using the relation
that µY /σY,·(δ) ≥ 1 we can get bounds on n for this to hold, and these
bounds on n are needed in the next section when we compare our analytical
results with simulations. If we see to σY,β(δ) we know 1) that when π ≥ R0/γ
then σ2

Y,β(0) ≥ σ2
Y,β(1) and 2) that when π < R0/γ then σ2

Y,β(0) < σ2
Y,β(1).

If we start with 1) and assume that σY,β(0) is the largest value of σY,β(δ) for
δ ∈ [0, 1], we get that

µY

σY,β(δ)
≥ µY

σY,β(0)
≥ 1 (26)

⇒ n

γ
= µY ≥ σY,β(0) =

√
n

γ
+

n

R0

(27)

which gives us the following lower bound on n

nβ ≥ γ2

(
1

γ
+

1

R0

)
. (28)

Likewise for 2) we get that

µY

σY,β(δ)
≥ µY

σY,β(1)
≥ 1 (29)

which gives us

⇒ nβ ≥ γ2

(
1

γπ
+

π

R0

)
. (30)

11



Note that for almost all practical situations π ≥ R0/γ will hold, since typical
values of R0 ≈ 10− 15 and γ ≈ 1800− 3500, see pp. 31 and 70 in [9].

In the same way we get a lower bound on n for σY,α(δ), which becomes

nα ≥ γ2

(
1

γ
+

2R0 + γ
π

2R0 + γ

)
. (31)

Note that nα is very sensitive to the choice of π.
Returning to the effect of type heterogeneities on τQ,·(δ), we have that

if we are in the situation when µY /σY,·(δ) ≥ 1 holds for all δ ∈ [0, 1], then
an increase in σY,·(δ) leads to an increase in q•,1(δ) that, in turn, leads to
a decrease in τQ,·(δ). Thus, we have a more formal statement supporting
the heuristic arguments that was made when the coefficient of variation was
introduced above.

To conclude, an increase of the difference in infectivity between the two
types ought to decrease the expected time to extinction, where as it is a more
complicated situation when the difference in susceptibility between the two
types are changed, and non monotonic behaviour may occur.

3 Examples

In this section we compare the analytical approximations for τQ,·(δ) with
simulations. We give some examples where we apart from varying δ, focus
on varying π for different values of n when keeping R0, µ and γ fix. When
comparing the analytical approximations with simulations it is seen that
they are not perfect, but that they capture the qualitative behaviour of the
underlying epidemic.

All simulations have been performed using Monte Carlo simulation, and
all the routines are written in the C programming language. The graphical
presentation has been done using Matlab. The quasi-stationary behaviour
of the epidemic has been approximated by simulating 1000 epidemics, and
when the first 800 had gone extinct, we restarted the clock for the remaining
200 and kept them as our sample from the quasi-stationary distribution.

We have concentrated on the following parameter values: R0 = 10, µ = 1
(when µ = 1 time is measured in units of life-lengths) and ν = 500. The
reason for choosing ν = 500 instead of ν ≈ 1800− 3500, which is typical for
childhood diseases and which are the values we have been referring to in the
previous sections, is of practical nature. That is, for the concept of quasi-
stationarity to have any meaning, the expected time to extinction should
be at least 5-10 years, which in turn corresponds to that we roughly have
at least 10 infected individuals at the endemic level of infection, but when
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Figure 1: The expected time to extinction as a function of the difference in
susceptibility between the two types (α1 = α2 = 1) when R0 = 10, µ = 1, ν =
500, n = 50, 000 and π = 1/100.
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Figure 2: The expected time to extinction as a function of the difference in
susceptibility between the two types (α1 = α2 = 1) when R0 = 10, µ = 1, ν =
500, n = 22, 000 and π = 1/11.
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Figure 3: The expected time to extinction as a function of the difference in
susceptibility between the two types (α1 = α2 = 1) when R0 = 10, µ = 1, ν =
500, n = 30, 000 and π = 2/3.

ν ≈ 1800 − 3500 we need to have a very large population or that π ≈ 1/2,
see Eq. (4), which is very time consuming to simulate. Thus, if we decrease
ν we can still have a long expected time to extinction (the process is close to
quasi-stationary) with a much smaller population, and the theory from the
previous sections does not give any support to that ν = 500 should not be
regarded as an arbitrary parameter choice.

For the parameters chosen above τQ,β(δ) gives a good description of the
qualitative behaviour of the underlying epidemic already for small values
of n (e.g. n ≈ nβ ≈ 25, 500 where nβ is from (28)), see Figs. 1-4. From
the previous section the analysis of σ2

Y,β(δ) showed that it under certain
conditions was not increasing/decreasing monotonically in δ which indicated
a non monotonic behaviour of τQ,β(δ). This behaviour can be seen from
simulations, see e.g. Fig. 1, but note that π = 1/100 so it can not be regarded
as a typical value of π. The behaviour of τQ,α(δ) is more sensitive to the
choices of n, and it is especially important that n2 is large. The reason for
this is that the infectious pressure gets more and more shifted to the type
two individuals as δ tends to α, so it becomes more and more important
that the size of n2 yields a sufficient number of infected type two individuals
in order for the process to reach quasi-stationarity. Simulations indicate
that if n ≈ nα, where nα is from (30), then τQ,α(δ) captures the qualitative
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Figure 4: The expected time to extinction as a function of the difference in
susceptibility between the two types (α1 = α2 = 1) when R0 = 10, µ = 1, ν =
500, n = 40, 000 and π = 1/8.

behaviour of the underlying population, but note that we need a much larger
n, see Figs. 5.

To conclude, as long as n ≈ nα, from (28) or (29), or n ≈ nβ, from
(30), depending on the situation, our approximations captures the qualitative
behaviour of the epidemic.

4 Discussion

Bartlett’s two-type epidemic model which has been analysed in the present
paper is perhaps not the most realistic model, but we still believe that it
captures some of the relevant behaviour which would appear in more complex
models. A more realistic model which would be interesting to analyse in a
two-type version is the so-called SIR model with demography which in its
one-type version has been thoroughly analysed by N̊asell in [2]. A two-type
version of this model is however much harder to analyse and obtain explicit
expressions for. It would also be of interest to extend Bartlett’s model to k
types, which could be done using similar methodology as we have used in the
present paper.

From a more general point it is always of interest to try and relax the
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Figure 5: The expected time to extinction as a function of the difference in
infectivity between the two types (β1 = β2 = 1) when R0 = 10, µ = 1, ν =
500, n = 75, 000 and π = 1/3.

assumption of exponentially distributed infectious periods, life-lengths and
to include latency periods, see e.g. [3]. Another interesting extension could
be to add some structure to the population, see e.g. [13] and [5], and it would
also be of interest to analyse seasonal effects in a two-type setting, see e.g.
[14] and [15].
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A Appendix

Here we derive the local drift and covariance matrices, B and S respectively,
for (X̃(t), X̃(t)) from (7). To start, set Z̃(t) = (X̃1(t), Ỹ1(t), X̃2(t), Ỹ2(t))

T

to simplify the notation, and let Ft denote the σ-algebra generated by the
process Z̃(t) up to time t. The infinitesimal first moment and covariance is
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then defined as:

Et

[
∆Z̃j

]
=

1

h
E
[
Z̃j(t + h)− Z̃j(t)

∣∣∣∣ Ft

]
(32)

and

Covt

(
∆Z̃i, ∆Z̃j

)
= Et

[
∆Z̃i∆Z̃j

]
− Et

[
∆Z̃i

]
Et

[
∆Z̃j

]
= Et

[
∆Z̃i∆Z̃j

]
(33)

where i, j = 1, . . . , 4 and h is small. The matrices B and S are then defined
as

{B}ij =
∂

∂Z̃j

Et

[
∆Z̃i

]
(34)

and

{S}ij = Covt

(
∆Z̃i, ∆Z̃j

)
(35)

where i, j = 1, . . . , 4. For relief of notation we use the shorthand xj and yj

for xj(t) and yj(t) respectively. For the two-type version of Bartlett’s model
treated here we get

B =


−β1(α1y1 + α2y2) −β1α1x1 0 −β1α2x1

β1(α1y1 + α2y2) β1α1x1 − µγ 0 β1α2x1

0 −β2α1x2 −β2(α1y1 + α2y2) −β2α2x2

0 β2α1x2 β2(α1y1 + α2y2) β2α2x2 − µγ


(36)

and

Sj =

(
µπj + βjxj(α1y1 + α2y2) −βjxj(α1y1 + α2y2)
−βjxj(α1y1 + α2y2) βjxj(α1y1 + α2y2)− µγyj

)
, j = 1, 2

(37)

such that

S =

(
S1 0
0 S2

)
(38)

Evaluating these matrices at the endemic level yields

B̂ =



−απβ1

γ
−α1π1µγ

απ
0 −α2π1µγ

απ

απβ1

γ
µγ
(

α1π1

απ
− 1

)
0 α2π1µγ

απ

0 −α1π2µγ
απ

−απβ2

γ
−α2π2µγ

απ

0 α1π2µγ
απ

απβ2

γ
µγ
(

α2π2

απ
− 1

)

 (39)
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and

Ŝ = µ


2π1 −π1 0 0
−π1 2π1 0 0
0 0 2π2 −π2

0 0 −π2 2π2

 (40)

with which we can find a solution Σ̂ = {σ̂ij}, i, j = 1, . . . , 4.

B Appendix

Here we derive the local min/max points of σ2
Y,β(δ) from Section 2. The local

extreme points are found by locating points δ0 such that d
dδ

σ2
Y,β(δ0) = 0.

From (16) we have that σ2
Y,β(δ) can be written on the following form:

σ2
Y,β(δ) ∼ f(δ)

µγR0f(δ) + g(δ)
, (41)

where f(·) and g(·) are two polynomials of order two and three respectively
defined as

f(δ) = R0(µγ)2(2R0 + γ)π2 + 3(R0µγ)2(1− 2π)πδ + (R0µγ)2(1− 2π)2δ2

(42)

= a1 + a2δ + a3δ
2 (43)

g(δ) = R3
0(µγ)4(γ − 2R0)π(1− π)δ2 − (R0µγ)3(1− π)(1− 2π)δ3

= a4δ
2 + a5δ

3 (44)

Equating the first derivative w.r.t. δ of σ2
Y,β(δ) to 0 gives us

d

dδ
σ2

Y,β(δ) = f ′(δ)g(δ)− f(δ)g′(δ) = 0 (45)

⇒(a2 + 2a3δ)(a4δ
2 + a5δ

3)− (a1 + a2δ + a3δ
2)(2a4δ + 3a5δ

2) = 0 (46)

from which it follows that δ0 = 0 is a root. Continuing, we can simplify
further which gives us

a3a5δ
3 + 2a2a5δ

2 + 2a1a4 = 0 (47)

and in order to solve this polynomial of order three we use the substitution
δ = x−a2/3a1 = x− b0. After some further simplifications we will get a new
polynomial:

x3 + b1x + b2 = 0 (48)
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where

b1 =
1

a1

(
a3 −

a2
2

3a1

)
(49)

b2 =
1

a1

(
a4 +

2a3
2

27a2
1

− a2a3

3a1

)
(50)

Introduce D defined as

D =

(
b1

3

)3

+

(
b2

2

)2

(51)

By using Cardano’s formula, see e.g. pp. 65 in [12], we get that if D > 0 there
exist one real root, if D = 0 there exist three real roots where at least two
are equal, and if D < 0 there exist three distinct real roots, and the roots of
(47) are given by

δ1 =
3

√
−b2

2
+

2
√

D +
3

√
−b2

2
− 2
√

D − b0 (52)

δ2,3 = −
3

√
− b2

2
+ 2
√

D + 3

√
− b2

2
− 2
√

D

2
− b0 ±

3

√
− b2

2
+ 2
√

D + 3

√
− b2

2
− 2
√

D

2
i
√

3

(53)
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