
Mathematical Statistics

Stockholm University

Epidemics on networks
and early stage vaccination

Shaban Mbare

Research Report 2007:12
Licentiate thesis

ISSN 1650-0377



Postal address:
Mathematical Statistics
Dept. of Mathematics
Stockholm University
SE-106 91 Stockholm
Sweden

Internet:
http://www.math.su.se/matstat



Epidemics on networks and early stage vaccination

Shaban Mbare †, ∗

May 2007

Abstract

This thesis consists of two articles.
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Both articles deal with epidemics on social networks and early stage vaccination,
and in particular different vaccination strategies in order to prevent a major out-
break. The social structure is described by a random graph having pre-specified
degree distribution, from which friends of an infectious individual are traced and a
given vaccination strategy is implemented after delay. We compare the effectiveness
of the strategies and investigate the effects of the randomness of the latent period,
infectious period and detection (delay) time in the dynamics of the disease. Branch-
ing process approximations of the early stage of the epidemic make it possible to
compute the probability of outbreaks.
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Introduction

The social structure is important in understanding the spread of infectious diseases
in the community, and it is often modelled by a random network or graph (see e.g.
Newman, 2003). In such a graph, nodes (vertices) represent individuals and the links
(edges) correspond to some social relations. It is through these links that the disease
can spread. The dynamics of the disease in the network depends on the distribution of
the number of friends (degree) of each individual in the community. It has been shown
that most empirical networks display heavy-tailed degree distributions, implying that in a
large population there is a small proportion of individuals who have many links (friends),
thus imposing a threat of infecting more individuals.

An important quantity in epidemics is the basic reproduction number, denoted by R0,
since if R0 ≤ 1 only minor outbreaks can occur, while if R0 > 1 a major outbreak is possi-
ble (Anderson and May 1991). Any form of vaccination aims at reducing the reproduction
number below one in order to prevent the disease from taking off. Vaccination strategies
can be implemented before the epidemic starts (see e.g. Cohen et al. 2003, Madar et
al. 2004), or as soon as the disease starts spreading, the latter being the focus of this
thesis. The aim of the thesis is to propose two vaccination strategies during the early
stages of an epidemic after the detection of an infectious individual. The epidemic model
used is a Susceptible-Infectious-Removed (SIR) model, which confers lifelong immunity
after recovery. In the first strategy, once an infectious individual is detected, his friends
are vaccinated independently with probability ρ, and the second strategy sets a bound on
the maximum number of possible infections from a given infectious individual before he
is detected and vaccinates instantly all susceptible friends.

The first article assumes that a susceptible individual becomes infectious immediately
if he/she has close contact with an infectious individual. The infectious period and the
time to detection are modelled by independent exponential distributions. The main ques-
tion is how the two vaccination strategies influence the reproduction number and hence
the spread of the disease. For each vaccination strategy, the reproduction number is de-
rived and simulations are performed for a Poisson and a heavy-tail degree distribution,
and results show that the second strategy is more effective in both situations. The second
article is an extension of the first article. It assumes that once an individual gets infected
he/she is first latent (infected but not infectious) for some time, and then becomes infec-
tious before he/she recovers and becomes immune. The latent period, infectious period
and time to detection are modelled by independent gamma distributions. The main ques-
tion is how the random properties of the latent period, infectious period and detection
time affect the dynamics of the disease. For each vaccination strategy we approximate
the initial stages of the epidemic by a branching process, thus allowing the computation
of the probability of a major outbreak.
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Social networks, epidemics and vaccination through
contact tracing

Shaban Mbare† ∗, Mikael Andersson †, Åke Svensson† , Tom Britton†

May 2007

Abstract

We consider a social network whose structure can be represented by a simple ran-
dom graph having a pre-specified degree distribution F . A simple Markovian SIR
network epidemic model is defined on such a social graph. We propose two real
time vaccination strategies through contact tracing during the early stages of an
epidemic outbreak. The first strategy considers vaccination of each friend of an
identified infectious individual independently with probability ρ. The second strat-
egy sets a bound m on the maximum number an infectious individual can infect
before being identified. Expressions are derived for how these strategies influence
the reproduction number. We give some numerical examples and simulation results
based on the Poisson and heavy-tail degree distributions. We show that both vac-
cination strategies are effective in the Poisson degree distribution. In the heavy-tail
degree distribution, the second vaccination strategy is much more effective.

Key words: social networks, degree distribution, reproduction number, contact trac-
ing, vaccination strategies, delay time.

1 Introduction

Social networks are often described by simple undirected random graphs in order to
capture social relationships among different individuals (Scott, 2000). Usually the vertices
of the graph correspond to individuals and the edges to some social relations (Newman,
et al., 2001). On such a social graph an epidemic model may be defined, where initially
individuals are free from the disease. An infectious individual can infect its susceptible
friends (those who do not have the disease yet, but can catch it), before it recovers
and becomes immune. The identification of individuals that have been in contact with an
infectious individual (contact tracing) has attracted attention as a disease control measure
that seeks to uncover newly infected cases preferably before they become infectious (e.g.

∗Department of Mathematics, University of Dar es Salaam, Postal address: Box 35062, Dar es Salaam,
Tanzania. E-mail: shabanmbare@yahoo.com

†Department of Mathematics, Stockholm University, SE-106 91 Stockholm, Sweden.
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Kiss, et al., 2005, Eames and Keeling, 2003, Eames 2006). The so traced individuals who
are still susceptible can be vaccinated or immunized in order to prevent a major outbreak.
How to contain the disease before it takes off is the question that can be addressed by
the choice of a vaccination strategy.

In the present paper we study issues arising from such modelling. In particular we
consider a simple social graph of a fixed population where the vertex degree (number of
friends) follows a pre-specified distribution F . The social graph is assumed to be otherwise
completely random. The simplest epidemic model is the Markovian susceptible-infectious-
removed (SIR) for the spread of the disease in the social network (Anderson and May, 1992,
Andersson and Britton, 2000). Initially one randomly selected individual is externally
infected. Any individual who gets infected infects each of his/her friends independently
of each other at the rate λ during the infectious period, and then recovers and become
immune (removed). The infectious periods of different individuals are independent and
identically exponentially distributed with mean 1/γ. For this social graph and epidemic
model we study two vaccination strategies: vaccination of located friends after delay
(the first strategy) and vaccination of friends after delay also bounding on the maximum
number of possible infections (the second strategy). Both strategies are implemented
during the early stages of the epidemic after tracing the contacts or friends of the infectious
individual in order to uncover possible chains of infection.

In a fixed large population of size n we derive the expected number of secondary
cases generated by a typical infectious individual, in a susceptible population, often called
basic reproduction number and denoted by R0, for an epidemic without intervention. The
quantity R0 is of fundamental importance to the dynamics of infections, since a major
outbreak is possible if and only if R0 > 1 (Andersson and Britton, 2000). Using Poisson
and the heavy-tail (scale-free) degree distributions for social networks, we show that both
strategies can be effective for the Poisson case. The first strategy is less effective in the
heavy-tailed social network because infected individuals with high degree still have the
chance to infect many individuals.

Much work has been done on vaccination strategies prior to arrival of the disease. For
example, targeted vaccination (Cohen et al., 2003), uniform vaccination (Madar et al.
2004, Pastor-Satorras and Vespignani 2001, 2002) and acquaintance vaccination ( Cohen
et al., 2003). In the uniform and acquaintance vaccination strategies individuals are
chosen randomly, and targeted vaccination strategy requires the knowledge of individuals
with high degrees. However, during the early stages of an epidemic, contact tracing
can be used as a control measure of epidemic in a social network (Huerta and Tsimring,
2003), where susceptible individuals that have been in contact with an identified infectious
person are found and get vaccinated (or some other type of immunization). The present
paper contributes to this work by proposing two real time vaccination strategies that
can be performed during the early stages of an epidemic outbreak, and requiring no
knowledge of individual’s degree prior to the detection of an infectious person. Another
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aim of the paper is to derive the expressions of the reproduction number and compare
the effectiveness of the vaccination strategies in preventing major outbreaks. The rest
of the paper is organized as follows. In Section 2 we describe a model to generate a
social network with a given degree distribution. We also define a simple epidemic model
for a disease spreading on the social network. Section 3 treats vaccination as a measure
to prevent major outbreak, and discusses two vaccination strategies. Section 4 provides
numerical examples and simulation results of the model. Finally, Section 5 discusses the
results and provides concluding remarks.

2 The Model

2.1 Social structure

Given that the degree distribution F is the only information we have, the model
describes a way to construct an undirected graph of the social structure and we define
it as follows. Take a set of n vertices and for each vertex assign a number of stubs
D = k independently from a random variable D with distribution F = {pk}, where
pk = P (D = k) is the probability that a randomly selected vertex has degree k. Then
choose those stubs completely at random pairwise and join them up to form edges between
the vertices. That is, first pick two stubs randomly among all stubs in the graph and join
them. Then pick two stubs at random from the remaining stubs and join them, and so
on. The vertices i and j are neighbours if there is an edge between them. For details on
how to generate simple undirected graph we refer the reader to Britton, et al, (2006) and
references therein. This procedure produces a graph with the desired degree distribution
as n →∞, but which in all other respects is random. That is, we generate a graph which
is drawn uniformly at random from the set of graphs with the given distribution.

2.2 A Simple epidemic model on the social graph

We now define an epidemic process taking place on the social network described above.
As mentioned before, we consider three states Susceptible, Infectious and Recovered (and
immune) that an individual can experience during an epidemic process. The Markovian
SIR network epidemic model is used to describe the dynamic process of infections in the
population through individual contacts (which are edges in the graph), and the epidemic
process is defined as follows. Assume initially that all individuals are susceptible except
one randomly selected individual who is externally infected. The infected individual
remains infectious for a time period according to a random variable I which follows an
arbitrary distribution G, and after the period I the individual recovers and becomes
immune. During this infectious period I an infectious individual makes contacts with
each of his/her friends according to independent Poisson processes with intensity λ. This
implies that the first contact between the infectious individual and a particular neighbour
takes place time T after the infection, where T is exponentially distributed with mean
1
λ
. For this situation, we assume that there is no latent period and any susceptible

friend contacted by an infectious individual becomes immediately infectious. Those who
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become infected behave similarly, and the epidemic process goes on until there are no
more infectious individuals, when the epidemic stops. It is worth noting that the time Ti

to contact a specific friend i is different from time Tj to contact another friend j, where
i 6= j, and the sequence of times {Ti}k

i=1, k being the number of friends, are independent
and exponentially distributed, and only contacts occuring in the interval [0, I] lead to
infections.

Given an infectious individual, transmission of infection to a susceptible friend occurs
if and only if the first contact takes place during the infectious period. That is, the
time T of the infectious individual to contact a specified susceptible friend is less than
the infectious period I. We compute the probability p that transmission of infection can
occur by conditioning on time T as follows,

p = P (T < I) =

∫ ∞

0

P (T < I|T = t)λe−λtdt =

∫ ∞

0

(1−G(t))λe−λdt. (2.1)

To determine the basic reproduction number of the epidemic process, we consider an infec-
tious individual in the second generation since the initial infectious individual is atypical
with all friends being susceptible and having degree distribution F . In the second gener-
ation an infectious individual with k neighbours is selected with probability proportional
to kpk. If the selected person has degree k, he/she generates on average (k − 1)p new
cases since the individual he/she was infected by is not susceptible. Hence, it follows that
the basic reproduction number then becomes;

R0 = p
∑

k

(k − 1)
kpk∑
j jpj

,

which can be represented as (see Andersson (1999) for a similar argument)

R0 = p

(
E(D) +

V ar(D)− E(D)

E(D)

)
. (2.2)

Suppose the infectious period follows an exponential distribution with parameter γ, so
that G ≡ Exp(γ). The probability p (defined in Equation (2.1)) that transmission of the
infection takes place then becomes

p = P (T < I) =

∫ ∞

0

P (I > T |T = t)λe−λtdt =

∫ ∞

0

e−γtλe−λtdt =
λ

λ + γ
. (2.3)

The corresponding basic reproduction number in Equation (2.2) then becomes

R0 =
λ

λ + γ

(
E(D) +

V ar(D)− E(D)

E(D)

)
. (2.4)
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3 Vaccination Strategies

Vaccination is a major tool which is used to protect individuals in a population against
infectious diseases. Similar effects to vaccination may be obtained through isolation and
quarantine. In this section we discuss two vaccination strategies that can be used during
the early stages of an epidemic upon detection of the disease case. If a traced individual
is still susceptible, he/she is vaccinated and immediately makes the transition from sus-
ceptible to removed (meaning immune). We assume that a perfect vaccine is available,
and that vaccination has no effect on an individual who has already been infected. To
understand the dynamics of the disease and the performance of the control polices we
derive expressions for the reproduction number of the vaccination strategies and compare
their effectiveness.

3.1 Vaccination of located friends after delay

We assume that it takes some time between the point an individual gets infected to the
point at which it is recognized by the health authorities and vaccinations are performed,
because in reality it is not easy to detect the individual immediately at the point of
infection. The time that elapses before the disease case is found and friends located, is
herein referred to as delay (or detection) time. This delay time is a random quantity which
may include, time before symptoms appear, time for authorities to detect the disease case,
and time to find friends in order to vaccinate them. We assume for simplicity that all
located friends are vaccinated at the same time.

Let S be the delay time whose distribution is H with parameter θ. The strategy
relies on the infectious individual for information of his friends (contacts) in the event
that he is detected, and assumes that only a proportion ρ of the contacts are found and
become vaccinated. In this case we introduce an indicator random variable X such that
X = 1 (which happens with probability ρ) if a given friend of an infectious individual is
found and X = 0 otherwise. Taking into account the infectious period I and the time T
to contact a given friend, transmission of infection occurs always if T < min(S, I), or if
S < T < I and {X = 0}. Conditioning on T = t the probability q that a contact results
into the transmission of infection is given by

q = P (T < min(S, I)) + P (S < T < I ∩ {X = 0})

=

∫ ∞

0

(
P
(
T < min(S, I)|T = t

)
+ (1− ρ)P

(
S < T < I|T = t

))
λe−λtdt.

When we consider the arbitrary distributions of I and S as before, that is, G and H
respectively, we get the following general relation for the probability of infection,

q =

∫ ∞

0

(
(1−G(t))(1−H(t))

)
λe−λtdt + (1− ρ)

∫ ∞

0

(
H(t)(1−G(t))

)
λe−λtdt. (3.1)

As before, during the early stages an infectious individual has degree k with probability
kpk

E(D)
, and will then on average infect (k − 1)q individuals. The corresponding general
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reproduction number R hence equals

R = q
∑

k

(k − 1)
kpk

E(D)
. (3.2)

From now on, we assume that the infectious period I and detection time S are indepen-
dent exponentially distributed with parameters γ and θ respectively, meaning that G ≡
Exp(γ) and H ≡ Exp(θ). The probability of infection in Equation (3.1) then becomes

q =

∫ ∞

0

λe−(λ+γ+θ)tdt + (1− ρ)

∫ ∞

0

(1− e−θt)λe−(λ+γ)tdt

=
ρλ

λ + γ + θ
+

(1− ρ)λ

λ + γ
.

(3.3)

The corresponding reproduction number Rθ,ρ in Equation (3.2) equals

Rθ,ρ =
∑

k

( ρλ

λ + γ + θ
+

(1− ρ)λ

λ + γ

)
(k − 1)

kpk

E(D)
(3.4)

Using Equation (2.4) and some algebra, Equation (3.4) can be simplified to yield the
representation of Rθ,ρ in terms of basic reproduction number R0 as

Rθ,ρ =
(
1− ρ θ

λ + γ + θ

)
R0. (3.5)

It is obvious from Equation (3.5) that if the basic reproduction number is very large then
so is Rθ,ρ. In order to surely prevent an epidemic outbreak when this vaccination strategy
is applied the corresponding reproduction number should be less than or equal to one,
that is Rθ,ρ ≤ 1 implying that (

1− ρ θ

λ + γ + θ

)
R0 ≤ 1.

To be more precise, the ρ and θ must hence satisfy

ρθ

λ + γ + θ
≥ 1− 1

R0

,

and an approximate conservative bound is thus given by

ρθ ≥
(
1− 1

R0

)(
λ + γ

)
.

In this strategy there are two special cases. First, if all friends of an infectious person
are located and become vaccinated instantly, then ρ = 1. Equation (3.3) reduces to

q =
λ

λ + γ + θ
,
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and the corresponding reproduction number in (3.5) becomes

Rθ,ρ=1 =
λ + γ

λ + γ + θ
R0. (3.6)

In this special case, the reproduction number Rθ,ρ=1 is assured to be below unity if the
choice of parameters satisfy the inequality,

θ ≥ (λ + γ)(R0 − 1),

or equivalently if the expected time to detection 1
θ

satisfies

1

θ
≤ 1

(λ + γ)(R0 − 1)

implying that the detection intensity θ must be large enough in order to avoid the spread
of infection in the social network. A second special case is when the detection intensity
θ is so large that the first quantity in the second equality of Equation (3.3) approaches
zero, and thus probability of transmission of infection becomes,

q =
(1− ρ)λ

λ + γ
.

This is equivalent to detecting an infectious individual immediately when he/she becomes
infected and vaccinate a proportion ρ of all friends. Using the same argument as before,
the corresponding reproduction number in Equation (3.5) reduces to

Rρ = (1− ρ)R0, (3.7)

which is linear in ρ for a known value of R0, and surely there will be only a minor outbreak
if ρ ≥ 1− 1

R0
. The interpretation of this is that, if R0 is very large, for instance a heavy

tailed network, then nearly all friends must be vaccinated. The criterion that ρ ≥ 1− 1
R0

is the same as in a general vaccination programme in order to obtain herd immunity. The
difference with the approach suggested here is that it is only necessary to vaccinate around
those who get infected. If that is possible, the spread can be controlled with considerable
fewer vaccinations than if the vaccination took place before an outbreak.

3.2 Vaccination after delay with bounds on the maximum num-
ber of infections.

In the first strategy, the reproduction number Rθ,ρ becomes large if the basic repro-
duction number R0 is large, which of course, is often the case with heavy tail degree
distributions. We are then motivated to introduce a new vaccination strategy which aims
at reducing further the reproduction number by controlling the individuals who have many
friends (super-spreaders) by setting a bound on the number of possible infections from a
given infectious individual. Let S and I be the detection time and infectious period as
before, and we assume that they are exponentially distributed with parameters θ and γ
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respectively. The strategy is defined as follows. An infectious individual contacts his/her

friends independently at different times T
(k)
i , i = 1, . . . , k − 1 with rate λ. This implies

that the ordered times T
(k)
(1) ≤ T

(k)
(2) ≤ . . . ≤ T

(k)
(k) satisfy T

(k)
(1) ∼ Exp((k−1)λ), T

(k)
(2) −T

(k)
(1) ∼

Exp((k − 2)λ), and so on. The individual infects friend i if T
(k)
(i) < min(S, I). We set an

arbitrary maximum bound m say, of the number of friends that can be infected before an
infectious individual is detected. This means that such an infectious person can at most
infect m friends after which all remaining susceptible friends are vaccinated at the same
time.

The number of infected friends by a given infectious individual is a random variable
Y , given by

Y = min

{
max

(
i : T

(k)
(i) < min(S, I)

)
, m

}
.

In order to compute the expected number of infected friends caused by a typical infectious
individual during the early stages, we first determine the distribution of Y . During
infectious period, infection occurs before detection with probability λ/(λ + γ + θ), hence,
conditioning on the degree D = k of an infectious individual, the probability that at least
one friend is infected is

P (Y ≥ 1|D = k) =
(k − 1)λ

(k − 1)λ + γ + θ
.

Similarly the probability that at least two friends are infected is

P (Y ≥ 2|D = k) =
(k − 1)λ

(k − 1)λ + γ + θ
· (k − 2)λ

(k − 2)λ + γ + θ
.

In general, for Y ≥ i, i = 0, . . . ,m, the probability that at least i friends get infected
is

P (Y ≥ i|D = k) =
(k − 1)λ

(k − 1)λ + γ + θ
· (k − 2)λ

(k − 2)λ + γ + θ
· · · (k − i)λ

(k − i)λ + γ + θ

=
i∏

j=1

(
(k − j)λ

(k − j)λ + γ + θ

) (3.8)

Since an infectious individual cannot infect more than m friends, then P (Y > m) = 0.
From the law of total probability we obtain the expression for the probability that at least
i friends get infected as

P (Y ≥ i) =
∞∑

k=i+1

P (Y ≥ i|D = k)
kpk

E(D)
, i = 0, . . . ,m. (3.9)

The sum in (3.9) starts at k = i + 1 since in order to infect i friends an infectious person
needs at least i + 1 friends, one being the infector. The expected number of individuals
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infected by the infectious person, which is also the reproduction number, is

Rθ,m = E(Y ) =
m∑

i=1

P (Y ≥ i) =
m∑

i=1

∞∑
k=i+1

P (Y ≥ i|D = k)
kpk

E(D)

=
m∑

i=1

∞∑
k=i+1

i∏
j=1

(
(k − j)λ

(k − j)λ + γ + θ

)
kpk

E(D)
.

(3.10)

The epidemic outbreak is surely avoided if Rθ,m ≤ 1, implying that for the strategy to
have a strong impact as an attempt to avoid outbreaks, the expected number of infected
people E(Y ) should be less than or equal to one. We should note here that since Rθ,m

depends on the parameters λ and γ, then it also depends on R0, but not as explicit as
Rθ,ρ in the first strategy.

4 Examples and simulations

We have compared our two vaccination strategies by simulations for different parameter
values always using the same population of size n = 1000 individuals. We used two
different degree distributions, the Poisson degree distribution with mean 4 and a heavy-
tail (scale-free) degree distribution, to compare the effectiveness of the strategies. The
heavy-tail degree distribution follows the power law of the form of pk = ck−α, where
c ≈ (1.34)−1 is a normalizing constant and α = 2.5 in our case. In order to have a
reasonable comparison, we want a heavy tail distribution with the same mean as in the
Poisson distribution.

We modify the power law to the form pk = c(k + 1)−α k = 0, 1, . . ., allowing that
some individuals may not have contacts with others (that is k = 0) in the social network.
The mean degree of the heavy-tail distribution is approximately 0.9. We modified this
by defining a new random variable Z as the sum of two independent random variables
Dp from the Poisson distribution with mean 3.1 and Dh from the heavy-tail distribution
with mean 0.9. The distribution of Z is the convolution of the distributions of Dp and
Dh. Since the Poisson degree distribution has a shorter tail and its variance is much less
than the variance of the heavy-tail distribution, then we assume that Z is approximately
heavy-tail distributed with mean 4, the same as the Poisson distribution.

We have chosen both the contact rate λ and the recovery rate γ to be one in all simu-
lations. For the Poisson degree distribution with mean 4, the basic reproduction number
is exactly 2 (from Equation (2.4)). In the heavy-tail degree distribution, the theoretical
basic reproduction number is infinite (R0 = +∞), but in a finite population the basic
reproduction number is of course finite. For our population size, the basic reproduction
number of our heavy-tail distribution is approximately 7.2, and it is computed (from
Equation (2.4)) with mean degree equals to 4 and the degree variance is 45.6 which is
the difference between the second moment and the square of the mean of the degrees of
a heavy tail distribution.
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In order to compare the performance of the two vaccination strategies in preventing an
outbreak, we have chosen the detection rate θ, the proportion of located friends ρ and the
bound of the maximum number m one person can infect to assume the values θ = 1, 5, 20,
ρ = 0.2, 0.5, 1 and m = 2, 5, 10. These parameter values are just a representation of many
other values which can be chosen for the same purpose. Based on Equations (3.5) and
(3.10) the interest is to observe the behaviour of the reproduction numbers in the two
vaccination strategies as the values of θ, ρ and m vary. Hence, these parameter values are
designated as small (θ = 1, ρ = 0.2, m = 2), intermediate (θ = 5, ρ = 0.5, m = 5) and
large (θ = 20, ρ = 1, m = 10) with reference to the simulation results.

We have performed 500 simulations for an epidemic without vaccination and each of the
two vaccination strategies. The social graph is generated once in order to have a common
social structure, and in each simulation a different initial infectious individual is chosen
randomly from the graph. We then obtain the proportions of minor outbreaks and the
average sizes among major outbreaks. We define π(1) and π(2) as the proportions of 500
simulations having ten or less infected individuals in the first and the second vaccination
strategies respectively. It implies that more than ten infected individuals is interpreted
as a major outbreak. We also let µ(1) and µ(2) respectively be the average sizes among
major outbreaks in the first and the second vaccination strategies. The summary of the
results are shown in Tables 1 and 2.

In Table 1 numerical results from the Poisson degree distribution are presented. There
are nine combinations of parameter values comprised of the pairs (θ, ρ) from the first
strategy, and nine combinations of the pairs (θ, m) from the second strategy. Each pair
of the parameter values is used in the simulation to obtain the proportions π(i) of minor
outbreaks and the average sizes among major outbreaks µ(i), for i = 1, 2. Similarly,
using Equations (3.5) and (3.10) respectively, the reproduction numbers corresponding
to the pairs (θ, ρ) and (θ, m) were computed. Results indicate that both strategies are
effective in reducing the reproduction numbers below one when the degree distribution is
Poisson. The first strategy is effective when the detection rate of an infectious individual
is intermediate or high (that is θ = 5 or θ = 20) and the proportion of located friends is
large (ρ ≈ 1). We also note that the second strategy performs well for all values of our
choice for the maximum bound (m = 2, 5, 10) when the detection rate is high (θ = 20).

Table 2 shows the corresponding results, but for the heavy-tail degree distribution.
When the basic reproduction number R0 = 7.2 (in our case) the first strategy performs
fairly well when the detection rate is large (θ = 20) and requires the vaccination of all
friends of the infectious individuals (ρ = 1). From Equation (3.5), the first strategy
seems to be less efficient since in reality R0 is large in heavy-tail social networks as the
population size n becomes large. The second strategy works well for the intermediate or
high detection rate θ = 5 or θ = 20 and the maximum bound of possible infections is small
(m = 2), but it can guarantee prevention of an outbreak when we have high detection
rate and small bound of maximum number of individuals one infectious person can infect.
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Table 1: Numerical values from a Poisson degree distribution with mean 4 and λ = γ = 1
and R0 = 2. Rθ,ρ and Rθ,m are computed numerically whereas π and µ are obtained from
the simulations.

Strategy 1 Rθ,ρ π(1) µ(1) Strategy 2 Rθ,m π(2) µ(2)

θ = 1, ρ = 0.2 1.87 0.372 651 θ = 1, m = 10 1.33 0.604 201

θ = 1, ρ = 0.5 1.67 0.460 470 θ = 1, m = 5 1.30 0.622 178

θ = 1, ρ = 1 1.33 0.598 208 θ = 1, m = 2 0.98 0.762 42

θ = 5, ρ = 0.2 1.71 0.426 494 θ = 5, m = 10 0.57 0.966 17

θ = 5, ρ = 0.5 1.28 0.616 157 θ = 5, m = 5 0.56 0.946 15

θ = 5, ρ = 1 0.57 0.968 14 θ = 5, m = 2 0.51 0.982 13

θ = 20, ρ = 0.2 1.64 0.438 418 θ = 20, m = 10 0.18 1 −
θ = 20, ρ = 0.5 1.09 0.704 67 θ = 20, m = 5 0.18 1 −
θ = 20, ρ = 1 0.18 1 − θ = 20, m = 2 0.17 1 −

Table 2: Numerical values from a heavy-tail degree distribution with mean 4 and λ =
γ = 1 and R0 = 7.2 R0 = 2. Rθ,ρ and Rθ,m are computed numerically whereas π and µ
are obtained from the simulations.

Strategy 1 Rθ,ρ π(1) µ(1) Strategy 2 Rθ,m π(2) µ(2)

θ = 1, ρ = 0.2 6.7 0.418 608 θ = 1, m = 10 3.5 0.662 168

θ = 1, ρ = 0.5 6.0 0.492 431 θ = 1, m = 5 2.5 0.610 114

θ = 1, ρ = 1 4.8 0.612 227 θ = 1, m = 2 1.1 0.758 32

θ = 5, ρ = 0.2 6.2 0.462 462 θ = 5, m = 10 2.3 0.940 21

θ = 5, ρ = 0.5 4.6 0.652 187 θ = 5, m = 5 1.6 0.948 16

θ = 5, ρ = 1.0 2.1 0.918 40 θ = 5, m = 2 0.85 0.972 15

θ = 20, ρ = 0.2 5.9 0.496 388 θ = 20, m = 10 1.2 0.994 16

θ = 20, ρ = 0.5 3.9 0.706 92 θ = 20, m = 5 0.89 0.998 11

θ = 20, ρ = 1 0.7 0.998 19 θ = 20, m = 2 0.5 1 −
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Figure 1: Histogram of final sizes for 500 simulations of an epidemic without vaccination
in a heavy-tail degree distribution with n = 1000 individuals and R0 = 7.2 > 1, i.e above
threshold, indicating that there is a major outbreak.

Figures 1 and 2 (A − B) report the outbreak sizes of the epidemic for the 500 sim-
ulations in the heavy-tail degree distribution. Figure 1 presents the outbreak size from
500 simulations of the epidemic without vaccination and the basic reproduction num-
ber R0 equals 7.2 > 1. Figure 2A shows the outbreak size after the implementation of
the first vaccination strategy with detection rate θ = 20 and the proportion of located
friends ρ = 1. The proportion of minor outbreaks π(1) = 0.998, showing that the first
vaccination strategy is effective. This is in agreement with the computed reproduction
number Rθ,ρ = 0.7, which is below threshold. Figure 2B shows corresponding results
but for the second vaccination strategy with the detection rate θ = 20 and the bound
of the maximum number of individuals one person can infect m = 2. The proportion of
minor outbreak is π(2) = 1 and null average size of major outbreak, an indication that
the performance of the second vaccination strategy is satisfactory. This too agrees with
the computed reproduction number Rθ,m = 0.5, below threshold. Hence, we note from
Figure 2 that both vaccination strategies are effective when compared with Figure 1 for
epidemics without intervention, which clearly shows that there is an outbreak.
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Figure 2: Histograms of outbreak sizes for 500 simulations with n = 1000 individuals in
the heavy-tail degree distribution. In (A) we implemented the first vaccination strategy
with θ = 20 and ρ = 1, whereas in (B) is the second vaccination strategy with θ = 20
and m = 2. Both strategies are effective since only few individuals are infected.

5 Discussion

In the present paper we studied two vaccination strategies during an epidemic outbreak.
We used contact tracing as part of epidemic control in the social networks. The aim was
to incorporate and determine the role of delay time, from the point an individual becomes
infectious until his friends are vaccinated. Models of the reproduction numbers for the
vaccination strategies were derived and compared through simulation and some numerical
examples are obtained for Poisson and a heavy-tail degree distribution.

We have shown that both strategies are efficient when the number of friends, follows
Poisson degree distribution. This result was expected, since Poisson distribution has a
short tail and small degree variance. In the heavy-tail degree distribution the variance
is always large (though finite in finite populations), which induces a large reproduction
number. Our numerical example shows that the first strategy has less effect on the
reproduction number than the second strategy. The second vaccination strategy is better
since the effect of individuals with many friends (super-spreaders) is reduced.

However, it is worth to note that a large reproduction number does not necessarily
imply a large outbreak, or high probability for a major outbreak. For instance, in the
first strategy of Table 1, when θ = 20 and ρ = 0.5, the reproduction number is above
threshold (Rθ,ρ = 1.09), but the proportion of minor outbreaks is high (π(1) = 0.704)
and the average of major outbreak is small (µ(1) = 67). Similarly, the first strategy in
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Table 2, for θ = 5 and ρ = 1 the reproduction number is above threshold (Rθ,ρ = 2.1),
but the proportion of minor outbreaks is high (π(1) = 0.918) and the average of major
outbreak is small (µ(1) = 40). Also the second strategy in Table 2, when θ = 5 and m = 5,
the reproduction number Rθ,m = 1.6 (above threshold), giving high proportion of minor
outbreak (π(2) = 0.948) and small average of major outbreak (µ(2) = 16).

The model can be made more realistic in several ways. One underlying assumption is
that an individual chooses his/her friends independently of each other. In real life there
might be some assortative mixing (see Newman, 2003), meaning that individuals with
many (few) friends are connected to individuals with many (few) friends. Also many
networks show strong clustering, implying that there is positive probability that two
individuals with a common friend are also friends. However, to include these in the model
of social networks would make the analysis and comparison of the vaccination strategies
harder.

Another assumption is that the social network is considered fixed over time. This
is appropriate for diseases with short infectious periods but for the diseases with long
infectious period, a dynamic social network would be preferred. The advantage we have
in the fixed networks is that the expression of the reproduction number can easily be
derived and the performance of the vaccination strategies can easily be analyzed and
compared in more detail.

An important question not addressed in this paper is to study the effects of different
distributions for the infectious period and delay time and to introduce a latency pe-
riod. To derive expressions for the reproduction number in such distributions after the
implementation of our vaccination strategies are important problems. Other interesting
problems could be to determine the probability of outbreaks and the final size when these
vaccination strategies are implemented and to compare the theoretical results with the
corresponding simulation results in Table 1 and Table 2. More work is thus needed for the
realistic epidemic modelling in social networks, and hence of the vaccination strategies.
We believe the findings of the present paper will give some insight into possible effects of
different vaccination strategies that are valid, also in more complex models.
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Abstract

Empirical evidence shows that the distributions of the latent and infectious periods
affect the dynamics of the spread of an infectious disease. This paper treats the
SEIR epidemic model describing the spread of an infectious disease giving life-long
immunity, in a community whose social structure can be represented by a simple
random graph having a pre-specified degree distribution. Two real time vaccination
strategies, based on tracing the friends of infectious individuals during the early
stages of an epidemic are proposed. The first strategy considers vaccination of
each friend of a detected infectious individual independently with probability. The
second strategy sets an upper bound on the number of friends an individual can
infect before being detected. We approximate the initial phase of the epidemic by
a branching process. We give two numerical examples: the Poisson and a heavy
tail degree distribution, and show how the random properties of the latent period,
infectious period and detection time affect the reproduction number and the prob-
ability of an outbreak.

Key words: degree distribution, social networks, epidemic models, vaccination strate-
gies, coefficient of variation, branching approximation.

1 Introduction

Infectious diseases spread through contacts within the population of susceptible and
infectious individuals. In network theory, contact structure can be represented by simple
undirected random graphs (see e.g. Newman 2003, Andersson and Britton 2000), where
vertices correspond to individuals and edges to some type of social relations, here referred
to as friendships. On such a graph a model for the spread of a disease can be defined,
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where individuals are at first susceptible. The disease spread is started by introducing
a disease agent to one individual in the population, and after the latent period such an
individual has the potential to spread the disease to her not yet infected friends. It is
argued (see e.g. Wearing et al. 2005, Lloyd 2001) that the dynamics of the disease is
affected by the distributions of the latent and infectious periods, which is the focus of the
present paper. The period from the point an individual gets infected to the beginning of
the state of becoming infectious is what we term as the latent period.

In this paper we model the latent period, infectious period and detection (delay)
time by independent gamma distributions. In particular we consider a simple random
social graph in a closed population, where the degree distribution (number of friends)
follows some pre-specified distribution F . A simple epidemic model that can mimic the
dynamics of the disease is the susceptible-exposed-infectious-removed (SEIR) model (see
e.g. Anderson and May 1991, Hethcote 2000). Any individual who becomes infected,
infects each of her friends independently at rate λ, before she recovers and becomes
immune (a state known as removed). For this social graph and epidemic model we study
two real time vaccination strategies: vaccination of located friends after delay (the first
strategy) and vaccination of friends after delay with a bound on the maximum number of
possible infections (the second strategy). By real time we mean that both strategies are
implemented during the early stages of the epidemic after tracing the friends of infectious
individuals in order to uncover possible chains of infection. We investigate the effects of
random properties of latent and infectious periods on the disease outbreaks. The same
vaccination strategies were treated in Mbare et al., (2007), but then assuming no latent
period and exponentially distributed infectious periods and detection times.

The SEIR epidemic model has been extensively studied (e.g. Bailey 1975, Diekmann
and Heesterbeek 2000, Hethcote 2000) with the assumption that the latent (when consid-
ered) and infectious periods are exponentially distributed. The exponential distribution
is mathematically convenient, but it corresponds to the assumption that the chance of
recovery in a given time interval is independent of the time since infection. It is argued
(e.g. Gough 1977, Lloyd 2001), that in practice the chance of recovery (in a given time
interval) is initially small but increases overtime. This indicates that the infectious period
distribution is less dispersed and more closely centred around its mean than the exponen-
tial distribution. This can be interpreted that the exponential distribution overestimates
the number of individuals whose duration of infection is much shorter or much longer
than the mean.

A key quantity in planning vaccination strategies is the basic reproduction number
which is denoted R0. The basic reproduction number determines whether a major out-
break can occur or not. If R0 ≤ 1, only minor outbreaks can occur whereas if R0 > 1 then
there is a positive probability for a major outbreak (Andersson and Britton 2000). Given
a closed large population of size n we derive R0 for the epidemic without vaccination and
show that the latent period has no effect on R0 and the final size distribution. We also

2



derive the reproduction numbers for the two vaccination strategies, and use branching pro-
cesses to approximate the probability of having a major outbreak. All this is done when
assuming independent gamma distributions for the latent period, infectious period and
detection times. We investigate how the random behaviour of the infectious period and
detection times affect the reproduction number and the probability of major outbreaks.

The rest of the paper is structured as follows. The social graph and epidemic models are
defined in Section 2, where the basic reproduction number is derived. Section 3 contains
our two vaccination strategies and the corresponding branching process approximations.
Examples and numerical illustrations are given in Section 4, and in Section 5 we discuss
the results and provide concluding remarks.

2 The Model

2.1 Social structure

Let n be the population size which is assumed to be large and fixed. We define the
model of the social network having a prespecified degree distribution F = {pk}n−1

k=0 . That
is, we are given the probabilities pk that a randomly chosen vertex in the network has
degree D = k. The model is defined as follows (see, eg. Molloy and Reed, 1995). Assign
independent degrees D1, . . . , Dn from F to the vertices and give a vertex with degree k,
k stubs. Then join the stubs randomly pairwise to form edges between them. That is,
first pick two stubs randomly among all stubs in the graph and join them. Then pick
two stubs at random from the remaining stubs and join them, and so on. Vertices i
and j are neighbours (friends) if there is an edge between them. For details on how to
generate simple undirected random graphs we refer the reader to Britton et al. (2006) and
references therein. This procedure produces a graph with the desired degree distribution
as n → ∞, but which in all other respects is completely random. That is, we generate
a graph which is drawn uniformly at random from the set of graphs with the given
distribution. This procedure underestimates the degree for finite n, but the difference is
negligible for larger n.

2.2 Epidemic model on the social graph

In this fixed network, we now describe a model of the spread of an infectious disease
giving life-long immunity after recovery. Once an individual gets infected she is first latent
for a Γ(nL, nLδ)-distributed time, after which she becomes infectious and remains so for
a period I being Γ(nI , nIγ)-distributed. This corresponds to the subdivision of latent
and infectious periods into nL and nI stages respectively. The time spent in each stage
is independent exponentially distributed with average lengths of 1/(nLδ) in the latent
period and 1/(nIγ) in the infectious period. The rates of movements between stages in
the latent and infectious periods are nLδ and nIγ in order to ensure that the average
time spent in the latent and infectious periods are 1/δ and 1/γ respectively. When the
infectious period is over the individual recovers and becomes immune. This means that
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the average infectious period is 1/γ with standard deviation 1/(γ
√

nI) and the squared
coefficient of variation 1/nI . Similarly, the expected length of the latent period is 1/δ, the
standard deviation is 1/(δ

√
nL) and the squared coefficient of variation is 1/nL. During

the infectious period an individual has close contact with a given friend according to a
Poisson process with rate λ. By close contact we mean that a contact results in infection
if the friend is susceptible. All Poisson processes describing infectious contacts, as well
as latent and infectious periods, are defined to be mutually independent. The epidemic
continues until there are no more latent or infectious individuals in the population, because
then all individuals are either still susceptible or immune.

To determine the probability of transmission of infection we argue as follows. For
this to happen an infectious individual must make the first contact before the end of the
infectious period. If T denotes the time of the first contact (after the beginning of the
infectious period) the probability of transmission of infection is hence

P (T < I) =

∫ ∞

0

P (T < I|T = t)λe−λtdt =

∫ ∞

0

(1− P (I ≤ t))λe−λtdt. (2.1)

Since I ∼ Γ(nI , nIγ) with nI integer, the distribution function of the infectious period I
is

FI(t) = 1−
nI−1∑
j=0

(nIγt)j

j!
e−nIγt. (2.2)

A related expression to (2.2)is obtained in Bain and Engelhardt (1991). As a consequence

1− P (I ≤ t) =

nI−1∑
j=0

(nIγt)j

j!
e−nIγt.

Hence (2.1) becomes

P (T < I) = λ

nI−1∑
j=0

(nIγ)j

j!

∫ ∞

0

tje−(nIγ+λ)tdt

= 1−

(
nIγ

λ + nIγ

)nI

,

(2.3)

since ∫ ∞

0

tje−(nIγ+λ)tdt =
j!

(λ + nIγ)j+1
.

During the early stages of the epidemic, an infectious individual has degree k with
probability p̃k = kpk

E(D)
, where E(D) =

∑
j jpj. Given the degree k, the expected number

of new cases she will infect is (k − 1)P (T < I), since all individuals except the one she
was infected by are susceptible during the early stages. As a consequence, the basic re-
production number R0 becomes
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Figure 1: Basic reproduction number as a function of the coefficient of variation of the
infectious period when λ = γ = 1. The degree distribution is Poisson with mean 4.

R0 =
[
1−

( nIγ

λ + nIγ

)nI
]∑

k

(k − 1)
kpk

E(D)

=
[
1−

( nIγ

λ + nIγ

)nI
](

E(D) +
V ar(D)− E(D)

E(D)

)
.

(2.4)

We note from Equation (2.4) that the latent period has no effect on the basic reproduction
number R0. For a fixed E(D), λ and γ and finite nI , R0 is increasing in var(D), so the
more variance in the degree distribution , the higher R0, and if the degree distribution has
infinite variance then R0 = +∞, a case which we do not pursue in this paper. Also, R0

increases in λ when all other quantities in equation (2.4) are fixed, corresponding to more
contacts leads to higher expected number of infected individuals. Similarly, R0 increases
when γ is decreasing, implying that the longer the average infectious period, the higher
the basic reproduction number.

Using equation (2.4), we fix λ = γ = 1 and choose the degree distribution to be
a Poisson with mean 4. We show in Figure 1, the basic reproduction number R0, as a
function of CVI , the coefficient of variation of the infectious period I, that R0 is decreasing
with increasing coefficient of variation of the infectious period.
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3 Vaccination strategies

Suppose that a vaccine is available which prevents individuals from becoming infected.
For simplicity we only consider vaccines that give complete and life-long immunity. The
goal is to contain the disease such that when the epidemic stops only a few or a small
proportion of individuals have been infected. We propose two vaccination strategies based
on tracing the friends following the detection of an infectious individual, and we investigate
how effective the two strategies are in preventing the disease from taking off. We assume
that vaccination has no effect on those individuals who have already been infected.

3.1 Vaccination of located friends after delay

It is always the case that some random time period elapses from the point an individual
gets infected to the point at which she is recognized by the health authorities and vaccina-
tions are performed, because in reality it is not easy to detect the individual immediately
at the point of infection. The time that elapses, here referred to as detection (delay)
time, is a random quantity which may include; time before symptoms appear, time for
authorities to detect the disease case, and time to find friends in order to vaccinate them.
We assume for simplicity that all located friends are vaccinated at the same time.

We assume that the latent and incubation periods are equal. The incubation period
is defined as the time interval from the point of infection to the appearance of symptoms
( see Anderson and May, 1991). We assume that detection time will always be larger
than the latent or incubation period, which implies that an infectious individual can
only be detected after showing disease symptoms, that is after the end of the incubation
period. The strategy is then defined as follows. An infectious individual is detected after
a time period S having Γ(nS, nSθ)-distribution, where θ is the detection rate and nS is a
positive integer. Once an individual is detected each friend is vaccinated independently
with probability ρ. The mean length of the detection time is 1/θ, the standard deviation
is 1/(θ

√
nS) and the squared coefficient of variation is 1/nS.

To determine how the strategy works, the reproduction number is an important quan-
tity. Let X be an indicator variable such that Xi = 1 if a given friend i of an infectious
individual is found (which happens with probability ρ), and Xi = 0 otherwise. Suppose
Ti is the an infectious requires in order to contact friend i for the first time, then trans-
mission of infection occurs if Ti < min(S, I), or if S < Ti < I and {Xi = 0}. Conditioning
on T = t, this event has probability p given by

p = P (T < min(S, I)) + P (S < T < I ∩ {X = 0})

=

∫ ∞

0

(
P
(
T < min(S, I)|T = t

)
+ (1− ρ)P

(
S < T < I|T = t

))
λe−λtdt

=

∫ ∞

0

(
1− P (I ≤ t)

)(
1− P (S ≤ t)

)
λe−λtdt + (1− ρ)

∫ ∞

0

P (S < t)
(
1− P (I ≤ t)

)
λe−λtdt.

(3.1)
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Using independent gamma distributions for S and I in (3.1) we get that

p =

∫ ∞

0

nI−1∑
j=0

(nIγt)j

j!
e−nIγt

nS−1∑
i=0

(nSθt)i

i!
e−nSθt λe−λtdt

+ (1− ρ)

∫ ∞

0

nI−1∑
j=0

(nIγt)j

j!
e−nIγt

(
1−

nS−1∑
i=0

(nSθt)i

i!
e−nSθt

)
λe−λtdt.

(3.2)

Interchanging integration and sum and performing some algebra, (3.2) simplifies to the
following expression

p = (1− ρ)

[
1−

( nIγ

λ + nIγ

)nI

]
+

ρλ

λ + nIγ + nSθ
ξ, (3.3)

where

ξ =

nS−1∑
i=0

nI−1∑
j=0

(
i + j

i

)( nSθ

λ + nIγ + nSθ

)i( nIγ

λ + nIγ + nSθ

)j

.

For fixed λ, γ and finite nI and nS, p is decreasing with increasing θ, hence high detection
rate minimizes the probability of infection.

As before, during the early stages of an outbreak, an infectious individual has degree k
with probability p̃k = kpk

E(D)
and of these are (k−1) susceptible. The reproduction number

hence becomes (using equation (2.4))

Rθ,ρ = p
∑

k

(k − 1)
kpk

E(D)

= (1− ρ)R0 +
ρλ

λ + nIγ + nSθ
ξ
∑

k

(k − 1)
kpk

E(D)

=

[
(1− ρ) +

ρλ

λ + nIγ + nSθ

(
1−

( nIγ

λ + nIγ

)nI

)−1

ξ

]
R0.

(3.4)

Note that Rθ,ρ is increasing in R0, so if the basic reproduction number is very large during
the early stage of epidemic so is Rθ,ρ. Also, for fixed R0, and finite nI and nS, Rθ,ρ is
decreasing as θ increases, meaning that the higher the detection rate the smaller the mean
number of infected individuals.

It is of interest to gain some insight in how detection rate affect the reproduction
number at different values of ρ, the proportion of detected friends. We show this in Figure
2 using equation (3.4), for the exponential case (when nI = nS = 1) and λ = γ = 1 and
we choose R0 = 2. Figure 2 shows Rθ,ρ, the reproduction number as a function of the
detection rate θ, for ρ = 0.2 and ρ = 0.8. We note that the reproduction number is greatly
reduced as θ increases, implying that a short average detection time is important. We also
see that the reproduction number is further reduced if a high proportion of individuals
are vaccinated.
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Figure 2: Reproduction number Rθ,ρ, as a function of θ, the detection rate when R0 = 2,
and λ = γ = 1, for ρ = 0.2 and ρ = 0.8.

3.1.1 Branching process approximation

During the initial stages of an epidemic in a large population, the chance is high that
contacted individuals are susceptible, implying that the number of infectious individuals
may be approximated by a branching process (Ball, 1996). By ”initial” we mean that
during the onset of the disease only few or a small proportion of the population have
been infected such that the probability of contact between two infectious individuals is
negligible. In a branching process every infectious individual gives birth to (infects) a
random number of offspring (infected) independently of each other, but with the same
distribution. The process is assumed to start with Z0 individuals and each individual
capable of giving birth has a random lifespan equivalent to her infectious period I. In
the following we assume that Z0 = 1, meaning that initially there is only one infectious
individual capable of infecting her friends. The approximation of the process can be made
precise by coupling arguments as in Ball (1996), but that treatment is beyond the scope
of the present paper.

A quantity of interest is the distribution of the number of offspring Z from one infectious
individual, since given such a distribution the extinction probability can easily be derived.
Given the infectious time period I = i and detection time S = s, an individual contacts a
particular friend with probability η(s, i) = ρ(1−e−λ min(s,i))+(1−ρ)(1−e−λi). This means
that η(s, i) = ρ(1− e−λs)+(1−ρ)(1− e−λi) if s < i or η(s, i) = 1− e−λi if s > i. So, given
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that D = k, S = s and I = i, the number of individuals infected in the first generation,

is binomial
(
k − 1, η(s, i)

)
. The parameter k − 1 follows since the initially infectious

individual was infected by one of her friends (who cannot be re-infected). Conditioning
on D = k alone, an infectious individual infects Z = z friends with probability given by

P (Z = z|D = k) =

∫ ∞

0

∫ i

0

(
k − 1

z

)
η(s, i)z

(
1− η(s, i)

)k−1−z

fS(s)fI(i) ds di

+

∫ ∞

0

∫ ∞

i

(
k − 1

z

)
η(s, i)z

(
1− η(s, i)

)k−1−z

fS(s)fI(i) ds di

(3.5)

Unconditionally, the number of individuals infected in the next generation is hence given
by

P (Z = z) =
∞∑

k=0

P (Z = z|D = k)
kpk

E(D)
. (3.6)

All succeeding offspring give birth independently according to the same distribution
P (Z = z). An important tool in the analysis of the process is the probability generating
function of the offspring distribution, defined by

ϕ(s) =
∞∑

z=0

szP (Z = z), for some |s| ≤ 1. (3.7)

The probability of extinction q can be found by conditioning on the number of offspring
of the initial infectious individual. Ultimate extinction occurs if and only if all ”daughter”
families started by these offspring become extinct. Since each family is assumed to act
independently, and since the probability that any particular branch dies out is just q, then
it follows that P (extinction|Z = z) = qz and that

q = P (extinction) =
∞∑

z=0

P (extinction|Z = z)P (Z = z),

implying that

q =
∞∑

z=0

qzP (Z = z) = ϕ(q). (3.8)

The moments of the process, when they exist, can be expressed in terms of the derivatives
of ϕ(s) with respect to s and evaluated at s = 1. From branching process theory (e.g.
Jagers, 1975 ), it is known that the extinction probability q is the smallest nonnegative
solution to ϕ(s) = s, and that if the mean number of offspring µ = ϕ′(1) < 1 the only
solution is q = 1, and if µ > 1 then there is a second solution q < 1 which is equal to
extinction probability.
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3.2 Vaccination after delay with bounds on the maximum num-
ber of infections

The reproduction number Rθ,ρ in the first strategy is a linear function of the basic
reproduction number R0. As a consequence, if R0 is very large, so will Rθ,ρ be. The
second strategy aims at reducing the reproduction number more than the first strategy.
To achieve this we assume that it is possible to put an upper bound, m say, of the
number of infections caused by one individual. By this we mean that an individual can
at most infect m friends. We define the strategy by first stating the contact pattern of
an individual. Let T

(k)
(i) , i = 1, . . . , k − 1, be the ordered times at which an infectious

individual contacts the ith friend among her k − 1 susceptible friends. An individual
contacts each friend independently at the rate λ. This means that T

(k)
(1) ∼ Exp((k− 1)λ),

T
(k)
(2) − T

(k)
(1) ∼ Exp((k − 2)λ), . . ., T

(k)
(i+1) − T

(k)
(i) ∼ Exp((k − i − 1)λ), and all susceptible

friends are vaccinated at the same time once an individual is detected.

We approximate the initial phase of the epidemic by a branching process. As before we
have detection time S for an individual whose infectious time period is I. Conditioning on
the degree D = k and using Equation (3.3) with ρ = 1, (since all susceptible friends are
vaccinated following detection in the present strategy), transmission of infection occurs
with probability π given by

π =

{
p, if k − 1 < m
p m

k−1
, if k − 1 ≥ m

(3.9)

where

p =
λ

λ + nIγ + nSθ

nS−1∑
i=0

nI−1∑
j=0

(
i + j

i

)( nSθ

λ + nIγ + nSθ

)i( nIγ

λ + nIγ + nSθ

)j

.

Equation(3.9) follows, since the bound m has a effect if it is less than k − 1, the number
of suceptible friends, otherwise the bound m has no role if it is larger than k − 1. We
proceed to determine the expected number of new cases say Z, generated by an individual
during the early stage of the epidemic, and we get that

E(Z|D = k) = π(k − 1) =

{
p(k − 1), if k − 1 < m
p m, if k − 1 ≥ m.

(3.10)

The reproduction number Rθ,m, which in this case is the unconditional number of infected
individuals, hence is given by

Rθ,m = E(Z) =
∑

k

E(Z|D = k)
kpk

E(D)

=
m∑

k=1

E(Z|D = k)
kpk

E(D)
+

∞∑
k=m+1

E(Z|D = k)
kpk

E(D)

=
m∑

k=1

p(k − 1)
kpk

E(D)
+

∞∑
k=m+1

p m
kpk

E(D)
,

(3.11)
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Figure 3: The reproduction number Rθ,m, as a function of θ, the detection rate (left),
and the bound of the maximum possible infections m (right). In both cases we treat the
exponential case when nI = nS = 1, and fix λ = γ = 1.

where P (D = k) = kpk

E(D)
. If Rθ,m ≤ 1, only minor outbreaks can occur whereas if Rθ,m > 1

a major outbreak can occur with a positive probability. In Figure 3, we show that Rθ,m

is decreasing with increase in θ for a fixed m = 4. Similarly, Rθ,m is increasing with
increasing m, for a fixed θ = 1.

We now treat the special case where the infectious period and the detection time have
independent exponential distributions with mean 1/γ and 1/θ respectively, implying that
nI = nS = 1. The probability that infection occurs before detection and the end of
infectious period is λ/(λ + γ + θ). So given D = k, an individual will infect at least one

friend in the first generation with probability given by (recall that T
(k)
(1) ∼ Exp((k− 1)λ),

T
(k)
(2) − T

(k)
(1) ∼ Exp((k − 2)λ), and so on)

P (Z ≥ 1) =
(k − 1)λ

(k − 1)λ + γ + θ
.

Similarly, the probability that she infects at least two friends is equal to

P (Z ≥ 2|D = k) =
(k − 1)λ

(k − 1)λ + γ + θ
· (k − 2)λ

(k − 2)λ + γ + θ
.

Hence, for Z ≥ l, l = 0, 1, . . . ,m, an infectious individual will infect at least l individuals
with probability given by

P (Z ≥ l|D = k) =
l∏

j=1

(
(k − j)λ

(k − j)λ + γ + θ

)
. (3.12)

From (3.12) the unconditional probability that at least l individuals become infected,
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hence becomes

P (Z ≥ l) =
∞∑

k=l+1

P (Z ≥ l|D = k)
kpk

E(D)
, l = 0, 1, . . . ,m. (3.13)

Consequently, the distribution of the number of individuals infected during the early
stages of the epidemic is

P (Z = l) = P (Z ≥ l)− P (Z > l)

=
∞∑

k=l+1

P (Z ≥ l|D = k)
kpk

E(D)
−

∞∑
k=l+2

P (Z ≥ l|D = k)
kpk

E(D)
,

(3.14)

The first sum in equation (3.14) starts at k = l + 1, since in order to infect l friends
(who must be susceptible) an infectious individual needs at least l+1 friends. We get the
probability generating function ϕ(s) using equation (3.14) as

ϕ(s) =
∞∑
l=0

slP (Z = l), |s| ≤ 1 (3.15)

For the branching process to die out, all branching processes initiated by the individual
during the early stages of the epidemic must die out, where the extinction probability q
is the smallest nonnegative solution of the equation q = ϕ(q) (see Jagers 1975).

4 Discussions

The aim in this paper was two-fold. First to study the effects of the random properties
of the latent period, infectious period and detection time to the disease spreading on the
networks, and secondly to approximate the initial phase of the epidemic by a branching
process. All these are done after the implementation of the proposed vaccination strate-
gies. The models which have been developed are not fully realistic, but we still believe
that they may capture some of the relevant behaviour which would appear in more com-
plex models. For example, a more realistic social structure would consider some network
properties such as clustering, associativity and preferential attachment (see e.g Newman
2003). Also, from a more general point, it would be of interest to relax the assumption
that an infectious individual contacts friends at the same rate. Another interesting ex-
tension could be to consider the varying susceptibility to the disease among individuals
(see e.g. O’neill 2001).
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