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Abstract

The aim of this thesis is to propose computationally feasible sta-
tistical methods for improved exploratory analysis of the complicated
data sets involved in post-marketing drug safety monitoring. We im-
plement an extended hit-miss model for duplicate detection in the
WHO drug safety database and demonstrate its effectiveness on real
world data. We propose improved credibility interval estimates, a
Mantel-Haenszel type of adjustment for confounding variables and an
extension to higher orders for the IC measure of association, which
is in routine use to screen the WHO database for interesting quanti-
tative associations. Finally, we describe how case based imprecision
estimates for Bayes classifiers may be used to improve performance
under asymmetrical loss functions, with a possible application in iden-
tifying series of case reports that are related to important drug safety
problems.
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1 Introduction

The analysis of spontaneous adverse drug reaction (ADR) report databases
is one of the most important tools for early discovery of drug safety prob-
lems not identified prior to marketing (Rawlins 1988). Because ADR case
reports are based on actual clinical practice, the chance is greater than in
pre-marketing studies to discover ADRs that are due to drug interactions,
occur only after extended periods of use or affect groups that are typically
excluded from clinical trials (such as children or pregnant women). The large
cohort exposed also makes rare ADRs easier to pick up.

Spontaneous reporting data sets are often large and complex – the WHO
ADR database described in Section 2 contains more than 3 million indi-
vidual case reports. While manual evaluation of this data set may certainly
provide useful insight into specific issues, broader studies of more open ended
questions require efficient computational methods, as discussed in Section 3.
These methods are more than just a computational necessity, however. A
method referred to as IC analysis (IC is short for Information Component)
has been developed to identify interesting quantitative associations between
rare events in large data sets (Bate et al. 1998) and has been in routine use on
the WHO drug safety database since 1998. Hypotheses related to potential
drug safety problems first highlighted with this method are routinely com-
municated to the drug safety community, and some have been published even
in the mainstream medical literature (Coulter et al. 2001, Sanz et al. 2005).

The aim of this thesis is to propose improvements and extensions to the
computational statistical methods for exploratory analysis of post-marketing
drug safety data. Paper I proposes a new method for automated duplicate
detection based on the hit-miss model for statistical record linkage (matching
records across data sets) introduced by Copas and Hilton (1990), with im-
provements to handle numerical record fields and a method to compensate for
correlations between record fields. The method is implemented for the WHO
database and demonstrated to be useful in real world duplicate detection.
Paper II proposes improved credibility interval estimates, a Mantel-Haenszel
type of adjustment for confounding variables and an extension to higher or-
ders for the IC measure of association used to screen the WHO database
for interesting quantitative associations. Paper III introduces a Bayesian
bootstrap method for estimating the uncertainty in Bayes classification and
improving performance under asymmetrical loss, with a possible application
to post-marketing drug safety data as discussed in Section 4.3.
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2 The WHO drug safety database

The WHO Collaborating Centre for International Drug Monitoring in Upp-
sala, Sweden holds the world’s largest collection of reports on suspected ADR
incidents from drug substances after they have been introduced on the mar-
ket. This is an observational data set that consists of spontaneous reports
provided by health professionals around the world upon the observation of
suspected ADR incidents in clinical practice. Reports are routinely forwarded
to Uppsala from national drug safety centres in the 76 member countries of
the WHO Programme for International Drug Monitoring, and the oldest
reports in the data set date back to 1968.

2.1 Size

The most striking feature of the WHO database is perhaps its size. The
database currently contains over 3.5 million case reports, with an additional
approximately 200,000 being added each year. The number of variables of
potential interest is massive: drug substances and ADR terms alone make
for over 17,000 binary variables (roughly 15,000 drug substances and 2,000
ADR terms). In addition, studies may involve variables such as patient age
and gender, reporting country, prescription date, onset date, dosage and
outcome. In order to handle the large number of case reports and variables
involved, any method for exploratory analysis of this data set must be both
computationally robust and efficient. One must also account for the sparsity
of data: with over 3 million reports in total, it may seem a paradox that lack
of data should ever be a problem, but the large number of reports is balanced
by an equally large number of possible variables. There are, for example, in
the order of 30 million possible pairs of one drug substance and one ADR
term. Out of these, around 600,000 occur together on case reports in the
database, with a median joint count of 2 and a mere 15% being co-reported
more than 10 times (Norén 2002).

2.2 Characteristics

The case reports in the WHO database refer to suspected ADR incidents,
and some reported events will in reality have been coincidental or perhaps
due to concomitant medication or the underlying disease. In addition, far
from all ADR incidents that occur are reported, and variations in the degree
of under-reporting between different events also make it difficult to interpret
raw numbers of reports. Most modern methods for quantitative analysis of
post-marketing drug safety data compare the reporting of specific pairs of
events to a reference based on marginal relative frequencies of the events
in the database as a whole (Bate et al. 1998, DuMouchel 1999, Evans et al.
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2001, Egberts et al. 2002). A benefit of this is that variations in the marginal
reporting rates (due to for example regulatory requirements, the severity of
the reaction or the time on the market for the drug) may be automatically
compensated for. Reporting rate variations that affect specific combinations
of events are more difficult to account for, however. If for example, attention
in the media or in the scientific community leads to increased reporting of
a specific drug-ADR pair, this will be very difficult to account for in the
analysis. Another example of problematic relative over-reporting is when an
individual health professional is responsible for several reports in a specific
case series, as in one of the examples in the empirical studies in I. The
use of the database as the reference in estimating strength of association
is based on the assumption that it well reflects the general reporting rates
for different events and it is important to consider potential violations of
this assumption in the interpretation of estimated strengths of association:
unusually large numbers of reports on specific case series may, for example,
lead to misleadingly large marginal frequencies for the terms involved. This
would reduce their estimated strength of association with other events, and
may lead to true problems being missed.

There are several sources of heterogeneity in the WHO database, which are
important to be aware of in quantitative investigations. The range of avail-
able drug substances, populations at risk, reporting behaviour and regula-
tions may vary both between countries and over time. In addition, not all
reports in the data set have been spontaneously submitted but a small pro-
portion come from intensive monitoring programs where relative reporting
rates are higher. It may also be argued that due to fundamental differences
in how vaccines are administered compared to other drug substances, reports
on adverse reactions to vaccines should be analysed separately. The problem
in practice is that the information necessary to identify different report types
is often not available for all case reports.

2.3 Data quality

The quality of individual case reports is highly variable. Whereas some re-
ports are highly detailed and accurate, others are incomplete, inconsistent or
incorrect. This is of great importance in the clinical review of case series, but
little work has been done to automatically account for it in the quantitative
analysis. Missing data is an important problem primarily in specialised stud-
ies involving record fields other than drug substances and ADR terms (which
together with the reporting country are rarely completely missing from a case
report). Strategies for handling missing data thus become important primar-
ily in screening for risk factors or in carrying out subgroup analyses. The
problem with duplicate reports considered in I differs from other data quality
problems in that it does not relate to the quality of a single report, but to
the quality of the data set as a whole. Even upon the identification of a pair
of duplicate reports it is not obvious how to proceed. Should one report be
flagged or perhaps removed from the data set (and if so, which one)?
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3 Exploratory analysis

The aim of exploratory studies is not to draw final conclusions but to gen-
erate and refine hypotheses with respect to the content and the nature of a
data set. Quite naturally, exploratory investigations tend to be more open
ended and have less rigidly defined objectives than confirmatory studies,
but they do require at least the types of hypotheses to be specified before-
hand (Hand 1998). The identification of an appropriate statistical method
for a given study objective is critical to successful exploratory data analysis,
and requires both insight into the nature of data and proficiency in applied
statistical inference. Methods for exploratory analysis of large databases may
be referred to as exploratory data analysis (Hand et al. 2001, Tukey 1977),
knowledge discovery (Fayyad et al. 1996) or data mining (Hand 1998) de-
pending on the context. For a discussion on how they relate, see for example
Elder and Pregibon (1996), Glymour et al. (1997), Hand (1999), Breiman
(2001) and Hastie et al. (2001).

Exploratory studies often lead to results that relate not to the primary study
objective, but to underlying properties of the data or of the data collection
process. In practice, data cleaning and analysis are often intertwined, so that
data analysis results lead to improved data quality, which in turn allows for
more accurate data analysis. In addition, data analysis itself is often carried
out in an iterative fashion of stepwise refinement. It is rarely possible to
specify at the outset of a large exploratory study, a detailed data analysis
method appropriate for all possible questions and patterns under study.

As an illustration of the need for stepwise refinement strategies in exploratory
data analysis, consider the adjustment for confounding variables in large
scale screening for quantitative associations in post-marketing drug safety
data. The range of possible confounders in the WHO database includes
patient age, patient gender, reporting country, reporting date and concomi-
tant medication. It has been suggested that exploratory studies of post-
marketing drug safety data should routinely adjust for possible confounding
variables (Lillienfeld et al. 2003), but simultaneous adjustment for the pos-
sible presence of all 14,000 drug substances would lead to an extreme 214,000

different strata. Even if concomitant medication is ignored, simultaneous
adjustment for gender (3 groups), age (10 groups), country (75 groups) and
reporting quarter (144 groups) would yield 324,000 different strata (out of
which over 30,000 contain at least one case report in the current version of
the WHO database). Such large numbers of strata are not only a computa-
tional challenge, but problematic also from a methodological point of view.
A sensible stepwise refinement approach may be to do the initial screen based
on unadjusted (or carefully adjusted) estimates, and follow up highlighted
associations by automated confounder detection and adjustment. The main
challenge is how to handle downward confounding (when true problems are
missed due to under-estimated strength of association), and more research
into the tendency of different covariates to confound drug-ADR associations
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in the WHO database is necessary before an optimal strategy for automated
confounder adjustment can possibly be identified.

3.1 Application to post-marketing drug safety data

In screening massive post-marketing drug safety data sets for interesting
associations involving a large number of possible events, the great number
of hypotheses considered makes the exploratory approach a necessity. For
spontaneous reporting data, the inherent data biases and variable quality
of case reports further motivates an exploratory attitude. The emphasis on
hypothesis generation and refinement applies throughout this thesis: the aim
of the algorithm in I is to highlight likely duplicates for manual review and
the aim of the IC analysis methodology in II (and the Bayes classifiers in
III if implemented for the WHO database as proposed in Section 4.3) is
to highlight potential drug safety issues for clinical evaluation. The focus
on hypothesis generation does not reduce the need for effective statistical
algorithms: the amount of resources available for clinical review is limited
and must be managed wisely – every false lead followed up may be at the
expense of an undiscovered true problem. At the same time, false negatives
are certainly more problematic than false positives in that they never reach
the clinical review.

There is a wide range of possible applications for computational statistical
methods in exploratory analysis of post-marketing drug safety data sets,
including:

• Duplicate detection and record matching (see I)

• Screening for pairwise and higher order quantitative associations be-
tween drug substances, ADR terms and other types of events (see II)

• Classification of case series with respect to the probability that they
will be considered interesting in the clinical review (see Section 4.3)

• Clustering of case reports based on the reported ADR terms, with the
aim of identifying previously unknown syndromes of ADRs (see Orre
et al. (2005))

• Clustering of drug substances with respect to their ADR profiles, in
order to identify groups with similar pharmacodynamical properties

• Automated quality grading of case reports and methods to account for
this in quantitative studies

• Methods for automated identification of potential confounders and risk
factors
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4 Comments to the papers

The papers included in this thesis relate to different aspects of the knowledge
discovery process. The overall aim is to extract useful information from data
that was not collected primarily for the purpose of data analysis. A technical
link between the papers is their use of ratios on the following form:

P (x, y)

P (x)P (y)
=

P (y | x)

P (y)
(4.1)

Such ratios relate the joint probability for two events x and y to the corre-
sponding probability under the assumption that the two events are indepen-
dent. Based on data, a natural estimate for (4.1) is the oberved-to-expected
ratio of the relative frequencies:

Oxy

Exy

=
f(x, y)

f(x)f(y)
(4.2)

The reference to Exy as the “expected” may be confusing since it is not an
expected value in the statistical sense but a natural estimate for the joint
probability under the independence model. Moreover the distinction between
the theoretical quantity and its estimate is often not made clear, and in this
thesis I loosely refer to both (4.1) and (4.2) as observed-to-expected ratios.

In I, these ratios are used to compensate for correlations between record
fields in hit-miss model duplicate detection, in II they are used as measures
of association between events and in III they correspond to the contribution
from different explanatory variable to the Bayes classifier output probabili-
ties. They also serve as weights in a Hopfield neural network that has been
used to generate hypotheses of complex associations between groups of ADR
terms (syndromes) in post-marketing drug safety data sets (Orre et al. 2005).

4.1 Paper I

The immediate aim of the duplicate detection method in I is to improve
data quality, which in the end should allow for more accurate data analysis
(although under certain circumstances, record matching may be considered
data analysis in its own right). Clearly, the identification of duplicate case
reports in the WHO drug safety database can be expected not only to make
quantitative investigations more reliable but also to facilitate clinical review.

The duplicate detection method in I is based on the hit-miss model for statis-
tical record linkage (matching records across data sets) introduced by Copas
and Hilton (1990). Based on a probabilistic model for how discrepancies
between related database records occur, this duplicate detection method es-
sentially attributes a weight for each record field depending on whether the
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two records of interest match, mismatch or lack information in this field.
Matches on rare events receive higher weights than matches on more com-
mon events, and the penalty for mismatching information depends on how
common mismatches are for that particular record field in the training data.
The total match score for a pair of database records is found by adding
together the weights for the different record fields (with an adjustment for
potential correlations).

In the empirical study reported on in Section 3.1 of I, three case reports
other than the known duplicate received unexpectedly high match scores to-
gether with one particular case report in the test data set (see Table 6 of
I). Manual inspection of the full case records in the WHO database did not
allow these to be dismissed as false positives, and follow up information has
been requested from the FDA in order to determine whether they are in fact
unidentified true duplicates. As discussed in Section 4 in I, the three con-
firmed false positives in the experiment on Norwegian data relate to a group
of case reports provided by one dentist on the same drug-ADR pair. Unex-
pectedly (given that they relate to different patients), all three case reports
have the same listed onset date. This may indicate a data quality problem
and illustrates how, in the knowledge discovery process, data analysis may
allow for improved data cleaning as discussed in Section 3.

4.2 Paper II

The aim of the extensions and improvements to the IC analysis methodol-
ogy proposed in II is to allow for more sophisticated and reliable screening
for quantitative associations in the WHO database. Some comments with
respect to the use of the IC measure of association may be appropriate. The
IC is defined as the logarithm of (4.1):

ICxy = log2

P (x, y)

P (x)P (y)
= log2

P (y | x)

P (y)
(4.3)

The transformation to the logarithmic scale allows for an interpretation of
the IC as a residual under the independence model: log2 Oxy − log2 Exy and
IC analysis as a form of outlier detection. There are efficient shrinkage
estimators for the IC which are useful in exploratory analysis of large and
complicated data sets and these are studied in detail in II. Their main advan-
tage is that they are less sensitive to low values in the denominator than raw
observed-to-expected ratios, and this reduces the vulnerability to spurious
associations. Figure 1 illustrates how the difference between IC shrinkage
estimates and raw log-observed-to-expected ratios changes with increasing
Exy.

Strength of association estimates based on the observed-to-expected ratio are
most useful for rare events, such as the presence of specific drug substances
and ADR terms on case reports in the WHO database. Studies that involve
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Figure 1: Difference between the IC shrinkage estimate and the raw log-
observed-to-expected ratio for 10,000 randomly selected drug-ADR pairs with
at least one case report, sorted by Exy.

other types of events or specific data subsets may motivate the use of for ex-
ample the log-odds ratio instead. The problem with the observed-to-expected
ratio is that it contrasts P (y | x) to P (y) = P (y | x)P (x) + P (y | xc)P (xc),
which as P (x) approaches one will be determined largely by the former. The
ratio of P (y | x) to P (y) will consequently be close to 1 for P (x) near 1,
regardless of how much P (y | x) deviates from P (y | xc).

4.3 Paper III

The Bayesian bootstrap method for Bayes classifiers in III was evaluated on
standard data sets from the UCI Machine Learning Repository, but could
potentially be used to identify those case series in the WHO database that
are most likely to relate to real drug safety problems. Useful explanatory
variables for such an implementation may include case series characteristics
such as the total number of reports, their quality and geographic spread.
Under the assumption that false negatives (missed true problems) are more
problematic than false positives (extra work for the clinical experts), the loss
functions involved will be asymmetrical, and the Bayesian bootstrap method
should improve performance.

Bayes classifiers can be re-expressed in terms of ratios of the form in (4.1).
The naive Bayes classifier is based on the assumption that the explanatory
variables are independent conditional on the class: P (x1, . . . , xm | y) =
P (x1 | y) · . . . · P (xm | y). For a given set of explanatory variable values
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x1, . . . , xm, it can be re-expressed as:

P (yj | x1, . . . , xm) =
P (x1, . . . , xm | yj) · P (yj)

P (x1, . . . , xm)

≈
P (x1 | yj) · . . . · P (xm | yj) · P (yj)

P (x1, . . . , xm)

∝
P (x1 | yj)

P (x1)
· . . . ·

P (xm | yj)

P (xm)
· P (yj)

=
P (x1, yj)

P (x1)P (yj)
· . . . ·

P (xm, yj)

P (xm)P (yj)
· P (yj) (4.4)

or on the logarithmic scale:

log
2
P (yj | x1, . . . , xm) = log

2

P (x1, yj)

P (x1)P (yj)
+ . . . + log

2

P (xm, yj)

P (xm)P (yj)
+ log

2
P (yj)

(4.5)

IC shrinkage estimates could be used instead of raw observed-to-expected
ratios in (4.5) to reduce the sensitivity to spurious associations between
explanatory and response variables in training data. In addition, the re-
expression allows for an interpretation of the IC measure of association in
terms of the predictive strength of one event on another. The replacement
of P (x1, . . . , xm) by P (x1) · . . . · P (xm) above was not used in III because
the naive Bayes assumption of independence between explanatory variables
only holds conditional on class membership. In practice, these quantities
are independent of class membership and cancel in the normalisation of the
estimated class probabilities to sum to 1.

In III, the marginal class probabilities P (yj) were estimated based on the
proportion of instances from each class in the available training data. This
is appropriate when training data is a representative sample from the popu-
lation to which the classifier is to be applied in the future. If, on the other
hand, the composition of training data does not necessarily represent future
observations, then P (yj) must be based either on external data relevant to
the population of interest or on prior knowledge. The adjusted Bayesian
bootstrap approach can be modified to accommodate this, by replacing the
numbers of cases for each class in training data {ny1 , ny2, . . .} (see Table 1 in
III) by the corresponding numbers in the external data set (or pseudo-counts
if the class probabilities are based on prior knowledge).
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5 Summary

Computationally feasible statistical methods may facilitate the exploratory
analysis of post-marketing drug safety data, allowing for large scale hypoth-
esis generation and refinement. In this thesis, new methods are introduced
to improve data quality and allow for more sophisticated data analysis:

• The hit-miss model is extended and adapted for duplicate detection in
the WHO drug safety database, with good performance demonstrated
on real world data

• The IC analysis methodology for screening post-marketing drug safety
data for quantitative associations is extended to allow for more accurate
credibility interval estimates, to a Mantel-Haenszel type of adjustment
for confounding variables and to the analysis of higher order quantita-
tive associations

• A Bayesian bootstrap approach is proposed for the estimation of un-
certainty in Bayes classifier predictions and for improvement of perfor-
mance under asymmetrical loss
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ABSTRACT
The WHO Collaborating Centre for International Drug Mon-
itoring in Uppsala, Sweden, maintains and analyses the world’s
largest database of reports on suspected adverse drug reac-
tion incidents that occur after drugs are introduced on the
market. As in other post-marketing drug safety data sets,
the presence of duplicate records is an important data qual-
ity problem and the detection of duplicates in the WHO
drug safety database remains a formidable challenge, espe-
cially since the reports are anonymised before submitted
to the database. However, to our knowledge no work has
been published on methods for duplicate detection in post-
marketing drug safety data. In this paper, we propose a
method for probabilistic duplicate detection based on the
hit-miss model for statistical record linkage described by
Copas & Hilton. We present two new generalisations of the
standard hit-miss model: a hit-miss mixture model for er-
rors in numerical record fields and a new method to handle
correlated record fields. We demonstrate the effectiveness of
the hit-miss model for duplicate detection in the WHO drug
safety database both at identifying the most likely duplicate
for a given record (94.7% accuracy) and at discriminating
duplicates from random matches (63% recall with 71% pre-
cision). The proposed method allows for more efficient data
cleaning in post-marketing drug safety data sets, and per-
haps other applications throughout the KDD community.

Categories and Subject Descriptors
G.3 [Probability and Statistics]: Statistical computing;
H.2.m [Database Management]: Miscellaneous; J.3 [Life
and medical sciences]: Health
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1. INTRODUCTION
The WHO Collaborating Centre for International Drug

Monitoring in Uppsala, Sweden (also known as the Upp-
sala Monitoring Centre) holds the world’s largest database
of spontaneous reports on suspected adverse drug reaction
(ADR) incidents. Spontaneous reports are provided to phar-
maceutical companies and regulatory bodies by health pro-
fessionals upon the observation of suspected ADR incidents
in clinical practice. The 75 member countries of the WHO
Programme for International Drug Monitoring routinely for-
ward ADR case reports submitted to their medical products
agencies to the Uppsala Monitoring Centre. The first case
reports in the WHO drug safety database date back to 1967
and as of January 2005 there are over 3 million reports in
total in the data set; currently around 200,000 new reports
are added to the database each year.

While the analysis of spontaneous reporting data is one
of the most important methods for discovering previously
unknown safety problems after drugs are introduced on the
market [16], it is sometimes impaired by poor data qual-
ity [11], and in particular the presence of duplicate case
reports. Quantitative methods are important in screening
spontaneous reporting data for new drug safety problems [1],
and may highlight potential problems based on as few as 3
case reports on a particular event, so the presence of just
1 or 2 duplicates may severely affect their efficacy. While
there is a general consensus that the presence of duplicates
is a major problem in spontaneous reporting data, there is
a lack of published research with respect to the extent of
the problem. A study on vaccine ADR data quoted propor-
tions of around 5% confirmed duplicates [14]. However, at
times the frequency may be much higher: in a recent re-
view of suspected quinine induced thrombocytopenia, FDA
researchers identified 28 of the 141 US case reports (20%)
as duplicates [6].



There are at least two common causes for duplication in
post-marketing drug safety data: different sources (health
professionals, national authorities, different companies) may
provide separate case reports related to the same event and
there may be mistakes in linking follow-up case reports to
earlier records. (Follow-up reports are submitted for exam-
ple when the outcome of an event is discovered.) The risk
of duplication is likely to have increased in recent years due
to the advent of information technology that allows case re-
ports to be sent back and forth more easily between different
organisations [8], and the transfer of case reports from na-
tional centres to the WHO might introduce extra sources of
error, including the risk that more than one national centre
provide case reports related to the same event.

Duplicate records are typically much more similar than
random pairs of records. There are however important ex-
ceptions. For example, separate case reports are sometimes
provided for the same patient recorded at the same doctor’s
appointment when the patient has suffered from unrelated
ADRs. Such record pairs may match perfectly on date, age,
gender, country and drug substances, but should not be con-
sidered as duplicates. The opposite problem is illustrated by
so called mother-child reports that relate to ADR incidents
in small children from medication taken by the mother dur-
ing pregnancy. Such record pairs differ greatly depending
on whether the patient information relates to the mother or
the child.

The need for algorithms to systematically screen for du-
plicate records in drug safety data sets is clear [5]. There
are no published papers in this area, but general duplicate
detection methods are available [3, 10, 12, 17]. In addi-
tion, the fundamentally similar problem of record linkage
(matching records across data sets) has been studied since
the 1960s [9, 13]. We have chosen to develop a duplicate de-
tection method based on the hit-miss model for statistical
record linkage described by Copas & Hilton [7]. The hit-
miss model has several important beneficial properties. It
imposes no strict criteria that a pair of records must fulfil
in order to be highlighted as suspected duplicates, which is
useful for spontaneous reporting data where errors occur in
all record fields. Rather than just classifying record pairs as
likely duplicates or not, the hit-miss model provides a priori-
tisation (scoring) with respect to the chance that a given pair
of records are duplicates. This allows the number of record
pairs highlighted to be adjusted depending on the resources
available for manual review. While the hit-miss model pun-
ishes discrepancies it rewards matching information, which
ensures that identical record pairs with very little data listed
are unlikely to be highlighted for follow-up at the expense of
more detailed record pairs with slight differences. Further-
more, the reward for matching information varies depending
on how common the matching event is, so that for example
a match on a rare adverse event is considered stronger ev-
idence than a match on gender. The fact that most of the
hit-miss model parameters are determined by the properties
of the entire data set reduces the risk of over-fitting the al-
gorithms to training data, which is very important for the
WHO database, where the amount of labelled training data
is limited.

The aim of this paper is to propose two new improve-
ments to the standard hit-miss model (a model for errors
in numerical record fields and a computationally efficient
approach to handling correlated record fields) and to show
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Figure 1: Wjj(βj) based on (8), for several values of
a and b

that the adapted hit-miss model is very useful in real world
duplicate detection. We fit the hit-miss model to the WHO
drug safety database, and evaluate its performance on a test
set of real world database records that includes a certain
proportion of known duplicates.

2. METHODS

2.1 The hit-miss model

2.1.1 The standard hit-miss model
The hit-miss model is a probability model for how dis-

crepancies between database records that relate to the same
underlying event occur. Let X = j and Y = k denote the
observed values on two database records for a certain record
field and let pj and pk denote the corresponding probabili-
ties. The joint probability for this pair of values under the
independence assumption is pj ·pk. The hit-miss model pro-
vides an estimate pjk for the same probability under the
assumption that the two records are duplicates. The contri-
bution from each record field (its weight) to the total match
score is equal to the log-likelihood ratio for the two hypothe-
ses (high values correspond to likely duplicates):

Wjk = log2

pjk

pjpk
(1)

and the total match score is found by adding together the
weights for all different record fields.

Under the hit-miss model, each observed record field value
X is based on a true but unobserved event T . Observed
values are assumed to be either misses, blanks or hits. Misses
occur with probability a, blanks with probability b and hits
with probability 1−a−b. For a miss X is a random variable
following the overall incidence of T , for a blank the value of
X is missing and for a hit X = T .

Let P (T = i) = βi and let P (X = j | T = i) = αji. The
following holds generally under the assumption that X and
Y are independent conditional on T :

pjk =
X

i

αjiαkiβi (2)



Outcomes Probability Distribution
H,H (1 − a1 − a2 − b)2 δ(d)
H,D 2a1(1 − a1 − a2 − b) φ(d; 0, σ2

1)
D,D a2

1 φ(d; 0, 2σ2
1)

H,M 2a2(1 − a1 − a2 − b) f(d)
M,M a2

2 f(d)
D,M 2a1a2 approx f(d)

Table 1: Outcomes of interest (H=hit, D=deviation,
M=miss) in the hit-miss mixture model, together
with associated probabilities and distributions for d.

Under the hit-miss model:

αji =

8

<

:

aβj j 6= i

1 − b − a(1 − βj) j = i

b j blank
(3)

and it can be shown that if c = a(2 − a − 2b):

pjk =

8

>

>

<

>

>

:

cβjβk j 6= k

βj{(1 − b)2 − c(1 − βj)} j = k

b(1 − b)βk j blank
b2 j, k blank

(4)

Based on (4):

P (X = j) = (1 − b) · βj (5)

P (X blank) = b (6)

P (discordant pair) = c · (1 −
X

i

β
2
i ) (7)

Thus, for a given record field, we estimate b by its relative
frequency of blanks in the entire database and βi by its rel-
ative frequency of value i among non-blanks in the entire
database. c is estimated by the relative frequency of discor-
dant pairs for this record field among non-blanks in the set
of identified duplicate pairs, divided by 1 −

P

i β2
i .

(3), (4) and (5) give:

Wjk =

8

<

:

log2 c − 2 log2(1 − b) j 6= k

log2{1 − c(1 − βj)(1 − b)−2} − log2 βj j = k

0 j or k blank

(8)

Thus, all mismatches for a given record field receive the same
weight and blanks receive weight 0. It can be shown that
matches on rare events receive greater weights than matches
on more common events (Wjj decreases when βj increases)
as would intuitively be expected. The detailed behaviour of
Wjj as a function of βj is illustrated in Figure 1 for different
values of a and b.

2.1.2 A hit-miss mixture model for errors in numeri-
cal record fields

For numerical record fields such as date and age, many
types of error are more likely to yield small differences be-
tween true and observed values. If, for example, two differ-
ent sources send separate case reports related to the same
incident, the dates may perhaps disagree, but it is more
likely that they should differ by a few days than by several
years. Similarly, the registered age for patient sometimes
differs from the true value, but then a small difference is
more likely than a large one. At the same time, there may

1. Make initial guesses for the parameters â1, â2 and
σ̂2

1

2. Expectation step: Calculate α̂1, . . . , α̂4:

α̂1 = (1 − â1 − â2 − b̂)2

α̂2 = â2(2 − 2b̂ − â2)

α̂3 = 2â1(1 − â1 − â2 − b̂)
α̂4 = â2

1

For each observed di in training data, compute
the probability that it belongs to each mixture
component

γ̂1(di) = α̂1δ(di)

α̂1δ(di)+α̂2f(di)+α̂3φ(di;0,σ̂2
1
)+α̂4φ(di;0,2σ̂2

1
)

γ̂2(di) = α̂2f(di)

α̂1δ(di)+α̂2f(di)+α̂3φ(di;0,σ̂2

1
)+α̂4φ(di;0,2σ̂2

1
)

γ̂3(di) =
α̂3φ(di;0,σ̂2

1
)

α̂1δ(di)+α̂2f(di)+α̂3φ(di;0,σ̂2
1
)+α̂4φ(di;0,2σ̂2

1
)

γ̂4(di) =
α̂4φ(di;0,2σ̂2

1
)

α̂1δ(di)+α̂2f(di)+α̂3φ(di;0,σ̂2
1
)+α̂4φ(di;0,2σ̂2

1
)

3. Maximisation step: Calculate the weighted vari-
ance σ̂2

1 :

σ̂2
1 =

Pn
i=1

γ̂3(di)·d
2

i +γ̂4(di)·d
2

i /2
P

n
i=1

γ̂3(di)+γ̂4(di)

Update â1 and â2 by numerical maximisation of
the total likelihood for the observed data over el-
igible value pairs (such that â1 + â2 + b̂ < 1).

4. Iterate 2-3 until convergence

Table 2: EM algorithm for the hit-miss mixture
model.

be other types of errors (e.g. typing errors) where a large
numerical difference is as likely as a small one. In order
to handle both possibilities, we propose a hit-miss mixture
model which includes a new type of miss for which small
deviations from the true value are more likely than large
ones. To distinguish between the two types of misses in this
model, we refer to the first type as ’misses’ and the second
type as ’deviations’. If T is the true, but unobserved value,
then X is a random variable assumed to have been generated
through a process that results in a deviation with probabil-
ity a1, a miss with probability a2, a blank with probability
b and a hit with probability 1 − a1 − a2 − b. For a devia-
tion, X follows a N(T, σ2

1) distribution and for a miss, X

is a random variable independent of T but with the same
distribution. For a blank, the value of X is missing and for
a hit, X = T .

For two observed numerical values X = i and Y = j,
we focus on the difference d = j − i. For duplicates we
must distinguish between 6 possible outcomes for the hit-
miss mixture model as listed in Table 1 where φ(d;µ, σ2)
denotes a normal distribution with mean µ and variance σ2

and δ(d) denotes Dirac’s delta function, which has all its
probability mass centred at 0. f(d) denotes the probability
density function for the difference between two independent
random events that follow the same distribution as T , such
as for example hits and misses. Under the assumption that
var(T ) � σ2

1 , the difference between a miss and a deviation
also follows this distribution.

Thus, the hit-miss mixture model for the difference d be-
tween the numerical values for two duplicates can be reduced



to four components:

pd(d) = (1 − a1 − a2 − b)2 · δ(d) + a2(2 − a2 − 2b) · f(d)+

+ 2a1(1 − a1 − a2 − b) · φ(d; 0, σ
2
1) + a

2
1 · φ(d; 0, 2σ

2
1)
(9)

For unrelated records, d follows the more simple distribu-
tion:

pu(d) = (1 − b)2 · f(d) (10)

and we can calculate log-likelihood ratio based weights W (d)
by integrating (9) and (10) over an interval corresponding to
the precision of d (for two observed ages, for example, over
d±1 years) and taking the logarithm of the ratio of integrals.
As in the standard hit-miss model, single or double blanks
receive weight 0.

In practice, f(d) must be estimated from training data
(often a normal approximation is acceptable) and the prob-
ability for a blank b is estimated by the relative frequency of
blanks in the entire database. To estimate the other param-
eters, an EM mixture identifier can be used. The restriction
that the four mixture proportions be determined by a1 and
a2 complicates the maximisation step of the EM algorithm,
but can be accounted for in numerical maximisation. For a
detailed outline of EM hit-miss mixture identification, see
Table 2.

2.1.3 A method to handle correlated record fields
The standard hit-miss model assumes independence be-

tween record fields and this allows the total match score
for a record pair to be calculated by simple summation of
the weights for individual record fields. The independence
assumption may, however, lead to over-estimated evidence
that two records that match on a set of strongly correlated
fields are duplicates, and this may hinder effective duplicate
detection.

To reduce the risk for high total match scores driven solely
by a group of correlated record fields, we propose a model
that accounts for pairwise associations between correlated
events. Let j1, . . . , jm denote a set of events related to differ-
ent fields on the same database record. In the independence
model, the probability that these events should co-occur on
a record is:

P (j1, . . . , jm) =

m
Y

t=1

P (Xt = jt) =

=

m
Y

t=1

(1 − bt)βjt (11)

The corresponding total contribution to the match score is:

m
X

t=1

Wjtjt =
m

X

t=1

log2{1 − ct(1 − βjt )(1 − bt)
−2} −

m
X

t=1

log2 βjt

(12)

but this is based on the assumption that the information in
the different record fields can be considered independently.

If no assumption of independence can be made, the joint
probability for the set of events j1, . . . , jm can only be ex-
pressed as:

P (j1, . . . , jm) = P (j1) · P (j2 | j1) · P (j3 | j1, j2)·

· . . . · P (jm | j1, . . . , jm−1) (13)

However, the amount of data required to reliably estimate
P (jm | j1, . . . , jm−1) increases rapidly with m. As a compro-
mise we propose the following approximation that accounts
for pairwise associations only:

P (j1, . . . , jm) = P (j1) ·
m

Y

t=2

max
s<t

P (jt | js) (14)

For correlated record fields, (14) may be used instead of (11)
to model the joint distribution. Let:

j
∗

t = argmax
js:s<t

P (jt | js) (15)

β
∗

jt
= (1 − bt) · P (jt | j

∗

t ) (16)

Then:

W
∗

jj = log2{1 − c(1 − β
∗

j )(1 − b)−2} − log2 β
∗

j (17)

and:
m

X

t=1

W
∗

jtjt
=

m
X

t=1

log2{1 − ct(1 − β
∗

jt
)(1 − bt)

−2} −
m

X

t=1

log2 β
∗

jt

≈
m

X

t=1

log2{1 − ct(1 − βjt )(1 − bt)
−2} −

m
X

t=1

log2 β
∗

jt

=
m

X

t=1

Wjtjt −
m

X

t=1

log2

β∗

jt

βjt

(18)

Thus, the adjusted match score can be calculated by sub-
tracting a sum of compensating terms from the original
match score. Each compensating term can be written on
the following form:

log2

β∗

jt

βjt

= log2

P (jt | j∗t )

P (jt)
(19)

and a shrinkage estimate for this log-ratio has earlier proven
useful, as robust strength of association measures to find
interesting associations in the WHO drug safety database [1,
15]. This strength of association measure is referred to as
the IC and is defined as [1, 15]:

ICij = log2

P (j | i)

P (j)
(20)

Shrinkage is achieved through Bayesian inference with a
prior distribution designed to moderate the estimated IC

values toward the baseline assumption of independence (IC =
0) [1, 15]. The advantage of using IC values rather than raw
observed-to-expected ratios is that they provide less volatile
estimates when little data is available. In order to provide
more robust scoring of correlated record fields, we propose

IC shrinkage estimates be used to estimate log2

β∗

jt

βjt

in (18).

The ordering of events j1, . . . , jm may affect the magni-
tude of the compensating term in (18) since conditioning
is only allowed on preceding events in the sequence. As
a less arbitrary choice of ordering, we propose the set be
re-arranged in decreasing order of maximal IC value with
another event in the set of matched events.

2.2 Fitting a generalised hit-miss model to WHO
drug safety data

An adapted hit-miss model was fitted to the WHO drug
safety database based on the data available at the end of
2003, including a set of 38 manually identified groups of
duplicate records.



Record field Interpretation Type Missing data
DATE Date of onset String 23%

OUTCOME Patient outcome Discrete (7 values) 22%
AGE Patient age Numerical (years old) 19%

GENDER Patient gender Discrete (2 values) 8%
DRUGS Drugs used 14,280 binary events 0.08%
ADRS ADRs observed 1953 binary events 0.001%

COUNTRY Reporting country Discrete (75 values) 0%

Table 3: Record fields used for duplicate detection in the WHO database.
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Figure 2: Empirical distributions for ages and dates on records in the WHO database, as well as empirical
f(d) functions together with fitted normal distributions.

2.2.1 Implementation
Although the WHO database allows for the transmission

and storage of a large amount of data for each individual case
report, there are few records that have even the majority of
the fields filled in [1]. However, all records in the data set
have at least one drug substance, one ADR term and the
reporting country listed. For the identification of possible
duplicate records, the following record fields were considered
the most relevant: date of onset, patient age, patient gender,
reporting country, patient outcome, drug substances used
and ADR terms observed (drug substances and ADR terms
are in fact sets of binary events related to the presence or
absence of each). Table 3 lists basic properties for these
record fields.

Some data pre-processing was required. Onset dates are
related to individual ADR terms, and although there tends
to be only one distinct onset date per record, there are 1184
records (0.04% of the database) that have different onset
dates for different ADR terms; for those records, the earli-
est listed onset date was used. For the gender and outcome
fields “-” had sometimes been used to denote missing val-
ues, and was thus re-encoded as such. Similarly, gender
was sometimes listed as N/A which was also considered a
missing value. For the age field, a variety of non-standard
values were interpreted as missing values and re-encoded as
such. Sometimes different age units had been used so in or-
der to harmonise the ages, they were all re-calculated and
expressed in years. Observed drug substances are listed as
either suspected, interactive or concomitant, but since this
subjective judgement is likely to vary between reporters, this
information was disregarded.

For large data sets, it is computationally intractable to
score all possible record pairs. A common strategy is to
group the records into different blocks based on their val-
ues for a subset of important record fields and to only score
records that are within the same block [9]. For the WHO
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Figure 3: Fitted hit-miss mixture model weight
functions for age and date, respectively. Note the
discrete jump in the weight functions at d = 0.

database, we block records based on drug substances crossed
with ADR types so that only record pairs that have at least
one drug substance in common and share at least one ADR
type (as defined by the System Organ Class, which is a
higher level grouping of ADR terms) are scored. In addition
to the improvement in computational efficiency, this also re-
duces the risk for false leads generated by almost identical
non-duplicate database records that refer to different reac-
tions in the same patient (see Section 1). While blocking
may in theory yield extra false negatives, duplicate records
that don’t match on at least one drug substance and an
ADR type are very unlikely to receive high enough match
scores to exceed the threshold for manual review.

2.2.2 Model fitting
The majority of the hit-miss model parameters are esti-

mated based on the entire data set, but c, a1 and a2 rely on
the characteristics of identified duplicate records. For the
WHO drug safety database there were 38 groups of 2-4 sus-
pected duplicate records available for this purpose. These
had been identified earlier by manual review.



Record field â b̂ Wjk Maximum Wjj value Minimum Wjj value
GENDER 0.051 0.080 -3.22 1.22 (Male) 0.68 (Female)

COUNTRY 0.036 0.000 -3.80 18.45 (Iceland) 1.03 (USA)
OUTCOME 0.101 0.217 -2.05 8.19 (Died unrelated to reaction) 0.97 (Recovered)

DRUGS 0.107 0.001 -2.30 21.23 (non-unique) 4.77 (acetylsalicylic acid)
ADRS 0.387 0.000 -0.68 20.14 (non-unique) 2.77 (rash)

Table 4: Some parameters for the hit-miss model fitted to the WHO database. The Wjk value is the weight
for a mismatch in that particular record field. The listed Wjj values are the maximum and minimum weights
for matches on events in that particular record field.

Standard hit-miss models were fitted to the gender, coun-
try and outcome record fields. Separate hit-miss models
were fitted for individual drug substances and ADR terms,
but b and c was estimated for drug substances as a group
and for ADR terms as a group (c was estimated based on
(7) where

P

β2
i was replaced by the average

P

β2
i for the

group). Some of the fitted hit-miss model parameters are
displayed in Table 4. As expected, matches on common
events such as female gender receive much lower weights
than matches on more rare events such as originating in
Iceland. The penalty for mismatching ADR terms is signifi-
cantly lower than that for mismatching drug substances, be-
cause discrepancies are more common for ADR terms. This
is natural since the categorisation of adverse reactions re-
quires clinical judgement and is more prone to variation.

For the numerical record fields age and date, hit-miss mix-
ture models as described in Section 2.1.2 were fitted. Fig-
ure 2 shows empirical distributions in the WHO database
for age and date together with the corresponding f(d) func-
tions (note as an aside the digit preference on 0 and 5 for
age). Since the empirical f(d) functions for both age and
date are approximately normal and since they must be sym-
metrical by definition (d = j− i and i and j follow the same
distribution), we assume normal f(d) functions with mean
0 for both age and date. The variances were estimated by:

σ̂
2
2 =

Pn
i=1 d2

i

n
(21)

where n is the number of record pairs on which the estimate
is based. EM mixture identification as outlined in Table 2
with the estimated values for b and σ2

2 and with starting val-
ues â1 = 0.1 and â2 = 0.1 yielded the following parameters
for the hit-miss mixture model for age:

â1 = 0.036 â2 = 0.010 b̂ = 0.186

σ̂1 = 2.1 σ̂2 = 32.9 (22)

and for date:

â1 = 0.051 â2 = 0.010 b̂ = 0.229

σ̂1 = 50.2 σ̂2 = 3655 (23)

Because of the limited amount of training data available, we
enforced a lower limit of 0.01 for both â1 and â2. Thus, even
though no large deviations in age and date were observed
in our training data, the possibility of large errors in these
record fields is not ruled out.

A problem with onset date is that quite a large proportion
of the records in the data set (> 15%) have incomplete but
not altogether missing information (such as 2002-10-? or
1999-?-?). This is straightforwardly taken care of in the
hit-miss mixture model by integrating over a wider interval,

when calculating the weight. For example, to compare dates
2002-10-? and 2002-10-12, we integrate (9) and (10) from
-12 to 20. In practice, this leads to weights around 4.5 for
matches on year when information on day and month are
missing on one of the records and to weights around 8.0
for matches on year and month when information on day is
missing on one of the records.

There tend to be strong correlations between drug sub-
stances and ADR terms (groups of drug substances are of-
ten co-prescribed and certain drug substances cause cer-
tain reactions) so IC based compensation according to Sec-
tion 2.1.3 was introduced for drug substances and ADR
terms as one group.

2.2.3 A match score threshold
Under the hit-miss model, the match score correlates with

the probability that two records are duplicates. In order to
convert match scores to probabilities, we use a simple form
of the mixture model discussed by Belin & Rubin [2]. The
assumption is that the match scores for duplicate records
follow one normal distribution and the match scores for non-
duplicate records follow a different normal distribution. For
the WHO database, the empirical match score distributions
are approximately normal. We estimated the match score
mean and variance for duplicates based on the scores for the
38 duplicates in training data (see Section 2.2.2):

µ̂s2
= 42.96 σ̂s2

= 15.73 (24)

and for non-duplicates based on a random sample of 10,000
record pairs:

µ̂s1
= −18.50 σ̂s1

= 8.55 (25)

The only relevant data available to estimate the overall
proportion of duplicates in the data set was the study of du-
plicate records in vaccine spontaneous reporting data [14],

which found duplication rates around 0.05. Based on P̂ (dup) =
0.05 and the estimated match score distributions, we used
Bayes formula to compute the probability that a given match
score s corresponds to a pair of duplicates:

P (dup | s) =
0.05 · φ(s, µ̂s2

, σ̂s2
)

0.05 · φ(s, µ̂s2
, σ̂s2

) + 0.95 · φ(s, µ̂s1
, σ̂s1

)
(26)

In order to obtain an estimated false discovery rate of
below 0.05, the match score threshold for likely duplicates
was set at 37.5 since P (dup | 37.5) = 0.95 according to (26).

2.2.4 Experimental setup
One experiment was carried out to evaluate the perfor-

mance of the adapted hit-miss model in identifying the most



Onset date Age Gender Country Outcome Drug substances ADR terms Score
? 62 M USA Died 3 in total 6 in total -

1997-08-?? ? M USA Died 3 of 3 3 of 6 + 1 25.19
1999-06-09 62 M USA Died 2 of 3 + 1 2 of 6 + 4 23.66
1997-09-?? 62 M USA Died 3 of 3 + 3 2 of 6 + 4 22.92 *
1995-11-29 ? M USA Died 2 of 3 3 of 6 + 2 22.82
1997-08-25 ? M USA Died 2 of 3 3 of 6 + 3 22.74

Table 5: The first difficult template record together with the top 5 records in its list of potential duplicates
according to the hit-miss model. The test record is marked with an asterisk.

Onset date Age Gender Country Outcome Drug substances ADR terms Score
1997-08-23 40 F USA Died 5 in total 4 in total -
1997-08-23 40 F USA Died 5 of 5 1 of 4 + 4 47.28
1997-08-23 40 ? USA Died 4 of 5 2 of 4 + 3 45.75
1997-08-23 40 ? USA Unknown 5 of 5 0 of 4 + 4 37.78
1997-08-?? ? M USA Died 3 of 5 3 of 4 + 1 28.52

? 40 F USA Died 3 of 5 3 of 4 + 3 27.09 *

Table 6: The second difficult template record together with the top 5 records in its list of potential duplicates
according to the hit-miss model. The test record is marked with an asterisk.

likely duplicates for a given database record. The test data
set consisted of the 38 groups of identified duplicates de-
scribed in Section 2.2.2 and to avoid dependence between
training cases, we only used the two most recent records
in each group. The most recent record was designated the
template record and the second most recent record was des-
ignated the test record. In the experiment, each template
record was scored against all other records within its block
(see Section 2.2.1) in the entire WHO database to see if any
other record received a higher match score with the template
record than the test record. While the same data set had
been used in fitting the hit-miss model, its only impact had
been on the proportion of misses in different record fields,
so the risk for bias in the performance estimates is slight.

Another experiment was carried out to evaluate the per-
formance of the hit-miss model in discriminating duplicates
from random record pairs based on the threshold of 37.5
derived in Section 2.2.1. The test set used in the first exper-
iment could not be used to evaluate the threshold since this
data had been used to determine the threshold. However,
Norway who is one of the few countries that label duplicate
records on submission, had in their last batch in 2004 indi-
cated 19 confirmed duplicates. This allowed for an indepen-
dent evaluation of the duplicate detection method. Match
scores were calculated for all record pairs within the same
block (see Section 2.2.1) and those with scores that exceeded
the 37.5 threshold were highlighted as likely duplicates.

3. RESULTS

3.1 Duplicate detection for a given database
record

The performance at duplicate detection for a given database
record was evaluated based on whether or not it was the test
record that received the highest match score together with
the template record. This was the case for 36 out of the 38
record pairs (94.7%). The two template records for which
the test record was not top ranked are listed in Table 5 and

Table 6 together with the most likely duplicates as indi-
cated by the hit-miss model. For the first difficult template
record, there are no strong matches, and based on a superfi-
cial examination, the two top ranked records which are not
known duplicates seem as plausible as the test record which
is a confirmed duplicate. Thus, while its performance was
imperfect for this template record, the hit-miss model’s pre-
dictions are at least in line with intuition. For the second
difficult template record, there are strong matches (match
scores ranging from 37.78 to 47.28) with 3 records that are
not confirmed duplicates. While these may well be false pos-
itive, they could also be undetected duplicates: the records
match on most of the fields and although some of the ADR
terms differ, a more careful analysis shows that the listed
ADR terms relate to liver and gastric problems. Thus, while
the hit-miss model failed to identify the known duplicate for
this template record, it may have identified 3 that are cur-
rently unknown.

3.2 Discriminant duplicate detection
There was a total of 1559 case reports in the last batch

from Norway in 2004. The median match score for the 19
known pairs of duplicates was 41.8 and the median match
score for all other record pairs (after blocking) was -4.8.
Figure 4 displays the match score distributions for the two
groups. All in all, 17 record pairs had match scores above
37.5 and out of these, 12 correspond to known duplicates
and 5 to other record pairs. Thus, the recall of the algo-
rithm in this experiment was 63% (12 of the 19 confirmed
duplicates were highlighted) and the precision was 71% (12
of the 17 highlighted record pairs are confirmed duplicates).
However, the threshold of 37.5 was set based on the assumed
5% rate of duplicates in the data set, and following the dis-
cussion of precision-recall graphs by Bilenko & Mooney [4]
Figure 5 indicates how the precision and the recall varies
with different thresholds (an estimated 20% rate of dupli-
cates would give a 35.2 threshold, an estimated 10% rate of
duplicates would give a 36.5 threshold and an estimated 1%
rate of duplicates would give a 39.6 threshold). To achieve
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Figure 5: Precision and recall as functions of the
threshold, for the discriminant analysis experiment
on Norwegian data. The dotted line indicates the
selected threshold.

the minimum total number of errors, 11 (2 false positives
and 9 false negatives), a threshold between 40.7 and 41.7
must be used. Precision normally tends to 1 as the thresh-
old is increased, but this is not the case in Figure 5, because
the highest match score actually corresponds to a pair of
records that were not known duplicates. Table 7 lists the
three record pairs with highest match scores among record
pairs that were not confirmed duplicates and Table 8 lists
the three record pairs with lowest match scores among con-
firmed duplicate record pairs.

3.3 Computational requirements
The experiments were run on a workstation equipped with

a 2.2 GHz P4 processor and 1 GB of RAM. Efficient use of
the available hardware and optimised data structures re-
duced computing time and memory requirements so that
the initial data extraction and model fitting required a total
of 50 minutes. To score a single pair of database records
took 6 µs, and to score a database record against the rest of
the data set took about 1 second (average block size in the
order of 100,000 records). The scoring for all record pairs
in the Norwegian data subset (1559 database records), after
blocking, took 27 seconds.

4. DISCUSSION
The hit-miss model as implemented on WHO data pro-

duced very promising results. For records that are known
to have a duplicate, the hit-miss model reliably highlighted
the corresponding record (94.7% accuracy). However, only a
small proportion of database records have duplicates, so high
ranked records are not necessarily duplicates, and in order
for the method to be truly effective at duplicate detection,
it needed to provide an absolute estimate for the proba-
bility that two records are duplicates. The 63% recall and
71% precision in Section 3.2 indicate that the hit-miss model
identified the majority of known duplicates, while generating
few false leads, which demonstrates its practical usefulness.

The hit-miss model did fail to highlight 7 known dupli-
cates in the Norwegian batch, but from Table 8 it is clear
that the amount of information on these records is very
scarce: ages, outcomes and onset dates are missing on at
least one of the records in each pair and while there are a
few matching drug substances and ADR terms, there are at
least as many unmatched ones. The lowering of the thresh-
old required to highlight all these duplicates would yield an
unmanageable proportion of false leads. We anticipate that
any method would require non-anonymised data to be able
to identify such duplicates, since lack of data cannot be com-
pensated for with advanced algorithms. This emphasises the
need for improved quality of case reports.

Five of the record pairs highlighted in the Norwegian batch
were not confirmed duplicates. One of these received the
highest match score in the experiment (the top one in Ta-
ble 7), but did not seem like an obvious pair of duplicates:
outcomes are missing, onset dates and ages are close but
don’t match and none of the registered ADR terms match.
On the other hand, 6 out of the 7 drug substances on these
two records are the same and this is what generated the
unusually high match score. These drug substances are
not particularly commonly co-reported (the pairwise asso-
ciations between them are weak) which further strengthens
the evidence. In order to determine the true status of this
record pair, we subsequently contacted the Norwegian na-
tional centre who confirmed that it was indeed a pair of du-
plicates: two different physicians at the same hospital had
provided separate case reports for the same incident. This
demonstrates that the hit-miss model may account for prob-
abilistic aspects of data that are not immediately clear from
manual review and that the hit-miss mixture model’s treat-
ment of small deviations in numerical record fields may be
very useful in practice. The Norwegian centre also provided
information on the 4 other record pairs of unknown status
that had been highlighted in the study: the record pair with
the second highest match score was reported to be a likely
but yet unconfirmed duplicate whereas the other three high-
lighted record pairs were confirmed non-duplicates. How-
ever, these case reports had all been provided by the same
dentist and all referred to the same drug-ADR combina-
tion. Such case reports submitted by the same individual
will tend to be similar and difficult to distinguish from true
duplicates. With respect to duplicate detection, these record
pairs are certainly false leads, but in a different context the
detection of such clusters of case reports may be very valu-
able (since they would generally be considered less strong
evidence of a true problem than case reports from indepen-
dent sources). The Norwegian feedback indicates that the
reported 71% precision in Section 3.2 is an under-estimate.



Onset date Age Gender Country Outcome Drug substances ADR terms Score
2004-04-30 51 F NOR ?

6 matched, 1 unmatched 0 matched, 3 unmatched 76.97
2004-04-20 50 F NOR ?
2003-02-02 57 M NOR ?

3 matched, 1 unmatched 1 matched, 0 unmatched 42.88
2003-02-02 55 M NOR ?
2003-12-16 8 F NOR ?

1 matched, 0 unmatched 1 matched, 0 unmatched 40.69
2003-12-16 18 F NOR ?

Table 7: The three record pairs with highest match scores among record pairs that are not confirmed
duplicates in the Norwegian data.

Onset date Age Gender Country Outcome Drug substances ADR terms Score
? 79 F NOR ?

1 matched, 0 unmatched 1 matched, 2 unmatched 24.36
? ? F NOR ?

2003-01-07 76 F NOR ?
1 matched, 1 unmatched 1 matched, 3 unmatched 17.82

? ? F NOR ?
? 43 F NOR ?

2 matched, 2 unmatched 0 matched, 8 unmatched 14.05
? ? F NOR ?

Table 8: The three record pairs with lowest match scores among non-highlighted confirmed duplicates in the
Norwegian data.

The actual precision of the experiment was at least 76%
(13/17) and possibly even higher. The reported recall rate
may be either under- or over-estimated depending on how
many unidentified duplicates remain.

The hit-miss mixture model is a new approach to handling
discrepancies in numerical record fields. Like the standard
hit-miss model, it is based on a rigorous probability model
and provides intuitive weights. For matches, the weights
depend on the precision of the matching values: matches on
full dates receive weights around 12.0, matches on year and
month when day is missing receive weights around 8.0 and
matches on year when month and day are missing receive
weights around 3.5. Both matches and near-matches are
rewarded, and the definition of a near-match is data driven:
for the WHO database, age differences within ±1 year and
date differences within ±107 days receive positive weights
and are thus favoured over missing information. There is
a limit to how strongly negative the weight for a mismatch
will get (see Figure 3), so any large enough deviation is
considered equally unlikely. An alternative model for dates
which would be useful if typing errors were very common
is to model year, month and day of the date as separate
discrete variables. The disadvantage of this approach is that
absolute differences of just a few days could lead to very
negative weights whereas differences of several years may
yield positive weights if the two records match on month
and day. In the hit-miss model, on the other hand, a pair of
dates such as 1999-12-30 and 2000-01-02 contributes +3.18
to the match score, despite the superficial dissimilarity.

The experiments in this article were retrospective in the
sense that they evaluated the performance of the algorithms
based on what duplicates had already been identified. In
the future, we aim to do a prospective study where the hit-
miss model is used to highlight suspected duplicates in an
unlabelled data subset and follow up the results by manual
review. Such a study should allow for more accurate pre-
cision estimates and more insight into how the algorithms
may be best applied in practice.

The hit-miss model will be used routinely for duplicate
detection in in the WHO database. Database wide screens
will be carried out regularly and, in addition, duplicate de-
tection can be carried out at data entry and automatically
when a case series is selected for clinical review. The rate
limiting step in duplicate detection for post-marketing drug
safety data is the manual review required to confirm or re-
fute findings, so further testing will be necessary to deter-
mine whether the selected threshold is practically useful.

The hit-miss model fitted to the WHO drug safety database
in Section 2.2 can be used for duplicate detection in other
post-marketing drug safety data sets as well, provided they
contain similar information. An alternative approach would
be to use the methods described in this paper to fit adapted
hit-miss models directly for the data sets of interest, since
the properties of different data sets may vary and additional
record fields may be available.

5. CONCLUSIONS
In this paper we have introduced two generalisations of

the standard hit-miss model and demonstrated the useful-
ness of the adapted hit-miss model for automated duplicate
detection in WHO drug safety data. Our results indicate
that the hit-miss model can detect a significant proportion
of the duplicates without generating many false leads. Its
strong theoretical basis together with the excellent results
presented here, should make it a strong candidate for other
duplicate detection and record linkage applications.
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SUMMARY

Post-marketing drug safety data sets are often massive, and entail problems with heterogeneity and
selection bias. Nevertheless, quantitative methods have proven a very useful aid to help clinical experts
in screening for previously unknown associations in these data sets. The WHO international drug
safety database is the world’s largest data set of its kind with over 3 million reports on suspected
adverse drug reaction incidents. Since 1998, an exploratory data analysis method has been in routine
use to screen for quantitative associations in this data set. This method was originally based on
large sample approximations and limited to pairwise associations, but in this article we propose
more accurate credibility interval estimates and extend the method to allow for the analysis of more
complex quantitative associations. The accuracy of the proposed credibility intervals is evaluated
through comparison to precise Monte Carlo simulations. In addition, we propose a Mantel-Haenszel
type adjustment to control for suspected confounders.

1. Introduction

Despite great efforts in investigating drug safety before new substances are introduced on the
market, some adverse drug reactions (ADR) are not detected until after drug launch. This
applies in particular to reactions that have low incidence, occur primarily in groups that tend
to be excluded from clinical trials (such as pregnant women or young children), are due to
drug interactions or have long times to onset [1]. Screening of spontaneous reports is one of
several tools for post-marketing drug safety surveillance [2, 3], and remains the main method
for generating hypotheses related to previously unknown adverse drug reactions [4, 5]. In
this context, international initiatives have the advantage of accumulating information from
all over the world, something which increases the potential for early detection of drug safety
problems [6]. At the same time, the massive data sets involved require quantitative methods
for efficient knowledge discovery.

The WHO Collaborating Centre for International Drug Monitoring in Uppsala, Sweden (also
known as the Uppsala Monitoring Centre or the UMC) holds the world’s largest database of

∗Correspondence to: Niklas Norén, niklas.noren@who-umc.org
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spontaneous reports on suspected adverse drug reaction incidents. The first reports in this data
set date back to 1967, and as of November 2004, 75 countries from around the world forward
their ADR reports to the UMC. The database currently consists of over 3 million reports, with
more than 14,000 distinct drug substances and almost 2,000 distinct ADR terms. Out of the
over 20 million possible combinations of one of these drug substances with one of these ADR
terms, around 600,000 pairs occur together on at least one report in this data set.

In recent years, several methods for quantitative analysis of spontaneous reporting data
sets have been proposed — some Bayesian [7, 9] and others non-Bayesian [11, 12]. Unlike
earlier approaches [13, 14], the lack of readily accessible and reliable international usage data
has lead these methods to focus on associations within the data sets rather than on proper
rates of incidence. Instead of external data, the whole database of reported ADR incidents
is thus the reference against which each possible association is compared. Despite the biases
in this reference population and despite biases in reporting behaviour and problems with
data quality (e.g. the highly variable amount of information available on different reports and
the phenomenon of duplicate reports), these quantitative methods have proven a useful aid in
highlighting drug-ADR combinations for clinical review [15, 16]. One advantage with the study
of associations within the data set is that some biases (such as the relative over-reporting of
new drug substances) is automatically compensated for [12].

Let dependency derivation denote the screening for quantitative associations between events
in a large data set. An obvious difficulty with exploratory data analysis ventures is the multiple
comparisons problem: given the large number of possible associations that are evaluated
simultaneously, it is hard to attribute a degree of significance to the findings. In addition,
for drug safety data sets, even if significant quantitative associations between two events can
be identified, they could potentially be driven by confounding variables or reporting biases.
As a consequence, we use dependency derivation as a means not to draw final conclusions
about possible associations between events in the data set but to generate hypotheses. Any
suspicion raised through dependency derivation needs to be further evaluated and tested in
some follow-up procedure. In the routine screening of the WHO database for potential drug
safety problems, this follow-up procedure consists of clinical evaluation of the individual case
reports for each highlighted association, by an international panel of drug safety experts [6].

In screening the database, we are interested in both the estimated strengths of association
and the support in data; strong associations are more likely to be indicative of important
problems, but with very little support in data even strong quantitative associations are likely
to be spurious. The problem with the straightforward use of a test for association is that it may
tend to highlight weak associations with large data support [9]. On the other hand, raw strength
of association estimates are sensitive to random variation and thus vulnerable to spurious
associations. In fact, for these large and sparse data sets, even the use of classical confidence
intervals around traditional strength of association measures are insufficient to compensate
for a limited data support. As an illustration, consider a drug substance x for which in the
first quarter after marketing there were only two case reports in the WHO database. Even
for a common ADR term, with say 100,000 reports in total, a single observed report together
with this drug by far exceeds the expected number (0.07) and the 95% confidence interval
for the log-odds ratio ([0.60 6.14]) excludes 0 and thus indicates a quantitative association.
Consequently, if log-odds ratios with confidence intervals were used as the screening criterion,
single reports on a particular ADR would suffice to highlight new drugs for clinical review.

Bayesian dependency derivation methods can be used to provide a reasonable balance
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between strength of association and support in data [7, 9]. Bayesian inference is sometimes
criticised on account of the explicit incorporation of prior assumptions in the analysis, but in
dependency derivation this is the greatest advantage over classical inference: the conservative
prior distribution (based on the à priori assumption of mutual independence between any two
events) moderates the strength of association estimates toward the baseline assumption of no
association (especially at low counts) and thereby reduces the risk of highlighting spurious
associations.

Since 1998, a Bayesian dependency derivation method has been in routine use to rank
quantitative associations between drug substances and ADR terms in the WHO database [7, 8].
The use of this method to highlight drug-ADR combinations for clinical review has been
thoroughly tested [15] and integrated into the overall signal detection strategy at the
UMC [16, 17, 18, 19]. Several associations first highlighted with this approach have been
published in the medical literature [20, 21]. The algorithmic framework used is referred
to as the Bayesian Confidence Propagation Neural Network (BCPNN). The BCPNN is a
statistical neural network where the nodes correspond to different events and the weights
between nodes are proportional to the strength of association between different events. The
BCPNN can be used for complex tasks such as classification and unsupervised pattern
recognition [22, 23, 24, 25, 26], but for the purpose of dependency derivation, only the weights
between nodes in the network (referred to as Information Components or IC values) are of
interest. These can be estimated directly from data, so for transparency we shall refer to the
use of the BCPNN for Bayesian dependency derivation as IC analysis throughout this article.

In this article, we propose more accurate credibility interval estimates for the prior/posterior
distribution of the IC that do not rely on large sample theory. We argue in favour of using the
mode as the central IC estimate and show how it can be accurately estimated. In addition,
we propose a generalisation of the IC to higher order associations in order to screen for ADR
risk factors. We also introduce a Mantel-Haenszel type of adjustment for the IC in order to
control for potential confounders in heterogeneous data sets.

2. IC analysis for pairwise dependency derivation

Denote by ICxy the Information Component between events x and y for variables X and
Y respectively. The IC is defined as the base 2 logarithm of an observed-to-expected ratio
for the joint probability of the two events, where the expected value is calculated under the
assumption of mutual independence [7, 8]:

ICxy = log2

P (x, y)

P (x)P (y)
(1)

A positive IC value indicates that the two events co-occur more frequently than expected under
the assumption of independence, and a negative IC value indicates that they co-occur more
rarely. The IC is a function of the unknown probabilities P (x, y), P (x) and P (y), and Bayesian
inference is used to estimate the IC value. For convenience, a Dirichlet prior distribution (that
is conjugate to the multinomial distribution of data) is used for the probability parameters,
since this makes closed form expressions for the posterior distributions of P (x, y), P (x) and
P (y) readily available. No such closed form expression is known for the posterior distribution
of the IC itself, but in recent work, the use of Monte Carlo simulation based on the closed
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form expressions for P (x, y), P (x) and P (y), has been effective in learning more about the
shape of the posterior IC distribution [27]. We use this approach to evaluate the accuracy of
the approximations proposed in this article.

To simplify the annotation: with respect to the presence or absence of two events x and y,
denote by p11, p1· and p·1 the probability parameters for P (x, y), P (x) and P (y), respectively.
Similarly, denote by n11, n1· and n·1 the corresponding numbers of observations in the data
set. In addition, denote by n10 the number of cases where X = x but Y 6= y, by n01 the
number of cases where X 6= x but Y = y, and by n00 the number of cases where both X 6= x
and Y 6= y. Denote by p10, p01 and p00 the corresponding probabilities.

In our data model, the observed counts n11, n10, n01 and n00 are assumed to follow a
Mn(p11, p10, p01, p00, n··) distribution. With a Di(α11, α10, α01, α00) prior distribution for p11,
p10, p01 and p00, it is a standard result from Bayesian statistics that the corresponding posterior
distribution is Di(γ11, γ10, γ01, γ00), where γij = αij + nij (in an abstract sense, the hyper
parameters αij can be thought of as assumed prior observations) [28].

In this model, the marginal distributions of p11, p10, p01 and p00 are beta. The same is true
for p1· = p11 + p10 and p·1 = p11 + p01. Specifically:

p11 ∼ Be(γ11, γ10 + γ01 + γ00)

p1· ∼ Be(γ11 + γ10, γ01 + γ00)

p·1 ∼ Be(γ11 + γ01, γ10 + γ00) (2)

However, since p11, p1· and p·1 are not independent (p1· = p11 + p10 and p·1 = p11 + p01), it
will sometimes be a coarse approximation to consider the marginal distributions separately as
has been done earlier [7, 8], and we will in this article base our analyses on the full Dirichlet
distribution.

Some general problems with observed-to-expected ratios should be kept in mind. Observed-
to-expected ratios are relevant strength of association measures primarily for events with low
expected frequencies where there is virtually no upper limit to the observed-to-expected ratios.
In contrast, if the overall frequency of a certain ADR term is as high as, for example, 0.5, the
observed-to-expected ratio for its association with a given drug substance can never exceed 2
– even if that ADR term occurs on every report for that drug substance. As a consequence,
comparisons between IC values can potentially be misleading if the expected frequencies vary
significantly in magnitude. Another problem with observed-to-expected ratios is that there may
be a spill-over effect from a large observed number of reports for an event pair to the expected
number of reports for that event pair. Specifically, if the drug substance under study is very
common and there are unexpectedly many reports on this drug substance with a particular
ADR, this may influence the overall prevalence of that ADR term so much that the strength
of association is underestimated by the observed-to-expected ratio. These two problems rarely
affect pairwise IC analysis between drug substances and ADR terms in standard drug safety
data sets much, but may be important in the analysis of other types of events or of smaller
data sets. To minimise the risk for misleading results, it may in some situations be sensible to
accompany the estimated IC values for highlighted associations with standard log-odds ratios.

2.1. The moderating prior distribution

The aim of IC analysis is to generate useful leads with respect to quantitative associations in
a data set. As previously discussed, it is in this context crucial to avoid the highlighting of an
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abundance of associations with weak support in data, but at the same time focus on estimated
strength of association. With respect to this issue, Bayesian dependency derivation based on a
conservative prior distribution has proven instrumental in moderating the estimated strengths
of association when data is scarce [7, 9]. The Bayesian moderation in combination with the use
of credibility intervals provides an efficient, pragmatic compromise between methods based on
statistical significance only (that may be sensitive to weak associations with large data support)
and methods based on raw observed-to-expected ratios (that tend to highlight associations
with very little data support). Since the impact of the prior distribution diminishes as data
accumulates, for combinations with large support there is little difference between Bayesian
and classical estimates.

To ascertain moderation of the posterior distribution toward the baseline assumption of
independence (IC = 0) for all possible associations in all possible data sets, assume a
Di(α11, α10, α01, α00) prior distribution for p11, p10, p01 and p00 where:

α11 = q1·q·1 · α··

α10 = q1·q·0 · α··

α01 = q0·q·1 · α··

α00 = q0·q·0 · α·· (3)

and:

α·· =
0.5

q1·q·1
(4)

and:

q1· =
n1· + 1/2

n·· + 1

q0· =
n0· + 1/2

n·· + 1

q·1 =
n·1 + 1/2

n·· + 1

q·0 =
n·0 + 1/2

n·· + 1
(5)

This prior distribution incorporates the independence assumption by setting the hyper
parameters proportional to the products of the corresponding marginal probabilities (in fact to
posterior mean estimates for the marginal probabilities based on Be(1/2, 1/2) hyper priors).
The benefit of this is that the ICmap always lies between 0 and the raw observed-to-expected
log-ratio and that:

lim
n1·,n·1→0

ICmap ≈ 0

lim
n··→0

ICmap = 0 (6)

which is important for computational stability.
In the abstract sense mentioned above, the moderating prior distribution is equivalent to an

assumed extra batch of data where the two events under study are independent, co-occur 0.5



6 G. N. NORÉN, A. BATE, R. ORRE AND I. R. EDWARDS

0 100 200 300 400 500 600 700 800 900 1000
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Combination #

E
rr

or
 in

 e
st

im
at

e

0 100 200 300 400 500 600 700 800 900 1000
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Combination #

E
rr

or
 in

 e
st

im
at

e

a. Posterior mean estimate b. Maximum à posteriori estimate

Figure 1. Errors in posterior mean and maximum à posteriori estimates for the IC distribution. This
figure shows deviations from the Monte Carlo simulated values of estimates based on (7) for the mean
and the mode, respectively. 1,000 randomly selected drug-ADR pairs in the WHO database were used

and each Monte Carlo simulation was based on 50,000 draws.

times and where the marginal probabilities for the two events are approximately the same as
in the real data set. With this approach, the prior sample size α·· may vary, but α11 always
equals 0.5 and since it is primarily α11 that determines the shape of the IC distribution [27],
the shape of the prior distribution will be approximately the same for all associations under
study.

This prior distribution is based on the same principles as the prior previously used in IC
analysis (see [7] or [8]). The major differences are that the new prior is based on the joint
Dirichlet distribution for the model parameters (instead of independent beta distributions)
and that the prior sample size has been halved. The reduction in prior sample size yields a
more diffuse prior distribution that better reflects our initial uncertainty about the IC values
in the WHO database. For data sets with different characteristics (size, sparsity, heterogeneity)
than the WHO database, the factor 0.5 in the expression for α·· should be adjusted. It may,
for example, be sensible to reduce this factor (and thus the moderating effect of the prior
distribution) for smaller data sets.

2.2. Central IC estimates

Arbitrarily accurate estimates for the posterior mean (p.m.e.) of the IC distribution are
available [29]. However, as the IC distribution is generally unimodal, maximum á posteriori
(m.a.p.) estimates may be used for central estimates instead. The main advantage of the m.a.p.
estimate is that it is well suited for use in stratified IC analysis (see Section 2.4) and that it
has the intuitive property of being equal to 0 when the estimated joint probability equals the
product of the estimated marginal probabilities. In addition, the concept of a most likely value
for an unknown parameter is perhaps more natural than that of an expected value, and this
is an important aspect in the drug safety application, where the results must be interpretable
for non-statisticians.
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n11 = 1 n11 = 2 n11 = 3 n11 = 4 n11 = 5
ICpme 0.53 0.30 0.21 0.16 0.13
ICmap 0.04 0.02 0.01 0.01 0.01

Table I. Average error for (7) as estimate of the IC mean and mode, respectively, at different values
for the joint count n11.

We propose the the following m.a.p. estimate:

ICmap ≈ log2

E[p11]

E[p1·]E[p·1]
(7)

The same expression has been used earlier as a crude estimate for the IC mean [7, 8]. To study
the accuracy of this expression as an estimate for on one hand the mean and on the other hand
the mode of the IC distribution, estimated values were compared to Monte Carlo simulated
values based on 50,000 draws from each posterior IC distribution (the mode of the simulated
IC distributions was estimated based on the empirical relationship mode ≈ 3·median−2·mean

for unimodal curves of moderate asymmetry [30]). A random subset of 1,000 drug-ADR
combinations that occur in the WHO database were used for evaluation. Throughout, the
moderating prior distribution described in Section 2.1 was used. The results are displayed in
Figure 1. Clearly, (7) is a better estimate of the mode than of the mean.

2.3. Improved IC credibility interval estimates

Denote by IC025, the 2.5 percentile of the posterior IC distribution. This is the lower limit of
a two-sided 95% credibility interval for the IC, by which associations are typically ranked in
IC analysis [7, 8]. The use of a lower credibility interval limit accounts for uncertainty in a
conservative manner. The idea is to choose an estimate so that the true value is greater than
the estimate with a given degree of certainty (here 97.5%). Together with the moderating prior
distribution (see Section 2.1) this helps to reduce the number of false leads generated by IC
analysis.

The IC credibility interval estimates were previously based on a normal approximation for
the IC distribution [7, 8]. Monte Carlo experiments indicate that while the IC distribution
tends to a normal distribution asymptotically (for large n11), the assumption leads to a rather
crude approximation for rare pairs of events (n11 ≤ 10). Since more than 80% of the observed
drug-ADR pairs in the WHO database fall into this critical category, the need for improvement
is clear [27]. The use of brute force Monte Carlo simulation to estimate the posterior percentiles
would give arbitrarily accurate estimates, but at too high a cost in computational complexity.
Instead, we propose an approach based on an approximate formula for the difference between
the mode and the lower credibility interval limit for the IC distribution.

Let ∆025 denote the true difference between ICmap and IC025. Given estimates for ICmap

and ∆025, IC025 can be estimated as follows:

ˆIC025 = ˆICmap − ∆̂025 (8)

Empirical testing suggests that functions of the following general form model ∆025 well (Ar

and Br are fitted parameters):

∆025(γ11) = Ar · γ
−1/2
11 + Br · γ

−3/2
11 (9)
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a. Normal approximation b. Proposed approximation

Figure 2. Errors in IC025 estimates. This figure shows deviations from Monte Carlo simulated values
of the two IC025 estimates for 1,000 randomly selected drug-ADR pairs in the WHO database. 50,000

draws were used in each Monte Carlo simulation.

n11 = 1 n11 = 2 n11 = 3 n11 = 4 n11 = 5
Normal approximation 1.47 0.78 0.52 0.38 0.31

Proposed approximation 0.06 0.07 0.06 0.04 0.04

Table II. Average error in the IC025 estimates for different values of the joint count n11 among the
1,000 drug-ADR pairs from the WHO database.

In particular:

lim
γ11→∞

∆025(γ11) = 0 (10)

and because there are only 2 fitted parameters, there is little risk for over-fitting.
By using different parameters Ar and Br for different ratios r = γ11/ min(γ1·, γ·1), the

impact of the smaller of the two marginal parameters may be accounted for. We have estimated
constants Ar and Br for 11 different values of r (0.0, 0.1, . . . , 1.0), and use linear interpolation
in between. Thus, for a given ratio r, the value of ∆025 is estimated by the weighted average
of the ∆025 values for the two closest values of r for which there are fitted constants Ar and
Br available. For details about fitting the parameters in (9) and their values for different r,
see Appendix I.1.

To evaluate the accuracy of the proposed approach to estimate IC025, we compared Monte
Carlo simulated values based on 50,000 draws to the estimated values, for the same data set
as in Section 2.2. For comparison, the accuracy of the normal approximation [7, 8] was also
evaluated. The results are displayed in Figure 2. Clearly, the proposed approximation is more
accurate.

2.4. Stratified IC analysis

Although the purpose of dependency derivation is hypothesis generation, and a certain number
of false leads is acceptable in this context, it is important to keep the proportion of false
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Stratum npolio,sids npolio· n·sids n·· ICpolio,sids

unspecified 25 1126 87 572573 5.25 (4.64)
0 - 1 month 29 1408 79 9066 1.21 (0.73)

2 months - 4 years 203 30068 508 155209 1.04 (0.87)
5 - 11 years 0 5232 3 80140 -0.48 (-11.10)
12 - 16 years 0 299 0 63911 0.00 (-10.65)
17 - 69 years 0 461 13 1669422 -0.01 (-10.67)
70+ years 0 10 0 453481 0.00 (-10.66)

Table III. Stratum specific IC values for the association between SIDS and the Polio virus vaccine
in different age groups. The numbers listed in the rightmost column are ICmap estimates with the

moderating prior (IC025 estimates in brackets).

leads at a minimum. One approach to improving the specificity is to detect and control for
potential confounders. As for other epidemiological applications, adjusted overall estimates
may be quoted when there is no suspicion of effect modification, otherwise stratum specific
estimates should be used [31]. There are at least two different ways to adjust the IC for
potential confounders.

The most obvious adjusted IC estimate is a weighted average of the stratum specific
IC values as previously suggested [32]. However, this approach requires a careful selection
of stratification variables, because it is particularly sensitive to data thinning. Strata with
few or no observations of the event combination of interest will yield unreliable stratum
specific IC estimates, and since the weights in calculating the adjusted estimate are not
necessarily correlated to the reliability of the estimates, this may lead to an unreliable adjusted
IC estimate. Indeed, tentative experiments based on Monte Carlo simulation indicate that
this approach to adjusting the IC typically leads to wider credibility intervals than for the
unadjusted IC, which, in addition to the loss in precision, is a technical disadvantage since it
makes more difficult the derivation of accurate credibility intervals.

An alternative approach to calculating adjusted IC estimates is to use a Mantel-Haenszel
type of adjustment where the denominator in the ICmap formula is equal to the weighted
average of the expected joint probabilities in the different strata:

ICmap ≈ log2

E[p11]∑n
k=1 E[p1·|k]E[p·1|k] · E[p··k]

(11)

Since the numerator is not affected by the adjustment, the spread of the adjusted IC can
be expected to be similar to that for the unadjusted IC, and empirical testing supports this
assumption. Consequently, the approximate credibility intervals proposed in Section 2.3 may
be used for the adjusted IC025 as well.

As an illustration of the general usefulness of stratified IC analysis, we have investigated
the association in the WHO database between the terms sudden infant death syndrome and
Polio virus vaccine live oral. The unadjusted ICmap estimate for this association is 4.78 and
the corresponding IC025 estimate is 4.63. However, since the Polio virus vaccine is typically
given to small children and only small children suffer from SIDS (the sudden infant death
syndrome), this is likely to be confounded by age [9].

There are 7 predefined age groups in the WHO database: unspecified, 0 - 1 month, 2 months



10 G. N. NORÉN, A. BATE, R. ORRE AND I. R. EDWARDS

IC025 Old + Old -
New + 80363 616
New - 3532 522707

Table IV. A cross-classification of the observed drug-ADR pairs in the WHO database, with respect
to the signs of the IC025 values for the two methods.

- 4 years, 5 - 11 years, 12 - 16 years, 17 - 69 years and 70+ years. Table III displays stratum
specific IC values for the association between SIDS and the Polio virus vaccine for these age
groups. Based on this stratification, the adjusted ICmap estimate according to (11), is 1.19
and the corresponding IC025 estimate is 1.00. Clearly the stratification by age reduces the
apparent strength of association. At the same time, the relatively strong association between
SIDS and the Polio virus vaccine in the age: unspecified stratum renders dubious the listing
of any overall IC estimate (adjusted or not). In this situation, a list of stratum specific IC
values is probably a more appropriate output. Please note that a proper examination of this
quantitative association would require the consideration of other potential confounders as well.

Some problems with routine stratification by a limited set of predefined variables have been
pointed out previously [33]. For the WHO database, we use association specific stratification
in the post-processing of clinically interesting drug-ADR pairs.

2.5. Example: a scan for drug-ADR associations in the WHO database

To study in practice, the impact of the proposed changes to IC analysis (new prior distribution
and improved credibility interval estimates). We have carried out a complete scan of the WHO
database (as of quarter 3, 2003) with both methods.

Table IV displays a cross-classification of all observed drug-ADR pairs in the WHO database
with respect to whether the IC025 values are positive or negative (this is the threshold used in
routine screening of the WHO ADR database) with the old and the new approach respectively.
Clearly, the agreement between the two approaches is quite good: with respect to this threshold,
the two methods differ for only around 4,000 out of the close to 600,000 observed drug-
ADR pairs and Cohen’s kappa measure is 0.97 (a Cohen’s kappa of 1 would indicate perfect
agreement). Where the two methods differ, the new approach seems to be somewhat more
conservative, but there are event pairs for which the new but not the old IC025 estimate
exceeds 0. These tend to have low joint counts n11 (ranging from 3 to 12) and low marginal
counts n1· for the drug (ranging from 3 to 68 in all but three cases, for which the values are
significantly higher). In particular, the new approach alone highlights 84 event pairs where
there is 3 reports in total for the drug – all on the same reaction. Because these event pairs
may correspond to important problems for recently marketed drugs, it is a strength from a
monitoring perspective that the new approach highlights them.

2.6. Example: a captopril-coughing time scan

To further examine the practical impact of the proposed changes to IC analysis, we studied
the evolution in time of the IC between the drug substance captopril and the ADR term
coughing with the two approaches. The association between captopril and coughing has been
well known since 1986, but earlier work has shown that if IC analysis had been in use at the
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Figure 3. The evolution over time of the IC between captopril and coughing, with the old and the
new approach. Central estimates together with 95% credibility intervals are marked in the plot.

time a quantitative association between captopril and coughing would have been highlighted
already in 1981 [7]. We were interested to see whether the proposed changes to IC analysis
would delay or expedite the highlighting of this quantitative association in the database.

Figure 3 displays the change over time for the IC central estimates (together with 95%
credibility interval estimates) for the captopril-coughing quantitative association, based on
the old and new IC analysis approaches. The credibility interval estimates differ when the
joint count is low, but the association would be highlighted in the same quarter regardless of
which approach was used.

3. IC analysis for higher order dependency derivation

The IC as defined in Section 2 is a strength of association measure for pairs of events only,
but there is often an interest in higher order associations. In the drug safety application, this
may include drug-drug interactions or three way associations involving a drug substance, an
ADR term and another risk factor (e.g. age or gender). Generally, a higher order strength of
association measure should capture disproportionality in the occurrence of groups of events in
the data set, which is not explicable by lower order associations. For three way associations, we
would be interested in sets of three events that occur unexpectedly often even when pairwise
associations between the events are accounted for.

The usefulness of extending the IC value to higher order associations is not necessarily
limited to the dependency derivation application. Higher order IC values could be introduced
in both the feedforward and the recurrent BCPNN in order to improve performance in
classification and unsupervised pattern recognition, respectively.

An extension of the IC to third order associations was previously proposed in [8], but this
did not compensate for pairwise associations. We, instead, propose the following definition of
the third order IC:

ICxyz = ICxy|z − ICxy (12)
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where:

ICxy|z = log2

P (x, y | z)

P (x | z)P (y | z)
(13)

The logic behind this definition of the third order IC is that if there is a positive third order
association, the presence of the third event should make the pairwise association between the
other two events stronger (i.e. ICxy|z should exceed ICxy etc). Conversely, if there is a negative
third order associations, the presence of the third event should make the pairwise association
between the other two events weaker.

It is easy to show that this definition is symmetric in x, y and z:

ICxyz = ICxy|z − ICxy =

= ICxz|y − ICxz =

= ICyz|x − ICyz (14)

since with simple algebraic operations, we can re-express ICxyz as:

ICxyz = log2

P (y, z | x)

P (y | x)P (z | x)
− log2

P (y)P (z)

P (y, z)
=

= log2

P (x, y, z)P (x)P (y)P (z)

P (x, y)P (x, z)P (y, z)
(15)

The third order IC can be seen as an observed-to-expected ratio, where the expected value
accounts for both main effects and pairwise interactions. To see this, let:

Wx1...xn
=

P (x1, . . . , xn)

P (x1) · . . . · P (xn)

Then the third order ICxyz may be re-expressed as:

ICxyz = log2

P (x, y, z)

P (x)P (y)P (z)WxyWxzWyz
(16)

which is an approximate observed to expected ratio accounting for pairwise associations as
well as marginal probabilities.

The generalisation of the IC to even higher orders is straightforward. For example, the
fourth order IC can be defined as follows:

ICxyzv = ICxyz|v − ICxyz = ICxyv|z − ICxyv =

= ICxvz|y − ICxvz = ICyzv|x − ICyzv (17)

which gives:

ICxyzv = . . . = log2

P (x, y, z, v)

P (x)P (y)P (z)WxyWxzWxvWyzWyvWzvWxyzWxyvWxzvWyzv
(18)

As desired, the approximate expected joint probability in the denominator accounts for both
second and third order associations in addition to the marginal probabilities.

Most of the theory developed in Section 2 for pairwise IC values holds approximately for
higher order IC values. A third order IC m.a.p. estimate similar to that for pairwise IC is:

ICmap ≈ log2

E[p111]E[p1··]E[p·1·]E[p··1]

E[p11·]E[p1·1]E[p·11]
(19)
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nxyz nxy· nx·z n·yz nx·· n·y· n··z n··· ICxyz

Drug: ketoconazole 5 63 27 11 6083 3695 5071 3176114 2.32 (1.08)
Age: 17-69 years 52 63 3764 2046 6083 3695 1756414 3176114 0.41 (0.20)
Gender: female 38 63 3427 1607 6083 3695 1753445 3176114 0.43 (0.09)
Country: USA 45 63 2718 2342 6083 3695 1478959 3176114 0.26 (-0.05)

Country: Germany 8 63 174 469 6083 3695 195102 3176114 0.94 (-0.18)

Table V. The top 5 third order IC values with terfenadine and ventricular fibrillation. The numbers
listed are m.a.p. estimates with the moderating prior distribution (IC025 estimates in brackets).

Credibility intervals for third order IC values may be calculated with the formula proposed in
Section 2.3 if, in the definition of r, min(γ1·, γ·1) is replaced by min(γ1··, γ·1·, γ··1). Adjustment
of higher order IC values to control for confounders is also possible. For third order IC values,
the Mantel-Haenszel adjusted m.a.p. estimate is:

ICmap ≈ log2

E[p111]
∑n

k=1
E[p11·|k ]E[p1·1|k ]E[p·11|k]

E[p1··|k ]E[p·1·|k]E[p··1|k] · E[p··k]
(20)

Furthermore, it is straightforward to generalise the moderating prior distribution described in
Section 2.1 to higher order IC values (see Appendix I.2).

3.1. Example: A risk factors scan

Higher order IC analysis may be used to search for factors that influence the risk of a certain
ADR given a particular drug. If, for example, the third order IC between a certain drug
substance x, a certain ADR term y and a certain age group z were positive, this may indicate
that patients of age group z are more prone to experiencing x-induced y than the population in
general. Routine scans for third order IC values between a drug substance, an ADR term and
some other factor (e.g. a certain gender or an age groups) may therefore be used to generate
hypotheses with respect to potential high risk groups of patients. Positive higher order IC
values may also be indicative of confounding, but for confounders, further investigation will
show no significant variation in the IC values over the different strata.

Terfenadine was withdrawn due to concerns about its cardiotoxicity. Additionally,
terfenadine and ketoconazole are known to interact so that the risk of heart problems is higher
when the two are co-administered. Indeed, there are 5 reports on terfenadine, ketoconazole
and ventricular fibrillation in the WHO database and the corresponding third order IC value
is 2.32 with a lower credibility interval limit of 1.08. If we were to examine all three way
associations between terfenadine and ventricular fibrillation and other events related to age,
country, gender or other medication, there are 27 other events that occur at least once together
with terfenadine and ventricular fibrillation on reports in the data set. Out of these, only 2
events other than the co-administration of ketoconazole have positive third order IC025 values
with terfenadine and ventricular fibrillation (see Table V for the top 5 associations with respect
to IC025 values). Based on this analysis, ketoconazole is clearly the most influential risk factor
for this association.
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4. Discussion

The analysis of spontaneous reporting data remains the cornerstone of post-marketing drug
safety surveillance. Despite problems with data heterogeneity, it is the most important
source of information for discovering previously unknown adverse effects from drugs after
they are introduced on the market. IC analysis has proven to be an efficient method for
exploratory quantitative analysis of post-marketing drug safety data [15] that while meeting
the computational requirements also provides sophisticated protection against spurious
associations. However, IC analysis as originally implemented [7, 8] is based on large sample
approximations, and despite the large total number of reports in the WHO drug safety database
the number of reports on a given drug-ADR pair is typically small (due to the large number
of drug substances and ADR terms involved). Thus there is a clear need for the improved
credibility intervals proposed in this article, and the results presented in Section 2.3 indicate
that they do lead to improved accuracy and may allow for earlier discovery of problems related
to recently marketed drug substances. These results are based on randomly selected drug-ADR
pairs from the WHO database, but we expect the conclusions to hold generally for rare events
in large and sparse data sets.

The Mantel-Haenszel adjustment for the IC proposed in Section 2.4 is important in that it
will allow for robust exploratory data analysis in the presence of confounding. However, more
research is needed to specify efficient strategies for how and when to carry out stratified
analyses of spontaneous reporting data. It is, at present time, unclear whether routine
adjustment by set of pre-defined variables for all event pairs in the database is to be preferred
over unadjusted estimates in the initial screening of the database [33]. If higher order IC
analysis or other sophisticated pattern recognition methods could be used for automated
confounder detection, this may allow for data driven association specific adjustment by
suspected confounders, and we aim to investigate this further in the future. The strong
association between SIDS and the Polio vaccine in the age unspecified stratum of the WHO
ADR database (see Section 2.4) is likely to be due to residual confounding and emphasises the
problem of missing data for the stratification variables. This issue too needs to be resolved
before optimal use of stratified dependency derivation is possible.

While the quantitative improvements for pairwise IC analysis proposed in Section 2
are refinements of the existing methodology, the generalisation to higher order associations
in Section 3 allows for altogether new types of analysis related to complex quantitative
associations. In combination with our methods for unsupervised pattern recognition [25], the
methods presented in this article provide a comprehensive range of techniques for efficient
knowledge discovery in spontaneous reporting data. An alternative approach to studying higher
order associations would be to fit a generalised linear model with interaction terms, and in
a similar spirit, other groups have proposed observed-to-expected ratios where the expected
frequency is calculated based on a fitted log-linear model [10]. The advantage of higher order
IC analysis in this context is that it is more direct (it does not require iterative methods for
fitting) and allows for local analysis (in the sense that the higher order IC value for a certain
set of events is only influenced by the joint and marginal counts for that specific set of events).
Drug-drug interaction detection is a type of higher order association which is particularly
important in the quantitative analysis of spontaneous reporting data and several approaches
have been proposed [34, 35, 10]. In theory there is no obvious reason why higher order IC
analysis could not be used to screen for drug interactions as well as any other risk factors,
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but there has recently been a tendency to focus on more simple methods for the detection of
drug-drug interactions [36], which indicates that more research into the basic characteristics of
drug-drug interactions spontaneous reporting may be needed to resolve this issue successfully.

5. Conclusions

Earlier, IC analysis has proven useful in hypothesis generation with respect to quantitative
associations in large drug safety data sets. In this article we have proposed improved methods
for posterior inference in IC analysis, including an accurate estimate for the mode and
significantly improved credibility interval estimates. In addition, we have extended the IC
strength of association measure to higher order associations and illustrated the usefulness of
this on real world data. An adjustment of the IC to control for potential confounders has also
been described and applied to real world data.
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22. Lansner A, Ekeberg Ö. A one-layer feedback artificial neural network with a Bayesian learning rule.
International Journal of Neural Systems 1989; 1:77–87.

23. Holst A, Lansner A. A higher order Bayesian neural network for classification and diagnosis. In Applied
Decision Technologies: Computational Learning and Probabilistic Reasoning ; Gammerman A (ed). Wiley:
New York, 1996; 251–260.

24. Orre R, Lansner A. Pulp quality modelling using Bayesian mixture density neural networks. Journal of
Systems Engineering 1996; 6:128–136.

25. Orre R, Bate A, Norén GN, Swahn E, Arnborg S, Edwards IR. A Bayesian recurrent neural network for
unsupervised pattern recognition in large incomplete data sets. International Journal of Neural Systems
2005; 15(3):207–222.

26. Norén GN, Orre R. Case based imprecision estimates for Bayes classifiers with the Bayesian bootstrap.
Machine Learning 2005; 58:79–94.

27. Norén N. A Monte Carlo method for Bayesian dependency derivation. Master’s thesis, Chalmers University
of Technology, 2002.

28. Gelman A, Carlin JB, Stern HS, Rubin DB Bayesian Data Analysis (1st edn). Chapman & Hall: 1995.
29. Koski T, Orre R. Statistics of the Information Component in Bayesian neural networks. Technical report,

Department of Numerical Analysis and Computing Science, Royal Institute of Technology, Stockholm,
Sweden, 1998.

30. Kenney JF, Keeping ES Mathematics of Statistics, Pt 1 (3rd edn). Van Nostrand: 1962; 50–54.
31. Mantel N, Haenszel W. Statistical aspects of the analysis of data from retrospective studies of disease.

Journal of the National Cancer Institute, 1959; 22:719–748.
32. Gould L. Practical pharmacovigilance analysis strategies. Pharmacoepidemiology and Drug Safety, 2003;

12:559–574.
33. Bate A, Edwards IR, Lindquist M, Orre R. Violation of Homogeneity: A Methodological Issue in the Use

of Data Mining Tools. The authors’ reply. Drug Safety, 2003; 26(5):363–366.
34. Amery WK. Post-marketing drug safety management: a pharmaceutical industry perspective.

International Journal of Risk and Safety in Medicine, 1994; 5:67–270.
35. van Puijenbroek EP, Egberts ACG, Meyboom RHB, Leufkens HGM. Signalling possible drug-drug

interactions in a spontaneous reporting system: delay of withdrawal bleeding during concomitant use
of oral contraceptives and itraconazole. British Journal of Clinical Pharmacology, 1999; 47:689–693.

36. Yang X, Fram DM. Using disproportional analysis as a tool to explore severe drug-drug interactions in
AERS database. Pharmacoepidemiology and Drug Safety, 2004; 13(1):S247.



EXTENDING THE METHODS USED TO SCREEN THE WHO DRUG SAFETY DATABASE 17

APPENDIX

I.1. ∆025 parameter fitting

Constants Ar and Br for 11 different values of r (0.0, 0.1, . . . , 0.9, 1.0) were fitted to Equation 9
based on simulated ∆025 values where γ11 ranged from 1 to 100, γ1· = γ11/r, γ·1 = 100, 000 and
γ·· = 10, 000, 000. Each simulated ∆025 value was based on 100 000 Monte Carlo draws from
the posterior IC distribution of interest. Table VI displays the fitted constants for different
values of r (in the parameter fitting, r = 0 was approximated by r = 0.001 and r = 1 was
approximated by r = 0.999 for computational stability).

r Ar Br

0.0 3.09 2.22
0.1 2.93 2.27
0.2 2.78 2.26
0.3 2.62 2.25
0.4 2.45 2.15
0.5 2.25 2.12
0.6 2.03 2.05
0.7 1.79 1.93
0.8 1.61 1.89
0.9 1.13 1.15
1.0 0.073 -0.081

Table VI. Fitted parameters for the ∆025 function for different values of r

I.2. Moderating prior for the third order IC

The hyper parameters of the moderating prior for third order IC values are:

α111 =
q11·q1·1q·11
q1··q·1·q··1

· α··· α011 =
q01·q0·1q·11
q0··q·1·q··1

· α···

α110 =
q11·q1·0q·10
q1··q·1·q··0

· α··· α010 =
q01·q0·0q·10
q0··q·1·q··0

· α···

α101 =
q10·q1·1q·01
q1··q·0·q··1

· α··· α001 =
q00·q0·1q·01
q0··q·0·q··1

· α···

α100 =
q10·q1·0q·00
q1··q·0·q··0

· α··· α000 =
q00·q0·0q·00
q0··q·0·q··0

· α··· (21)

where:

α··· = 0.5 ·
q1··q·1·q··1
q11·q1·1q·11

(22)
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and:

q1·· =
n1·· + 1/2

n·· + 1
q11· =

n11· + 1/4

n·· + 1
q0·1 =

n0·1 + 1/4

n·· + 1

q0·· =
n0·· + 1/2

n·· + 1
q10· =

n10· + 1/4

n·· + 1
q0·0 =

n0·0 + 1/4

n·· + 1

q·1· =
n·1· + 1/2

n·· + 1
q01· =

n01· + 1/4

n·· + 1
q·11 =

n·11 + 1/4

n·· + 1

q·0· =
n·0· + 1/2

n·· + 1
q00· =

n00· + 1/4

n·· + 1
q·10 =

n·10 + 1/4

n·· + 1

q··1 =
n··1 + 1/2

n·· + 1
q1·1 =

n1·1 + 1/4

n·· + 1
q·01 =

n·01 + 1/4

n·· + 1

q··0 =
n··0 + 1/2

n·· + 1
q1·0 =

n1·0 + 1/4

n·· + 1
q·00 =

n·00 + 1/4

n·· + 1
(23)
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Abstract. This article outlines a Bayesian bootstrap method for case based imprecision estimates in Bayes
classification. We argue that this approach is an important complement to methods such as k-fold cross validation
that are based on overall error rates. It is shown how case based imprecision estimates may be used to improve
Bayes classifiers under asymmetrical loss functions. In addition, other approaches to making use of case based
imprecision estimates are discussed and illustrated on two real world data sets. Contrary to the common assumption,
Bayesian bootstrap simulations indicate that the uncertainty associated with the output of a Bayes classifier is
often far from normally distributed.
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1. Introduction

In supervised learning, a set of labelled training examples, with known values for both
predictor and response variables, is provided. The general aim is to train a classifier to
predict unobserved variable values of new instances, based on the characteristics of the
labelled instances.

Bayes classifiers put supervised learning in a probabilistic framework where all possible
values of a missing response variable are assigned estimated probabilities, based on the
values of the observed variables and on prior probabilities for the unobserved variables.
This is especially useful when the response variable is not fully determined by the pre-
dictor variables, i.e. when two cases with identical values for the predictor variables may
have different values for the response variable. Under such circumstances there is clearly
uncertainty associated with any output of the classifier.

The accuracy of Bayes classifiers has previously been studied with methods such as k-
fold cross-validation (Kohavi, 1995), which give overall accuracy estimates for a classifier
given some training data. Such methods do not account for the variability between cases in
the associated uncertainty, and relate to the number correctly classified cases rather than to
the precision of the attributed probabilities.



80 G. N. NORÉN AND R. ORRE

For neural networks, MacKay (1992) has suggested case specific uncertainty estimates
based on Bayesian inference and the assumption that the uncertainty associated with the
weights in the network can be described by normal distributions (see also Bishop, 1995). This
approach allows each classification performed by such a neural network to be accompanied
by precision estimates.

In this article, we propose a Bayesian bootstrap method for case based imprecision
estimates similar to those of MacKay, but for Bayes classifiers. For clarity of presentation,
we focus on the naive Bayes classifier (Kononenko, 1990), but the methods apply equally
well to generalized Bayes classifiers such as the semi-naive classifiers discussed in for
example Kononenko (1991) and Domingos and Pazzani (1997).

The aims of this article is to emphasize the importance of case based imprecision es-
timates, to show how the Bayesian bootstrap may be used to generate precise case based
estimates and to indicate how this information can be used for better informed Bayes
classification.

In earlier work, Orre et al. (2000) proposed case specific precision estimates for a semi-
naive Bayes classifier based on a normal approximation, and Orre and Lansner (1996)
described a method for how similar uncertainty estimates may be obtained for real-valued
variables.

2. The Bayesian bootstrap

Bootstrap methods in general (Efron, 1979) study how parameter estimates vary when a
data set is resampled. A special type of bootstrap method is the Bayesian bootstrap (Rubin,
1981). In the Bayesian bootstrap, replicates of a given data set (z1, . . . , zn) are generated
by assigning Dirichlet distributed random weights to the cases zi in the original data set.
The parameter of interest is calculated for each bootstrap replicate, and as shown by Rubin
(1981), the distribution of the calculated parameter values over the replicated data sets
approximates the posterior distribution of this parameter. This is very helpful in situations
where no closed form expression for the posterior distribution is known. Based on the
Bayesian bootstrap replicates of a data set, we may form a histogram for the full posterior
distribution or calculate point estimates such as the posterior mean estimate or estimates
for different percentiles of the distribution.

The most straightforward approach for resampling in the Bayesian bootstrap, is to assign
Di(1, . . . , 1)n distributed weights to the observed instances zi . However, when many zi are
equal, it is more efficient to assign Di(n1, . . . , nm) weights to the m distinct values d j of
Z, where n j is the number of zi equal to d j . Due to the nature of the Dirichlet distribution,
these two operations are mathematically equivalent.

Let θ = {θ1, . . . , θm}be the vector of probabilities θ j = P(Z = d j ). With Di(n1, . . . , nm)
distributed weights, the Bayesian bootstrap posterior distribution is proportional
to:

m∏

j=1

θ
n j −1
j (1)
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and the corresponding implicit prior distribution is proportional (Rubin, 1981):

m∏

j=1

θ−1
j (2)

This is sometimes referred to as Haldane’s prior.
Bayesian bootstrap simulation based on a more general prior distribution is however

possible. A prior distribution proportional to:

m∏

j=1

θ
l j −1
j (3)

yields a posterior distribution proportional (Rubin, 1981):

m∏

j=1

θ
n j +l j −1
j (4)

It can be simulated by assigning Di(n1 + l1, . . . , nm + lm) distributed weights to the vector
of distinct values d = {d1, . . . , dm}.

A major advantage of such a more general prior distribution is that zero counts (when
two variable values have never been observed together) may be handled in a better way than
with Haldane’s prior or with classical statistics. In fact, Domingos and Pazzani (1997) uses
this argument to motivate the use of a Laplace corrector with f = 1/n, which is technically
equivalent to a Dirichlet prior distribution with l j = 1/n.

One limitation of bootstrap methods in general is the indirect assumption that all possible
variable values have been observed. In fact, with several variables, the bootstrap methods
effectively assume that all possible combinations of variable values have been observed,
but in Section 4.1 we propose a modification to the Bayesian bootstrap that reduces the
negative impact of this assumption.

The choice of prior distribution clearly has an impact on any analysis based on Bayesian
bootstrap simulation. In the experiments presented in this article, we have aimed to minimize
the prior’s impact on the final result, while retaining a moderating effect, by using a prior
distribution with small prior sample size (Gelman et al., 1995). The sensitivity of the results
to the choice of prior has also been investigated.

3. Bayes classifiers

The aim of Bayes classifiers is to assign the value:

argmax
y j

P(Y = y j | X1 = x1, . . . , Xm = xm) (5)

to the response variable Y , for any unlabelled instance with predictor variable values

(x1, . . . , xm)
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The actual class probabilities are however unknown parameters of an underlying model,
wherefore classifiers are generally based on estimates P̂(y j | x) from a batch of labelled
training data:

(x(k), y(k)), k = 1, . . . , n

with observed values for both predictor and response variables.
Implemented Bayes classifiers often use classical maximum likelihood estimates, but the

method proposed in this article is based on a full Bayesian approach. Bayesian inference
combines prior information on a parameter’s value with observed data, to yield the posterior
probability distribution of the parameter (Gelman et al., 1995). In the following, we either
consider the full posterior distribution of a parameter or use Bayesian point estimates such
as the posterior mean estimate or the maximum à posteriori estimate.

If the number of training examples is large compared to the number of possible predictor
variable value configurations, the outcome probabilities

P(y | x) (6)

may be directly estimated from data. Classifiers based on full conditional probabilities are
sometimes referred to as optimal Bayes classifiers (Mitchell, 1997), since they rely on no
assumptions of mutual independence between the different predictor variables.

The drawback for the optimal Bayes approach is that in real applications, there are seldom
large enough numbers of training examples to sufficiently populate the entire domain of
possible predictor variable configurations. This sparsity of data increases rapidly with the
number of predictor variables used, due to the exponential increase in the number of possible
configurations, something that is commonly referred to as the curse of dimensionality.

3.1. The naive Bayes classifier

In naive Bayes classification, the predictor variable values are assumed to be mutually
independent conditional on the class, and this assumption allows for the following modified
expression:

P(y | x) = P(x | y)

P(x)
· P(y) ∝ P(x | y) · P(y)

= P(x1 | y) · · · · · P(xm | y) · P(y) (7)

which is normalized through division by the sum of the different class probabilities:

∑

j

P(y j | x)

With respect to the curse of dimensionality, the main advantage of the naive Bayes
approach is that it is based on estimates of marginal probabilities, P(xi | y), rather than of
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full conditional probabilities, P(y | x), something that significantly reduces the amount of
training data required for reliable parameter estimation.

The drawback for the naive Bayes approach is that the underlying assumption of mutual
independence between all predictor variables is commonly violated. Nevertheless, this
approach has proven to be very versatile and to often compare well with more sophisticated
methods (Domingos and Pazzani, 1997; Hand and Yu, 2001).

3.2. The semi-naive Bayes classifier

Semi-naive Bayes classifiers (Kononenko, 1991) allow for data models where some but
not all dependencies between variables are accounted for. Groups of dependent predictor
variables are encoded as composite variables whose possible values are combinations of the
original variables’ values. The aim is to identify a set of mutual independence assumptions
that optimizes the trade-off between accuracy and computational efficiency.

Consider for example a Bayes classifier where on one hand x1, x2 and x3 and on the other
hand x4 and x5 are coencoded as composite variables. Equation (7) becomes:

P(y | x) ∝ P(x1, x2, x3 | y) · P(x4, x5 | y) · · · · · P(xm | y) · P(y) (8)

The semi-naive Bayes classifier may be regarded as a naive Bayes classifier with respect
to the coencoded variables. For clarity of presentation we will therefore focus the remainder
of our discussion on the naive Bayes classifier, but it should be kept in mind that all presented
methods apply to other Bayes classifiers as well.

4. Methodology

Because Bayes classifiers are based on re-expressions of P(y | x1, . . . , xm) as products
of several unknown probability parameters (see Eqs. (7) and (8)), no analytical form for
the posterior distributions of the class probabilities is known. We propose the Bayesian
bootstrap method be used to obtain accurate estimates for these posterior distributions. Given
a Bayes classifier and a large enough number of bootstrap replicates, the Bayesian bootstrap
yields arbitrarily accurate estimates, and unlike methods proposed in earlier work (MacKay,
1992; Orre et al., 2000), it does not rely on normal approximations.

4.1. An adjusted Bayesian bootstrap

The original Bayesian bootstrap method requires the assignment of a random weight to each
individual case in the training data. For large data sets this may be intractable—to draw
10 000 bootstrap replicates from a data set with a million cases requires around 10 billion
non-uniform random numbers to be generated. Clearly, under such circumstances a more
efficient approach is necessary.

In principle, the computational complexity of the Bayesian bootstrap may be reduced
by assigning random weights to each distinct set of predictor variable values rather than to
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Table 1. Pseudo code for the adjusted Bayesian bootstrap algorithm.

– Let ny j be the number of cases in training data that are labelled y j .

– Let nxi y j be the number of cases in training data with Xi = xi and Y = y j

– Let ly j be the prior hyper parameter for Y = y j

– Let lxi y j be the prior hyper parameter for Xi = xi given Y = y j

– Let l∗xi y j
be the prior hyper parameter for Xi �= xi given Y = y j

– Let betarnd and dirrnd denote generic random number generators for the beta and the dirichlet distributions
respectively (accepting as input the hyper parameters)

For each bootstrap replicate:

% Draw bootstrap marginal probabilities[
P∗(y1), . . . , P∗(yk )

] = dirrnd(ny1 + ly1 , ny2 + ly2 , . . .)

% Draw bootstrap conditional probabilities

For each (xi , y j ) pair:

P∗(xi | y j ) = betarnd(nxi y j + lxi y j , ny j − nxi y j + l∗xi y j
)

% Calculate unnormalized bootstrap output probabilities

For each response variable value y j :

P∗(y j | x) = P∗(y j ) · ∏
i P∗(xi | y j )

% Normalize the output probabilities

For each response variable value y j :

P∗
n (y j | x) = P∗(y j | x)/

∑
j P∗(y j | x)

Return the sets of normalized bootstrap output probabilities (one set for each replicate)

each specific case in the training data set, as discussed in Section 2. However, the number
of predictor variables is in practice often large enough that there is only a small number of
cases with the exact same sets of predictor variable values. Consequently, this may not be
sufficient to make the Bayesian bootstrap computationally tractable.

One way to further decrease the computational complexity of the Bayesian bootstrap is to
incorporate the mutual independence assumptions on which the Bayes classifier relies into
the resampling procedure. In such an adjusted Bayesian bootstrap approach, each factor
in the Bayes classifier formula is simulated independently, and bootstrap replicates are
generated as indicated in Table 1.

The adjusted Bayesian bootstrap method produces the posterior class distribution under
the given model assumptions (i.e., it accounts for the mutual independence assumptions
in the resampling). This further reduces the impact of the bootstrap assumption that all
possible combinations of variable values have been observed (see Section 2). By simulating
all predictor variables separately, any two variable values that occur separately in the training
data are assumed to have a positive probability to cooccur.

Furthermore, this adjustment to the Bayesian bootstrap facilitates the assertion of a prior
distribution. In the adjusted Bayesian bootstrap, each variable has its own prior distribution,
so the number of prior parameters is equal to

∑
i vi (where vi is the number of distinct

variable values for variable Xi ) instead of to
∏

i vi as in the original Bayesian bootstrap.
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4.2. How to make use of the posterior class probability distributions

There are several ways to put the Bayesian bootstrap distributions to use. Detailed infor-
mation about imprecision in the output probabilities of a Bayes classifier may be used to
test model assumptions such as e.g. normal approximations, and to investigate what factors
influence the imprecision in Bayes classification.

MacKay (1992) proposes marginalization (averaging) over the posterior distribution of
a classification as a way to moderate the output of a neural network. For binary variables,
this tends to pull the output probabilities toward 0.5, and the effect is stronger the less
training data there is available. In effect this corresponds to the use of posterior means
instead of maximum likelihood estimates, and it would be straightforward to implement the
same principle for Bayesian bootstrap analysis of Bayes classifiers. A slightly generalized
approach is to assert a baseline probability for each class, and to only output a different
value (the closest credibility interval limit) for the probability if the credibility interval
excludes the baseline value. This allows for a stronger moderating effect, which can be
fine tuned by varying the coverage of the credibility interval. It also allows for moderation
toward other values than 0.5 between 0 and 1. Another approach is to altogether refrain from
making classifications with too little support in data, and instead flag cases as uncertain if
the posterior interval spans the prior probabilities.

A situation where detailed information about the output class probability posterior dis-
tributions may be particularly useful is in Bayes classification under asymmetrical loss
functions. Bayes classifiers typically output the most probable class for an unlabelled case,
but if the different types of misclassifications have different associated losses, this is sub-
optimal. For binary classifiers and loss functions based on variable misclassifications costs,
classification based on percentiles equal to the ratios of the misclassification costs minimizes
the expected loss. Section 5.3 presents a detailed example of this. Another example is filters
for unwanted e-mail messages (spam), where it is generally more severe to misclassify a
wanted e-mail message as spam than to misclassify spam as wanted.

5. Examples

To illustrate the usefulness of the proposed approach for real data, we have applied it to
data sets from the UCI machine learning repository (Blake & Merz, 1998). The results are
presented in this section.

5.1. Setup of experiments

Two data sets from the UCI machine learning repository were selected: the mushrooms
data set and the zoology data set. From the mushrooms data set, we excluded the predictor
variable veil-type for which only one value (partial) is ever observed. Some of the analyses
were based on subsets of the available cases and/or predictor variables in the data sets, in
order to better illustrate the impact of uncertainty on the classification.

For the prior distribution of predictor variable Xi conditional on the response variable
value y j (see Table 1), we used hyper parameters lxi y j = 1

vi
and l∗xi y j

= vi −1
vi

where vi is the
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number of distinct values for Xi as before. For the response variable this amounts to hyper
parameters ly j = 1. This is a low impact prior distribution with prior sample size vr equal
to the number of possible values for the response variable Y .

5.2. Precise posterior distribution estimation

To illustrate how the Bayesian bootstrap may be used to infer detailed knowledge about
the posterior distribution of the Bayes classifier’s output, we have used precise Bayesian
bootstrap simulations (1000 replicates) to study the posterior distributions of different naive
Bayes classifiers applied to the mushrooms data set.

All distributions in figure 1 are produced by the same naive Bayes classifier, which uses
the following four predictor variables: cap shape, cap surface, cap color and bruises. The

Figure 1. Posterior distributions for the probability that mushroom number 8124 in the UCI ML repository data
set is edible (the leftmost distribution in each pair) and poisonous (rightmost) for varying amounts of training data,
using the first 4 attributes (cap shape, cap surface, cap color and bruises).
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Figure 2. Posterior distributions for the probability that mushroom number 8124 in the UCI ML repository data
set is edible (the leftmost distribution in each pair) or poisonous (rightmost) for varying numbers of predictor
variables, based on 80 training cases. The predictor variables were added in the following order: stalk shape,
population, odor, stalk color below ring, cap color, gill spacing, stalk surface below ring, ring number, ring type
and then the rest.

aim is to show how the uncertainty in the output decreases as more training data is added.
Please note how the shape of the posterior distribution transforms from its bathtub shape
for small amounts of training data over an almost uniform distribution for intermediate
amounts of training data to a more normal-like posterior distribution for large amounts of
training data.

In figure 2 we have used constant training data, but different naive Bayes classifiers.
The difference between the classifiers is the number of predictor variables on which they
are based, and the aim is to illustrate how the uncertainty in the output increases as more
predictor variables are added.
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Figure 3. Box plots for the output classification of different mushrooms based on the predictor variables: cap
shape, cap surface, cap color and bruises and the first 100 mushrooms in the data set. Clearly, the degree of
uncertainty varies for the five mushrooms, even though the same Bayes classifier has been used.

5.3. Classifying mushrooms with variable misclassification costs

As an illustration of how case based precision estimates may be incorporated into a Bayes
classifier, a naive Bayes classifier was trained on the first 100 cases in the mushrooms data
set using the first four predictor variables: cap shape, cap surface, cap color and bruises.
Figure 3 displays box plots for the uncertainty associated with the classifications of five
different mushrooms that were not included in the training data.

If the loss associated with the misclassification of a poisonous mushroom as edible
is higher than the loss associated with the misclassification of an edible mushroom as
poisonous, simple naive Bayes classification (outputting the class estimated to be the most
likely) is suboptimal. Assume for simplicity that the loss associated with the former type
of misclassification is twice that of the latter; without case based imprecision estimates,
the easiest way to account for this asymmetry is to change the cut-off from 50 to 66.6̄%
(i.e., only label a mushroom as edible if the point estimate for this probability is greater
than 2/3, since this is the level at which the expected loss of classifying the mushroom as
edible is the same as that of classifying the mushroom as poisonous). The reliability of
the naive Bayes probability estimates is however questionable as the naive Bayes classifier
tends to over-estimate the confidence in its predictions (Hand and Yu, 2001). With case
based uncertainty estimates, an alternative approach is to instead consider variation in
the output classification (with cut-off 50%) over the Bayesian bootstrap distribution and
only label the mushroom as edible if more than 2/3 of the bootstrap replicates indicate
edible.

To compare these two approaches, we have used five different naive Bayes classifiers each
trained on 100 out of the first 500 mushrooms in the data set (and the predictor variables:
cap shape, cap surface, cap color and bruises) to classify the last 100 mushrooms in the
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Table 2. The efficiency of three naive Bayes decision rules, for five different naive Bayes classifiers trained on
subsets of the UCI mushrooms data set.

Training data True pos. False pos. Sens. Spec. Loss

a. P̂(edible) > 1/2

1–100 54 33 1.00 0.28 66

101–200 54 25 1.00 0.46 50

201–300 54 25 1.00 0.46 50

301–400 54 13 1.00 0.72 26

401–500 40 4 0.74 0.91 22

Averages 51.2 20.0 0.95 0.57 42.8

b. P̂(edible) > 2/3

1–100 54 25 1.00 0.46 50

101–200 54 12 1.00 0.74 24

201–300 40 5 0.74 0.89 24

301–400 40 4 0.74 0.91 22

401–500 40 3 0.74 0.93 20

Averages 45.6 9.8 0.84 0.79 28.0

c. P(P∗(edible) > 1/2) > 2/3

1–100 43 4 0.80 0.91 19

101–200 39 2 0.72 0.96 19

201–300 38 2 0.70 0.96 20

301–400 40 3 0.74 0.93 20

401–500 40 2 0.74 0.96 18

Averages 40.0 2.6 0.74 0.94 19.2

data set. A comparison of the two decision rules and the standard naive Bayes decision rule
is displayed in Table 2.

5.4. Sensitivity to the choice of prior

To evaluate how sensitive the Bayesian bootstrap method is to variations in the choice of
prior distribution, we have compared the uncertainty estimates for mushroom 8124 with
the chosen prior (lxi y j = 1

vi
, l∗xi y j

= vi −1
vi

and ly j = 1) to uncertainty estimates based on two
other data sensitive priors: the uniform prior (lxi y j = l∗xi y j

= ly j = 1) and Haldane’s prior
(lxi y j = l∗xi y j

= ly j = 0). The results are displayed in figure 4.

5.5. Function approximation

Figures 5 and 6 display bootstrap posterior distributions for cases in the UCI zoology and
mushrooms data sets, together with fitted beta distributions.
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Figure 4. Sensitivity to the choice of prior hyper parameters of the uncertainty estimates for the classification of
mushroom 8124 based on various amounts of training data.

Figure 5. Fitted beta distributions (dotted curves) for the 7 output distributions (one for each class) of animal
number 81 in the UCI zoology data set, based on the first 80 animals in the data set and the first four predictor
variables.
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Figure 6. Fitted beta distributions (dotted curves) for the probability of mushroom number 8124 to be edible,
with different numbers of predictor variables and varying amounts of training data.

6. Discussion

The results reported on in Section 5.3 indicate that case based precision estimates may allow
for more robust decision rules when the loss function is asymmetrical. Table 2 shows that
over a rather large domain in the UCI mushrooms data set (five classifiers trained on different
portions of the database and each applied to 100 cases) the Bayesian bootstrap based decision
rule has better specificity, and lower average loss for variable misclassification costs. A
plausible explanation for this is the tendency of the naive Bayes classifier to “probability
overshoot”, i.e. to overestimate the confidence in its predictions (Hand and Yu, 2001).
Figure 2 illustrates this: even when there is significant uncertainty due to a large number
of predictor variables compared to the amount of training data available, the most likely
value of the output probability tends to 0 or 1. Due to this low reliability of the naive
Bayes probability estimates, even crude Bayesian bootstrap simulation may yield better
uncertainty estimates for Bayes classifiers.

However, case based imprecision estimates focus solely on imprecision due to limits in
the amount of relevant training data available, and do not account for erroneous assumptions
in the design of the classifier. Other methods such as k-fold cross-validation should therefore
always be used to test the accuracy of a Bayes classifier. If the accuracy of the classifier is
poor, the Bayesian bootstrap may be used to deduce whether this could be due to limits in
the amount of relevant training data, or whether it is solely attributable to incorrect model
assumptions.

A good example of this distinction between precision and accuracy is the classifica-
tion of mushroom number 8124 in figure 1. As more and more mushrooms are added
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to the training data, the imprecision in the classification is gradually reduced, and with
1000 mushrooms in the training data, the output probabilities are quite precise (centered
at around P(poisonous) = 0.7). However, if all predictor variables are used, the output for
P(poisonous) is instead very close to 0, and indeed the true label of mushroom number
8124 is edible. Clearly the problem here is not the amount of relevant training data, but the
design (e.g. the feature selection) of the Bayes classifier.

The experiments reported on in this article are in agreement with the observation by Hand
and Yu (2001) that the more predictor variables that are used in the Bayes classifier, the
more training data is required for reliable prediction. This relates to the issue of irrelevant
variables: if a predictor variable is completely unassociated with the response variable, its
average effect will be to only increase the uncertainty in every prediction. This is a good
incentive for identifying and excluding from the analysis any irrelevant variables.

Instead of the Bayesian bootstrap, the original bootstrap (Efron, 1979) could be used
to generate case based precision estimates (based on sampling distributions for parameter
estimates rather than on posterior distributions for the parameters). However, the non-
Bayesian bootstrap does not allow for the use of prior distributions, which as discussed in
Section 4.1 may reduce the negative impact of the bootstrap assumption that all possible
data points have been observed. In addition, the parameter estimate distribution is discrete,
and may be inconsistent with the observed data: consider for example an attempt to study the
probability p of a binomial distribution with the original bootstrap. With four observations—
two successes and two failures—each bootstrap replicate has a 1/16 chance of yielding
p̂∗ = 1 for the probability of success, which is clearly in disagreement with data since
under this model, the probability of observing the two failures is 0.

As discussed in Section 4.1, the proposed adjustment to the Bayesian bootstrap helps
to further reduce the negative impact of the bootstrap assumption that all possible data
points have been observed. In addition, it often allows for more efficient simulation: if vi is
the number of distinct variable values for variable Xi , then the computational complexity
of the original Bayesian bootstrap is proportional to α · ∏

i vi , whereas the computational
complexity of the adjusted Bayesian bootstrap is proportional to

∑
i vi (α is a factor that

relates to how many of the possible variable value combinations that actually occur in the
data set).

It is difficult to give general guidelines for how many Bayesian bootstrap replicates are
required for a given reliability. To a large extent, this depends on the specific purpose for
which the Bayesian bootstrap is carried out—the expected number of replicates for accurate
simulation of the posterior mean is for example lower than for the 0.01 quantile (Gelman
et al., 1995). For standard purpose simulations a pragmatic approach may be to, in advance,
study the sampling variability of the Bayesian bootstrap estimates for a given statistic and
a given number of replicates.

The main drawback of the Bayesian bootstrap approach is the computational complexity.
Analytical expressions based on normal approximations have been proposed, but the results
in Section 5 indicate that the true output of a Bayes classifier is often far from normally
distributed. On the other hand, the results in Section 5.5 suggest that fitted beta distributions
often provide good approximations, and it would be a great advantage if approximate closed
form expressions for the hyper parameters of the best fit beta distribution could be derived.
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Computationally intense Bayesian bootstrap simulations could then be replaced by simple
formulae for the hyper parameters of a beta distribution. Clearly, this is a highly relevant
area for future research related to this article.

The Bayesian bootstrap is by definition based on Dirichlet priors, but Monte Carlo sim-
ulation based on a different data model could be carried out and may generate different
results. The choice of hyper parameters clearly affects the final output distribution, but as
figure 4 indicates, the output class probabilities of a Bayes classifier are rather insensitive
to such changes, as long as fairly weak priors are used and as long as training data consists
of more than just a few cases. The prior used throughout this article typically has the bath
tub shape (its exact shape depends on the number of variables and the numbers of variable
values), but it may be argued that a better approach is to set the prior parameters so that the
prior distribution for the class probability is always uniform. This would however result in
a larger prior sample size, and a less data sensitive Bayes classifier.

7. Conclusions

The usefulness of case based uncertainty estimates for Bayes classifiers was demonstrated
on real world data. It was shown how detailed information about the posterior distributions
of the class probabilities may allow for better informed decisions and improve classification
under asymmetrical loss functions. Contrary to assumptions of previous models, Bayesian
bootstrap simulations indicate that the posterior class probability distributions of Bayes
classifiers are often far from normally distributed.
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