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The two articles of this licentiate thesis treat two different areas of prob-
ability theory and the theory of stochastic processes. I will in this short
introduction try to explain some background and the main results without
going into details.

1 Central limit theorems for Markov chains

Let us start with the first article that I have written together with Orjan
Stenflo. As implied by its title, it is about central limit theorems for con-
tractive Markov chains. In order to understand the meaning of all this we
start with a simple but interesting Markov chain {X,,} on R?. Let its start-
ing point be Xy = (0.5,0.5). In every step X,, will jump half-way towards
(0,0),(0,1) or (1,0) with equal probability. If we draw the points that the
chain visits, we will get a picture that looks like figure 1.

This set is called the Sierpinski triangle. The stationary distribution of
the chain will be the uniform distribution on this set.

Let us define three functions that describe the jumps of the chain:

wy(x1, 22) = (0.521,0.5x9) jump towards (0, 0)
wo(z1,x2) = (0.521,0.529 + 0.5) jump towards (0, 1)
ws(z1,3) = (0.521 + 0.5,0.529) jump towards (1,0)

We can now write X,, = wy, owy,_, 0---owp,(0.5,0.5) where I, I5, ... are

independent random variables equally distributed on {1,2, 3} that indicates
what type of jump X, makes in every step. It is actually possible to write any
Markov chain as such an “Iterated function system” (IFS), where {w;}icjo1
is a set of functions and the indices I;,... are independent and uniformly
distributed on [0,1]. This is no news for anyone who has ever simulated
a Markov chain with a given transition matrix. We call the Markov chain
contractive if all the functions {w;} are contractions, that is d(w;(z), w;(y)) <
d(z,y) for all i, where d(x,y) is the distance between z and y.

The functions {w;(z)} can be quite complicated as functions of x. It is
therefore sometimes easier to let the distribution of I,, depend on X,,_;. In
our example we could change the transition probabilities so that the chain
has a higher probability of jumping towards the closest corner. So the corner
are in some sense attracting the chain. If we let the chain jump towards the
closest corner with probability 0.8 and jump towards either of the other two
corners with equal probabilities 0.1 we get the picture of figure 2.

We can introduce functions {p;(z)} defined by p;(z) = P(l, = i|X,-1 =
x) describing the probabilities of the different jumps depending on what point



the chain is in at the moment.

0.8 ifzy <0.5and 22 <0.5
p1(9€1,332) =

0.1 else
( ) 0.8 ifxy >0.5
T, T) =
P2\®1, T2 0.1 else
( ) 0.8 if 29 > 0.5
xT1,To) =
Palt1, T2 0.1 else

A type of law of large numbers for Markov chains {X,,} says that if the
Markov chain has a unique stationary distribution, then
1 n
- Zf(Xk) — Ef(X) as.

k=1

where X has the stationary distribution and f is some real-valued function.
If you have a law of large numbers then you obviously ask if you also have
something similar to a central limit theorem. In our case we could want to
see if

1 n

1 n
T U~ BAX) or =370 = EF(X)

converge to Gaussian random variables. A stronger form of central limit
theorems are the so called functional central limit theorems. They describe
the convergence of not only the sum but all partial sums at the same time.

We consider
1 [nt]

— X)) — Ef(X

Tn kZ::l(f (Xk) — Ef(X))

where 0 <t < 1. Subject to some conditions this converges, considered as a
stochastic process in ¢, to a Brownian motion on [0, 1].

The main result of the article is conditions on f and {p;} that implies
functional central limit theorems. Loosely speaking the conditions are about
how continuous f and the p;’s have to be. If the p;’s are highly regular
then we can allow more “wild” f’s and vice versa. One can also state the
results with the rate of convergence towards the stationary distribution for
X,,. Often one consider chains that in a certain sense have “exponential” rate
of convergence, but our results also work with even slower convergence.
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Figure 1: The Sierpinski triangle drawn with the first 10000 points visited
by {X,} when it makes the jumps independent of location.
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Figure 2: The first 50000 points visited by {X,} when the corners are at-
tracting. Note that more points are included here compared to figure 1.



2 Inverse subordinators

The second article is about properties of a type processes that are called
inverse subordinators. In order to understand these processes and why one
would want to study them it is easiest to recall some facts about renewal
processes. The simplest description of a renewal process is that it gives the
number of light bulbs that have been changed at a given time, if one light
bulb is always on, one changes the light bulb immediately when it goes out
and all the life lengths of the light bulbs are independent and identically
distributed. We need not model the changing of light bulbs, but could of
course use the model for other components than light bulbs. The model can
obviously be used whenever one has reoccurring events (such as the changing
of a light bulb) after which the process always “renews” itself, i.e. the time
to the next event is independent of what has happened before and the times
between events are equally distributed.

If X1, Xy, ... are the life lengths of the light bulbs, the value of the renewal
process at time ¢ is given by N(¢) = min(n;>}_; Xx > t). An important
observation is that this is the inverse of the random walk S(n) = >;_; Xj.
See figures 3 and 4. If X; is given a certain distribution different from the
distribution of X5, X3,... the whole renewal process can become stationary.

From a modelling point of view it can be problematic that N(¢) is integer-
valued. One could want to have a process on the whole of R, but with some
renewal structure similar to renewal processes. The solution is the inverse
subordinators. To make the transition from integer-valued to truly real-

Figure 3: Renewal process.



Figure 4: Random walk—the inverse of the renewal process in figure 3.

valued we use the connection between renewal processes and random walks.
The inverse of a random walk in continuous time gives us precisely a real-
valued process. What is then a random walk in continuous time? It is a
process with independent increments over disjoint time intervals, and its in-
crements are homogeneous in the sense that increments over intervals of equal
length are equally distributed. Such processes are called Lévy processes. We
only consider random walks with positive increments so that there exists
an inverse. Increasing Lévy processes are called subordinators, and thus we
have at least explained the name inverse subordinators. Se figures 5 and 6
for examples of a subordinator and its inverse. It should be mentioned that
inverse subordinators not only arise due to modelling needs, but they also
appear in completely theoretical settings. The local time of a large class of
Markov processes are inverse subordinators for example.

What are then the properties of inverse subordinators? One nice property
is that if we round down the value of the inverse subordinator, we get a
renewal process. We actually get (scaled) renewal processes if we round
down to the closest n:th part or n-multiple as well. A large class of renewal
processes can thus be seen as approximations of an inverse subordinator.
A property of renewal processes is that the number of events in disjoint
time intervals are dependent (except when the times between events are
exponentially distributed). This means that the increments are dependent.
This is also the case for inverse subordinators. It is very difficult to obtain
explicit expressions for the joint distribution of the increments of renewal
processes and subordinators. Nevertheless an expression for joint moments



Figure 5: A subordinator with gamma increments. The distribution at 1 is
gamma(10,1)

Figure 6: Inverse subordinator—the inverse of the subordinator of figure 5.



of any order is known for renewal processes. We call E[X[] = E[X (X —
1) .-+ (X —n+1)] the factorial moment of order n. It just takes some algebra
to relate the factorial moments and the ordinary moments. If V(¢) = EN(t),
we can calculate the factorial moments of the increments over the disjoint
intervals (s;,t;],i =1,...,n with

J

EL:ﬁl(N(ti) - N(Si))[ki]] - ﬁk" C/

k
Videj — ;)

=1 =1

where k = k; + --- + k, and C is a particular subset of R*. This result is

interesting in itself, but it becomes even more interesting when we compare

it to the main result of the second article, the corresponding expression for

inverse subordinators 7(t)

n

E[H(T(tz) — T(sz))k] _ ﬁ ;! /

k
U(dw; — ;1)
=1

=1 =1 J

where U(t) = E7(t). Note that the only difference is that we have ordinary
moments here and not factorial.

How does one show such a result? One could possibly use the afore-
mentioned property that an inverse subordinator can be approximated with
scaled renewal processes. My proof instead uses previously known results
about a type processes called Cox processes. A Cox process is loosely speak-
ing an inhomogeneous Poisson process with a randomized intensity measure,
i.e. the expected number of points in any interval is given by a random mea-
sure. It is easily shown that the factorial moments of a Cox process equal
the ordinary moments of the random measure. The connection with inverse
subordinators is the following: If the (cumulative) intensity measure is given
by an inverse subordinator then the Cox process is also a renewal process.
In this case we can use the first expression to calculate the factorial mo-
ments of the process since it is a renewal process. But since it is a Cox
process these factorial moments equal the ordinary moments of the intensity
measure. Noting that U = V', we are done.

With this connection one can also show how to obtain a stationary version
of the inverse subordinator, and prove so called renewal theorems.

Beside the main result, the article also provides new proofs of known
expressions for the so called double Laplace transform of the marginal dis-
tribution of the inverse subordinators, and explicit expressions for U(t) for
some types of inverse subordinators.
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1. Introduction

Let (X, d) be a compact metric space, typically a closed and bounded subset of R or R?
with the Euclidean metric and let {wi}f\’: , be a family of (strict) contraction maps on X,
i.e. there exists a constant ¢ < 1 such that d(w;(x), w;(y)) < cd(x,y), for any x,y € X
and integer 1 < i < N. Such a system is called an iterated function system (IFS) (see [1]).
Hutchinson [12] and Barnsley and Demko [1] introduced these objects in order to describe
fractals. It is easy to see that there exists a unique compact set K that is invariant for the IFS
in the sense that K = | J/_, w;(K). The set K is called the fractal set, or attractor, associated
with the IFS. If the maps w; are non-degenerate and affine and the sets w; (K), 1 <i < N, are
‘essentially’ disjoint, then K will have the characteristic ‘self-similar’ property of a fractal.
The huge class of examples of fractals that can be described in this way includes the Sierpinski
gasket, Barnsley’s fern, the Cantor set and many, many others. Despite fractals being totally
deterministic objects, the simplest way of drawing pictures of fractals is often via Barnsley’s
‘random iteration algorithm’: attach probabilities, p;, to each map w; (3_; p; = 1). Choose
a starting point Zyp(x) := x € X. Choose a function, wy,, at random from the IFS, with
P(wy, = wy) = pr. Let Z1(x) = wy, (x). Next, independently, choose a function, wy,, in
the same manner and let Z,(x) = wy,(Z,(x)) = wy, o wy, (x). Repeat this ‘random iteration’
procedure inductively and define Z,(x) = w;, o wy,_, o --- o wy (x). The random sequence
{Z,(x)} forms a Markov chain with a unique stationary probability distribution, u, supported

on K. Since
n—1
Yico f(Zux) / fdu as.

n
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as n — oo, for any real-valued continuous function f on X, by Birkhoff’s ergodic theorem
(note that x can be chosen to be any fixed point by the contraction assumption), we will ‘draw
a picture of the attractor K’ by ‘plotting’ the orbit {Z,(x)}, possibly ignoring some of the
first points in order to reach the stationary regime. This algorithm will be an efficient way
of ‘drawing a picture of K’ provided the probabilities are chosen in such a way as to make
the stationary distribution as uniform as possible on K and the stationary state is reached
sufficiently fast. The choice of p; can sometimes be made by inspection, by searching for a
stationary distribution with the same dimension as K itself. The convergence rates towards
the stationary state are ‘heuristically justified” by central limit theorems (CLTs), where

1 n—1
%Z(f(zk(x» —/fdu)
k=0

converges in distribution to the normal distribution for f belonging to some suitably rich class
of real-valued functions on X, or by stronger forms of CLTs, the so-called invariance principles
or functional CLTs, where the stochastic process

[nt]—1

1
7 > (f(zk<x>)—ffdu>, 0<r<1 (1

k=0

converges in distribution to a Brownian motion. (Here [x] denotes the integer part of x.) Note
that expression (1) above is a function-valued random element. See [5] for details about the
concept of convergence in distribution for function-valued random elements.

The purpose of this paper is to study Markov chains generated by IFSs with place-
dependent probabilities. (Such Markov chains have also been studied under the name ‘random
systems with complete connections’, see [13].) We are given a set of contraction maps {w;},
with associated continuous functions p; = p;(x), where p; : X — (0, 1), with ), p;(x) =1,
for any x € X. The Markov chains are characterized by the transfer operator 7 defined for
real-valued measurable functions f on X by Tf(x) = >, pi(x) f(w;(x)). Intuitively, the
Markov chains considered are generated by fixing a starting point x and letting Zy(x) := x,
and inductively letting Z,,;;(x) := w;(Z,(x)) with probability p;(Z,(x)) forn > 0.

One motivation for studying such chains is that it gives more freedom when trying to
generate a ‘uniform’ stationary probability distribution on K. Such Markov chains also arise
naturally in the thermodynamic formalism of statistical mechanics. It is well known that they
do not necessarily possess a unique stationary distribution (see [4,6,20,26,27]), but with some
additional regularity conditions, uniqueness holds (see [11, 14,27,28]).

The operator T (without the normalizing condition ), p;(x) = 1) is known as the
Ruelle-Perron—Frobenius operator. Fan and Lau [10] proved a limit theorem for iterates
of the Ruelle—Perron—Frobenius operator under the Dini-continuity assumptions on the p;,
by lifting a similar result from Walters [29] on symbolic spaces. (Recall that p; is Dini-
continuous if fol(A »(1)/1) dt < oo, or equivalently 2210 A, (c") < oo, for some (and thus
al) 0 < ¢ < 1, where A, (1) := SUPy(x, )<t | pi(x) — pi(y)| is the modulus of uniform
continuity of p;). Uniqueness in stationary distributions still holds (in the normalized cases)
if the contraction assumptions of the w; are relaxed to ‘average contraction’ under the Dini-
continuity assumption (see [2, 17]) but information about rates of convergence in these ‘average
contractive’ cases seems to be unknown.

The Dini-condition is somewhat stronger than the weakest known conditions for
uniqueness in stationary probability distributions (in the normalized cases with strict
contraction maps), but weaker than, e.g., Holder-continuity.
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In the Dini-continuous cases it follows that the unique equilibrium measure will have the
Gibbs (approximation) property (see [10]). This property is of importance when analysing the
multidimensional spectra of measures.

In this paper we will prove the perhaps initially surprising fact (corollary 2) that
Markov chains generated by IFSs with Dini-continuous probabilities obey a CLT, despite
the well-known fact that such Markov chains do not typically converge with an exponential
rate. Our main result, theorem 1, expresses this in a natural generality.

CLTs/functional CLTs for iterated random functions under conditions that imply
exponential (or other rapid) rates of convergence have previously been proved in,
e.g., [3,15,16,22,30,31]. We discuss the connection between some of these results and our
results in remarks 4 and 6.

2. Preliminaries

Let B denote the Borel o-field generated by the metric d, and let P : X x B — [0, 1]
be a transition probability. That is, for each x € X, P(x, -) is a probability measure on (X, 5)
and for each A € B, P(-, A) is B-measurable. The transition probability generates a Markov
chain with transfer operator defined by 7' f (x) = f + f(M)P(x, dy) for real-valued measurable
functions f on X. A probability measure u is stationary for P if u(-) = f  Px, ) dp(x).

There are several ways of representing a Markov chain with a given transfer operator.
One common way is to find a measurable function w : X x [0, 1] — X, let {Ij};?o:, be a
sequence of independent random variables uniformly distributed in [0, 1], and consider the
random dynamical system defined by

Zy(x) :=wpowp  o---owp(x), n=l, Zo(x) == x,

n—1

for any x € X, where
ws(x) = w(x,s).

It is always possible to find such a representation, w, such that the transition probability
generated by {Z,} is P,i.e. Ef(Z,(x)) = T" f(x), for any x, n and f (see [19]).

For two fixed points x, y € X and x = (x, y) we can consider the Markov chain {Z,, (x)},
on X2, where Z,(x) := (Z,(x), Z,(¥)). When proving theorems based on contraction
conditions we are typically interested in representations that minimize d(Z,(x), Z,(y))
(in some average sense).

More generally, if W : X x [0, 1] — X?, is a measurable map and {/;}?2, is a sequence
of independent random variables uniformly distributed in [0, 1], we will consider the random
dynamical system defined by

Z,(x):=W, oW, o---oW,(x), n=lI, Zy(x) :==x, @)

where W,(x) = W(x,s), such that, for any x = (x,y) € X?, the Markov chain
Z,x) = (Z8(x), Z5(y)) on X? has marginals P"(x,-) = P(Z{"”(x) € -), and
P'(y,) = P(Z""(y) € -), for any n.

Thus {Z{"(x)} and {Z"(y)} denote two Markov chains on X, defined on the same
probability space, with the former starting at x € X and the latter starting at y € X, both with
transition probability P.

Let d,, be the Monge—Kantorovich metric defined by d,, (7, v) = sup( f fd(m—v);
f:X >R, |f(x) — f(y)] < d(x,y)Vx,y), for probability measures 7 and v on X. The
Monge—Kantorovich metric metrizes the topology of weak convergence on the set of probability
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measures on X (see [9]). It follows from the definitions that for any stationary probability
measure u, we have
dyy(P"(x, ), () < sup Ed(Z{ (x), Z5Y (). (3)
x,yeX

Therefore if sup, ,, Ed(Zf,X’y) x), Z,(,X’Y) (y)) = 0asn — oo, then there is a unique stationary
distribution for P.

We will sometimes drop the upper index, i.e. write Z, (x) instead of Z{"” (x) etc, when
we are not interested in the joint distribution of the pair (Z\" (x), Z{"” ().

The following proposition gives sufficient conditions for the existence of a CLT.

Proposition 1. Suppose there exists a unique stationary distribution | for P, and let f be
a real-valued measurable function on X with || f ||2L2 =[f 2du < oo. Suppose that for
some § > 0,

n—1
lim n~"2(logn)'™ sup EY | f(Z"(x)) = f(Z " ()| =0. @)
n— 00 x,yeX pard
Let
n—1
S5 = (f(Zi(x) — Ef (Zi(x))).
k=0
n—1
g“ZXXﬂ&@D—/fM)
k=0
and
B; (@) =Sj_’”', 0<r <1,
n
Sinr)
BX (1) = 0<r<1.

Vi
Then the limit
o1
o? = o?(f) := lim —E[(S/)?] ®))
n—-»oon
exists and is finite, where Z is a pu-distributed random variable, independent of {I j}j?ozl.
Furthermore, if B = {B(t) : 0 < t < 1} denotes the standard Brownian motion, then
B*S 0B 6)
and

B S 5B, @)

asn — oo, forany x € X, where 4 denotes convergence in distribution for random elements
taking values in the space of right-continuous functions on [0, 1] with left-hand limits equipped
with the Skorokhod topology.

Remark 1. Proposition 1 above is valid when (X, B) is a general measurable space.

Remark 2. General CLTs for Markov chains started at a point have been proved by Derriennic
and Lin [7]. Proposition 1 complements their result in cases of ‘uniform’ ergodicity. The proof
of proposition 1, given later, relies on a slightly stronger result by Peligrad and Utev [23] for
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Markov chains starting according to the unique stationary probability distribution. Theorems
about convergence, allowing Markov chains to start at a point, are important in the theory for
Markov chain—Monte Carlo methods.

Remark 3. In an earlier draft of this paper we proved a weaker (non-functional) form of the
CLT in proposition 1, where our result was based on a CLT by Maxwell and Woodroofe [21].
The recent paper by Peligrad and Utev [23], which was helpfully pointed out to us by a referee,
enabled us to state our CLT in the current functional CLT form.

Remark 4. Wu and Woodroofe considered general state spaces in [31]. The conditions in
their CLT (theorem 2) imply (4) in the case of a compact X. This can be seen as follows: their
proof of this theorem amounts to showing that Z;‘;O IT" f 2 < oo, for centred functions f.
Restricting X to be compact allows a strengthening of their lemma 3, so that its result holds
even when starting {Z;(x)} from a point. With some minor modifications to the proof, it is
possible to show that Y72 sup, | E|f(Z8 (x)) — £(Z8(y))] < oo. Thus the conditions
of our proposition 1 hold.

Checking the L? boundedness condition could be difficult if we have no a priori informa-
tion about the (possibly non-unique) stationary measures. The following corollary circumvents
these problems and might therefore be more directly applicable in our case when (X, d) is
compact.

Corollary 1. If
lim sup Ed(Z™(x), Z5(y)) =0, 8)

n— oo x.yeX
then there exists a unique stationary distribution p for P.
Let f be a real-valued continuous function on X. Suppose Ay : R* — R* is an
increasing concave function with Ag(t) > SUPy(x, y)<t | f(x) — f)|, for any t > 0 and
suppose, in addition to (8), that for some § > 0,

lim +/n(logn)'™* A < sup Ed(Z" (x), 2> (y))) =0 )
n—00 x,yeX
also holds, then the conclusions of proposition 1 hold for f, i.e. the limit (5) exists for f and
is finite and (6) and (7) hold.

Remark 5. The function A ; may thus be chosen to be the modulus of uniform continuity of
f in cases when this function is concave.

Remark 6. If sup, .y Ed(Z;"> (x), Z{*"(y)) ~ O(c"), for some constant ¢ < 1,
satisfied for instance the average-contractive IFSs with place-independent probabilities, then
it follows from corollary 1 that the CLT holds with respect to any f of modulus of
uniform continuity A s, of order A s(c") ~ o(1//n(log n)'*%). This condition is satisfied
by, e.g., Dini-continuous functions f. Corollary 1 thus strengthens theorem 2.4. of [3]
(who considered Lipschitz-continuous f). Wu and Shao [30] considered functions f
that are stochastically Dini-continuous with respect to the stationary distribution. (It
should be noted that [3] and [30] treated average contractive IFSs on more general metric
spaces.)

Proof (proposition 1). Let f € L?(u) be a real-valued measurable function on X
satisfying assumption (4).
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Since

n—1

ZTk<f—ffdu> 5

N fdu>
z (el
n—1
< an sup (T"f(x)— / .fdu)
T

>

nl

21
LZZX:n37

n=1

n=1 k

Il
=

—_

n

kf(x)—fT"fd/w)‘

=0

-
m
(9

~

o] 1 n—1
<D =5 sw [ Do (T =T F () ‘
a1 VT ayvex |15
00 1 n—1 .. .
=3 5 swp [EY (FZV ) = 2 0
n=1 n x,yeX k=0
oo 1 n—1 . "
<D sup EZ F@ZE00) = F@Z7 ()] < oo,
n=1 x,yeX

it follows fgom theorem 1.1 of [23] that o2 = lim,_, oo (1/n) E[ (SZ) ] exists and is finite,
and B/ 5 o B, where Z is a p-distributed random variable, independent of {I; }°°
By Chebyshev’s inequality,

P ( sup |BXH(t) — BEM(t)| > e)

0<r<1

Z(f(Z(" 20) = £ (2))| =

FZEP @) — F(Z282(2)| = €

m—1
1
<P (— max
\/_0<m\n =

n—1

<P in FZE200) = F(Z257(2)) >e>
k=0

1 n—1

<—=EY |f(ZXP ) - £(Z257(2))

€E/Nn 0

_ Z(JC ,y) Z(X ,y) 0

efxyex f( ) — £Z5V ()| =

as n — oo. By theorem 4.1 in [5], By" < &B.
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The difference between S and Si* lies in how the summands are centred. The difference
is negligible in the limit:

m—1

Sup B ()~ Bi(1)| = max —n kZ; (Ef(zk(x»— / fdu)‘
1 m—1
< 77 ,max E ,Z:(; (f(zkm)— / f(Zk(y))du(y)>‘
<Ly (Z())—/f(Z( ) du(y)
Nt~ f(Zi(x k() du(y
<L 55| s - st ”(y))‘ -0,
n x,yex k=0

as n — oo. Thus also B} S oB. O

Proof (corollary 1). The first part of the corollary follows from (3) above.
For the proof of the second part of corollary 1, first note that by assumption (9),

1
A - Ed Z(X’y) , Z(X’Y) ~ _ ),
f (x?;.lepx ( n (x) n (Y)) o ﬁ(logn)lﬁs

implying that

n—1
ZAf(sup Ed(Z{"™ (x), Z"‘”(y))) <i>

k=0 x,yeX (log”)Hs

(To see this, note that the derivative F'(t) of F(t) = +/t/(logt)'*? satisfies F'(t) >

1/(3+/t(log1)'*?), for large ¢.)
Thus,

n—1

hm n 1/z(logn)”’SZAf sup Ed(Z(x M (x), Z(X ”(y))
k=0 x,yeX

Since by the definition of A ; and Jensen’s inequality,

Ay ( sup Ed(Z,ix'”(x),2,5”)@))) > sup Af(EA(ZS(x), 28 ()
x,yeX x,yeX

> sup EAf(d(Z5 (), Z85 ()

x,yeX
> sup E|f(Z5V(x) — F(Z5Y ()]
x,yeX

and

n—1 n—1

> sup EIF(Z (0) = £ (9))] Zsup EZ|f(Z‘* ) = FEZY O,

k= OxyGX x,yeX



1962 A N Lagerés and Orjan Stenflo

we see that an application of proposition 1 completes the proof of the second part of
corollary 1. O

3. Main results

Theorem 1. Let W : X2 x [0,1] — X? be a measurable map such that for any fixed
(x,y) € X2 the map W(x,y,-) = (WEI(x), W& () (-) defines random variables with
P(WOM(x) € ) = P(x,-) and P(W¥Y(y) € -) = P(y, -), where P denotes the uniform
probability measure on the Borel subsets of [0, 1].

Let A : [0, 00) — [0, 1), be an increasing function with A(0) = 0. Suppose there exists
a constant ¢ < 1, such that

PAW (x), WD (y)) < ed(x, y)) = 1 — Add(x, y)), (10)

for any two points x, y € X.
Then

(i) (Distributional stability theorem)
dy(P"(x, ), u()) < sup Ed(Z""(x), Z&Y () < ED,, (11)

x,yeX
for any stationary probability distribution u, where D,, is a homogeneous Markov chain with
Dy = diam(X) := sup, d(x,y),

P(Dpyy =ct | Dy =1) =1— A1)

and
P(Dy =diam(X) | D, =1) = A1),

for any 0 < t < diam(X).
If

oo n
> oTTa - Alh)) = o, (12)
n=1 k=1
then ED,, — 0 and thus by corollary 1 there is a unique stationary distribution, (L.
(ii) (Central limit theorem)
I3, A(cF) < oo, then the conclusions of proposition 1 hold for any Hélder-continuous

. . 1
Junction f with exponent a0 > 5.

Proof (theorem 1(i)). Fix two points x and y in X. Define Z\"" (x) = x, Z{"" (y) = y and
inductively

(x,y) @x,y)

Zl(lx,y)(x) — W(Z"*‘ x),Z,"1 (}'))(Zr(l’i{) (x))

and . y) (x,y)
2,5V (.2, .
Z{Y () = WA AT O (220 (),

asin (2). Then Z{"” (x) and Z{"” (y) are random variables such that Ef (Z{"” (x)) = T" f (x)
and Ef(Z;"" (y)) = T" f (y), for any n.
We have from assumption (10) that

P(d(ZSY (x), Z5 (y) < et | d(Z8Y (x), 257 () < 1)

n—1 n—1

2 1—=A@)=P(D, =ct |D, =1),
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for any t+ € {c*diam(X Ve, (Note that D, takes values in the discrete state space
{ckdiam(X)},fio.)

D, is therefore stochastically larger than d (Z\" (x), Z{"”(v)), and consequently E D, >
Ed(Z (x), Z8(y)), for any x, y € X. The other inequality of (11) follows from (3).

Since {D,} is a non-ergodic Markov chain under condition (12) (see [24], p 80), it follows
that ED, — 0 as n — 00, if (12) holds, and we have thus proved theorem 1(i).

In order to prove theorem 1(ii), we first observe that it is well known that Z,fio A(c®) < o0
implies that D, is transient (see [24], p 80). Therefore (see [25], p 575), Z,‘:O:O P(D, =
diam(X)) < oo and it follows that

o) ook
Z ED; = Z chdiam(X)P(Dk = ¢/diam(X))
k=0 k=0 j=0
oo k
<diam(X) Y > "¢/ P(Dy_; = diam(X))
k=0 j=0
diam(X)

Z P(D; = diam(X)) < oo.

1—c¢
k=0

By stochastic monotonicity E Dy is decreasing, and thus > ;_, EDy > nE D, for any n. This
implies that ED,, < ¢o/n, for ¢ := Y ;o E Dy.

Thus sup, Ed(ZS (x), Z8¥(y)) < co/n, forany n > 1. If f is a Holder-continuous
function on X, with modulus of uniform continuity Ay satisfying A ¢(t) < cit*, for some
constants ¢y and o > %, and any ¢ > 0, it follows that for any § > O,

lim /n(logn)'* A/ ( sup Ed(Z"(x), 2> (y))>

x,yeX
< lim /n(logn)'*c, (C—O) =0.
n— 00 n

An application of corollary 1 now completes the proof of theorem 1(ii). (|

4. TFSs with place-dependent probabilities

Let {w;}72, be a set of strictly contracting maps, i.e. there exist a constant ¢ < 1 such that
d(w;(x), w;(y) < cd(x,y), forany x, y € X and any integer i. Let {p; (x)}{2, be associated
place-dependent probabilities, i.e. non-negative continuous functions, with ), p;(x) = 1,
for any x € X. This system defines a Markov chain with transfer operator defined by
Tf(x)= Zﬁl pi (x) f (w; (x)), for real-valued measurable functions f on X.

Let

1 o0 o0
A@) =~ su Ipi(x) — pi(y)| =1— inf min(p; (x), p; () (13)
2d<x,yl))<,; p piy d(m)@; pi(x). pi(y

and let for any two points x, y € X, W& (x) and W) (y) be random variables defined by

P(W (x) = w; (x), W (y) = w; () = min(p; (x), p; () (14)
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and
P(WE (x) = w;(x), WHY(y) = w;(y))

_ (pi(x) —min(p;(x), pi(y)))(p;(y) —min(p;(x), p;(y)))
- 1= 30 min(pe(x), pe(y))
when i # j. (If p;(x) = p;(y), V i, then we understand the expression in (15) as zero.)
It is straightforward to check that by construction P(W®Y (x) = w;(x)) = p;(x), and
P(WE(y) = w;(y)) = p;(y) foranyi and ;.
It follows from (14) that

; 15)

Pd(WS (x), WD ()  ed(x,y)) = Y min(pi(x). p;(y) > 1 — Ad(x, y)).
i=1

and we may therefore apply theorem 1 to obtain the following.

Corollary 2. Let {w;}2, be an IFSwith strictly contractive maps, and let { p;(x)} be associated
place-dependent probabilities. Then the conclusions of theorem 1 hold with A defined as
in (13) above.

Let us illustrate the above corollary with an example.
Example 1. Let w; and w, be two maps from [0, 1] into itself defined by
wi(x) = px and wy(x) = px + (1 = f),

where 0 < B < 1 is a constant parameter. Consider the Markov chain with transfer operator
T : C([0, 1]) — C([0, 1]) defined by

Tf(x) = p)fwi(x)+{A—px)fw(x)), f e (0, 1)),

where p : [0,1] — (0, 1), is a continuous function with modulus of uniform continuity
A=A,

The case when p(x) = 1 and B = 1, where the uniform distribution on [0, 1] is the unique
stationary distribution, and the case when p(x) = % and 8 = %, where the uniform distribution
on the (middle third) Cantor setis the unique stationary distribution, are two important particular
cases of this model.

For general p, Markov chains of this form always possess a stationary probability
distribution, but they may possess more than one stationary probability distribution (see [26]).

From theorem 1 it follows that the distribution will be unique (for any fixed value of the
parameter ) provided (12) holds, and this theorem also enables us to quantify the rate of
convergence as a function of the modulus of uniform continuity of p. It also follows that this
Markov chain will obey the functional CLT (6) and (7) for Holder-continuous functions f
with exponent o > % provided p is Dini-continuous. Observe that our conditions are only
sufficient. It is an interesting open problem to try to find critical smoothness properties of p
to ensure a unique stationary measure and a CLT.

Remark 7. If X = {1, ...,N}N and for two elements x = xpx;...and y = ypy;... in
X, we define d(x,y) := 2~ mnk20x#%0 if x £ y and d(x,y) = 0if x = vy, then
(X, d) is a compact metric space. Let g be a continuous function from X to (0, 1], such
that Ziﬁ:l g(xoxy...) = 1 forall x;x,... € X. g describes an IFS with place-dependent
probabilities: {(X, d), w;(x), pi(x),i € {1,..., N}}, where w; (x) = ix and p;(x) = g(ix),
and corollary 2 applies. This generalizes theorem 1 in [28] and also implies a CLT for the
associated Markov chains under the ‘summable variations’ condition used in [8] or [29].
Stationary probability measures for such Markov chains are sometimes called g-measures, a
concept coined by Keane [18].
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A RENEWAL PROCESS TYPE EXPRESSION FOR THE MO-
MENTS OF INVERSE SUBORDINATORS

ANDREAS NORDVALL LAGERAS,* Stockholm University

Abstract

We define an inverse subordinator as the passage times of a subordinator to
increasing levels. It has previously been noted that such processes have many
similarities with renewal processes. Here we present an expression for the joint
moments of the increments of an inverse subordinator. This is an analogue of
a result for renewal processes. The main tool is a theorem on the processes
which are both renewal processes and Cox processes.
Keywords: Subordinator; Passage time; Renewal theory; Cox process; Local
time
AMS 2000 Subject Classification: Primary 60K05

Secondary 60G51; 60G55; 60E07

1. Introduction

Subordinators are non-decreasing processes with independent and stationary incre-
ments. The corresponding processes in discrete time are the partial-sum processes
with positive, independent and identically distributed summands. Renewal processes
can be considered to be passage times of partial-sum processes to increasing levels.
Analogously we can define a process by the passage times of a subordinator. We call
such a process an inverse subordinator.

The inverse subordinators appear in diverse areas of probability theory: As Bertoin
[2] notes, the local times of a large class of well-behaved Markov processes are really
inverse subordinators, and any inverse subordinator is the local time of some Markov
process. It is well known, see Karatzas and Shreve [9], that the local time of the

Brownian motion is the inverse of a 1/2-stable subordinator. Inverses of a-stable

* Postal address: Department of Mathematics, Stockholm University, SE-10691 Stockholm, Sweden

Email address: andreas@math.su.se
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subordinators with 0 < « < 1 arise as limiting processes of occupation times of
Markov processes, see Bingham [4]. Some recent applications of inverse subordinators
in stochastic models can be found in [8], [11] and [14]. Kaj and Martin-Lof [8] consider
superposition and scaling of inverse subordinators with applications in queueing theory,
Kozlova and Salminen [11] uses diffusion local time as input in a so-called storage

process and Winkel [14] uses inverse subordinators in financial modeling.

In this paper we study some general distributional properties of inverse subordi-
nators, using renewal theory and some theory about Cox processes. In particular we
find an expression for the joint moments of their increments. Other results for inverse
subordinators analogous to those in renewal theory has been proved by Bertoin, van

Harn and Steutel, see [3] and [7].

Some well-known results on subordinators and infinitely divisible distributions on
the positive real line are given in section 2 of this paper. Section 3 introduces the
inverse subordinators and hints that they may have properties similar to the renewal
processes. In section 4 the main result is given: An expression for the joint moments
of the increments of an inverse subordinator. This is proved using a representation
of the class of point processes that are both Cox processes and renewal processes.
With this representation one can also give an alternative proof of the fact that inverse
subordinators can be delayed to be given stationary increments, see [7]. We also provide
a bound of the upper tail of the marginal distribution of an inverse subordinator.

Finally, section 5 exemplifies the results with three types of inverse subordinators.

2. Some basic facts about subordinators

The following results on infinitely divisible distributions and Lévy processes can be
found in [13]. Let {Y;} be a Lévy process, i.e. a stochastic process in continuous
time with Yy = 0 and stationary and independent increments. The distribution F' of
Y1 is necessarily infinitely divisible, i.e. for all n € N there is a distribution F,, such
that F}™ = F. Here F}™" is the n-fold convolution of F,,. The converse is also true:
Given an infinitely divisible distribution F there is a Lévy process {Y;} such that the
distribution of Y; is F. Define F*! for positive, non-integer ¢ by F*!(z) = P(Y; < z).
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One recognizes that F,, = F*'/",

If one restricts F' to be a distribution on Ry then the increments of {Y;} are all
non-negative. Lévy processes with non-negative increments are called subordinators.
It is well known that the Laplace-Stieltjes transform of F*!, where F is an infinitely

divisible distribution on R4, can be written
Fi(u) = / e W FH (da) = e = F(u),
0
where 1 (u) is called the Lévy exponent. It can be written in the following form

vl =dut [ (1= e ),

where 6 > 0 is called the drift and v(dz) is called the Lévy measure. If Y] has drift 6
then Y3 — 4 has drift 0. If [;° v(dz) < oo then {Y;} is a compound Poisson process,
with drift if § > 0, and thus only makes a finite number of jumps in any finite interval.
We call a function 7 the Lévy density if v(A) = [, m(z)dx. If we define p = E[V1],
then =6+ [~ av(dx). Since ¢'(u) =6+ [;° e"“*zv(dx), we have

’'(0) = p and ' (u) \, d as u /" 0. (1)

Some parts of the reasoning in the following sections do not apply to compound Poisson
processes without drift. Therefore we will henceforth, albeit somewhat artificially,

exclude the compound Poisson processes without drift when referring to subordinators.

3. Inverse subordinators and renewal processes

It is advantageous to recall some results on renewal processes before a more thorough
study of subordinators and their inverses. Let X5, X3, ... be a sequence of independent,
and identically distributed (strictly) positive random variables with distribution F,
and X, a positive random variable with distribution H, independent of X5, X3,....
Let So = 0 and S, = Y ;_; X, and we call {S,,} a partial-sum process. Given a
partial-sum process we define the renewal process with interarrival distribution F' by
Ny =min(n € N: S, > t) — 1. The —1 in the definition comes from the fact that we
do not want to count the renewal at the origin, as is sometimes done. If F' = H then

{N;} is called an ordinary renewal process.
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It is well known that {NV;} has stationary increments if and only if H(z) = i Jya—-

F(y))dy, where p = E[X5] = [;°(1— F(z))dz, and p necessarily is finite, see [5]. Then

one also has

We note, as in [3], that subordinators are continuous time analogues of partial-sum
processes. A Lévy process sampled at equidistant time points does produce a partial-
sum process with infinitely divisible F', e.g. Y,, = >-7_,(Ys — Yix—1), when the time
points are the integers. As the renewal processes are integer valued inverses to partial-
sum processes, an inverse of a subordinator could be expected to have some properties
similar to renewal processes. Given a subordinator {Y;}, we define 7 = inf(7 > 0 :

Y; > t), and call the process {7 };>0 the inverse subordinator.

The properties of the paths of {r;} differ depending on {Y;}. Let us first consider a
compound Poisson process {Y;} with drift § > 0. Since a jump in {Y;} corresponds to
a flat period in its inverse, {7} alternates between linear increasing with slope § for
exponential periods of time and being constant for periods of time with lengths drawn
from the compounding distribution, with all these periods having independent lengths.
It is more tricky when {Y;} is not compound Poisson and the drift is zero. Due to the
fact that {Y;} in this case makes an infinite number of jumps in any finite interval, the

trajectories of {74} are continuous singular almost surely.

Now we will show that {7} can be arbitrarily closely approximated by a scaled
renewal process. For any ¢ > 0, let {Y,°} be defined by Y;® = Y} /.. Note that {Y°} is

a subordinator with Y¢ ~ F*/¢. Also define the renewal process Nf = min(n € N :
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Y? >t)—1. Since

cry =cinf(r >0:Y, > t)
=inf(cr > 0:Y; > 1)
=inf(1 >0:Y, ). >1)
=inf(r >0:YS >1)
>min(n e N:Yy7 >1t)—1
>inf(r>0: Y >t) -1

:C’Tt—].,

7 = LNf + 7y, where 0 <7y < %a

c
and the approximation becomes arbitrarily good as ¢ — oo. This result suggests that
the inverse subordinators may have some properties similar to renewal processes. That
this is in fact true will be shown in the following section.

An important function in the theory of renewal processes is the so called renewal
function V() = E[N;]. We note that for an ordinary renewal process V (t) = > 7o | F*k(¢),
and for a stationary renewal process V(t) = ﬁ If there is a function v such that
V) = fg v(s)ds, then v is called the renewal density. If the renewal process would
have been defined to also count the renewal at the origin, then the renewal function
would be V(¢)4+1. One can also define a renewal function for the inverse subordinator.
Given an inverse subordinator {7;}, we define its renewal function U by U(t) = E[r].

The renewal function can be expressed as follows:

U(t) = Elr] = /000 P(ry > z)dr = /000 P(Y, <t)dx = /000 F**(t)dx

The expression on the right hand side might be hard to evaluate, but its Laplace-

Stieltjes transform is easily calculated:

Us) = / et / F**(dt)dx = / F(s)*dx
0 0 0
& 1

7 o) gy —
/0 =56 @)

Thus there is a one-to-one correspondence between the renewal function and the

distribution of {7¢}. This also correlates with the similar result for ordinary renewal
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processes and their renewal functions. Define the factorial power nl¥l for n, k € N by:
nn—1)---(n—k+1) forn>k>1
1 for k=0

0 forn <k, k> 1.

Given a renewal process and its renewal function, moments of all orders can be calcu-

lated as stated in the following proposition, see [5].

Proposition 1. Let {N:} be a renewal process with interarrival distribution F and let
V(t) =Y e, F**(t). If {N:} is an ordinary renewal process then, for 0 < sy < t; <
S9 < -+ <ty and ky,...,k, € N\ {0} such that k1 +---+ k, =k,

n

E[H(Nti —Ns,)““ﬂ] = Hk' / ﬁvwxj —xj-1), (5)
i=1 o J=1

=1
where C = {xg,...,Tr;00 = 0,8 < Thopooth; 141 < "+ < Thotootl; < Lyl =

1,...,n,kg = 0}. If {N:} is stationary, then the proposition also holds with the first

dxq

factor of the rightmost product in equation (5) replaced by S

A sketch of a proof: We can write Ny — N; = f(s 9 N(dx) and

k

tF j=1
Note that n* is the number of k-tuples of integers from 1 to n, and n!*! is the number
of k-tuples of integers such that no integers in the k-tuple are the same. Thus we can

write
k

(N; — N,)I¥! :/ [ ~N(dz)),
AL
where A = {(z1...21) € (s,t]%; 3, # 2, for p # q}. The renewal property is used in

the following:

k
E[H N(dxj)} = P(N(dzy) =1,..., N(day) = 1)
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and the first factor equals V(dz(;)) and ‘T“) in the ordinary and stationary case,
respectively. Let A, = {(vi1,-..,Vik;) € (s,, til*yip # yig forp # ¢} and B; =
{(Wits -3 Yiky )5 8 < Yi1 < -+ < Yik, < t;}. Thus, in the ordinary case,

n

E[TI(V., = . H/ HN dyi)|

i=1 Aij=1

4. Inverse subordinators and Cox processes

An expression similar to (5) for the moments of {7;} can be obtained. First recall
the definition of a Cox process. Let { N} be an inhomogeneous Poisson process on R
with intensity measure A. Let A be a random measure on R . If the point process { M}
has the distribution of { N} conditional on A = X, then {M,} is called a Cox process
directed by A. Note that if {]\7}} is a Poisson process with constant intensity equal
to one and independent of A, then M, < N(A((0,1))), and {M,} can be considered to
be a homogeneous Poisson process subjected to a random time change by the random
function A((0,¢]). The interpretation of the Cox process as a time changed Poisson
process also describes how the points of the Cox process can be obtained from the
points of the Poisson process: If we let K(t) be the inverse of A((0,t]) and t1,ts,. ..
are the points of {N;}, then K(t1), K(t), ... are the points of {M,}.

Also define a slight generalization of the inverse subordinators: Let Y, have the
distribution G on Ry and be independent of the subordinator {Y;} with Y; ~ F.
Define the process {}7}} by }N’t =Y, + }70. Let 74 = inf(7 > 0 : }N/T > t), and call the
process {7; }:>0 a general inverse subordinator. If Y, = 0 then we call {7¢} an ordinary
inverse subordinator.

We will see in Proposition 4 that Yy can be chosen so that the general inverse
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subordinator {7;} has stationary increments, if y = FE[Y;] < oco. The following

proposition is by Kingman [10] and Grandell [6].

Proposition 2. The Cox process {M;} directed by A is a renewal process if and only

if A((s,t]) =7 — 75 for allt > s, where {1} is a general inverse subordinator.

We will only prove the easier if-part of the proposition. Only that part will be used in

theorem 1.

Proof. We note that Y; is the inverse of A((0,#]) = 7. If we use the representation
of {M,} as a time changed Poisson process {N;} with intensity one, then the points
of {My} are Y(t1),Y (t3),..., where t1,ts,... are the points of {N;}. Since {¥;} is
a subordinator, Y (t1),Y (t2) — Y (t1), Y (ts) — Y(t3),... are independent and Y (t5) —

Y (t1),Y (t3) — Y(t2),... are furthermore equally distributed. Thus {M;} is a renewal

process.

We can say more about the interarrival distribution of {M;}. Let Z = Y (t2) — Y (1) =
Y (t2) — Y (t1), and let € ~ Exp(1), independent of {Y;}. Z =Y (t2) — Y(t1) 4 Y(ty —
t1) 4 Y (g), so the interarrival distribution of {M;} is thus compound exponential. The

Laplace-Stieltjes transform of the distribution of Z is given by

Fz(s) = Ele™*?] = E[E[e*Y ©)|¢]] = E[e )] = 1

TN

where t(s) is the Lévy exponent of Y;. We now have the tools to prove the main

result:

Theorem 1. Let {1} be an ordinary inverse subordinator with renewal function U(t).
Then, for0<s; <t; < sy < - <ty andky,..., k, € N\{0} such that ky+---+k, =
k,

J

E[H(Tti - Tsi)ki} = ﬁkﬂ /
= C

i=1 =1

k
Uldz; — 25-1) (7)

where C is as in Proposition 1. If {7} is stationary, then the theorem also holds with

the change that the first factor of the rightmost product in equation (7) is replaced by

%, but with the same U in the remaining factors as the ordinary inverse subordinator.



A renewal type expression for the moments of inverse subordinators 9

Proof. Define the random measure A on Ry by A((s,t]) =7 — 75 forall t > s € Ry,
and let {M;} be the Cox process directed by A. By Proposition 2, {M,;} is also a

renewal process. Write V' (t) for its renewal function. Then
V(t) = E[Mi] = E[E[M;|n]] = E[ne] = U(). (8)

Thus one can replace V(t) by U(t) in (5) when calculating the factorial moments of
{M.}. As noted in [5], the factorial moments of the Cox process coincide with the
ordinary moments of its directing measure, and by the construction of the directing

measure the stated result follows.
A renewal theorem for the inverse subordinators can also be given following Bertoin
[2], Theorem I1.21.

Proposition 3. If p < oo, then U(t) ~ ﬁ as t — oo.

Proof. Let {M;} be a Cox process directed by {7} as in Proposition 2, and V(¥)
its renewal function. By (8), V(t) = U(t). An application of the renewal theorem for

renewal processes, see [5], provides the desired result.

Similar to renewal processes, the inverse subordinators can be delayed to become
stationary. This has been proved by different methods in [7] and [8]. We state the

result and provide a proof based on the connection with Cox processes.

Proposition 4. Let {ri} be a general inverse subordinator with }70 ~ G and Y7 =

Y1 — Yy ~ F and p = E[Y1] < oo, where
¥(s) = —log F(s) = 8s —|—/ (1 —e*")v(dz) and
0

i (6 +fy fyoo V(dz)dy) forxz >0

0 for x < 0.

G(z) =

Then {7:} has stationary increments.

Proof. By Theorem 1.4 in [6], a Cox process is stationary if and only if its directing
measure A has stationary increments. Therefore it suffices to check that the Cox
process {M;} directed by {7;} is stationary. Its interarrival distribution is F given by

(6). The X; of {M;} can be decomposed into X 4 170—|—Z, with Y, and Z independent,
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since the inverse subordinator is delayed a time )70 during which it is constant equal to
0. The Laplace-Stieltjes transform of the distribution H of X; is ﬁ(s) = @(s)ﬁz(s),

where

-4 oo [Con)ar= ([ ')
¥(s)

L <5+/Ow(1—e_sy)y(dy)> _ ¥) (10)

T s s
Combining (6) and (10), we get
As) = Ge)Fss) = 281 L By

s 100 s
By (3), X; thus has the right distribution to make {M;} stationary.

Let W} be the excess of the renewal process and Cox process {M;}, i.e. the time from
t to the next point of the process. When {M;} is stationary, W; 4 X1 4 Yo + Z. The
decomposition of the excess can be given the following interpretation: From any given
time t the inverse subordinator will remain constant a period which has the distribution
G. During this time no points in the Cox process will occur. After that time the inverse
subordinator starts anew and the distribution to the next point in the point process is
given by Fz. In the stationary case, we do not have to know G explicitly to calculate

E[Yq), if we use (2): E[X1] = 221 E[X,] = E[Yo] + EZ, and by straightforward

2E(Z)
calculation, using e.g. (6), F[Z] = E[Y;1] and E[Z?] = Var(Y1) + 2E[Y;1]?. Collecting
and rearranging yields E [YO] V;g(;?).

The expression (7) may be hard to use in practice to calculate higher joint moments.
Nonetheless the results above show that the covariance of two increments of a stationary
inverse subordinator is a simple expression in the renewal function. Let {rz} be
stationary and let U(t) denote the renewal function of the corresponding ordinary

inverse subordinator. Also let 0 < r < s < t.

Cov(rr, 7t — 75) = E[r(1 — 75)] — E[r| E[1e — 7]
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Now consider the particular case where r = 1,s =n >1and t =n+ 1 and U has a
density u, such that U(t) = fg u(s)ds. Also assume, for simplicity, that ¢ = 1. Then

the following approximation can be done:

Cov(r1, Toss — ) = / (U(n+1—y)—U(n—y))dy — 1 u(n) - 1.

Given the distribution of the subordinator {Y;}, the distribution of its inverse is
given by P(r: < x) = P(Y, > t). It may still be hard to find a closed form expression
of this distribution function. The tail probabilities for the ordinary inverse subordinator
can nonetheless be estimated. Only the case 6 = 0 is interesting since if the drift § is
positive then {Y,, — dz} is non-negative and thus P(Y, <t¢) = P(Y, —dz <t—0dx) =0
for x > %. Let s > 0. Then we have that

E —sY,
P(ry > a) = P(Y, <t) = Ple™™* > ) < 7[6_% L _ gotmrvto),
=

By (1) the last expression has unique minimum as a function of s. If x is large enough
(z > ﬁ), the s that minimizes the expression is non-zero and given by s = ¢/~ 1(%),

where 1'~! is the inverse of ¢’. Thus, for large enough z,

P(r > x) <exp (107 (}) — 2v(0' (1)) - (11)

There is another result on the marginal distribution of {7;} that deserves mentioning.
This result can be found in [8] and [12], but we give a short proof based on identifying

Laplace transforms as probabilities.
Proposition 5. Let ¢, be exponentially distributed with mean % and independent of
{m:}. Then the Laplace-Stieltjes transform of the distribution of 7(es) is given by:

u+t(s)’

where a(s) is the Laplace-Stieltjes transform of the distribution of )70.

E[e—ur(as)] =1—

Proof. Let €, be exponentially distributed with mean % and independent of &g

and {73}. We note that for a non-negative random variable X independent of &,,
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P(E, > X) = E[P(E, > X|X)] = Ele”*¥], the Laplace-Stieltjes transform of the

distribution of X. Thus we have, in the ordinary case,

Ele7TE)] = P(E, > 7(es)) = P(Y(8,) > e5) =1 — P, > Y (&,))

=1 — E[e*sY(gu)] =1 E[E[est(gungu]] =1— E[e*d’(s)ﬁu]
u

AL

Likewise, in the general case,

Ele )] =1 P(e, > Y(2,))

=1—Ples > Y(&y)|es > Yo)P(es > Yp)
=1-—Ples >Y(g,))P(es > Yp)
o ua(s)

u+¢(s)’

where we have used the memorylessness of the exponential distribution.

5. Examples

The a-stable distribution on R, has Lévy exponent t(s) = s® with 0 < o < 1.
This gives a renewal density u(t) = 1/(I'(a)t!~%) for the corresponding inverse stable
subordinator by inverting (4). Theorem 1 thus confirms the moment expressions in [4],
e.g. equation (18).

The main obstacle to use Theorem 1 is the possible difficulties in finding an expres-
sion for the renewal function. It is possible to find the renewal density not only for
the inverse stable subordinator, but also for the inverses of subordinators with inverse
gaussian and gamma distributed increments. In these two cases it is also possible to
delay the processes to obtain stationary versions, which is not possible in the stable

case.

For the inverse gaussian distribution, with probability density

) 1 (42 9
flz) = exp 57—5 ;—kvm ,6>0,v>0,

2mas
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and Lévy exponent and Lévy density, respectively,

P(s) =52 + 25 — by
m(x) = Lex (—7296)
- V2ma3 P 2 )’
s

we get, by (9), a probability density of the delay Y, by integrating (p=9'(0)=2)

0= 4 st =B () o )

Here erfc is the complementary error function defined by erfc(t) = % [ exp(—s?)ds.
We note that the density does not depend on the parameter §. One obtains the renewal
density u(t) from its Laplace transform, which is equivalent to the Laplace-Stieltjes

transform of U(t), by rewriting (4):

1
C(s)  5y\/42 + 25— &y
e BN S
205 §\/72+ 25  205\/7% +2s

= {by [1] (29.3.1), (29.3.11) and (29.3.44)}

1 vt ol \/7
+ 5ot exp <2) — 2—5erfc <fy 5

u(t) =

=2

The estimate (11) gives

5242 2
P(r: > x) < exp (— ; + 0yx — 72) .

For the gamma distribution we have probability density, Lévy exponent and Lévy

density:
flx) = F()Z:) e > 0,0 >0
s
Y(s) =vlog (1 + E)
v
m(x) = ;e_o‘z

so, by (9), the density of the delay is

g(t) = aEq(at),
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where E; the exponential integral defined by Ey(t) = [ exp(—s)%. As in the inverse
gaussian case the density only depends on one parameter. The renewal density is also

in the gamma case most easily obtained by first rewriting (4):

1

viog(l+£)
1 u
=2 (1 + i) du
0

U(s) =

Vs o

a /1 1 1 N 1 1 p
_a z L u
viJo \s(1+2)7v  a(l4 2)-u

= {by [1], (29.3.11), (29.2.6) and (6.5.2)}

u(t) =2 [ ((wat) + (o e

where y(u,t) = [o

0 s%~le=%ds is the incomplete gamma function. We also have a tail

estimate by (11):

v at vx
P(r > z) <exp (1/33 —at —zvlog 7) = () err—at.
at vx

Acknowledgements

I am grateful to Jan Grandell for discussing Cox processes and renewal processes
with me, and also to Thomas Hoéglund for careful reading of an earlier draft of this paper
and pointing out some errors. I also thank the anonymous referee, whose suggestions

helped to improve the article.

References

[1] ABRAMOWITZ, M. AND STEGUN, I. A., Eds. (1992). Handbook of Mathematical
Functions with Formulas, Graphs, and Mathematical Tables. Dover Publications

Inc., New York.
(2] BERTOIN, J. (1996). Lévy Processes. Cambridge University Press, Cambridge.

[3] BERTOIN, J. AND VAN HARN, K. AND STEUTEL, F. W. (1999). Renewal theory

and level passage by subordinators. Statist. Probab. Lett. 45, 65—69.



A renewal type expression for the moments of inverse subordinators 15

(4]

[10]

[11]

BiNngHAM, N. H. (1971). Limit theorems for occupation times of Markov

processes. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 17, 1-22.

DALEY, D. J. AND VERE-JONES, D. (2003). An Introduction to the Theory of
Point Processes, vol. 1, 2:nd ed. Springer-Verlag, New York.

GRANDELL, J. (1976). Doubly Stochastic Poisson Processes. Lecture Notes in

Mathematics 529. Springer-Verlag, Berlin.

VAN HARN, K. AND STEUTEL, F. W. (2001). Stationarity of delayed subordina-
tors. Stoch. Models 17, 369-374.

KaJ, I. AND MARTIN-LOF, A. (2004). Scaling limit results for the sum of
many inverse Lévy subordinators. Preprint 2004:13. Department of Mathematics,

Uppsala University.

KARATZAS, I. AND SHREVE, S. E. (1988). Brownian Motion and Stochastic

Calculus. Springer-Verlag, New York.

KiNeMAN, J. F. C. (1964). On the doubly stochastic Poisson processes. Proc.
Camb. Phil. Soc. 60, 923-930.

KozLova, M. AND SALMINEN, P. (2004). Diffusion local time storage. Stoch.

Proc. Appl. 114, 211-229.

Sato, K.-1. (1999). Lévy Processes and Infinitely Divisible Distributions. Cam-
bridge University Press, Cambridge.

STEUTEL, F. W. AND VAN HARN, K. (2004). Infinite Divisibility of Probability
Distributions on the Real Line. Marcel Dekker Inc., New York.

WINKEL, M. (2005). Electronic foreign-exchange markets and passage events of

independent subordinators. J. Appl. Prob. 42, 138-152



	artikel_1.pdf
	1. Introduction
	2. Preliminaries
	3. Main results
	4. IFSs with place-dependent probabilities
	 Acknowledgments
	 References


